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Catalan triangle numbers and binomial coefficients

Kyu-Hwan Lee and Se-jin Oh

Abstract. The binomial coefficients and Catalan triangle numbers appear
as weight multiplicities of the finite-dimensional simple Lie algebras and affine
Kac–Moody algebras. We prove that any binomial coefficient can be written as
weighted sums along rows of the Catalan triangle. The coefficients in the sums
form a triangular array, which we call the alternating Jacobsthal triangle. We

study various subsequences of the entries of the alternating Jacobsthal triangle
and show that they arise in a variety of combinatorial constructions. The
generating functions of these sequences enable us to define their k-analogue
of q-deformation. We show that this deformation also gives rise to interesting
combinatorial sequences. The starting point of this work is certain identities
in the study of Khovanov–Lauda–Rouquier algebras and fully commutative
elements of a Coxeter group.

1. Introduction

It is widely accepted that Catalan numbers are the most frequently occurring
combinatorial numbers after the binomial coefficients. As binomial coefficients can
be defined inductively from the Pascal’s triangle, so can Catalan numbers from a
triangular array of numbers whose entry in the nth row and kth column is denoted
by C(n, k) for 0 ≤ k ≤ n. Set the first entry C(0, 0) = 1, and then each subsequent
entry is the sum of the entry above it and the entry to the left. All entries outside
of the range 0 ≤ k ≤ n are considered to be 0. Then we obtain the array shown in
(1.1) known as Catalan triangle introduced by L.W. Shapiro [8] in 1976. Notice that
Catalan numbers Cn appear on the hypotenuse of the triangle, i.e. Cn = C(n, n)
for n ≥ 0.

(1.1)

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42
1 6 20 48 90 132 132
1 7 27 75 165 297 429 429
...

...
...

...
...

...
...

...
. . .
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The first goal of this paper is to write each binomial coefficient as weighted
sums along rows of the Catalan triangle. In the first case, we take the sums along
the nth and n+ 1st rows of the Catalan triangle, respectively, and obtain 2-power
weighted sums to express a binomial coefficient. More precisely, we prove:

Theorem 1.1. For integers n ≥ 1 and 0 ≤ k ≤ n+ 1, we have the identities

(1.2)

(
n+ k + 1

k

)
=

k∑
s=0

C(n, s)2k−s =

k∑
s=0

C(n+ 1, s)2max(k−1−s,0)

and

(1.3)

(
n+ 1

�(n+ 1)/2�

)
=

�n/2�∑
k=0

C(�n/2�, k)2max(�n/2�−k,0).

It is quite intriguing that the two most important families of combinatorial num-
bers are related in this way. By replacing 2-powers with x-powers in the identities,
we define Catalan triangle polynomials and make a conjecture on stacked directed

animals studied in [1] (see Section 2.3). It is also interesting that

(
n+ 1

�(n+ 1)/2�

)
appearing in (1.3) is exactly the number of fully commutative, involutive elements
of the Coxeter group of type An. (See (4.2) in [9].) Actually, a clue to the identi-
ties (1.2) and (1.3) was found in the study of the homogeneous representations of
Khovanov–Lauda–Rouquier algebras and the fully commutative elements of type
Dn in the paper [2] of the first-named author and G. Feinberg, where they proved
the following:

Theorem 1.2. [2] For n ≥ 1, we have

n+ 3

2
Cn =

n−1∑
k=0

C(n, k)2|n−2−k|,(1.4)

where Cn is the nth Catalan number.

We note that n+3
2 Cn − 1 is the number of the fully commutative elements

of type Dn. (See [9]). The identity (1.4) is obtained by decomposing the set of
fully commutative elements of type Dn into packets. Likewise, we expect interest-
ing combinatorial interpretations and representation-theoretic applications of the
identities (1.2) and (1.3). In particular, C(n, k) appear as weight multiplicities of
finite-dimensional simple Lie algebras and affine Kac–Moody algebras of types A
and C [6,10,11].

To generalize Theorem 1.1, we use other rows of the Catalan triangle and there
appears a natural sequence of numbers A(m, t), defined by

A(m, 0) = 1, A(m, t) = A(m− 1, t− 1)−A(m− 1, t),

to yield the following result:

Theorem 1.3. For any n > k ≥ m ≥ t ≥ 1, we have(
n+ k + 1

k

)
=

k−m∑
s=0

C(n+m, s)2k−m−s +

m∑
t=1

A(m, t)C(n+m, k −m+ t).(1.5)
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In particular, when k = m, we have

(1.6)

(
n+ k + 1

k

)
=

k∑
t=0

A(k, t)C(n+ k, t).

The sequence consisting of A(m, t) is listed as A220074 in the On-line Ency-
clopedia of Integer Sequences (OEIS). However, the identity (1.6) does not seem to
have been known.

The identity (1.6) clearly suggests that the triangle consisting of the numbers
A(m, t) be considered as a transition triangle from the Catalan triangle to the Pascal
triangle. We call it the alternating Jacobsthal triangle. The triangle has (sums
of) subsequences of the entries with interesting combinatorial interpretations. In
particular, diagonal sums are related to the Fibonacci numbers and horizontal sums
are related to the Jacobsthal numbers.

The second goal of this paper is to study a k-analogue of q-deformation of
the Fibonacci and Jacobsthal numbers through a k-analogue of the alternating
Jacobsthal triangle. This deformation is obtained by putting the parameters q and
k into the generating functions of these numbers. Our constructions give rise to
different polynomials than the Fibonacci and Jacobsthal polynomials which can be
found in the literature (e.g. [4,7]).

For example, the k-analogue Jk,m(q) of q-deformation of the Jacobsthal num-
bers is given by the generating function

x(1− qx)

(1− kq2x2)(1− (q + 1)x)
=

∞∑
m=1

Jk,m(q)xm.

When q = 1 and k = 1, we recover the usual generating function
x

(1 + x)(1− 2x)
of the Jacobsthal numbers.

