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Abstract In this paper, we consider how to express an Iwahori–Whittaker function through Demazure

characters. Under some interesting combinatorial conditions, we obtain an explicit formula and thereby a

generalization of the Casselman–Shalika formula. Under the same conditions, we compute the transition
matrix between two natural bases for the space of Iwahori fixed vectors of an induced representation of

a p-adic group; this corrects a result of Bump–Nakasuji.
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1. Introduction

The Casselman–Shalika formula [6] describes a spherical Whittaker function using the

root system and the character of an irreducible representation of the dual group. The
formula not only plays a fundamental role in the theory of p-adic groups and automorphic

forms, but also connects many different constructions in mathematics, such as Schubert

varieties, crystal bases and Macdonald polynomials. For example, see [3].

In this paper, we study a generalization of the Casselman–Shalika formula to the case

of Iwahori–Whittaker functions through Demazure characters. To be precise, let g be

a finite-dimensional simple Lie algebra over C, which should be considered as the Lie

algebra of the dual group. Let P be the weight lattice of g, and C[P] the group algebra
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of P, with basis eλ, λ ∈ P. The subset of dominant weights will be denoted by P+. We also

denote by 8 ⊃ 8+ the set of roots and positive roots, by sα the reflection corresponding

to α ∈ 8, by 5 = {ai }i∈I the set of simple roots, and by S = {σi }i∈I the set of simple

reflections, which generates the Weyl group W . We denote reduced words by s1 . . . sn
with si = sαi for αi ∈ 5, which means that for each i we have si = σ j and αi = a j for

some j ∈ I (we use this notation in order to avoid double indexing in reduced words).

Let v be an indeterminate, and set Ov = C(v)⊗C[P].
Consider the Demazure character ∂w,λ for w ∈ W and λ ∈ P+, which is the formal

character of the Demazure module associated with the weight wλ. When w = w◦, the

longest element, the character ∂w◦,λ is nothing but the character of the irreducible

representation of g with highest weight λ. Now the Casselman–Shalika formula [6] is

given by

W̃w◦,λ =

( ∏
α∈8+

(1− ve−α)
)
∂w◦,λ, (1.1)

where W̃w◦,λ is the spherical Whittaker function.

As mentioned above, this paper is concerned with generalizing the formula (1.1) to the

case involving the Iwahori–Whittaker functions Ww,λ (to be defined in Section 2) and

the Demazure characters ∂x,λ, for w, x ∈ W . That is to say, we would like to compute the

coefficients Cw,x ∈ Ov, x 6 w, in the expansion

Ww,λ =

∑
x6w

Cw,x∂x,λ.

To make the problem more tractable, we consider the Demazure atoms Dx,λ (see § 2),

instead of working with the Demazure characters directly. We write

Ww,λ =

∑
x6w

cw,x Dx,λ,

and study how to compute cw,x ∈ Ov, x 6 w. The coefficients Cw,x and cw,x are related

in a simple way (Corollary 2.2):

cw,x =
∑

x6y6w

Cw,y and Cw,x =
∑

x6y6w

(−1)`(y)−`(x)cw,y .

Still, in general, it would be difficult to obtain a complete description of the coefficients

cw,x . However, the main result of this paper shows how to compute the coefficients cw,x
under some interesting conditions involving good words and shellability. More precisely,

under Condition (A) or (B) at the beginning of § 5, we obtain the following theorem.

Theorem 1.1. Let w = s1 · · · sn be a reduced word with si = sαi for some αi ∈ 5, i =
1 . . . , n, and

βi = s1 · · · ŝi1 · · · ŝi2 · · ·αi , i = 1, . . . , n,

where the indices i1 < · · · < id between 1 and n are determined by Condition (A) or (B).

Then we have

cw,x = (1− ve−β1) · · · Tβi1

(
· · · Tβid

(
· · · (1− ve−βn )

)
· · ·

)
,

where Tβ = (1− ve−β)∂β − 1 and ∂β is the Demazure operator corresponding to the root β.
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Whittaker functions and Demazure characters 761

Conditions (A) and (B) are intriguing. In fact, based on thorough computer tests,

in § 5.3 we conjecture that they are equivalent in a strong sense. Shortly after posting

our paper, D. Muthiah and A. Puskás proved our conjecture; their proof is included as

an Appendix. As discussed in § 4.1, Condition (A) is closely related to smoothness of

Schubert varieties in flag varieties G/B. We also present some statistical information

regarding the frequency with which these conditions are satisfied.

We establish an application of Conditions (A) and (B) to the problem of computing

the transition matrix between two natural bases for the space of Iwahori fixed vectors of

an induced representation of a p-adic group. The same problem was studied by Bump

and Nakasuji [4]. Their result [4, Theorem 1.9] was that, when w admits a good word for

x , the entry m(x, w) of the transition matrix is given by

m(x, w) =
∏

α∈S(x,w)

1− q−1zα

1− zα
, (1.2)

where S(x, w) is the set of roots determined by the good word condition. However, the

assumption of having a good word is not sufficient to deduce the factorization property.

In fact, the statement and their proof of the above result are not valid, and there

are counterexamples (see Remarks 5.1 and 6.3). More precisely, it is claimed below

equation (5.3) in [4] that

s1 · · · ŝ j1 · · · ŝ jk · · · s j−1ŝ j s j+1 · · · ŝim · · · sn 6 s1 · · · ŝ j · · · sn,

but this inequality does not follow from the good word condition. A similar inequality

was claimed when Proposition 4.7 was applied in the same proof.

In § 6, we assume Condition (B) and prove the formula (1.2). The main idea of the

proof is similar to that of [4]. In particular, the aforementioned inequalities are both

guaranteed by Condition (B). Given Condition (A) or (B), which are actually equivalent

(§ Appendix A), we ensure the factorization property and thus make a correction to the

Bump–Nakasuji result in full root system generality. This provides another evidence that

Conditions (A) and (B) are natural ones to be considered in representation theory.

Related to the above-mentioned coefficients m(w, x), it is also worth noting the recent

paper of Nakasuji and Naruse [10]. By using a change of basis in the Hecke algebra, they

express all of these coefficients in a completely different way compared to (1.2), namely

as sums over combinatorial sets. The mentioned change of basis in the Hecke algebra

generalizes the theory of so-called root polynomials, which provides similar combinatorial

formulas for localizations of Schubert classes in the equivariant cohomology and K -theory

of flag varieties; see [9] and the references therein, as well as [10, Remark 1].

