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Abstract We define Eisenstein series on rank 2 hyperbolic Kac–Moody groups over
R, induced from quasi–characters. We prove convergence of the constant term and
hence the almost everywhere convergence of the Eisenstein series. We define and cal-
culate the degenerate Fourier coefficients. We also consider Eisenstein series induced
from cusp forms and show that these are entire functions.
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1 Introduction

After being developed by Langlands [26,27] in great generality, the theory of Eisen-
stein series has played a fundamental role in the formulation of the Langlands
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1174 L. Carbone et al.

functoriality conjecture and in the study of L-functions by means of the Langlands–
Shahidi method. Eisenstein series also appear inmany other places throughout number
theory and representation theory. The scope of applications is being extended to geom-
etry andmathematical physics. On the other hand, since we have seenmany successful
generalizations of finite dimensional constructions to infinite dimensionalKac–Moody
groups [22,25], it is a natural question to ask whether one can generalize the theory
of Eisenstein series to Kac–Moody groups. Such an attempt is not merely for the sake
of generalization. Even though it is hypothetical for the present, a satisfactory theory
of Eisenstein series on Kac–Moody groups would have significant impact on some of
the central problems in number theory [3,34].

In pioneeringwork, H. Garland developed a theory of Eisenstein series for the affine
Kac–Moody groups over R in a series of papers [13–20], and he established absolute
convergence andmeromorphic continuation. The absolute convergence result has been
generalized to the case of number fields by Liu [30]. In a recent preprint [21], Garland,
Miller and Patnaik showed that Eisenstein series induced from cups forms are entire
functions. Garland’s idea was extended to the function field case by Kapranov [24]
through geometric methods and was systematically developed by Patnaik [33]. An
algebraic approach to this case was made by Lee and Lombardo [28]. Braverman and
Kazhdan’s recent preprint [1] announces more results in the function field case.

The purpose of this paper is to construct Eisenstein series on rank 2 hyperbolic
Kac–Moody groups over R, generalizing Garland’s work in the affine case. The rank
2 hyperbolicKac–Moody groups form the first family beyond the affine case.However,
contrary to the affine case, our understanding of hyperbolic Kac–Moody groups (and
algebras) is far from being complete. In particular, information regarding imaginary
root multiplicities of hyperbolic Kac–Moody algebras is limited. A recent survey on
this topic can be found in [5].

Nevertheless, we have the necessary information to construct Eisenstein series
induced from quasi–characters on rank 2 hyperbolic Kac–Moody groups and to prove
their almost everywhere convergence, thanks to the works of Lepowsky and Moody
[29], Feingold [10] and Kang and Melville [23]. We can also prove entirety of the
Eisenstein series induced from cusp forms. Indeed, one of the benefits of working
in the Kac–Moody group rather than its Kac–Moody algebra, is that the group is
generated by root groups corresponding to only ‘real’ roots. The ‘real’ part of Kac–
Moody is sufficiently well understood and carries many properties similar to finite
dimensional simple Lie algebras [6].

We assume thatG is a rank 2 hyperbolic Kac–Moody group attached to a symmetric
2 × 2 generalized Cartan matrix, and we define Eisenstein series on the ‘arithmetic’
quotient K (GR)\GR/GZ, where K = K (GR) is the unitary form of G, an infinite
dimensional analogue of a maximal compact subgroup. Our method is to choose
a quasi–character ν on a Borel subgroup and then extend it to the whole of GR

via Iwasawa decomposition GR = K A+N , which is given uniquely. Here A+ ∼=
(R+)rank(G) is an abelian subgroup and N is the completion of the subgroup generated
by all positive real root groups.

We then average over an appropriate quotient of GZ to obtain a GZ–invariant
function Eν(g) on K\GR/GZ. Our first main result is:
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Eisenstein series on rank 2 hyperbolic Kac–Moody groups 1175

Theorem 1.1 Assume that ν satisfies Godement’s criterion, and consider the cone

A′ = {a ∈ A+ : aαi < 1, i = 1, 2}.

Then for any compact subset A′
c of A

′, there is a measure zero subset S0 of A′
cN such

that Eν(g) converges absolutely for g ∈ K A′
cN off the set K S0.

Although the idea of the proof is similar to that of [14], our proof heavily depends
on a concrete description of root systems of rank 2 hyperbolic Kac–Moody algebras.
We compute the constant term of the series Eν(g) and show that the constant term is
absolutely convergent, which implies almost everywhere convergence of the series.
We conjecture that the Eisenstein series actually converges everywhere under a weaker
condition than Godement’s criterion (See Conjecture 5.3). As the argument in [15]
does not generalize to the hyperbolic case, the conjecture seems out of reach at the
current time.

We also calculate Fourier coefficients of the Eisenstein series in Sect. 6. Let ψ

be a non-trivial character of N/(GZ ∩ N ). Then we can write ψ = ψ1ψ2, where
ψi corresponds to the simple root αi for i = 1, 2. We call ψ generic if each ψi is
non-trivial for i = 1, 2. We first show that the Fourier coefficients attached to generic
characters vanish (Lemma 6.1). Then we consider characters of the form ψ = ψi (i.e.
either ψ1 or ψ2 is trivial) and compute the corresponding Fourier coefficients. The
resulting formula is an infinite sum of products of the n-th Whittaker coefficient of
the analytic Eisenstein series on SL2 and quotients of the completed Riemann zeta
function (Theorem 6.2).

The next main result is the entirety of the Eisenstein series Es, f (g) induced from
a cusp form f . Our approach is similar to that of Garland, Miller and Patnaik in [21];
however, our method requires us to use information about the structure of the root
system of G. We obtain:

Theorem 1.2 Let f be an unramified cusp form on SL2. For any compact subset A′
c

of A′, there is a measure zero subset S0 of A′
cN such that Es, f (g) is an entire function

of s ∈ C for g ∈ K A′
cN off the set K S0.