Interestingly enough, sequences given by special values of this deformation have
various combinatorial interpretations. For example, the sequence

(J2,m(1))m≥1 = (1, 1, 4, 6, 16, 28, 64, 120, . . . )

is listed as A007179 in OEIS and has the interpretation as the numbers of equal
dual pairs of some integrals studied in [3]. (See Table 1 on p.365 in [3].) Similarly,
many subsequences of a k-analogue of the alternating Jacobsthal triangle are found
to have combinatorial meanings. See the triangle (5.2), for example.

An outline of this paper is as follows. In the next section, we prove Theo-
rem 1.1 to obtain Catalan triangle expansions of binomial coefficients as 2-power
weighted sums. We also introduce Catalan triangle polynomials and study some
of their special values. In Section 3, we prove Theorem 1.3 and investigate the
alternating Jacobsthal triangle to obtain generating functions and meaningful sub-
sequences. The following section is concerned with q-deformation of the Fibonacci
and Jacobsthal numbers. The last section is devoted to the study of a k-analogue
of the q-deformation of the Fibonacci and Jacobsthal numbers using the k-analogue
of the alternating Jacobsthal triangle.

2. Catalan expansion of binomial coefficients

In this section, we prove expressions of binomial coefficients as 2-power weighted
sums along rows of the Catalan triangle. Catalan trapezoids are introduced for the
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proofs. In the last subsection, Catalan triangle polynomials are defined and some
of their special values will be considered.

2.1. Catalan triangle. We begin with a formal definition of the Catalan
triangle numbers.

Definition 2.1. For n ≥ 0 and 0 ≤ k ≤ n, we define the (n, k)-Catalan triangle
number C(n, k) recursively by

(2.1) C(n, k) =

⎧⎪⎪⎨⎪⎪⎩
1 if n = 0;

C(n, k − 1) + C(n− 1, k) if 0 < k < n;
C(n− 1, 0) if k = 0;
C(n, n− 1) if k = n,

and define the nth Catalan number Cn by

Cn = C(n, n) for n ≥ 0.

The closed form formula for the Catalan triangle numbers is well known: for
n ≥ 0 and 0 ≤ k ≤ n,

C(n, k) =
(n+ k)!(n− k + 1)

k!(n+ 1)!
.

In particular, we have

Cn =
1

n+ 1

(
2n

n

)
,

and it can be easily verified

(2.2) C(n, k) =

(
n+ k

k

)
−
(
n+ k

k − 1

)
.

Theorem 2.2. [2] For n ≥ 1, we have

n+ 3

2
Cn =

n−1∑
k=0

C(n, k)2|n−2−k|.(2.3)

As mentioned in the introduction, n+3
2 Cn−1 is the number of the fully commu-

tative elements of type Dn ([9]) and the identity (2.3) is obtained by decomposing
the set of fully commutative elements of type Dn into packets.

Theorem 2.3. For n ∈ Z≥0, we have(
n+ 1

�(n+ 1)/2�

)
=

�n/2�∑
s=0

C(�n/2�, s)2max(�n/2�−s,0).(2.4)

Proof. Set Qn :=

(
n+ 1

�(n+ 1)/2�

)
for convenience. We will consider n even

and n odd separately. First, assume n = 2k for some k ∈ Z≥0. Then we have

Q2k =

(
2k + 1
k + 1

)
.

By (2.3) in Theorem 2.2, we have

k−1∑
s=0

C(k, s)2|k−2−s| =
k + 3

2
Ck =

k + 3

2k + 2

(
2k
k

)
.(2.5)
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On the other hand,

k−1∑
s=0

C(k, s)2|k−2−s| =
k−2∑
s=0

C(k, s)2k−2−s + 2C(k, k − 1).

Note that C(k, k − 1) = Ck. Multiplying (2.5) by 4, we have

k∑
s=0

C(k, s)2k−s + 5C(k, k − 1) =
2k + 6

k + 1

(
2k
k

)
.

Hence

k∑
s=0

C(k, s)2k−s =
2k + 6

k + 1

(
2k
k

)
− 5Ck =

2k + 1

k + 1

(
2k
k

)
=

(
2k + 1
k + 1

)
= Q2k.

Next, assume n = 2k + 1 for some k ∈ Z≥0. Then we have

Q2k+1 =

(
2k + 2
k + 1

)
.

Again from (2.3), we obtain

k∑
s=0

C(k + 1, s)2|k−1−s| =
k + 4

2
Ck+1 =

k + 4

2k + 4

(
2k + 2
k + 1

)
.(2.6)

On the other hand,

k∑
s=0

C(k + 1, s)2|k−1−s| =
k−1∑
s=0

C(k + 1, s)2k−1−s + 2C(k + 1, k).

Note that C(k + 1, k) = Ck+1. Multiplying (2.6) by 2, we have

k−1∑
s=0

C(k + 1, s)2k−s + 4C(k + 1, k) =

k+1∑
s=0

C(k + 1, s)2max(k−s,0) + 2C(k + 1, k)

=
k + 4

k + 2

(
2k + 2
k + 1

)
.

Since
k + 4

k + 2

(
2k + 2
k + 1

)
− 2C(k + 1, k) =

(
2k + 2
k + 1

)
= Q2k+1,

our assertion is true in this case as well. �

Corollary 2.4. For n ∈ Z≥0, the dual form of (2.4) holds; i.e.,(
n+ 1

�(n+ 1)/2�

)
=

�n/2�∑
s=0

C(�n/2�, s)2�n/2�−s.

In particular, we have the following identity by replacing n with 2n− 1:(
2n
n

)
=

n−1∑
s=0

C(n− 1, s)2n−s =

n∑
s=0

(n+ s− 1)!(n− s)

s!n!
2n−s =

n∑
s=0

(
n
s

)2

.
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Proof. The assertion for n = 2k follows from the fact that

(
2k + 1

k

)
=(

2k + 1
k + 1

)
and for n = 2k+1 follows from the fact that 2×

(
2k + 1

k

)
=

(
2k + 2
k + 1

)
.