The fact that there are two types of formulas for the coefficients m(w, x), namely the

general formula in [10] and the simpler formula (1.2) if Condition (A) or (B) holds,

is very similar to the existence of a general summation formula for Schubert classes

(via root polynomials), versus a much simpler product formula in the smooth case; see

[1, Chapter 7]. It turns out that the latter formula is hard to derive from the former, so

completely separate proofs are needed. In this context, it is not surprising that Conditions

(A) and (B) are related to smoothness of Schubert varieties, as noted above.
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2. Description of the problem

In this section, we present the main question of this paper, introduced in Section 1, in

more detail. We keep the notions fixed in Section 1.

Recall that the Hecke algebra Hv is the algebra over C(v) defined by the generators Ti ,

i ∈ I , subject to the quadratic relations

T 2
i = (v− 1)Ti + v, i ∈ I,

and the braid relations corresponding to W . The algebra Hv acts on Ov by

Ti 7→ Ti := (1− ve−ai )∂i − 1, i ∈ I,

where ∂i , i ∈ I , are the Demazure operators defined by

∂i =
1− e−aiσi

1− e−ai
.

In particular, the operators Ti , i ∈ I , which are known as the Demazure–Lusztig operators,

satisfy the braid relations. Hence one may define

Tw 7→ Tw = Ti1 · · · Til

for an arbitrary choice of a reduced word w = σi1 · · · σil . For a dominant weight λ ∈ P+,

define

Ww,λ = Tweλ and W̃w,λ =

∑
x6w

Wx,λ, w ∈ W.

As shown in [3], the expression Ww,λ corresponds to the Iwahori–Whittaker function,

and the sum W̃w◦,λ corresponds to the spherical Whittaker function where w◦ ∈ W is the

longest element.

It is well known that the Demazure operators ∂i , i ∈ I , satisfy the braid relations as

well, so the operator ∂w is well defined for w ∈ W using any reduced word of w. Then

the Demazure character is given by

∂w,λ = ∂weλ, λ ∈ P+,

which is the formal character of the Demazure module associated with the weight wλ.

Recall the Casselman–Shalika formula:

W̃w◦,λ =

( ∏
α∈8+

(1− ve−α)
)
∂w◦,λ. (2.1)

As mentioned above, we are interested in generalizing the formula (2.1) to the cases

involving W̃w,λ (or Ww,λ) and ∂x,λ for w, x ∈ W . Precisely, we would like to compute the

coefficients C̃w,x ∈ Ov, x 6 w, in the expansion

W̃w,λ =

∑
x6w

C̃w,x∂x,λ.

Alternatively, if we write

Ww,λ =

∑
x6w

Cw,x∂x,λ,
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we have

C̃w,x =
∑

x6y6w

Cy,x

and

Cw,x =
∑

x6y6w

(−1)`(w)−`(y)C̃y,x

by the Möbius inversion [7, Theorem 1.2].

However, we found it more convenient to work with Demazure atoms. We define

Di = ∂i − 1 = e−ai
1− σi

1− e−ai
, i ∈ I,

which is the specialization of Ti at v→ 0. Then Di , i ∈ I , satisfy the braid relations, and

we define Dw, w ∈ W , in the obvious way. Now the Demazure atoms are defined to be

Dw,λ = Dweλ for w ∈ W and λ ∈ P+.

Problem 1. Consider the transition between Tw and Dw,

Tw =
∑
x6w

cw,x Dx ,

and study how to compute cw,x ∈ Z[v]⊗Z[P], x 6 w.

The coefficients Cw,x and cw,x can be related in a simple way, using the fact that the

Demazure character is the sum of all the lower Demazure atoms. We give a proof of this

fact below using a result in [3].

Lemma 2.1. ∂w =
∑

x6w Dx and Dw =
∑

x6w(−1)`(w)−`(x)∂x .

Proof. ∂i , i ∈ I , are the specialization of

Di := Ti + 1 = (1− ve−ai )∂i

at v→ 0. Let w be a reduced word of w, and define Dw in the obvious way. By [3,

Theorem 6] which is proved using some results from [8], one has

Dw =

∑
x6w

Pw,x (v)Tx ,

where Px,w is the Poincaré polynomial of fiber of the Bott–Samelson resolution

Zw→ Xw over the open cell Yx = Bx B/B; the cohomology of this fiber was described

combinatorially in [8]. Specializing v→ 0 gives that

∂w =
∑
x6w

Px,w(0)Dx =
∑
x6w

Dx .

Corollary 2.2. cw,x =
∑

x6y6w Cw,y and Cw,x =
∑

x6y6w(−1)`(y)−`(x)cw,y .
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Figure 1. Z(s, w1, w2) property.

By the reduction made above, the computation of the coefficients C̃w,x or Cw,x is

equivalent to the computation of the coefficients cw,x , for x 6 w. Hence we will focus on

Problem 1 from now on.

Note that the operators Di are twisted derivations in the sense that

Di ( f g) = Di ( f ) · g+ σi ( f ) · Di (g), f, g ∈ Z[P]. (2.2)

In fact, the last equation is the specialization at v→ 0 of

Ti ( f g) = (1− v)Di ( f ) · g+ σi ( f ) · Ti (g), f, g ∈ Z[P]. (2.3)

It is also known that Tw, w ∈ W , satisfy the relation

Ti · Tw =
{

Tσiw if σiw > w,

(v− 1)Tw + vTσiw if σiw < w.
(2.4)

For example, one has the quadratic relation T 2
i = (v− 1)Ti + v, i ∈ I . Specializing (2.4)

at v→ 0 gives

Di · Dw =
{

Dσiw if σiw > w,

−Dw if σiw < w.
(2.5)

3. Induction steps

In this section we give some general inductive steps for later use. We recall a well-known

lemma from [7], which is called Z(s, w1, w2) property of the Bruhat order, and it will be

used frequently in this paper.

Lemma 3.1. Let s ∈ S be a simple reflection and w1, w2 ∈ W . Assume that w1 < sw1,

w2 < sw2. Then

w1 6 w2 ⇐⇒ w1 6 sw2 ⇐⇒ sw1 6 sw2.

This lemma can be visualized using the diamond square in Figure 1, where the validities

of the three dashed lines are all equivalent.

The following lemma can be easily verified by using (2.5).