As mentioned earlier, rank 2 hyperbolic Kac–Moody algebras and groups form the
first family beyond the affine case. It would be interesting to generalize the results of
this paper to other hyperbolic Kac–Moody groups, for example, to the Kac–Moody
group corresponding to the Feingold and Frenkel’s rank 3 hyperbolic Kac–Moody
algebra [11].Actually, in a subsequent paper [8]withMiller andGarland,wewill prove
that for general Kac–Moody groups, the Eisenstein series Eν(g) converges almost
everywhere in the full region satisfying the Godement’s criterion Re ν(hαi ) < −2.
It will be very exciting to see further developments toward a satisfactory theory of
Eisenstein series on Kac–Moody groups.
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1176 L. Carbone et al.

2 Rank 2 hyperbolic Kac–Moody algebras and Z-forms

Let g = gC be the rank 2 hyperbolic Kac–Moody algebra associated with the sym-
metric generalized Cartan matrix

(
2 −m

−m 2

)
, m ≥ 3.

Let h = hC be a Cartan subalgebra. Let � be the corresponding root system and let
�± denote the positive and negative roots respectively. Let

g = g− ⊕ h ⊕ g+

be the triangular decomposition of g, where

g− =
⊕

α∈�−
gα, g+ =

⊕
α∈�+

gα.

Let W = W (A) be the Weyl group of g. We have

W (A) = 〈r1, r2 | r21 = 1, r22 = 1〉

which is the infinite dihedral group

W = Z/2Z ∗ Z/2Z ∼= Z � {±1},

where 〈(r1r2)〉 ∼= Z.
A root α ∈ � is called a real root if there exists w ∈ W such that wα is a simple

root. A root α which is not real is called imaginary. We denote by �re the real roots
and �im the imaginary roots.

Set I = {1, 2}. We let� ⊆ h∗ be theR–linear span of the simple roots αi , for i ∈ I ,
and �∨ ⊆ h be the R–linear span of the simple coroots hαi , for i ∈ I . Let ei = eαi

and fi = fαi be root vectors in g corresponding to simple roots αi , i ∈ I . Let UC, U+
C

and U−
C
be the universal enveloping algebras of g, g+ and g− respectively. We define

the following Z-subalgebras: Let

(1) U+
Z

⊆ U+
C
be the Z-subalgebra generated by

eni
n! for i ∈ I and n ≥ 0,

(2) U−
Z

⊆ U−
C
be the Z-subalgebra generated by

f ni
n! for i ∈ I and n ≥ 0,

(3) U0
Z

⊆ U(hC) be the Z-subalgebra generated by

(
h
n

)
, for h ∈ �∨ and n ≥ 0,

where

(
h
n

)
= h(h − 1) · · · (h − n + 1)

n! ,

123

Author's personal copy



Eisenstein series on rank 2 hyperbolic Kac–Moody groups 1177

(4) UZ ⊆ UC be the Z-subalgebra generated by
eni
n! ,

f ni
n! for i ∈ I and

(
h
n

)
, for

h ∈ �∨ and n ≥ 0.

It follows ([35]) that UZ is a Z-form of UC, i.e. the canonical map

UZ ⊗Z C −→ UC

is bijective. We have a triangular decomposition UZ = U+
Z
U0
Z
U−
Z
.

Recall that g+ = ⊕
α∈�+ gα . Let V be a representation of g. Then V is called a

highest weight representation with highest weight λ ∈ h∗ if there exists 0 �= vλ ∈ V
such that

g+(vλ) = 0,

h(vλ) = λ(h)vλ

for h ∈ h and

V = UC · vλ.

Since g+ annihilates vλ and h acts as scalar multiplication on vλ, we have

V = U−
C

· vλ.

We write V = V λ for the unique irreducible highest weight module with highest
weight λ. We will assume that V = V λ is integrable.

We shall construct a lattice VZ in V by taking the orbit of a highest weight vector
vλ under UZ. We have U+

Z
· vλ = Zvλ since all elements of U+

Z
except for 1 annihilate

vλ. Also U0
Z
acts as scalar multiplication on vλ by a Z-valued scalar, since

(
h
n

)
for

h ∈ �∨ and n ≥ 0 acts on vλ as

(
λ(h)

n

)
= λ(h)(λ(h) − 1) · · · (λ(h) − n + 1)

n! ∈ Z.

Thus

U0
Z

· vλ = Zvλ, UZ · vλ = U−
Z

· (Zvλ) = U−
Z

· vλ.

Let α be any real root and let eα and fα be root vectors corresponding to α. Then

f nα
n! vλ ∈ Vλ−nα.
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1178 L. Carbone et al.

For a weight μ < λ, i.e., λ − μ is a linear combination of αi , i ∈ I with nonnegative
integral coefficients, we have

enα
n! vμ ∈ Vμ+nα.

We set

VZ = UZ · vλ = U−
Z

· vλ

Then VZ is a lattice in VC and a UZ-module.
For each weight μ of V , let Vμ be the corresponding weight space, and we set

Vμ,Z = Vμ ∩ VZ.

We have

VZ = ⊕μVμ,Z,

where the sum is taken over the weights of V . Thus VZ is a direct sum of its weight
spaces. We set

Vμ,R = R ⊗Z Vμ,Z

so that

VR := R ⊗Z VZ = ⊕μVμ,R.

For each weight μ of V , we have μ = λ − (k1α1 + k2α2), where λ is the highest
weight and ki ∈ Z≥0. Define the depth of μ to be

depth(μ) = k1 + k2.

A basis � = {v1, v2, . . . } of V is called coherently ordered relative to depth if

(1) � consists of weight vectors;
(2) If vi ∈ Vμ, v j ∈ Vμ′ and depth(μ′) > depth(μ), then j > i ;
(3) � ∩ Vμ consists of an interval vk, vk+1, . . . , vk+m .

The following was established in [12] in the affine case and in [6] in the general
symmetrizable Kac–Moody case.

Theorem 2.1 The lattice VZ has a coherently ordered Z-basis {v1, v2, . . . } where
vi ∈ VZ, vi = ξivλ, for some ξi ∈ UZ. Letwi = ki ⊗vi , where we choose an arbitrary
ki ∈ R\{0}. Then the set {w1, w2, . . . } is a coherently ordered basis for VR. There
exists a positive definite, Hermitian inner product 〈, 〉 on V such that any vector in VZ
has an integer valued norm.

123

Author's personal copy



Eisenstein series on rank 2 hyperbolic Kac–Moody groups 1179

3 The Kac–Moody group G and Iwasawa decomposition

Our next step is to construct our Kac–Moody group G over R. The construction below
can be used to construct G over any field F [6]. As before, let V be an integrable
highest weight module for gC. Then the simple root vectors ei and fi are locally
nilpotent on V .