�

From Theorem 2.3, we have, for n = 2k − 1 (k ∈ Z≥1),(
2k
k

)
=

k∑
s=0

C(k, s)2max(k−1−s,0)

=
k−1∑
s=0

C(k, s)2k−1−s +
1

k + 1

(
2k
k

)
.

Since

(
2k
k

)
− 1

k + 1

(
2k
k

)
=

(
2k

k − 1

)
, we obtain a new identity:

(
2k

k − 1

)
=

k−1∑
s=0

C(k, s)2k−1−s.(2.7)

More generally, we have the following identity which is an interesting expression

of a binomial coefficient

(
n+ k + 1

k

)
as a 2-power weighted sum of the Catalan

triangle along the nth row.

Theorem 2.5. For 0 ≤ k ≤ n+ 1, we have

(2.8)

(
n+ k + 1

k

)
=

min(n,k)∑
s=0

C(n, s)2k−s.

Proof. We will use an induction on n+1−k. The cases when k = n+1, n, n−1
are already proved. Indeed, the cases k = n+1 and k = n follow from Corollary 2.4,
and the case k = n−1 is nothing but (2.7). Assume that we have the identity (2.8)
for any n and k such that 2 ≤ n+1− k ≤ m. Consider the case n+1− k = m+1.
By assumption, we have(

n+ k + 2
k + 1

)
=

k+1∑
s=0

C(n, s)2k+1−s.(2.9)

Since C(n, k + 1) =
n− k

n+ k + 2

(
n+ k + 2
k + 1

)
, the identity (2.9) can be written as

(
n+ k + 2
k + 1

)
− n− k

n+ k + 2

(
n+ k + 2
k + 1

)
=

k∑
s=0

C(n, s)2k+1−s.

Now, simplifying the left-hand side(
n+ k + 2
k + 1

)
− n− k

n+ k + 2

(
n+ k + 2
k + 1

)
=

2k + 2

n+ k + 2

(
n+ k + 2
k + 1

)
= 2

(
n+ k + 1

k

)
,

we obtain the desired identity(
n+ k + 1

k

)
=

k∑
s=0

C(n, s)2k−s. �
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Example 2.6.(
7
3

)
=

3∑
s=0

C(3, s)23−s = 1× 8 + 3× 4 + 5× 2 + 5 = 35,

(
8
3

)
=

3∑
s=0

C(4, s)23−s = 1× 8 + 4× 4 + 9× 2 + 14 = 56.

2.2. Catalan trapezoid. As a generalization of Catalan triangle, we define a
Catalan trapezoid by considering a trapezoidal array of numbers with m complete
columns (m ≥ 1). Let the entry in the nth row and kth column of the array be
denoted by Cm(n, k) for 0 ≤ k ≤ m + n − 1. Set the entries of the first row to be
Cm(0, 0) = Cm(0, 1) = · · · = Cm(0,m− 1) = 1, and then each subsequent entry is
the sum of the entry above it and the entry to the left as in the case of Catalan
triangle. All entries outside of the range 0 ≤ k ≤ n +m − 1 are considered to be
0. Then, in particular, we obtain Cm(n, 0) = 1 for all n ≥ 0. For example, when
m = 3, we obtain

(2.10)

1 1 1
1 2 3 3
1 3 6 9 9
1 4 10 19 28 28
1 5 15 34 62 90 90
1 6 21 55 117 207 297 297
1 7 28 83 200 407 704 1001 1001
1 8 36 119 319 726 1430 2431 3432 3432
...

...
...

...
...

...
...

...
...

. . .

Alternatively, the numbers Cm(n, k) can be defined in the following way.

Definition 2.7. For an integer m ≥ 1, set C1(n, k) = C(n, k) for 0 ≤ k ≤ n
and C2(n, k) = C(n+ 1, k) for 0 ≤ k ≤ n+ 1, and define inductively

Cm(n+ 1, k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
n+ 1 + k

k

)
if 0 ≤ k < m,(

n+ 1 + k

k

)
−
(
n+m+ 1 + k −m

k −m

)
if m ≤ k ≤ n+m,

0 if n+m < k.

(2.11)

Using the numbers Cm(n, k), we prove the following theorem.

Theorem 2.8. For any triple of integers (m, k, n) such that 1 ≤ m ≤ k ≤ n+m,
we have

(
n+ k + 1

k

)
=

min(n,k)∑
s=0

C(n, s)2k−s=

k−m∑
s=0

C(n+m, s)2k−m−s +

m−1∑
s=0

C(n+ 1 + s, k − s).

(2.12)
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Proof. By Theorem 2.5, the second case in (2.11) can be re-written as follows:

Cm(n+1, k) =

min(n,k)∑
s=0

C(n, s)2k−s−
k−m∑
s=0

C(n+m, s)2k−m−s if m ≤ k ≤ n+m.

On the other hand, for m ≤ k ≤ n+m, we use (2.2) to get(
n+ 1 + k

k

)
−
(
n+m+ 1 + k −m

k −m

)
=

m−1∑
s=0

C(n+ 1 + s, k − s).

Thus we obtain
min(n,k)∑

s=0

C(n, s)2k−s −
k−m∑
s=0

C(n+m, s)2k−m−s =
m−1∑
s=0

C(n+ 1 + s, k − s)

for m ≤ k ≤ n+m. This completes the proof. �
By specializing (2.12) at m = 1, we obtain different expressions of a binomial

coefficient

(
n+ k + 1

k

)
=

(
n+ 1 + k

k

)
as a 2-power weighted sum of the Catalan

triangle along the n+ 1st row. (cf. (2.8))

Corollary 2.9. We have the following identities: For k ≥ 1,

(2.13)

(
n+ 1 + k

k

)
=

k∑
s=0

C(n, s)2k−s =
k−1∑
s=0

C(n+ 1, s)2k−1−s + C(n+ 1, k)

=
k∑

s=0

C(n+ 1, s)2max(k−1−s,0).

Note that, combining Theorem 2.3 and Corollary 2.9, we have proven Theorem
1.1.

Remark 2.10. The identities in Corollary 2.9 can be interpreted combina-
torially, and one can prove them bijectively. As it reveals combinatorics behind

the identities, we sketch a bijective proof of the first identity

(
n+ 1 + k

k

)
=

k∑
s=0

C(n, s)2k−s.