Lemma 3.2. Let α ∈ 5 be a simple root and s = sα. Then

Ts · Dw =
{
(1− ve−α)Dsw − ve−αDw if sw > w,

−Dw if sw < w.
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Lemma 3.3. Assume that the simple reflection s = sα is a left ascent of w, i.e., sw > w.

Then

Tsw =
∑
x6w

Ts(cw,x )Dx +
∑

x6w,x<sx

(1− ve−α)s(cw,x )Dsx

−

∑
x6w,x>sx

(1− ve−α)s(cw,x )Dx .

Proof. Applying Ts to the equation Tw =
∑

x6w cw,x Dx and using (2.3) gives that

Tsw =
∑
x6w

s(cw,x )Ts · Dx + (1− v)Ds(cw,x )Dx .

The lemma follows from inserting Lemma 3.2 into the last equation, and also from noting

that

(1− v)Ds − ve−αs = (1− ve−α)∂s − 1 = Ts,

(1− v)Ds − s = Ts − (1− ve−α)s;

here the second equation is an immediate consequence of the first.

By comparing the coefficients in Lemma 3.3 with Tsw =
∑

x6sw csw,x Dx , we obtain the

following inductive algorithm.

Proposition 3.4. Assume that w < sw, s = sα ∈ S, and that x 6 sw. Then

(i) if x 6 w, x < sx, then

csw,x = Ts(cw,x );

(ii) if x 6 w, x > sx, then

csw,x = (1− ve−α)s(cw,sx − cw,x )+ Ts(cw,x );

(iii) if x 66 w, in which case x > sx, then

csw,x = (1− ve−α)s(cw,sx ).

The three cases are illustrated in Figure 2. Note that in the last case we have either x
and w incomparable, as depicted, or x = sw > w = sx .

The following corollary is immediate by applying Proposition 3.4(i) and (iii) recursively.

Throughout, we let 8w := 8+ ∩w8− be the inversion set of w−1.

Corollary 3.5. We have

cw,e = Tw(1) and cw,w =
∏
α∈8w

(1− ve−α).
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Figure 2. (i)–(iii) of Proposition 3.4.

4. Good words and shellability of Bruhat order

4.1. Good words

Following [4], we consider the notion of a good word. Assume that x 6 w, and introduce

the sets

S(x, w) := {α ∈ 8+ | x 6 wsα < w}, R(x, w) = {sα | α ∈ S(x, w)}. (4.1)

Deodhar’s inequality states that

#S(x, w) = #R(x, w) > `(w)− `(x), (4.2)

with equality holding if the Kazhdan–Lusztig polynomial Pw◦w,w◦x = 1, or equivalently

if the Schubert variety Xw◦x is rationally smooth at the T -fixed point ew◦w (see [1]).

We remark that #S(x, w) has the trivial upper bound `(w) because of the inclusion

S(x, w) ⊂ 8w−1 = 8+ ∩w
−18−, where the last set is the inversion set of w, of cardinality

`(w); indeed, it is well known that α ∈ 8+ is an inversion of w, i.e., wα ∈ 8−, if and only

if wsα < w.

For any reduced word w = s1 · · · sn of w, let λx,w be the set of integers i ∈ [1, n] such

that x 6 s1 · · · ŝi · · · sn . Let αi ∈ 5 be such that si = sαi , i = 1, . . . , n. Then there are

bijections

λx,w→ S(x, w)→ R(x, w), i 7→ γi := sn · · · si+1αi 7→ sγi = sn · · · si+1si si+1 · · · sn .

Moreover it is clear that wsγi = s1 · · · ŝi · · · sn . By abuse of notation, we also write

λx,w = (i1, . . . , id) ∈ Nd (4.3)

for the vector formed by elements of λx,w arranged in ascending order i1 < · · · < id . Then

w is called a good word for x if

x = s1 · · · ŝi1 · · · ŝid · · · sn . (4.4)

Since d = #λx,w > `(w)− `(x), a good word exists only if (4.4) is a reduced word;

hence d = `(w)− `(x). Conversely, it is conjectured in [4] that if W is simply-laced and

d = `(w)− `(x), then w has a good word for x . This conjecture is proved in [4] for

W = A4 or D4 using Sage, and it is shown to be false in the non-simply-laced case, e.g.,

for W = B2.
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4.2. Shellability

We recall the lexicographic shellability of Bruhat order, following [2]. For x, y ∈ W , we say

that y covers x , denoted by y→ x , if y > x and there is no z ∈ W such that y > z > x .

In this case `(y) = `(x)+ 1 and there is a unique α ∈ 8+ such that sα y = x . Moreover

for any reduced word y = s1 . . . sl , there is a unique 1 6 i 6 l such that x = s1 · · · ŝi · · · sl ,

and one has α = s1 · · · si−1αi . We may also write y
α
→ x to specify the reflection sα that

takes y to x .

Consider x 6 w and the Bruhat interval [x, w] := {y ∈ W |x 6 y 6 w}. Then all

maximal chains C : w = w0 → w1 → · · · → wd = x of [x, w] have the same length

d = `(w)− `(x). Let us describe a labeling of the maximal chains of [x, w]. Fix once

for all a reduced word w = s1 · · · sn of w. For a maximal chain C of [x, w] as above, there

is a unique sequence i1, . . . , id of distinct integers in [1, n] such that wk is obtained by

removing si1 , . . . , sik from w, k = 1, . . . , d. In particular, this implies that the resulting

subwords representing wk ’s are all reduced. Then we assign the label

λ(C ) = (λ1(C ), . . . , λd(C )) := (i1, . . . , id) ∈ Nd . (4.5)

Recall that the lexicographic order of Nd is the linear ordering <L such that

a = (a1, . . . , ad) <L b = (b1, . . . , bd) if ai < bi in the first coordinate where they differ.

The main result of [2] states that [x, w] is lexicographically shellable. In particular, this

implies that:

(i) there is a unique maximal chain C+x,w in [x, w] whose labeling λ(C+x,w) is increasing,

i.e., λ1(C
+
x,w) < · · · < λd(C

+
x,w);

(ii) λ(C+x,w) <L λ(C ) for any other maximal chain C of [x, w].

Note that the maximal chain C+x,w depends on the choice of the reduced word w, which

we fix from the beginning.

Similarly, consider the reduced word sn · · · s1 of w−1. By applying shellability to w−1

with this reduced word and reverting to w, we see that:

(i′) there is a unique maximal chain C−x,w in [x, w] whose label λ(C−x,w) is decreasing,

i.e., λ1(C
−
x,w) > · · · > λd(C

−
x,w);

(ii′) λ(C−x,w) >L λ(C ) for any other maximal chain C in [x, w].