We let VZ be a Z-form of V as in Sect. 2. Since VZ is a UZ-module, we have

eni
n! (VZ) ⊆ VZ and

f ni
n! (VZ) ⊆ VZ for n ∈ N, i ∈ I.

Let GR = R ⊗Z VZ. For s, t ∈ R and i ∈ I , set

χαi (s) =
∞∑
n=0

sn
eni
n! = exp(sei ), χ−αi (t) =

∞∑
n=0

tn
f ni
n! = exp(t fi ).

Then χαi (s), χ−αi (t) define elements in Aut(VR), thanks to the local nilpotency of
ei , fi . More generally, for a real root α, we write α = wαi for i = 1 or 2 and define

χα(s) = χwαi (s) = wχαi (s)w
−1 ∈ Aut(VR), s ∈ R.

For t ∈ R
×, we set

wαi (t) = χαi (t)χ−αi (−t−1)χαi (t) for i ∈ I,

and define

hαi (t) = wαi (t)wαi (1)
−1.

We let G0
R
be the subgroup of Aut(VR) generated by the linear automorphisms

χαi (s) and χ−αi (t) of VR, for s, t ∈ R, i ∈ I . That is, we define

G0
R

= 〈exp(sei ), exp(t fi ) : s, t ∈ R, i ∈ I 〉.

One can see that χα(s) ∈ G0
R
for real roots α.

We choose a coherently ordered basis� = {v1, v2, . . . } of VR and denote by B0 the
subgroup of G0

R
consisting of the elements represented by upper triangular matrices

with respect to �. For t ∈ Z>0, we let Vt be the span of the vs ∈ � for s ≤ t . Then
B0Vt ⊆ Vt for each t . Let Bt be the image of B0 in Aut(Vt ). We then have surjective
homomorphisms

πt t ′ : Bt ′ −→ Bt , t ′ ≥ t.

We define B to be the projective limit of the projective family {Bt , πt t ′ }.
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1180 L. Carbone et al.

Nextwe consider the completion ofG0
R
.We can define a topology onG0

R
as follows:

for a base of neighborhoods of the identity, we take sets Vt defined by

Vt = {g ∈ G0
R

: gvi = vi , i = 1, 2, . . . , t}.

Let Up = Span{v1, . . . , vp}. Let g = (gi ) and h = (hi ) be Cauchy sequences in G0
R
.

For any p, we can find sufficiently large q ≥ p such that {g−1
i (Up)} is contained in

Uq . Take N sufficiently large so that gi and hi represent the restrictions of g and h to
Uq , respectively, whenever i > N . Assume that i, j > N . Then hi h

−1
j ∈ Vq , and we

have

gihi h
−1
j g−1

j (u) = gi g
−1
j (u) = u for any u ∈ Up,

since g−1
j (u) ∈ Uq . This proves that gi hi h

−1
j g−1

j ∈ Vp whenever i, j > N . Therefore
gh = (gihi ) is Cauchy as well.

Let GR be the completion of G0
R
, i.e. the equivalence classes of all Cauchy

sequences of G0
R
. By replacing R with F in the above construction, we obtain the

group GF for any field F .
Note that B is naturally a subgroup of GR. We define the following subgroups of

GR:

(1) N = the completion of the subgroup generated by all positive real root groups
and is a subgroup of B,

(2) K = {k ∈ GR : k preserves the inner product 〈, 〉 on V λ
R
},

(3) A = 〈hαi (s) : s ∈ R
×, i ∈ I 〉 and A+ = 〈hαi (s) : s ∈ R+, i ∈ I 〉.

Theorem 3.1 ([9])We have the Iwasawa decomposition:

GR = K A+N (3.1)

with uniqueness of expression.

As in [4], we now define the ‘Z-form’ GZ of GR in the following way. We set

GZ = GR ∩ Aut(VZ).

Then

GZ = {γ ∈ GR : γ · VZ ⊆ VZ}.

Remark 3.2 For a discussion on dependence on the choice of V and VZ, we refer the
reader to [4]. In this paper, we work with fixed V and VZ.

123

Author's personal copy



Eisenstein series on rank 2 hyperbolic Kac–Moody groups 1181

4 Eisenstein series on rank 2 hyperbolic Kac–Moody groups

Let g = kgagng ∈ GR be the Iwasawa decomposition according to (3.1). Let ν :
A+ → C

× be a quasi—character and define

�ν : GR → C
×

to be the function

�ν(g) = ν(ag)

Then ν is well defined since the Iwasawa decomposition is unique and �ν is left
K -invariant and right N -invariant. For convenience, we write  = GZ.

Let B denote the minimal parabolic subgroup of GR. Relative to a coherently
ordered basis � for V λ

Z
,  has a representation in terms of infinite matrices with

integral entries. Define the Eisenstein series on GR to be the infinite formal sum

Eν(g) :=
∑

γ∈/∩B

�ν(gγ ).

Recall that h is the Lie algebra of A and that hαi , i ∈ I , are the simple coroots. We
say that the coroot ν satisfies Godement’s criterion if

Re ν(hαi ) < −2, i ∈ I.

The usual Godement criterion would give convergence in the complex half–space
for the whole group GR = K AN . Here we consider convergence in the half–space
Re (ν(hαi )) < −2 for the subspaceG ′

R
= K A′N , where the A–component is replaced

by the ‘group’ A′ corresponding to the Tits cone. We do not expect that the Eisenstein
series will be convergent for the whole group GR = K AN . Rather the general Kac–
Moody theory [22] suggests that the subspace G ′

R
is the natural space to work on.

In the next section, we prove almost everywhere convergence of the Eisenstein series
from convergence of the constant term.

We will not comment on the difficult question of meromorphic continuation to the
whole complex plane here. However, we will prove in Sect. 7 that cuspidal Eisenstein
series are entire.

5 Convergence of the constant term

In this section we prove convergence of the constant term and thus almost everywhere
convergence of the Eisenstein series itself. Assume first that ν : A+ → C

× is real
valued and positive. Then we may interpret the infinite sum Eν(g) as a function taking
values in R+ ∪ {∞}. The function Eν may be regarded as a function on

K\GR/( ∩ N ) ∼= A+ × N/( ∩ N ).
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1182 L. Carbone et al.