Bijective proof.
1 We interpret

(
n + 1 + k

k

)
as the number of the lattice paths

from (0, 0) to (n + 1 + k, n + 1 − k) with up-steps (1, 1) and down-steps (1,−1).
For such a path λ, let P0, P1, . . . , Ps be the intersections of λ with the x-axis,
decomposing λ into s + 1 parts D0, D1, . . . , Ds. Then the last part Ds of λ from
Ps to the end point (n+ 1 + k, n+ 1− k) is a Dyck path, i.e. it stays at or above
the x-axis.

We remove from each of Di, i = 0, . . . , s − 1, the first step and the last step
and from Ds the first step, and flip them, if necessary, to obtain Dyck paths, and
concatenate them, putting a step (1, 1), between them. The resulting path is a
Dyck path from (0, 0) to (n+ k − s, n− k + s). This gives a 2s-to-1 map from the

1This proof was communicated to us by Jang Soo Kim. We thank him for allowing us to use
his proof.
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set of the lattice paths from (0, 0) to (n+ 1 + k, n+ 1 − k) to the set of the Dyck
paths from (0, 0) to (n+ k− s, n− k+ s). Since C(n, k− s) is equal to the number
of the Dyck paths from (0, 0) to (n+ k − s, n− k + s), we have proven(

n+ 1 + k
k

)
=

k∑
s=0

C(n, k − s)2s =
k∑

s=0

C(n, s)2k−s. �

2.3. Catalan triangle polynomials. The identities in the previous subsec-
tions naturally give rise to the following definition.

Definition 2.11. For 0 ≤ k ≤ n, we define the (n, k)th Catalan triangle poly-
nomial Fn,k(x) by

Fn,k(x) =
k∑

s=0

C(n, s)xk−s =
k−1∑
s=0

C(n, s)xk−s + C(n, k).(2.14)

Note that the degree of Fn,k is k.

Evaluations of Fn,k(x) at the first three nonnegative integers are as follows:

• Fn,k(0) = C(n, k)
• Fn,k(1) = C(n+ 1, k) = C2(n, k)

• Fn,k(2) =

(
n+ k + 1

k

)
= Cn(n+ 1, k)

Clearly,(
n
k

)
=

(
n− 1
k − 1

)
+

(
n− 1
k

)
, C(n, k) = C(n, k − 1) + C(n− 1, k),

Fn,k(d) = Fn,k−1(d) + Fn−1,k(d) for any d ∈ Z.

Let us recall the description of C(n, k) in terms of binomial coefficients:

C(n, k) = 2

(
n+ k
k

)
− (2− 1)

(
n+ k + 1

k

)
.(2.15)

Theorem 2.12. For any d ∈ Z≥1, we have

C(n, k) = dFn−1,k(d)− (d− 1)Fn,k(d)

which recovers (2.15) when d = 2.

Proof. Since Fn,k(d) =
∑k−1

s=0 C(n, s)dk−s + C(n, k), we have

Fn,k(d)− C(n, k)

d
=

k−1∑
s=1

C(n, s− 1)dk−s.

Hence the equation (2.1) and the fact that C(n, 0) = C(n− 1, 0) = 1 yield

Fn,k(d)−
Fn,k(d)− C(n, k)

d
= Fn−1,k(d).(2.16)

By multiplying (2.16) by d, our assertion follows. �
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With the consideration of Corollary 2.9, we define a natural variation of Fn,k(x).

Definition 2.13. For 0 ≤ k ≤ n, we define the modified (n, k)th Catalan
triangle polynomial in the following way:

F̃n,k(x) =

k∑
s=0

C(n+ 1, s) xmax(k−1−s,0).(2.17)

Note that the degree of F̃n,k(x) is k − 1.

Evaluations of F̃n,k(x) at the first three nonnegative integers are as follows:

• F̃n,k(0) = C(n+ 1, k − 1) + C(n+ 1, k)

• F̃n,k(1) = C(n+ 2, k)

• F̃n,k(2) =

(
n+ k + 1

k

)
Similarly,

F̃n,k(d) = F̃n,k−1(d) + F̃n−1,k(d) for any d ∈ Z.

We have the same result in Theorem 2.12 for F̃n,k(d) also:

Theorem 2.14. For any d ∈ Z≥1, we have

C(n, k) = d F̃n−1,k(d)− (d− 1)F̃n,k(d)

which recovers (2.15) when d = 2.

Let σn be the number of n-celled stacked directed animals in a square lattice.
See [1] for definitions. The sequence (σn)n≥0 is listed as A059714 in OEIS. We
conjecture

σn = F̃n,n(3) for n ≥ 0.

We expect that one can find a direct, combinatorial proof of this conjecture. A list
of the numbers σn is below, and the conjecture is easily verified for the numbers in
the list:

σ0 = 1, σ1 = 3, σ2 = 11, σ3 = 44, σ4 = 184, σ5 = 789, σ6 = 3435,

σ7 = 15100, σ8 = 66806, σ9 = 296870, σ10 = 1323318, σ11 = 5911972.

For example, when n = 7, we have the sequence (C(8, k), 0 ≤ k ≤ 7) equal to

(1, 8, 35, 110, 275, 572, 1001, 1430),

and compute

F̃7,7(3) = 36 + 8 · 35 + 35 · 34 + 110 · 33 + 275 · 32 + 572 · 3 + 1001 + 1430 = 15100.

3. Alternating Jacobsthal triangle

In the previous section, the binomial coefficient
(
n+k+1

k

)
is written as sums along

the nth and the n + 1st row of the Catalan triangle, respectively. In this section,
we consider other rows of the Catalan triangle as well and obtain a more general
result. In particular, the n+kth row will produce a canonical sequence of numbers,
which form the alternating Jacobsthal triangle. We study some subsequences of
the triangle and their generating functions in the subsections.
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Define A(m, t) ∈ Z recursively for m ≥ t ≥ 0 by

A(m, 0) = 1, A(m, t) = A(m− 1, t− 1)−A(m− 1, t).(3.1)

Here we set A(m, t) = 0 when t > m. Then, by induction on m, one can see that

m∑
t=1

A(m, t) = 1 and A(m,m) = 1.