5. Main result

In this section we compute the coefficient cw,x , for x 6 w, under either of the following

two conditions for the pair (w, x):

(A) w admits a reduced word w such that λx,w = λ(C
−
x,w)

∗
= (i1, . . . , id);

(B) w admits a reduced word w such that λ(C+x,w) = λ(C
−
x,w)

∗
= (i1, . . . , id).

Here we write λ∗ = (id , . . . , i1) ∈ Nd for a vector λ = (i1, . . . , id) ∈ Nd . Note that the

reduced word w satisfying Condition (A) is a good word for x .

Remark 5.1. Conditions (A) and (B) are stronger than the existence of a good word

for x . Indeed, in type G2 consider w with the (unique) reduced word w = σ1σ2σ1σ2σ1
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and x = σ1. We have

λx,w = (1, 2, 4, 5), λ(C−x,w)
∗
= (2, 3, 4, 5), λ(C+x,w) = (1, 2, 3, 4);

so w is a good word for x , but Conditions (A) and (B) fail. In fact, such examples can

be found in simply-laced types too, for instance in type D4 consider the reduced word

w = σ2σ1σ3σ4σ2σ4σ3σ1σ2 and x = σ2 (where 2 is the central node of the Dynkin diagram).

We have

λx,w = (1, 2, 3, 4, 6, 7, 8, 9), λ(C−x,w)
∗
= (2, 3, 4, 5, 6, 7, 8, 9),

λ(C+x,w) = (1, 2, 3, 4, 5, 6, 7, 8).

It is easy to see that the same holds for any reduced word for the given Weyl group

element. So again the above w is a good word for x , but Conditions (A) and (B) fail.

As we will prove, both Conditions (A) and (B) guarantee that only the relations in

Proposition 3.4(i) and (iii) are used in the recursive computation of cw,x ; these relations

have the advantage of being simple, compared to the relation in part (ii).

5.1. Lemmas on good words and shellability

We first prove a few more facts regarding combinatorial properties of a reduced word.

Lemma 5.2. Assume that w = s1 · · · sn is a good word of w for x such that λx,w =

(i1, . . . , id) with i1 > 1. Then

(i) x 66 s1w;

(ii) S(s1x, s1w) = S(x, w);

(iii) s1w := s2 · · · sn is a good word of s1w for s1x and λs1x,s1w = (i1− 1, . . . , id − 1).

Proof. Part (i) is obvious from the definition of good word. Part (iii) follows from (ii).

To prove (ii), it suffices to show that S(s1x, s1w) is contained in S(x, w), which implies

that S(s1x, s1w) = S(x, w) because of Deodhar’s inequality

#S(s1x, s1w) > `(s1w)− `(s1x) = `(w)− `(x) = #S(x, w).

Take α ∈ S(s1x, s1w), i.e., s1x 6 s1wsα < s1w. We claim that s1wsα < wsα. To the

contrary, assume that s1wsα > wsα. Then by Lemma 3.1 we have the diamond square

s1wsα

wsα x

s1x

where the two dashed lines follow from the middle vertical line. This implies that

x 6 s1wsα < s1w, a contradiction to part (i). Hence s1wsα < wsα, and using Lemma 3.1
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again we obtain the diagram

w

s1w wsα

s1wsα x

s1x

which implies that α ∈ S(x, w).

Lemma 5.3. Let w = s1 · · · sn be a fixed reduced word of w, λ(C+x,w) = (i1, . . . , id),

λ(C−x,w) = ( jd , . . . , j1), where i1 < · · · < id and j1 < · · · < jd . Consider the reduced word

s1w = s2 · · · sn of s1w. Then

(i) if i1 > 1, then x 66 s1w and

λ(C+s1x,s1w
) = (i1− 1, . . . , id − 1);

(ii) if j1 > 1, then

λ(C−s1x,s1w
) = ( jd − 1, . . . , j1− 1);

(iii) if i1 = 1, then

λ(C+x,s1w
) = (i2− 1, . . . , id − 1);

(iv) if j1 = 1, then x < s1x and

λ(C−x,s1w
) = ( jd − 1, . . . , j2− 1).

Proof. Write C±x,w : w = w
±

0 → w±1 → · · · → w±d = x .

(i) The last claim is clear since we have obviously a maximal chain

C : s1w = s1w
+

0 → s1w
+

1 → · · · → s1w
+

d = s1x

of [s1x, s1w] with increasing label λ(C ) = (i1− 1, . . . , id − 1). We must have C =
C+s1x,s1w because of the uniqueness of the increasing label. It remains to prove that

x 66 s1w. To the contrary, assume that x 6 s1w = s2 · · · sn . Then concatenation of

w→ s1w with any maximal chain in [x, s1w] will give a maximal chain C in [x, w]
such that C <L C+x,w, since λ1(C ) = 1 < λ1(C

+
x,w) = i1. This is a contradiction.

(ii) The proof is similar.

(iii) C+x,s1w equals the following subchain of C+x,w

s1w = w
+

1 → w+2 → · · · → w+d = x .
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(iv) s1x → x is the last arrow in the chain C−x,w, and hence x < s1x . The following

subchain of C−x,w
w = w−0 → w−1 → · · · → w−d−1 = s1x

gives rise to the maximal chain of [x, s1w]

C : s1w = s1w
−

0 → s1w
−

1 → · · · → s1w
−

d−1 = x

with decreasing label λ(C ) = ( jd − 1, . . . , j2− 1), which implies that C =
C−x,s1w.

Lemma 5.4. Assume that w = s1 · · · sn is a good word of w for x such that λx,w =

λ(C−x,w)
∗
= (i1, . . . , id) with i1 = 1. Then

(i) x < s1x;

(ii) S(x, s1w) = S(x, w) \ {γ1}, where γ1 = sn · · · s2α1;

(iii) s1w = s2 · · · sn is a good word of s1w for x;

(iv) λx,s1w = (i2− 1, . . . , id − 1) = λ(C−x,s1w)
∗.

Proof. Part (i) and the last equality in (iv) follow from Lemma 5.3(iv). Part (iii) and the

first equality in (iv) are direct consequences of (ii). Finally (ii) follows from Lemma 5.5

below, which is of independent interest.

Lemma 5.5. Assume that x < w, sw < w and x < sx, where s = sα ∈ S. If #S(x, w) =
`(w)− `(x), then S(x, sw) = S(x, w) \ {−w−1α}.