Under the identification R
2+ ∼= A+:

(x1, x2) �→ hα1(x1)hα2(x2),

we have the measure da on A+, corresponding to the measure

dx1
x1

dx2
x2

on R
2+.

As in [14] we know that N/( ∩ N ) is the projective limit of a projective family of
finite-dimensional compact nil-manifolds and thus admits a projective limit measure
dn, which is a left N -invariant probability measure. More precisely, recall from Sect.
3 that we have a coherently basis � and the spaces Vt for t ∈ Z>0. Denote by N 0 the
subgroup of G0

R
consisting of the elements represented by upper triangular matrices

with respect to� with 1’s on the diagonal. Let Nt be the image of N 0 in Aut(Vt ). Then
the group N is the the projective limit of the projective family {Nt , πt t ′ }. We also have
the canonical projection πt : N → Nt for each t . Consider t := πt ( ∩ N ). Then
the space Nt/t is a finite-dimensional compact nil-manifold, on which we define a
probability measure compatible with the projections πt t ′ . Now we obtain a projective
limit measure dn on N/( ∩ N ).

We define for all g ∈ GR the constant term

E�
ν(g) =

∫
N/(∩N )

Eν(gn)dn

which is left K -invariant and right N -invariant. In particular E�
ν(g) is determined

by the A+-component of g in the Iwasawa decomposition. Let ρ ∈ h∗ satisfying
ρ(hαi ) = 1, i ∈ I . Then

ρ = α1 + α2

2 − m
.

Applying the Gindikin–Karpelevich formula, a formal calculation as in [14] yields
that for a ∈ A+

E�
ν(a) =

∑
w∈W

aw(ν+ρ)−ρc(ν,w),

where

c(ν,w) =
∏

α∈�+∩w−1�−

ξ(−(ν + ρ)(hα))

ξ(1 − (ν + ρ)(hα))
,

and ξ(s) is the completed Riemann zeta function
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Eisenstein series on rank 2 hyperbolic Kac–Moody groups 1183

ξ(s) = π−s/2(s/2)
∏
p

1

1 − p−s
.

Before proving the convergence of the constant term, let us first give some prelim-
inaries for the structure of the root system of g, following [23]. Let

γ = m + √
m2 − 4

2
, (5.1)

which is a root of the polynomial x2 − mx + 1. Let r1, r2 be the simple reflections
corresponding to the simple roots α1, α2. Then the Weyl group W is generated by r1,
r2 subject to the relations r21 = r22 = 1, and has an explicit description

W = {1, r1(r2r1)n, r2(r1r2)n, (r1r2)n+1, (r2r1)
n+1 : n ≥ 0}.

We introduce a sequence {An} defined by

A0 = 0, A1 = 1, An+2 = mAn+1 − An + 1, n ≥ 0.

Then we have the explicit formula

An = γ 2n+1 − γ n(1 + γ ) + 1

γ n−1(γ + 1)(γ − 1)2
= γ n+2

(γ + 1)(γ − 1)2
+ O(1), n ≥ 0. (5.2)

We also need another sequence

Bn = An − An−1 = γ 2n − 1

γ n−1(γ 2 − 1)
= γ n+1

γ 2 − 1
+ o(1), n ≥ 0. (5.3)

In the above, O(1) (resp. o(1)) stands for a quantity that is bounded (resp. tends to
zero) as n → ∞. Then we have the following formulas for the actions of r1(r2r1)n

and (r1r2)n+1 on simple roots:

{
r1(r2r1)nα1 = −B2n+1α1 − B2nα2,

r1(r2r1)nα2 = B2n+2α1 + B2n+1α2.
(5.4)

{
(r1r2)n+1α1 = B2n+3α1 + B2n+2α2,

(r1r2)n+1α2 = −B2n+2α1 − B2n+1α2.
(5.5)

Switchingα1 andα2, wemay also obtain the similar actions of r2(r1r2)n and (r2r1)n+1.
Regarding wρ − ρ we have

⎧⎪⎪⎨
⎪⎪⎩

r1(r2r1)nρ − ρ = −A2n+1α1 − A2nα2,

r2(r1r2)nρ − ρ = −A2nα1 − A2n+1α2,

(r1r2)n+1ρ − ρ = −A2n+2α1 − A2n+1α2,

(r2r1)n+1ρ − ρ = −A2n+1α1 − A2n+2α2.

(5.6)
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1184 L. Carbone et al.

Theorem 5.1 Assume that ν satisfies Godement’s criterion. Then the constant term
E�

ν(g) converges absolutely for g ∈ K A′N, where A′ is the cone

A′ = {a ∈ A+ : aαi < 1, i ∈ I }.

Proof We may without loss of generality assume that ν(hαi ) has real values, i ∈ I .
Then we may write

ν = s1α1 + s2α2

where s1, s2 ∈ R. Godement’s criterion then reads

ν(hα1) = 2s1 − ms2 < −2, ν(hα2) = 2s2 − ms1 < −2. (5.7)

In particular we have s1, s2 > 0. Let us consider a typical term

aw(ν+ρ)−ρc(ν,w)

in E�
ν(a), where a ∈ A′. By symmetry we only need to consider w = r1(r2r1)n and

w = (r1r2)n+1, n ≥ 0.
For w = r1(r2r1)n , by (5.4) and (5.6) we have

w(ν + ρ) − ρ = (−s1B2n+1 + s2B2n+2 − A2n+1)α1

+(−s1B2n + s2B2n+1 − A2n)α2.

By (5.2) and (5.3) we have

−s1B2n+1 + s2B2n+2 − A2n+1

= (γ s2 − s1)
γ 2n+2

γ 2 − 1
− γ 2n+3

(γ + 1)(γ − 1)2
+ O(1)

= (γ s2 − s1 − γ

γ − 1
)
γ 2n+2

γ 2 − 1
+ O(1).