Using the numbers A(m, t), we prove the following theorem which is a gener-
alization of the identities in Corollary 2.9:

Theorem 3.1. For any n > k ≥ m ≥ t ≥ 1, we have(
n+ k + 1

k

)
=

k−m∑
s=0

C(n+m, s)2k−m−s +
m∑
t=1

A(m, t)C(n+m, k −m+ t).(3.2)

Proof. We will use an induction on m ∈ Z≥1. For m = 1, we already proved
the identity in Corollary 2.9. Assume that we have the identity (3.2) for some
m ∈ Z≥1. By specializing (2.12) at m+ 1, we have(

n+ k + 1
k

)
=

k−m−1∑
s=0

C(n+m+ 1, s)2k−m−1−s +
m∑
s=0

C(n+ 1 + s, k − s)

=

k−m−1∑
s=0

C(n+m+ 1, s)2k−m−1−s +

m−1∑
s=0

C(n+ 1 + s, k − s)

+ C(n+m+ 1, k −m).

By the induction hypothesis applied to (2.12), we have

m−1∑
s=0

C(n+ 1 + s, k − s) =

m∑
t=1

A(m, t)C(n+m, k −m+ t).

Then our assertion follows from the fact that

C(n+m, k−m+ t) = C(n+m+ 1, k−m+ t)−C(n+m+ 1, k−m+ t− 1). �

We obtain the triangle consisting of A(m, t) (m ≥ t ≥ 0):

(3.3)

1
1 1
1 0 1
1 1 −1 1
1 0 2 −2 1
1 1 −2 4 −3 1
1 0 3 −6 7 −4 1
1 1 −3 9 −13 11 −5 1
1 0 4 −12 22 −24 16 −6 1
...

...
...

...
...

...
...

...
...

. . .

The triangle in (3.3) will be called the alternating Jacobsthal triangle. The 0th

column is colored in blue (online) to indicate the fact that some formulas do not
take entries from this column.
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Example 3.2. For m = 3, we have(
n+ k + 1

k

)
=

k−3∑
s=0

C(n+ 3, s)2k−3−s+C(n+ 3, k − 2)−C(n+ 3, k − 1)+C(n+ 3, k).

By specializing (3.2) at m = k, the kth row of alternating Jacobsthal triangle

and n+ kth row of Catalan triangle yield the binomial coefficient

(
n+ k + 1

k

)
:

Corollary 3.3. For any n > k, we have

(3.4)

(
n+ k + 1

k

)
=

k∑
t=0

A(k, t)C(n+ k, t).

Example 3.4.(
8
3

)
= A(3, 0)C(7, 0) +A(3, 1)C(7, 1) +A(3, 2)C(7, 2) +A(3, 3)C(7, 3)

= 1× 1 + 1× 7− 1× 27 + 1× 75 = 56.(
9
3

)
= A(3, 0)C(8, 0) +A(3, 1)C(8, 1) +A(3, 2)C(8, 2) +A(3, 3)C(8, 3)

= 1× 1 + 1× 8− 1× 35 + 1× 110 = 84.(
9
4

)
= A(4, 0)C(8, 0)+A(4, 1)C(8, 1)+A(4, 2)C(8, 2)+A(4, 3)C(8, 3)+A(4, 3)C(8, 3)

= 1× 1 + 0× 8 + 2× 35− 2× 110 + 1× 275 = 126.

3.1. Generating function. The numbers A(m, t) can be encoded into a gen-
erating function in a standard way. Indeed, from (3.1), we obtain

A(m, t) =

m−1∑
k=t−1

(−1)m−1−kA(k, t− 1)(3.5)

= A(m− 1, t− 1)−A(m− 2, t− 1)− · · ·+ (−1)m−tA(t− 1, t− 1).

Lemma 3.5. We have

1

(1− x)(1 + x)t
=

∞∑
m=t

A(m, t)xm−t.(3.6)

Proof. When t = 0, we have
1

1− x
= 1 + x + x2 + · · · =

∞∑
m=0

A(m, 0)xm.

Inductively, when t > 0, we have

1

(1− x)(1 + x)t
=

1

(1 + x)

1

(1− x)(1 + x)t−1
=(1−x+x2−· · · )

∞∑
m=t−1

A(m, t−1)xm−t+1.

Then we obtain (3.6) from (3.5). �
3.2. Subsequences. The alternating Jacobsthal triangle has various subse-

quences with interesting combinatorial interpretations.
First, we write

1

(1− x)(1 + x)t
=

∑
m≥0

am+1,tx
2m −

∑
m≥0

bm+1,tx
2m+1
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to define the subsequences {am,t} and {bm,t} of {A(m, t)}. Then we have

am,t = A(t+ 2m− 2, t) and bm,t = −A(t+ 2m− 1, t).

Clearly, am,t, bm,t ≥ 0. Using (3.5), we obtain

am,t =
m∑

k=1

ak,t−1 +
m−1∑
k=1

bk,t−1 and bm,t =
m∑

k=1

bk,t−1 +
m∑

k=1

ak,t−1.

It is easy to see that an,2 = n and bn,2 = n. Then we have

an,3 =
n∑

k=1

ak,2 +
n−1∑
k=1

bk,2 =
n(n+ 1)

2
+

n(n− 1)

2
= n2.

Similarly,

bn,3 =

n∑
k=1

bk,2 +

n∑
k=1

ak,2 =
n(n+ 1)

2
+

n(n+ 1)

2
= n(n+ 1).

We compute more and obtain

an,4 =
n(n+ 1)(4n− 1)

6
, bn,4 =

n(n+ 1)(4n+ 5)

6
,

an,5 =
n(n+ 1)(2n2 + 2n− 1)

6
, bn,5 =

n(n+ 1)2(n+ 2)

3
.