Proof. Consider the following diamond given by Lemma 3.1.

w

sw sx

x

Take β ∈ S(x, sw), i.e., sw > swsβ > x . We claim that β ∈ S(x, w), i.e., w > wsβ > x .

If wsβ > swsβ , then the claim is obvious, again by Lemma 3.1. If wsβ < swsβ , then

Lemma 3.1 gives the following diamond

swsβ

wsβ sx

x

Hence the claim follows. Obviously β 6= −w−1α ∈ S(x, w), because swsw−1α = w > sw.

Therefore we get an inclusion S(x, sw) ⊂ S(x, w) \ {−w−1α}. This inclusion is an equality

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748017000214
Downloaded from https://www.cambridge.org/core. University of Connecticut, on 25 Jun 2019 at 15:14:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748017000214
https://www.cambridge.org/core


Whittaker functions and Demazure characters 771

because of Deodhar’s inequality

#S(x, sw) > `(sw)− `(x) = `(w)− `(x)− 1 = #S(x, w)− 1,

where the last equality follows from the assumption #S(x, w) = `(w)− `(x).

5.2. Main theorem

We can now apply previous lemmas together with Proposition 3.4 recursively to compute

cw,x , assuming Condition (A) or (B). As mentioned above, only cases (i) and (iii) of

Proposition 3.4 show up in the computation. In order to formulate our main result, we

introduce an additional notation.

For any α ∈ 8, let

∂α =
1− e−αsα
1− e−α

, Tα = (1− ve−α)∂α − 1. (5.1)

Using this notation, it is easy to see that we have

w · ∂α = ∂wα ·w, w · Tα = Twα ·w. (5.2)

Theorem 5.6. Assume that either condition (A) or (B) holds. In either case, let

βi = s1 · · · ŝi1 · · · ŝi2 · · ·αi , i = 1, . . . , n.

Then we have

cw,x = (1− ve−β1) · · · Tβi1

(
· · · Tβid

(
· · · (1− ve−βn )

)
· · ·

)
.

Proof. In either case we use recursion. First assume Condition (A). If i1 > 1, then

(s1w, s1x) satisfies Condition (A) as well, due to Lemma 5.2(iii) and Lemma 5.3(ii).

Moreover, we may apply Proposition 3.4(iii) because of Lemma 5.2(i), which gives that

cw,x = (1− ve−α1)s1(cs1w,s1x ).

If i1 = 1, then (s1w, x) also satisfies (A) and we may apply Proposition 3.4(i), due to

Lemma 5.4, which gives that

cw,x = Tα1(cs1w,x ).

Iterating this process gives us

cw,x = (1− ve−α1)s1 · · · Tαi1

(
· · · Tαid

(
· · · (1− ve−αn )sn(1)

)
· · ·

)
.

One may use (5.2) to push the reflections si , 1 6 i 6 n, i 6= i1, . . . , id , across the operators

Tαi1
, . . ., Tαid

, noting that x(1) = 1.

The proof assuming Condition (B) is similar. If i1 > 1, then by Lemma 5.3(i)–(ii),

(s1w, s1x) also satisfies (B) and Proposition 3.4(iii) applies. If i1 = 1, then by

Lemma 5.3(iii)–(iv), (s1w, x) satisfies (B) and Proposition 3.4(i) applies.

Remarks 5.7. (i) Note that in the special cases d = n and d = 0, we recover cw,e and

cw,w respectively, as given by Corollary 3.5.
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(ii) The roots βi can be interpreted as follows. We have

{βi : 1 6 i 6 n, i 6= i1, . . . , id} = 8x = 8+ ∩ x8−.

Moreover, under Condition (B), the roots βi1 , . . . , βid give the sequence of reflections

along the maximal chain C+x,w of [x, w], i.e., we have

C+x,w : w = w0
βi1
→ w1 → · · ·

βid
→ wd = x .

Hence the calculation of cw,x amounts to inserting the operators

Tβ = (1− ve−β)∂β − 1, β ∈ {βi1 , . . . , βid }

into the product
∏
α∈8x

(1− ve−α) in a natural, combinatorial way.

5.3. Conditions (A) and (B)

Since these conditions are essential for our main result, we now discuss them in more

detail. We start with an example.

Example 5.8. Consider w = s1s2s1s3s2s1 and x = s2s3 in A3. It is easy to see that both

Conditions (A) and (B) hold in this example.

Based on thorough computer tests, we now formulate a conjecture about the

equivalence of Conditions (A) and (B) in a strong sense.

Conjecture 5.9. Let w be a reduced word for w and x 6 w. The following are equivalent:

(i) λx,w = λ(C
−
x,w)

∗
;

(ii) λ(C+x,w) = λ(C
−
x,w)

∗
;

(iii) λx,w = λ(C
+
x,w).

The proof of the conjecture, due to D. Muthiah and A. Puskás, is included as an

Appendix. Thus, we are able use the more symmetric condition

λx,w = λ(C
+
x,w) = λ(C

−
x,w)

∗.

Note that it is enough to prove (i)⇔ (ii), as (i)⇔ (iii) would easily follow; indeed, just

reverse the reduced word and use the fact that inversion is an automorphism of the

Bruhat order.

We now discuss some statistics related to the frequency with which Conditions (A)

and (B) are satisfied. We looked at the symmetric groups S4, S5, and S6, as well

as at the hyperoctahedral groups B4 and B5. For each (signed) permutation w, we

calculated the percentage of x 6 w, which satisfy Conditions (A) and (B). (The computer

calculation is based on the following idea: for each w and reduced word for it, we

generated via depth-first search all saturated decreasing chains in Bruhat order with

increasing/decreasing labelings, which produces the corresponding x ; then, given this

data for each such x , Conditions (A) and (B) are easily tested.) The distribution of

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748017000214
Downloaded from https://www.cambridge.org/core. University of Connecticut, on 25 Jun 2019 at 15:14:37, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748017000214
https://www.cambridge.org/core


Whittaker functions and Demazure characters 773

Figure 3. Histograms for S5 and S6.

the mentioned percentages in S5 and S6 is shown in Figure 3, where the vertical axis

represents the number of permutations. It is interesting to note that this distribution is

skewed right, with the mode at the right tail, while the interquartile range reaches 100%

in both cases. By contrast, in type B, the distribution looks closer to a uniform one.

Experiments with the same Weyl groups mentioned above also showed that the formula

in Theorem 5.6 fails if Conditions (A) and (B) are not satisfied.