From (5.7) it follows that

γ s2 − s1 = mγ − 2

4 − m2 (2s1 − ms2) + 2γ − m

4 − m2 (2s2 − ms1)

>
2(mγ − 2 + 2γ − m)

m2 − 4

= 2(γ − 1)

m − 2
= 2γ

γ − 1
,

where the last equation follows from γ 2 − mγ + 1 = 0. If we introduce a constant

Cν = (γ s2 − s1 − γ

γ − 1
)

1

γ 2 − 1
> 0,
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then

r1(r2r1)
n(ν + ρ) − ρ = (Cνγ

2n+2 + O(1))α1 + (Cνγ
2n+1 + O(1))α2.

Similarly, we have

(r1r2)
n+1(ν + ρ) − ρ = (Dνγ

2n+3 + O(1))α1 + (Dνγ
2n+2 + O(1))α2,

where

Dν = (γ s1 − s2 − γ

γ − 1
)

1

γ 2 − 1
> 0.

By Godement’s criterion we have

−Re (ν + ρ)(hαi ) > 1

for i ∈ I . Then there exists ε > 0 such that

−Re (ν + ρ)(hα) > 1 + ε

for any positive real root α. Using the properties of Riemann zeta functions we can
find a constant Cε > 0 depending on ε such that

|c(ν,w)| < C�(w)
ε

where �(w) is the length of w.
Since a ∈ A′, we have aαi < 1, i ∈ I . Combining above estimates, we see that

there exist positive constants C1, C2 and M depending on ν such that

E�
ν(a) =

∑
w∈W

aw(ν+ρ)−ρc(ν,w)

≤ M
∑
w∈W

aC1γ
�(w)α1+C2γ

�(w)α2C�(w)
ε

which converges absolutely. ��
Corollary 5.2 Assume that ν satisfies Godement’s criterion. Then for any compact
subset A′

c of A
′, there is a measure zero subset S0 of A′

cN such that Eν(g) converges
absolutely for g ∈ K A′

cN off the set K S0.

Proof The proof is essentially the same as that of Theorem 9.1 in [14]. The constant
term E�

ν(a) is continuous for a ∈ A′ and integrable on any compact subset A′
c of

A′. When ν is real, it follows from Tonelli’s theorem that the series Eν(g) is locally
integrable on A′N . In particular, for any compact subset A′

c of A
′, there is a measure

zero subset S0 ⊂ A′
cN such that Eν(g) converges absolutely for g ∈ K A′

cN off the
set K S0. When ν is complex, the series Eν(g) is dominated by ERe(ν)(g) and we are
done. ��
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We propose the following conjecture, which weakens Godement’s criterion and
asserts everywhere convergence instead of almost everywhere convergence.

Conjecture 5.3 Eν(g) converges absolutely for g ∈ K A′N and ν satisfying
Re ν(hαi ) < −1, i ∈ I .

6 Fourier coefficients

In this section we shall define and calculate the Fourier coefficients of Eν(g). To
facilitate the computation, we work with adelic groups. Let A = R × ∏′

p Qp and
I = A

× be the adele ring and idele group of the rational number field Q, respectively.
According to Sect. 3, for any prime p we have the group GQp ⊂ Aut(VQp ), and we
let Kp ⊂ GQp be the subgroup Kp = {g ∈ GQp : g · VZp = VZp }. Let GA =
GR × ∏′

p GQp and GA f = ∏′
p GQp (the adele and finite adele groups respectively)

be the restricted products with respect to the family of subgroups Kp. Note that we
have the diagonal embedding ι : GQ ↪→ GR × ∏

p GQp . Set Q = ι−1(GA) and
KA = K × ∏

p K p.
We shall extend the definition of Eν(g) to g ∈ GA. For each prime p we have an

Iwasawa decomposition [9]

GQp = Kp AQp NQp ,

where AQp is generated by hαi (s), i = 1, 2, s ∈ Q
×
p , and NQp is generated by χα(s),

α ∈ �re+ , s ∈ Qp. From the local Iwasawa decompositions we have

GA = KAAANA.

If ι = (ι∞, ιp) ∈ I is an idele, define the usual norm |ι| of ι by

|ι| = |ι∞|
∏
p

|ιp|p.

An element a ∈ AA can be decomposed as a = hα1(s1)hα2(s2), s1, s2 ∈ I. We let
|a| ∈ A+ be the element hα1(|s1|)hα2(|s2|). Let g ∈ GA be decomposed as

g = kgagng, kg ∈ KA, ag ∈ AA, ng ∈ NA.

Note that |ag| is uniquely determined by g, although above decomposition is not
unique. Then we may define

�ν(g) = |ag|ν .

The Eisenstein series is defined by

Eν(g) =
∑

γ∈Q/Q∩BQ

�ν(gγ ), g ∈ A.
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When g ∈ GR this coincides with our previous definition, since Q/Q ∩ BQ ∼=
/ ∩ B.

For a positive real root α, let Uα be the root subgroup {χα(u) : u ∈ R}.
Letψ be a non-trivial character of N/(∩N ). Then we haveψ = ψ1ψ2, whereψi

is a character ofUαi /∩Uαi . This follows from the fact that N/[N , N ] ∼= Uα1 ×Uα2 .
We extend ψ to a character of NA/NQ, where NQ := Q ∩ NA and define the ψ-th
Fourier coefficient of Eν(g) along B by

Eν,ψ(g) =
∫
N/(∩N )

Eν(gn)ψ̄(n)dn =
∫
NA/NQ

Eν(gn)ψ̄(n)dn.

Then Eν,ψ (g) is aWhittaker function onG, that is, a functionW satisfying the relation

W (gn) = ψ(n)W (g),

for each n ∈ N .
We callψ generic if eachψi is non-trivial for i = 1, 2. Then we have the following

vanishing result for generic characters, which in fact holds generally for infinite-
dimensional Kac–Moody groups (cf. [30]).

Lemma 6.1 If ψ is generic, then Eν,ψ (g) = 0.

Proof Recall that we have the Bruhat decomposition

Q =
⊔

w∈W
Nw,Qw(Q ∩ BQ),

where Nw,Q = Q ∩ ∏
α∈�+∩w�− Uα . Then we have

Eν(g) =
∑

γ∈Q/Q∩BQ

�ν(gγ ) =
∑
w∈W

∑
γ∈Nw,Q

�ν(gγw).