Note also that
1

(1 + x)(1− x)t
=

∑
m≥0

am+1,tx
2m +

∑
m≥0

bm+1,tx
2m+1.

Next, we define
B(m, t) = A(m,m− t) for m ≥ t

to obtain the triangle

(3.7)

1
1 1
1 0 1
1 −1 1 1
1 −2 2 0 1
1 −3 4 −2 1 1
1 −4 7 −6 3 0 1
1 −5 11 −13 9 −3 1 1
1 −6 16 −24 22 −12 4 0 1
...

...
...

...
...

...
...

...
...

. . .

Lemma 3.6. For m ≥ t, we have

B(m, t) = 1−
m−1∑
k=t

B(k, t− 1).

Proof. We use induction on m. When m = t, we have B(m, t) = A(m, 0) = 1.
Assume that the identity is true for some m ≥ t. Since we have

B(m+ 1, t) = A(m+ 1,m+ 1− t) = A(m,m− t)−A(m,m+ 1− t)

= B(m, t)−B(m, t− 1),
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we obtain

B(m+ 1, t) +
m∑
k=t

B(k, t− 1) = B(m, t)−B(m, t− 1) +
m∑
k=t

B(k, t− 1)

= 1−
m−1∑
k=t

B(k, t− 1)−B(m, t− 1)+
m∑
k=t

B(k, t− 1)=1

by the induction hypothesis. �
Using Lemma 3.6, one can derive the following formulas:

• B(n, 0) = A(n, n) = 1 and B(n, 1) = A(n, n− 1) = 2− n,

• B(n, 2) = A(n, n− 2) = 4 +
n(n− 5)

2
,

• B(n, 3) = A(n, n− 3) = 8− n(n2 − 9n+ 32)

6
.

We consider the columns of the triangle (3.7) and let cm,t = (−1)tB(m+t+1, t)
for each t for convenience. Then the sequences (cm,t)m≥1 for the first several t’s
appear in the OEIS. Specifically, we have:

• (cm,2) = (2, 4, 7, 11, 16, 22, . . . ) corresponds to A000124,
• (cm,3) = (2, 6, 13, 24, 40, 62, . . . ) corresponds to A003600,
• (cm,4) = (3, 9, 22, 46, 86, 148, . . . ) corresponds to A223718,
• (cm,5) = (3, 12, 34, 80, 166, 314, . . . ) corresponds to A257890,
• (cm,6) = (4, 16, 50, 130, 296, 610, . . . ) corresponds to A223659.

3.3. Diagonal sums. As we will see in this subsection, the sums along lines
of slope 1 in the alternating Jacobsthal triangle are closely related to Fibonacci
numbers. We begin with fixing a notation. For s ≥ 0, define

Bs =
∑

t+m−2=s, t>0

A(m, t).

Using the generating function (3.6), we have

F (x) :=
∞∑
t=1

x2t−2

(1− x)(1 + x)t
=

∞∑
s=0

Bsx
s.

Then we obtain

(1− x)x2F (x) =
∞∑
t=1

(
x2

1 + x

)t

=
x2

1 + x− x2

and the formula

F (x) =
1

(1− x)(1 + x− x2)
.(3.8)

It is known that the function F (x) is the generating function of the sequence of the
alternating sums of the Fibonacci numbers; precisely, we get

(3.9) Bs =

s+1∑
k=1

(−1)k−1 Fib(k) = 1 + (−1)s Fib(s) (s ≥ 0),

where (Fib(s))s≥0 is the Fibonacci sequence. (See A119282 in OEIS.) From the
construction, the following is obvious:

Bs+1 = −Bs +Bs−1 + 1 (s ≥ 1) and B0 = 1, B1 = 0.
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4. q-deformation

In this section, we study a q-deformation of the Fibonacci and Jacobsthal num-
bers by putting the parameter q into the identities and generating functions we
obtained in the previous section. We also obtain a family of generating functions
of certain sequences by expanding the q-deformation of the generating function of
the numbers A(m, t) in terms of q.

4.1. q-Fibonacci numbers. For s ≥ 0, define

Bs(q) =
∑

t+m−2=s, t>0

A(m, t)qm−t ∈ Z[q].

Then we obtain

F (x, q) :=

∞∑
t=1

x2t−2

(1− qx)(1 + qx)t

=

∞∑
s=0

Bs(q)x
s =

1

(1− qx)(1 + qx− x2)
.

Note that

Bs+1(q) = −qBs(q) +Bs−1(q) + qs (s ≥ 1) and B0(q) = 1, B1(q) = 0.

Motivated by (3.9), we define a q-analogue of Fibonacci number by

B̃s(q) := (−1)sBs(q) + (−1)s+1qs =
∑

t+m−2=s, t>0

|A(m, t)|qm−t + (−1)s+1qs.

In particular, we have

B̃1(q) = q, B̃2(q) = 1, B̃3(q) = q3 + q, B̃4(q) = 2q2 + 1, B̃5(q) = q5 + 2q3 + 2q,

B̃6(q) = 3q4 + 4q2 + 1, B̃7(q) = q7 + 3q5 + 6q3 + 3q, B̃8(q) = 4q6 + 9q4 + 7q2 + 1.

These polynomials can be readily read off from the alternating Jacobsthal triangle

(3.3). We observe that B̃2s(q) ∈ Z≥0[q
2] and B̃2s+1(q) ∈ Z≥0[q

2]q and that B̃s(q)
is weakly unimodal.

Note that we have

F (x, q)− 1

1− qx
=

1

(1− qx)(1 + qx− x2)
− 1

1− qx
=

x2 − qx

(1− qx)(1 + qx− x2)

=
∞∑
s=0

Bs(q)x
s −

∞∑
s=0

(qx)s =
∞∑
s=0

B̃s(q)(−x)s.