6. Casselman’s basis of Iwahori vectors

In this section, under the shellability Condition (B) in Section 6, we compute the

transition matrix between two natural bases of the Iwahori fixed vectors in a spherical

representation of a semisimple p-adic group, considered by Casselman in [5]. A conjectural

formula is given in [4], which is proved under the assumption that a good word exists;

however, it seems that there is a gap in this proof, which we do not know how to fix

at present. We follow the strategy of computations in [4], although we consider reduced

words from a very different point of view. Let us first recall the basic formulations and

collect a few results we need from [4].

Let χ = χz be an unramified character of T (F), which is parametrized by an element

z in the complex torus T̂ of the L-group L G. Let V (χ) = IndG
Bχ be the induced

representation, which consists of locally constant functions f : G → C such that f (bg) =
(δ1/2χ)(b) f (g), where δ = det(Ad|n) is the modular character. Let J be the Iwahori

subgroup, which is the preimage of B(Fq) under the reduction K = G(OF )→ G(Fq).

Then the space of J -fixed vectors V (χ)J has dimension |W |, and there are two bases

{φw,χ } and { fw} of V (χ)J parametrized by W .

The first natural basis {φw,χ} is defined using the disjoint decomposition

G =
⊔
w∈W BwJ such that φw,χ is supported on Bw−1 J and φw,χ |w−1 J = 1. Let Mw :

V (χ)→ V (wχ) be the intertwining operator defined by

(Mw f )(g) =
∫

N∩wN−w−1
f (w−1ng) dn.
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Then { fw} is the dual basis of the linear functionals V (χ)→ C, f 7→ (Mw f )(1), w ∈ W .

Casselman [5] asks for the transition matrix between these two bases, which is in general

a very difficult problem. It is better to use the basis

ψx,χ =
∑
w>x

φw,χ

instead of φw,χ , and by Möbus inversion one has

φx,χ =
∑
w>x

(−1)`(w)−`(x)ψw,χ .

If we write ψx,χ =
∑
w∈W m(x, w) fw, then obviously m(x, w) = (Mwψx,χ )(1) and in [4]

it is shown that (m(x, w)) is upper triangular. In [4] it is conjectured that

m(x, w) =
∏

α∈S(x,w)

1− q−1zα

1− zα

when the root system 8 is simply-laced and |S(x, w)| = `(w)− `(x), and it is proved

under the additional assumption that w admits a good word for x .

Let H be the Iwahori–Hecke algebra, which consists of bi-J -invariant functions

supported on K . Then H has a basis {tw|w ∈ W }, where tw is the characteristic function

of JwJ , and H is generated by ti := tσi , i ∈ I . Let αχ : V (χ)J
→ H be the isomorphism

of left H -modules defined by (αχ f )(g) = f (g−1)
∣∣
K . Let Mw =Mw,z : H → H be the

map making the following diagram commute:

V (χ)
Mw //

αχ

��

V (wχ)

αwχ

��
H

Mw // H

Define µz(w) =Mw(1H ) ∈ H . Then

µz(σi ) = q−1ti + (1− q−1)
zai

1− zai
, (6.1)

and for `(w1w2) = `(w1)+ `(w2) one has

µz(w1w2) = µz(w2)µw2z(w1). (6.2)

Define ψ(x) = αχ (ψx ) ∈ H . Then ψ(x) =
∑
w>x tw is independent of χ . For f ∈ H let

3( f ) be the coefficient of 1 in the expression of f in terms of the basis tw. Then

m(x, w) = 3(ψ(x)µz(w)).

For f, g ∈ H and x ∈ W , write f − g > x if f − g is a linear combination of tw’s with

w > x .

Proposition 6.1 [4]. Let s = sα ∈ S, x ∈ W such that xs > x. Then

ψ(x)µz(s) =
1− q−1zα

1− zα
ψ(x), ψ(xs)µz(s)−ψ(x) > xs.
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Now we can give our formula for m(x, w) in full root system generality, assuming that

Condition (B) holds.

Theorem 6.2. Assume Condition (B). Let γik = sn · · · sik+1αik , k = 1, . . . , d. Then

m(x, w) =
d∏

k=1

1− q−1zγik

1− zγik
.

Proof. The proof follows the argument in [4], but we shall give some details for the

sake of completeness. Write µ(sn) = µz(sn), µ(sn−1) = µsn(z)(sn−1), . . ., suppressing the

dependence of spectral parameters. Write ψ(x)µz(w) as a sum

[ψ(s1 · · · ŝi1 · · · ŝid · · · sn)µ(sn)−ψ(s1 · · · ŝi1 · · · ŝid · · · sn−1)]µ(sn−1) · · ·µ(s1)

+ [ψ(s1 · · · ŝi1 · · · ŝid · · · sn−1)µ(sn−1)−ψ(s1 · · · ŝi1 · · · ŝid · · · sn−2)]µ(sn−2) · · ·µ(s1)

+ · · ·

[ψ(s1 · · · ŝi1 · · · ŝid )µ(sid )−C(d)ψ(s1 · · · ŝi1 · · · ŝid )]µ(sid−1) · · ·µ(s1)

+C(d)[ψ(s1 · · · ŝi1 · · · sid−1)µ(sid−1)−ψ(s1 · · · ŝi1 · · · sid−2)]µ(sid−2) · · ·µ(s1)

+ · · ·

C(d) · · ·C(1)[ψ(s1)µ(s1)−ψ(1)]

+C(d) · · ·C(1)ψ(1),

where

C(k) =
1− q−1zγik

1− zγik
, k = 1, . . . , d.

We will show that the linear functional 3 annihilates every summand except the last, so

that m(x, w) = C(d) · · ·C(1).
Since we have the reduced words w+k := s1 · · · ŝi1 · · · ŝik sik+1 · · · sn , k = 1, . . . , d, which

form the maximal chain C+x,w, we see that s1 · · · ŝi1 · · · sik > s1 · · · ŝi1 · · · ŝik . Therefore, by

Proposition 6.1, the summands of the form∏
j>k

C( j)[ψ(s1 · · · ŝi1 · · · ŝik )µ(sik )−C(k)ψ(s1 · · · ŝi1 · · · ŝik )]µ(sik−1) · · ·µ(s1)

are all equal to zero. Note that the spectral parameter of µ(sik ) is sik+1 · · · snz and one

has (sik+1 · · · snz)αik = zsn ···sik+1αik = zγik .