We introduce N ′
w = ∏

α∈�+∩w�+ Uα . Then N = NwN ′
w and it follows that

Eν,ψ (g) =
∑
w∈W

∫
NA/NQ

∑
γ∈Nw,Q

�ν(gnγw)ψ̄(n)dn

=
∑
w∈W

∫
NA/N ′

w,Q

�ν(gnw)ψ̄(n)dn

=
∑
w∈W

∫
Nw,A

ψ̄(nw)

∫
N ′

w,A
/N ′

w,Q

�ν(gnwn
′
ww)ψ̄(n′

w)dn′
wdnw.

For each w ∈ W , at least one of the two roots w−1αi , i = 1, 2, is positive. Since �ν

is right N -invariant, the inner integral of the last equation involves a factor

∫
Uαi ,A/Uαi ,Q

ψ̄i (u)du =
∫
Uαi /Q∩Uαi

ψ̄i (u)du
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for some i , which is zero by the assumption that ψ is generic. ��
Using this lemma, we may assume that ψ = ψ1 or ψ2, and is non-trivial. Any

character of Uαi , which is trivial on  ∩Uαi , is of the form

ψi,n : χαi (u) �→ e2π inu, u ∈ R

for some n ∈ Z.
Before we state and prove the main result of this section, let us first recall some

Fourier coefficients for SL2. For F = R or Qp, one has the Iwasawa decomposition
SL2(F) = K AN , where K = SO(2, R) or SL2(Zp) is a maximal compact subgroup
of SL2(F),

A =
{(

a 0
0 a−1

)
: a ∈ R

×
}

, N =
{(

1 x
0 1

)
: x ∈ R

}
.

Let g ∈ SL2(F) be decomposed as

g = k

(
ag 0
0 a−1

g

)
n.

For s ∈ C, define a function �s(g) on SL2(F) by �s(g) = |ag|−s . Clearly �s is
well-defined. Given a character ψ of F , we shall consider the Fourier coefficient

∫
F

�s

(
1 0
x 1

)
ψ̄(x)dx, (6.1)

which is convergent for Re s > 0. If we write (
ax 0
0 a−1

x
) for the A-component of

(
1 0
x 0

) in the Iwasawa decomposition, then |ax | = √
1 + x2 for F = R and |ax | =

max(1, |x |p) for F = Qp.
The character ψ(u) = e2π iu of R/Z corresponds to the character ψ∞

∏
p ψp of∏

p Zp\A/Q, where

ψ∞(x) = e2π i x , x ∈ R

ψp(x) = e−2π i(fractional part of x), x ∈ Qp.

In the above the fractional part of

x =
∞∑

i>−∞
ai p

i ∈ Qp, ai ∈ {0, . . . , p − 1}

written as a base p expansion, is given by
∑

i<0 ai p
i . Fix y ∈ R+ and associate an

idele (yv)v ∈ I by y∞ = y, yp = 1. For n ∈ Z, n �= 0, we twist the nth power of ψ
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by y, i.e. consider the characters ψ∞(nyx) of R and ψp(nx) of Qp. Then the Fourier
coefficients (6.1) are given by the following functions. For F = R, Re s > 1 we have
(cf. [2, pp. 66–67])

W∞
n (y, s) =

∫ ∞

−∞
(1 + x2)−

s
2 ψ̄∞(nyx)dx

= 2π s/2(s/2)−1|ny| s−1
2 K s−1

2
(2π |n|y),

where Ks(y) is the K-Bessel function, also known as theMacdonald Bessel function,
defined by

Ks(y) = 1

2

∫ ∞

0
e−y(t+t−1)/2 t s

dt

t
, Re s > 0.

Write |n| = ∏
p pnp into the primary decomposition. Then for p < ∞, Re s > 1 we

have

W p
n (s) =

∫
Qp

max(1, |x |p)−sψ̄p(nx)dx

= 1 +
∞∑
i=1

p−is
∫
p−iZ×

p

ψ̄p(nx)dx

= (1 − p−s)(1 − p(n p+1)(1−s))

1 − p1−s
.

In the above computations we have made use of the Iwasawa decomposition for SL2.
Now we form a product

Wn(y, s) = W∞
n (y, s)

∏
p

W p
n (s)

= 2σ1−s(|n|)|ny| s−1
2 K s−1

2
(2π |n|y) 1

ξ(s)
, Re s > 1, (6.2)

where σs is the divisor power sum function defined by σs(n) = ∑
d|n ds for n ∈ N.

Theorem 6.2 Assume that ν satisfies Godement’s criterion. Then for a ∈ A′, i ∈ I ,
n ∈ Z, n �= 0, one has the ψi,n-th Fourier coefficient

Eν,ψi,n (a) =
∑

w∈W, w−1αi<0

aw(ν+ρ)−ρcψi,n (ν,w)(a),

where

cψi,n (ν,w)(a) = Wn(a
−αi , 1 + w(ν + ρ)(hαi ))

∏
α∈�+∩w−1�−

α �=−w−1αi

ξ(−(ν + ρ)(hα))

ξ(1 − (ν + ρ)(hα))
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with Wn(y, s) being defined by (6.2).

Proof As in the proof of Lemma 6.1, we see that

Eν,ψ (a) =
∑

w∈W, w−1αi<0

∫
Nw,A

�ν(anww)ψ̄(nw)dnw.

We follow the computation in [14] and [30, 4.4]. Let w−1 = rk1 · · · rk�
be the reduced

expression of w−1, where � = �(w) and k j = 1 or 2 for j = 1, . . . , �. Let

�w−1 = �+ ∩ w−1�− = {β1, . . . , β�},

where β j = rk1 · · · rk j−1αk j . Then

�w = �+ ∩ w�− = {γ1, . . . , γ�},

where γ j = −wβ j = rk�
· · · rk j+1αk j . Note that

β1 + · · · + β� = ρ − w−1ρ, γ1 + · · · + γ� = ρ − wρ.