Thus the generating function CF (x, q) of B̃s(q) is given by

CF (x, q) :=

∞∑
s=0

B̃s(q)x
s =

x2 + qx

(1 + qx)(1− qx− x2)
.(4.1)

Remark 4.1. The well-known Fibonacci polynomial Fs(q) can be considered
as a different q-Fibonacci number whose generating function is given by

∞∑
t=1

x2t−2

(1− qx)t
=

1

1− qx− x2
=

∞∑
s=0

Fs(q)x
s.
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Recall that the polynomial Fs(q) can be read off from the Pascal triangle. When
q = 2, the number Fs(2) is nothing but the sth Pell number. On the other hand, it
does not appear that the sequence

(B̃s(2))s≥1 = (2, 1, 10, 9, 52, 65, 278, 429, 1520, . . . )

has been studied in the literature.

4.2. q-Jacobsthal numbers. Recall that the Jacobsthal numbers Jm are de-
fined recursively by Jm = Jm−1 + 2Jm−2 with J1 = 1 and J2 = 1. Then the
Jacobsthal sequence (Jm) is given by

(1, 1, 3, 5, 11, 21, 43, 85, 171, . . . ).

Consider the function

Q(x, q) :=

∞∑
t=1

xt

(1− qx)(1 + qx)t
.(4.2)

Define

Hm(q) :=

m∑
t=1

A(m, t)qm−t for m ≥ 1.

For example, we can read off

H5(q) = q4 − 2q3 + 4q2 − 3q + 1

from the alternating Jacobsthal triangle (3.3). Using (3.6), we obtain

Q(x, q) =

∞∑
t=1

∞∑
m=t

A(m, t)qm−txm

=
∞∑

m=1

m∑
t=1

A(m, t)qm−txm =
∞∑

m=1

Hm(q)xm.

A standard computation also yields

(4.3) Q(x, q) =
x

(1− qx)(1 + (q − 1)x)
.

By taking q = 0 or q = 1, the equation (4.3) becomes
x

1− x
. On the other

hand, by taking q = −1, the equation (4.3) becomes
x

(1 + x)(1− 2x)
,

which is the generating function of the Jacobsthal numbers Jm. That is, we have

• Hm(0) = Hm(1) = 1 for all m,
• Hm(−1) is the mth Jacobsthal number Jm for each m.

Since Jm = Hm(−1) =
∑m

t=1 |A(m, t)|, we see that an alternating sum of the entries
along a row of the triangle (3.3) is equal to a Jacobsthal number.

Moreover, we have a natural q-deformation Jm(q) of the Jacobsthal number
Jm, which is defined by

Jm(q) := Hm(−q) =

m∑
t=1

|A(m, t)|qm−t.

For example, we have

J3(q) = q2 + q + 1, J4(q) = 2q2 + 2q + 1, J5(q) = q4 + 2q3 + 4q2 + 3q + 1.
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Note that Jm(q) is weakly unimodal. We also obtain

Q(x,−q) =
x

(1 + qx)(1− (q + 1)x)
=

∞∑
m=1

Jm(q)xm.

The following identity is well-known ([4,5]):

Jm =

�(m−1)/2�∑
r=0

(
m− r − 1

r

)
2r.

Hence we have

Jm =

�(m−1)/2�∑
r=0

(
m− r − 1

r

)
2r =

m∑
t=1

|A(m, t)| = Hm(−1) = Jm(1).

Remark 4.2. In the literature, one can find different Jacobsthal polynomials.
See [7], for example.

4.3. A family of generating functions. Now let us expand Q(x, q) with
respect to q to define the functions L�(x):

Q(x, q) =

∞∑
t=1

xt

(1− qx)(1 + qx)t
=

∞∑
�=0

L�(x)q
�.

Lemma 4.3. For � ≥ 0, we have

L�+1(x) =
−x

1− x
L�(x) +

x�+2

1− x
.

Proof. Clearly, we have L0(x) =

∞∑
n=1

xn =
x

1− x
. We see that

x

1− x
+

∞∑
�=0

L�+1(x)q
�+1 = Q(x, q) =

x

(1− qx)(1 + (q − 1)x)
.

On the other hand, we obtain

x

1− x
+

∞∑
�=0

{
−x

1− x
L�(x)q

�+1 +
x

1− x
(qx)�+1

}
=

x

1− x
− qx

1− x
· x

(1− qx)(1 + (q − 1)x)
+

x

1− x
· qx

1− qx

=
x

(1− qx)(1 + (q − 1)x)
= Q(x, q).

This completes the proof. �

Using Lemma 4.3, we can compute first several L�(x):

• L0(x) =
∞∑

n=1

xn =
x

1− x
,

• L1(x) =
−x2

(1− x)2
+

x2

1− x
=

−x3

(1− x)2
= −

∞∑
n=1

nxn+2,

• L2(x) =
x4

(1− x)3
+

x3

1− x
=

x3(1− x+ x2)

(1− x)3
.
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• L3(x) = −x4(1− x+ x2)

(1− x)4
+

x4

1− x
= −x5(2− 2x+ x2)

(1− x)4
.

One can check that L2(x) is the generating function of the sequence A000124
in OEIS and that L3(x) is the generating function of the sequence A003600. Note
that the lowest degree of L�(x) in the power series expansion is larger than or equal
to �+ 1. More precisely, the lowest degree of L�(x) is �+ 1 + δ(� ≡ 1(mod 2)).

5. k-analogue of q-deformation

In this section, we consider k-analogues of the q-deformations we introduced
in the previous section. This construction, in particular, leads to a k-analogue
of the alternating Jacobsthal triangle for each k ∈ Z \ {0}. Specializations of this
construction at some values of k and q produce interesting combinatorial sequences.

Define Ak(m, t) by

Ak(m, 0) = k�m/2� and Ak(m, t) = Ak(m− 1, t− 1)−Ak(m− 1, t).

Then we have

1

(1− kx2)(1 + x)t−1
=

∞∑
m=t

Ak(m, t)xm−t

in the same way as we obtained (3.6). As in Section 4.2, we also define

Hk,m(q) =
m∑
t=1

Ak(m, t)qm−k.

We obtain the generating function Qk(x, q) of Hk,m(q) by

Qk(x, q) :=

∞∑
t=1

xt

(1− kq2x2)(1 + qx)t−1
=

x(1 + qx)

(1− kq2x2)(1 + (q − 1)x)
=

∞∑
m=1

Hk,m(q)xm.