Every other summand is a constant multiple of the form

[ψ(s1 · · · ŝi1 · · · ŝi2 · · · s j )µ(s j )−ψ(s1 · · · ŝi1 · · · ŝi2 · · · s j−1)]µ(s j−1) · · ·µ(s1). (6.3)

Since s1 · · · ŝi1 · · · ŝi2 · · · s j is reduced, by Proposition 6.1 we have

ψ(s1 · · · ŝi1 · · · ŝi2 · · · s j )µ(s j )−ψ(s1 · · · ŝi1 · · · ŝi2 · · · s j−1) > s1 · · · ŝi1 · · · ŝi2 · · · s j .

Applying (6.1), (6.2) and arguing as in [4] one can deduce that (6.3) is annihilated by 3

unless

s1 · · · ŝi1 · · · ŝi2 · · · s j 6 s1 · · · s j−1 = s1 · · · s j−1ŝ j . (6.4)
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Assume that (6.4) is true; let d ′ = max{1 6 k 6 d : ik < j}, x ′ = s1 · · · ŝi1 · · · ŝid′
· · · s j and

w′ = s1 · · · s j . Recall that we have the reduced words w−k := s1 · · · ŝid−k+1 · · · ŝid · · · sn , k =
1, . . . , d, which make the maximal chain C−x,w. Consider the following subchain of C−x,w

w−d−d ′ → w−d−d ′+1 → · · · → w−d = x .

By taking reduced subwords, it gives rise to a maximal chain of [x ′,w′]

C : w′ = w′0 → w′1 → · · · → w′d ′ = x ′

where w′i = s1 · · · ŝd ′−i+1 · · · ŝd ′ · · · s j , i = 1, . . . , d ′. Then λ(C ) = (id ′ , . . . , i1) is decreasing,

which implies that C = C−x ′,w′ . But similarly to the proof of Lemma 5.3(i), this contradicts

(6.4) because C−x ′,w′ is lexicographically maximal. This finishes the proof of the theorem.

Remark 6.3. Given the equivalence of Conditions (A) and (B), proved in the Appendix,

Theorem 6.2 gives a correction to the Bump and Nakasuji result [4] in full root system

generality. In fact [4, Theorem 1.9] does not hold for the two examples in Remark 5.1.

In these cases w admits a good word w for x but m(x, w) does not factor like (1.3)

in [4]. Actually in these cases the Schubert variety X (w0x) is singular at ew0w (in the

notations of [1]), so m(x, w) never factors. (It is also easy to check by computer that

m(x, w) does not factor in these cases.) Moreover, the type D4 example in Remark 5.1

also gives a counterexample to Conjecture 1.2 (and (1.3)) in paper [4]. In this case the root

system is simply-laced and |S(x, w)| = `(w)− `(x), but the Kazhdan–Lusztig polynomial

is Pw0w,w0x = (1+ q)2, which implies singularity and m(x, w) never factors as stated in

[4, Conjecture 1.2].

Appendix A. Proof of Conjecture 5.9

By Dinakar Muthiah1 and Anna Puskás2

In this appendix, we prove Conjecture 5.9. The conjecture is that the following three

conditions are equivalent.

(i) λx,w = λ(C
−
x,w)

∗;

(ii) λ(C+x,w) = λ(C
−
x,w)

∗;

(iii) λx,w = λ(C
+
x,w).

As mentioned right below Conjecture 5.9, it suffices to prove that (i) and (ii) are

equivalent.

We will keep the notations in the previous sections. In particular, we have two

elements x 6 w of W , w = s1 · · · sn a reduced word for w; λx,w = (λ1, . . . , λk), λ(C
+
x,w) =

(i1, . . . , id) and λ(C−x,w)
∗
= ( j1, . . . , jd).

1Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada
T6G 2G1 muthiah@ualberta.ca
2Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada
T6G 2G1 puskas@ualberta.ca
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A.1. Proof of (i) H⇒ (ii)

Lemma A.1. Let x, w, w be as before, λx,w = (λ1, . . . , λk), and λ(C+x,w) = (i1, . . . , id).

Then i1 = 1 if and only if λ1 = 1.

Proof. Assume first that i1 = 1. Then the chain C+x,w starts with w1̂, and hence x 6
w1̂ and thus λ1 = 1. For the other direction, assume λ1 = 1. Omitting the first simple

reflection from w only decreases its length by 1; hence `(w1̂) = `(w)− 1. Composing

w→ w1̂ with a maximal chain from w1̂ to x gives a maximal chain C from w to x whose

label starts with 1. Then C+x,w 6L C implies i1 = 1.

Remark A.2. If (i) holds for x and w, i.e., λx,w = λ(C
−
x,w)

∗, then w is a good word of w

for x . (Omitting all the reflections from w that appear in λx,w is the same as taking the

last element of the maximal chain C−x,w; that last element is x .)

Proposition A.3. (i) H⇒ (ii).

Proof. We proceed by induction on `(w)+ (`(w)− `(x)); the base case is trivial.

Assume that (i) holds for a pair x,w, i.e., λx,w = λ(C
−
x,w)

∗. We would like to show that

(ii) holds for x,w as well, i.e., λ(C+x,w) = λ(C
−
x,w)

∗.

Consider λ1 = j1, the first index in the labels λx,w = λ(C
−
x,w)

∗. We distinguish between

two cases according to whether λ1 = j1 = 1 or λ1 = j1 > 1.

Case 1 : λ1 = j1 = 1. Then by Lemma 5.4(iv), we have that (i) holds for the pair x,w′ =
s1w. Then by induction, (ii) holds for x and w′, i.e., λ(C+x,w′) = λ(C

−

x,w′)
∗.

By Lemma 5.3(iii) and (iv), we have:

(i2− 1, . . . , id − 1) = ( j2− 1, . . . , jd − 1). (A 1)

Together with i1 = 1 (Lemma A.1) we conclude that ir = jr for every 1 6 r 6 d; hence

(ii) holds for the pair x,w.

Case 2 : λ1 = j1 > 1. By Lemmas 5.2(iii) and 5.3(ii), (i) holds for the pair x ′ = s1x
and w′ = s1w. By induction, (ii) also holds for x ′,w′. By Lemma A.1, i1 > 1. Thus by

Lemma 5.3(i) and (ii), we have (i1− 1, . . . , id − 1) = ( j1− 1, . . . , jd − 1), which implies

(i1, . . . , id) = ( j1, . . . , jd).