From these formulas it is clear that if w−1αi < 0, then γ� = αi = −wβ�. By
decomposing Nw into a product of root subgroups, we get

∫
Nw,A

�ν(anww)ψ̄(nw)dnw

=
∫
A�

�ν

(
aχγ�

(u�) · · · χγ1(u1)w
)
ψ̄i,n(u�)du� · · · du1

=
∫
A�

�ν

(
χγ�

(aγ�u�) · · · χγ1(a
γ1u1)aw

)
ψ̄i,n(u�)du� · · · du1

=
∫
A�

awν−γ1−···−γ��ν

(
χγ�

(u�) · · · χγ1(u1)w
)
ψ̄i,n(a

−αi u�)du� · · · du1

= aw(ν+ρ)−ρ

∫
A�

�ν

(
χ−β�

(u�) · · · χ−β1(u1)
)
ψ̄i,n(a

−αi u�)du� · · · du1.

Let χ−β�
(u) = k(u)a(u)n(u) be the Iwasawa decomposition, with k(u) ∈ K , n(u) ∈

Uβ�
, a(u) ∈ A. Put w′−1 = rk1 · · · rk�−1 , then {β1, . . . , β�−1} = �+ ∩ w′−1�−.

Consider the decomposition N = Nw′N ′
w′ (see the proof of Lemma 6.1). Then we

have

U−β�−1 · · ·U−β1 = w′−1Nw′w′.

Let us define the projection

π : w′−1Nw′ → w′−1Nw′w′.
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Since U−β1 , . . . ,U−β�−1 , Uβ�
⊂ w′−1Nw′, the following map

π ◦ Ad(n(u)) : w′−1Nw′w′ → w′−1Nw′w′,

is well-defined and unimodular. From this fact, and noting that �ν is right invariant
under w′−1N ′

w′w′ ⊂ N , it follows

∫
A�

�ν

(
χ−β�

(u�) · · · χ−β1(u1)
)
ψ̄i,n(a

−αi u�)du� · · · du1

=
∫
A

a(u�)
ν+β1+···β�−1ψ̄i,n(a

−αi u�)du�∫
A�−1

�ν

(
χ−β�−1(u�−1) · · · χ−β1(u1)

)
du�−1 · · · du1

=
∫
A

a(u�)
ν+ρ−w′−1ρψ̄i,n(a

−αi u�)du�∫
A�−1

�ν

(
χ−β�−1(u�−1) · · · χ−β1(u1)

)
du�−1 · · · du1.

Note that w′−1ρ(hβ�
) = ρ(w′hβ�

) = ρ(hαi ) = 1. Then the first integral in the last
equation equals Wn(a−αi , 1 − (ν + ρ)(hβ�

)) = Wn(a−αi , 1 + w(ν + ρ)(hαi )), and
the second one, by Gindikin–Karpelevich formula, equals

�−1∏
j=1

ξ(−(ν + ρ)(hβ j )
)

ξ
(
1 − (ν + ρ)(hβ j ))

.

Hence our assertion follows. ��

7 Entirety of cuspidal Eisenstein series

In analogy with [1, Theorem 5.2] and [21], we shall prove that the Eisenstein series
on G induced from cusp forms on SL2 are entire functions. Let P be the maximal
parabolic subgroup of G generated by B and the simple reflection r1, and P = MU
be the Levi decomposition, where M is the Levi subgroup and U is the pro-unipotent
radical of P . Let L ∼= SL2 be the subgroup generated by χ±α1(t), t ∈ R, and let
A1 = 〈hα1(t) : t ∈ R

×〉, H = {a ∈ A : aα1 = ±1}. Then we have an almost direct
product A = A1 × H , and M = LH . We introduce

H+ = {hα1(t
m)hα2(t

2) : t ∈ R+} ∼= K ∩ H\H,

A+
1 = {hα1(t) : t ∈ R+} ∼= K ∩ A1\A1.

From the Iwasawa decomposition G = K P = KMU , the following maps

IwL : G → K ∩ L\L , IwH+ : G → H+
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are well-defined. Similarly, using the Iwasawa decomposition for L we may define
the map

IwA+
1

: K ∩ L\L → A+
1 .

For convenience we also denote by IwA+ the map G → A+, g = kgagng �→ ag
which we used previously. Then it is clear that

IwA+ = (IwA+
1

◦ IwL) × IwH+ : G → A+ ∼= A+
1 × H+. (7.1)

Let �2 be the fundamental weight corresponding to α2, that is

�2 = mα1 + 2α2

4 − m2 .

Note that �2 is trivial on A1 = L ∩ A, hence (7.1) implies that

IwA+(·)�2 = IwH+(·)�2 . (7.2)

Similarly, since α1 is trivial on H we also have

IwA+(·)α1 = IwA+
1

◦ IwL(·)α1 . (7.3)

We may regard �2 as an algebraic character of M . For s ∈ C define the Eisenstein
series

Es(g) =
∑

γ∈/∩P

IwH+(gγ )s�2 .

Moreover, for an unramified cusp form f on SL2(R)/SL2(Z), that is, a SO(2)–
invariant cusp form, we define

Es, f (g) =
∑

γ∈/∩P

IwH+(gγ )s�2 f
(
IwL(gγ )

)
.

Theorem 7.1 Assume that Re s < −2. Then for any compact subset A′
c of A

′, there is
a measure zero subset S0 of A′

cN such that Es(g) converges absolutely for g ∈ K A′
cN

off the set K S0.

Proof Our proof is similar to the previous one for the Eisenstein series induced from
characters on Borel subgroups. (See also II. I. 5. of [32].) We have the Bruhat decom-
position

G =
⊔

w∈W1

BwP =
⊔

w∈W1

NwwP,

123

Author's personal copy



Eisenstein series on rank 2 hyperbolic Kac–Moody groups 1193

where W1 = {w ∈ W : wα1 > 0} is a set of representatives of minimal length for the
quotientW/〈r1〉. Formal calculations show that the constant term of Es(a) for a ∈ A′
is

E�
s (a) =

∑
w∈W1

aw(s�2+ρ)−ρc(s�2, w).

Then we only need to prove the absolute convergence of E�
s (a) under the conditions

of the theorem. We may assume that s is real. There are two cases for w ∈ W1:
w = (r1r2)n or r2(r1r2)n . We shall only deal with the first case, and the second case
can be treated similarly.

Assume w = (r1r2)n . Then using (5.5) and (5.6), for a ∈ A′ there exists a positive
constant M only depending on a such that

aw(s�2+ρ)−ρ ≤ MaγCnα1+Cnα2 ,

where

Cn = γ 2n

(m2 − 4)(γ + 1)(γ − 1)2
[ − s(mγ − 2)(γ − 1) − (m2 − 4)γ

]
.