In particular, when q = 1, we have

Qk(x, 1) =

∞∑
t=1

xt

(1− kx2)(1 + x)t−1
=

x(1 + x)

1− kx2
=

∞∑
m=1

km−1
(
x2m−1 + x2m

)
.

Note that Hk,m(1) = k�(m−1)/2�.
Moreover, the triangle given by the numbers Ak(m, t) can be considered as a

k-analogue of the alternating Jacobsthal triangle (3.3). See the triangles (5.1) and
(5.2). Thus we obtain infinitely many triangles as k varies in Z \ {0}. Similarly, we
define a k-analogue of the q-Jacobsthal number by

Jk,m(q) := Hk,m(−q),

and the number Jk,m(1) =
∑m

t=1 |Ak(m, t)| can be considered as the k-analogue of
the mth Jacobsthal number.
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For example, if we take k = 2, the polynomial H2,m(q) can be read off from
the following triangle consisting of A2(m, t):

(5.1)

1
1 1
2 0 1
2 2 −1 1
4 0 3 −2 1
4 4 −3 5 −3 1
8 0 7 −8 8 −4 1
8 8 −7 15 −16 12 −5 1
16 0 15 −22 31 −28 17 −6 1
16 16 −15 37 −53 59 −45 23 −7 1
32 0 31 −52 90 −112 104 −68 30 −8 1
...

...
...

...
...

...
...

...
...

...
...

. . .

We have J2,m(1) =
∑m

t=1 |A2(m, t)|, and the sequence

(J2,m(1))m≥1 = (1, 1, 4, 6, 16, 28, 64, 120, . . . )

appears as A007179 in OEIS. As mentioned in the introduction, this sequence has
the interpretation as the numbers of equal dual pairs of some integrals studied in
[3]. (See Table 1 on p.365 in [3].)

Define Bk(m, t) = Ak(m,m− t). Then we obtain the following sequences from
(5.1) which appear in OEIS:

• (B2(m, 2))m≥3 = (2, 3, 5, 8, 12, 17, 23, 30, . . . ) ↔ A002856, A152948,
• (−B2(m, 3))m≥5 = (3, 8, 16, 28, 45, 68, . . . ) ↔ A254875.

We also consider diagonal sums and find

• the positive diagonals( ∑
m+t=2s, t>0

A2(m, t)

)
s≥1

corresponds to

(1, 3, 8, 21, 55, 144, 377, . . . ) ↔ (Fib(2s)),

where Fib(s) is the Fibonacci number;
• the negative diagonals⎛⎝−

∑
m+k=2s+1, t>0

A2(m, k)

⎞⎠
s≥1

corresponds to

(0, 1, 5, 18, 57, 169, . . . ) ↔ A258109,

whose sth entry is the number of Dyck paths of length 2(s+1) and height 3.
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Similarly, when k = −1, we obtain the following triangle consisting of A−1(m, t):

(5.2)

1
1 1
−1 0 1
−1 −1 −1 1
1 0 0 −2 1
1 1 0 2 −3 1
−1 0 1 −2 5 −4 1
−1 −1 −1 3 −7 9 −5 1
1 0 0 −4 10 −16 14 −6 1
1 1 0 4 −14 26 −30 20 −7 1
−1 0 1 −4 18 −40 56 −50 27 −8 1
...

...
...

...
...

...
...

...
...

...
...

. . .

We find some meaningful subsequences of this triangle and list them below.

• (|A−1(m, 4)|)m≥4=(1, 3, 5, 7, 10, 14, 18, 22, . . . )=(�
(
n
2

)
/2�)n≥3↔A011848,

• (B−1(m, 2))m≥5 = (2, 5, 9, 14, 20, 27, . . . ) ↔ A212342,
• (−B−1(m, 3))m≥6 = (2, 7, 16, 30, 50, 77, . . . ) ↔ A005581,

•
(∑

m+t=2s, t≥2 A−1(m, t)
)
s≥2=(1, 1, 4, 9, 25, 64, 169, 441, . . .)=(Fib(n)2)n≥1,

• (
∑

t=2 |A−1(m, t)|)m≥2 = (1, 2, 3, 6, 13, 26, 51, 102, . . . ) ↔ A007910.

Define Bk,s(q) and Fk(x, q) by Bk,s(q) :=
∑

t+m−2=s, t>0

Ak(m, t)qm−t ∈ Z[q] and

Fk(x, q) :=
∞∑
t=1

x2t−2

(1− kq2x2)(1 + qx)t−1
=

1 + qx

(1− kq2x2)(1 + qx− x2)

=

∞∑
s=1

Bk,s(q)x
s.

Let us consider the following to define B̃k,s(q):

1 + qx

(1− kq2x2)(1 + qx− x2)
− 1 + qx

1− kq2x2
=

(1 + qx)(−qx+ x2)

(1− kq2x2)(1 + qx− x2)
=

∞∑
s=0

B̃k,s(q)(−x)s.

Define a k-analogue CFk(x, q) of the function CF (x, q) by

CFk(x, q) :=
(1− qx)(qx+ x2)

(1− kq2x2)(1− qx− x2)
=

∞∑
s=0

B̃k,s(q)x
s.

The polynomial B̃k,s(q) can be considered as a k-analogue of the q-Fibonacci num-

ber B̃s(q).
Finally, we define Lk,�+1(x) by

Qk(x, q) =

∞∑
t=1

xt

(1− kq2x2)(1 + qx)t−1
=

∞∑
�=0

Lk,�(x)q
�.

Then, using a similar argument as in the proof of Lemma 4.3, one can show that

Lk,�+1(x) =
−x

1− x
Lk,�(x) +

k�(�+1)/2�x�+2

1− x
.
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Remark 5.1. We can consider the Jacobsthal–Lucas numbers and the
Jacobsthal–Lucas polynomials starting with the generating function

1 + 4x

(1− x2)(1− x)t−1
,

and study their (k-analogue of) q-deformation.
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