A.2. Proof of (ii) H⇒ (i)

Lemma A.4. Let x, w, w be as before. Write λ(C+x,w) = (i1, . . . , id), λ(C−x,w)
∗
=

( j1, . . . , jd).
Suppose j1 = 1; then:

• x 6 s1w;

• λx,s1w = (λx,w\{1})− 1.

Suppose i1 > 1; then:

• s1x 6 s1w;

• λs1x,s1w ⊇ λx,w− 1.
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Here we write (λx,w\{1})− 1 and λx,w− 1 to refer to the set obtained by subtracting 1
from all elements.

Proof. Note that s1w is a reduced word for s1w, and s1w < w.

First suppose j1 = 1. By Lemma 5.3(iv) we have x < s1x . By Lemma 3.1 we may draw

the diagram

⇐
H

s1w

w

x

s1x

and conclude that x 6 s1w. Let 1 < t 6 n and wt̂ := s1 · · · ŝt · · · sn, and s1wt̂ :=

s2 · · · ŝt · · · sn(= (s1w)t̂−1). To show λx,s1w = (λx,w\{1})− 1, it suffices to prove

x 6 wt̂ ⇐⇒ x 6 s1wt̂ . (A 2)

(Note that we are slightly abusing notation. For example, when we write x 6 wt̂ , we

mean x 6 wt̂ , where wt̂ is the Weyl group element obtained by multiplying out the word

wt̂ .)

To prove (A 2), we use Lemma 3.1 again. We have either wt̂ < s1wt̂ or wt̂ > s1wt̂ ; we

may accordingly draw one of the following two diagrams.

⇐
⇒

wt̂

s1wt̂

x

s1x

⇐
⇒

s1wt̂

wt̂

x

s1x

These diagrams together imply that (A 2) holds in both cases.

Next suppose i1 > 1. The argument in this case is very similar to the one above. We

claim x > s1x . Assume to the contrary that x < s1x . Then again by Lemma 3.1 we may

draw the following diagram.
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⇐
H

s1w

w

x

s1x

This contradicts the statement of Lemma 5.3(i) that x � s1w. Hence we have x > s1x,
and consequently the diagram

⇐
Hs1w

w

s1x

x

shows that s1x 6 s1w. Take 1 < t 6 n and wt̂ and s1wt̂ as in the case i1 = 1 above. To

prove λs1x,s1w ⊇ λx,w− 1 we need to show

x 6 wt̂ H⇒ s1x 6 s1wt̂ . (A 3)

First consider the case when wt̂ < s1wt̂ . Then if x 6 wt̂ we have

s1x < x 6 wt̂ < s1wt̂ , (A 4)

whence s1x < s1wt̂ . If on the other hand wt̂ > s1wt̂ , then again by Lemma 3.1 we have

the diagram

⇐
⇒s1wt̂

wt̂

s1x

x

which proves (A 3).
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Proposition A.5. (ii) H⇒ (i).

Proof. Let x, w,w be as before. We proceed by induction on `(w)+ (`(w)− `(x)); the

base case is trivial.

Let us assume λ(C+x,w) = λ(C
−
x,w)

∗. Write λx,w = (λ1, . . . , λk), λ(C
+
x,w) = (i1, . . . , id),

and λ(C−x,w) = ( jd , . . . , j1). Our assumption means that ir = jr for all r .

Case 1 : i1 = j1 = 1. In this case λ1 = 1 by Lemma A.1, and Lemma A.4 tells us that

x 6 s1w and

λx,s1w = (λx,w\{1})− 1. (A 5)

Then by Lemma 5.3(iii) and (iv), we have that:

λ(C+x,s1w
) = λ(C−x,s1w

)∗ = (i2− 1, . . . , id − 1). (A 6)

By induction, we know:

λx,s1w = λ(C
−
x,s1w

)∗. (A 7)

By (A 5)–(A 7), λx,w = (i1, . . . , id). Therefore λx,w = λ(C
−
x,w)

∗.

Case 2: i1 = j1 > 1. The argument is very similar. In this case, λ1 > 1 by Lemma A.1,

and Lemma A.4 tells us that s1x 6 s1w and

λs1x,s1w ⊃ λx,w− 1. (A 8)

By Lemma 5.3(i) and (ii), we have that:

λ(C+s1x,s1w
) = λ(C−s1x,s1w

)∗ = (i1− 1, . . . , id − 1). (A 9)

By induction, we know:

λs1x,s1w = λ(C
−
s1x,s1w

)∗. (A 10)

In particular:

#λs1x,s1w = `(w)− `(x). (A 11)

By Deodhar’s inequality:

#λx,w > `(w)− `(x). (A 12)

So (A 8), (A 11), and (A 12) together imply:

λs1x,s1w = λx,w− 1. (A 13)

By (A 9), (A 10) and (A 13), λx,w = (i1, . . . , id). Therefore λx,w = λ(C
−
x,w)

∗.
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determination of the relative Möbius function, Invent. Math. 39 (1977), 187–198.

8. V. V. Deodhar, A combinatorial setting for questions in Kazhdan–Lusztig theory, Geom.
Dedicata 36 (1990), 95–119.

9. C. Lenart and K. Zainoulline, Towards generalized cohomology Schubert calculus via
formal root polynomials, Math. Res. Lett. (2014), Preprint, arXiv:1408.5952 (to appear).

10. M. Nakasuji and H. Naruse, Yang-Baxter basis of Hecke algebra and Casselman’s
problem (extended abstract), in Proceedings of FPSAC 2016, Discrete Math. Theor,
Comput. Sci. Proc., pp. 935–946 (Assoc. Discrete Math. Theor. Comput. Sci., Nancy,
2016).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748017000214
Downloaded from https://www.cambridge.org/core. University of Connecticut, on 25 Jun 2019 at 15:14:37, subject to the Cambridge Core terms of use, available at

http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
http://www.arxiv.org/abs/1408.5952
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1474748017000214
https://www.cambridge.org/core

	WHITTAKER FUNCTIONS AND DEMAZURE CHARACTERS
	Introduction
	Description of the problem
	Induction steps
	Good words and shellability of Bruhat order
	Good words
	Shellability

	Main result
	Lemmas on good words and shellability
	Main theorem
	Conditions (A) and (B)

	Casselman's basis of Iwahori vectors
	Proof of Conjecture 5.9
	Proof of (i) -3mu(ii)
	Proof of (ii) -3mu(i)

	References