It follows that Cn → ∞ if and only if

s < − (m2 − 4)γ

(mγ − 2)(γ − 1)
= −1 − γ −1. (7.4)

We also need to consider the factor c(s�2, w). One can show that

�+ ∩ w−1�− = {Biα1 + Bi+1α2 : i = 0, . . . , 2n − 1}.

For α = Biα1 + Bi+1α2 we have

−(s�2 + ρ)(hα) = (−s − 1)Bi+1 − Bi > Bi+1 − Bi ≥ 1

when s < −2. This implies that c(s�2, w) ≤ C�(w) for some constant C depending
on s.

Combining above analysis it is easy to see the convergence of E�
s (a) for a ∈ A′. ��

We remark that, from Bi+1 > γ Bi it follows that

(−s − 1)Bi+1 − Bi → ∞ as i → ∞

when s < −1 − γ −1. Together with (7.4), this suggests the following

Conjecture 7.2 Es(g) converges absolutely for g ∈ K A′N and Re s < −1 − γ −1.

Now let us state the main result of this section.
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Theorem 7.3 Let f be an unramified cusp form on SL2. For any compact subset A′
c

of A′, there is a measure zero subset S0 of A′
cN such that Es, f (g) is an entire function

of s ∈ C for g ∈ K A′
cN off the set K S0.

We shall follow the strategy in [21] to prove Theorem 7.3. The following lemma is
in analogy with [21, Lemma 3.2], where we set x y := yxy−1 for x, y ∈ G.

Lemma 7.4 If γ ∈  ∩ BwB, then

IwA+(gγ ) = (
IwA+g

)w−1 · IwA+(nww)

for some nw ∈ Nw,A depending on γ and g.

Recall from [17, Lemma 6.1] that for nw ∈ Nw,A,

ln
(
IwA+(nww)

) =
∑

α∈�w

cαhα with cα ≥ 0, (7.5)

where �w = �+ ∩ w�−. Now we can establish the Iwasawa inequalities:

Lemma 7.5 There exists a constant D > 0 such that

IwA+(gγ )α1 ≥ IwA+(gγ )D�2

for any g ∈ K A′N, w ∈ W1 and γ ∈  ∩ BwB, where the constant D is independent
of w.

Proof Put a = IwA+g ∈ A′. From Lemma 7.4 and (7.5), it suffices to find a constant
D such that the following two inequalities

aw−1α1 ≥ aDw−1�2 , (7.6)

α1(hα) ≥ D�2(hα) (7.7)

hold for any w ∈ W1 and α ∈ �w. We only consider the case w = (r1r2)n , and
similar arguments apply to the other case w = r2(r1r2)n . Put w = (r1r2)n , then
�w = {Bi+1α1 + Biα2 : i = 0, . . . , 2n − 1}. For any α of the form Bi+1α1 + Biα2
one has

α1(hα) = 2Bi+1 − mBi ≥ (2γ − m)Bi = (2γ − m)�2(hα).

This proves (7.7) with D = 2γ − m > 0.
Now we prove (7.6). Again, there are two possibilities for w ∈ W1: w = (r1r2)n or

r2(r1r2)n . Here we treat the first case, while the second one is similar. Forw = (r1r2)n ,
we see from the formula (5.5) that

{
w−1α1 = −B2n−1α1 − B2nα2,

w−1α2 = B2nα1 + B2n+1α2.
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Since we have

�2 = mα1 + 2α2

4 − m2 ,

it follows from the above formulas that

w−1�2 = 1

4 − m2

[
(2B2n − mB2n−1)α1 + (2B2n+1 − mB2n)α2

]
.

Recall that Bn = γ n + o(1), which implies

2Bn+1 − mBn = (2γ − m)γ n + o(1).

Note that 2γ −m > 0. Then one can find a positive constant D independent of n such
that

Bn ≥ D
2Bn+1 − mBn

m2 − 4
. (7.8)

In fact, for any 0 < D < m2−4
2γ−m , the inequality (7.8) is true as long as n is large. Since

a ∈ A′, we have aα1 , aα2 < 1, and the above inequality (7.8) implies that

aw−1α1 ≥ aDw−1�2 .

Since any such D < m2−4
2γ−m < 2γ − m, (7.7) also holds as we proved in the first part.

Note that we can choose the constant D to be independent of a ∈ A′ and w ∈ W1. ��
We also need the rapid decay of cuspidal automorphic forms.1 Most recent results

on rapid decay, which generalize classical results in various ways, can be found in
[31]. In our case, f is an SO(2)-finite cusp form on SL2(R)/SL2(Z), and we may
assume that g ∈ SL2(R) is in a Siegel set. Then the rapid decay implies that for any
natural number n ≥ 1, there exists a constant C > 0 depending on n such that

| f (g)| ≤ C IwA+
1
(g)−nα1 . (7.9)

Proof of Theorem 7.3 Since cusp forms are bounded, the assertion follows from The-
orem 1.1 when Re s < −2. Assume that Re s ≥ −2. Choose s0 ∈ R with s0 < −2.
Choose a real number d > Re s − s0 > 0 such that d

D ∈ N, where D is given in
Lemma 7.5. Then Re s−d < s0 < −2 and there exists a subset N ′ of N with measure
zero complement such that ERe s−d(g) converges for any g ∈ K A′

cN
′.

1 In an earlier version of this paper, an exponential decay in [21] was used. It was pointed out by Steve D.
Miller that the rapid decay was enough to obtain our result.
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Put n = d
D ∈ N as above. From (7.2), (7.3), Lemma 7.5 and (7.9), we obtain that

for any γ ∈ / ∩ P ,

∣∣IwH+(gγ )s�2 f
(
IwL(gγ )

)∣∣ ≤ C IwH+(gγ )(Re s)�2 IwA+
1

◦ IwL(gγ )−nα1

≤ C IwH+(gγ )(Re s)�2 IwH+(gγ )−nD�2

= C IwH+(gγ )(Re s−d)�2 .

Note that the constants C and D are independent of w. Taking the summation over γ ,
it follows that Es, f (g) is absolutely convergent. ��
Acknowledgements We thank the referee for many valuable comments.
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