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EISENSTEIN SERIES ON AFFINE KAC-MOODY GROUPS

OVER FUNCTION FIELDS

KYU-HWAN LEE AND PHILIP LOMBARDO

Abstract. In his pioneering work, H. Garland constructed Eisenstein series
on affine Kac-Moody groups over the field of real numbers. He established the
almost everywhere convergence of these series, obtained a formula for their
constant terms, and proved a functional equation for the constant terms. In
his subsequent paper, the convergence of the Eisenstein series was obtained. In
this paper, we define Eisenstein series on affine Kac-Moody groups over global
function fields using an adelic approach. In the course of proving the conver-
gence of these Eisenstein series, we also calculate a formula for the constant
terms and prove their convergence and functional equations.

Introduction

Classical Eisenstein series are central objects in the study of automorphic forms.
The classical Eisenstein series were generalized to the case of reductive groups and
studied by R. Langlands [13,14]. As in the classical case, he found these Eisenstein
series have certain analytic properties as well as Fourier series expansions where
L-functions appear in the constant terms. Because of this relationship, these L-
functions inherit important analytic properties from the Eisenstein series. This
approach to studying automorphic L-functions is known as the Langlands-Shahidi
method. (See [7] for a survey.) The Eisenstein series over function fields were
studied by G. Harder in [8].

In [4], H. Garland defines and studies Eisenstein series on affine Kac-Moody
group over R. He proved the almost everywhere convergence of the series while
placing specific emphasis on calculating the constant term, finding its region of
convergence, and proving functional equations of the constant term. More precisely,
let ĜR be an affine Kac-Moody group over R. For each character χ of the positive
part Â of the torus, he defines a function Φχ : Â → C× and, as in the classical

case, uses the Iwasawa decomposition ĜR = K̂ Â Û to extend Φχ to a function on

ĜR. Garland extends this group by the automorphism e−rD ∈ Aut(V λ
R
), where

r > 0 and D is the degree operator of the Kac-Moody Lie algebra associated with
ĜR. Setting Φχ(ge

−rD) = Φχ(g), he defines an Eisenstein series Eχ on the space

ĜR e−rD ⊆ Aut(V λ
R
) by ∑

γ∈Γ̂/(Γ̂∩B̂)

Φχ(ge
−rDγ),

where Γ̂ is a discrete subgroup of ĜR.
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2122 K.-H. LEE AND P. LOMBARDO

With suitable conditions on the character χ, Garland proves the almost ev-
erywhere convergence of Eχ and calculates the constant term of this series, E#

χ ,

representing it as a sum over the affine Weyl group Ŵ :∑
w∈Ŵ

(ae−rD)w(χ+ρ)−ρ c̃(χ,w).

Here the function c̃(χ,w) is a ratio of completed Riemann zeta functions, ξ(s) :=
π−s/2Γ( s2 )ζ(s). After establishing when this infinite sum converges, he proves func-

tional equations for the constant term E#
χ . In [5], Garland proves the Eisenstein

series Eχ converge absolutely.

For an arbitrary field F , we can construct an affine Kac-Moody group ĜF ([2]).
Let V be the set of places of F . In this paper, we consider the fields Fν for
ν ∈ V , completions of a global function field F . We work adelically and define an
Eisenstein series Eχ on ĜA, a restricted direct product of the groups ĜFν

. Then we
calculate the constant term of the Eisenstein series Eχ and, as in Garland’s work,
find that we can express the constant term as an infinite sum over the affine Weyl
group. Moreover, this expression contains c(χ,w)-functions composed of ratios of
ζF , the zeta function for the function field F . This calculation leads to a proof of
convergence of the Eisenstein series.

Theorem 0.1. Let χ ∈ ĥ∗ such that Re(χ(hαi
)) < −2 for i = 1, . . . , l + 1, and

let m = (mν)ν∈V be a tuple such that mν ∈ Z≥0 and 0 <
∑

ν mν < ∞. Then the
Eisenstein series

Eχ(hη
mDu) :=

∑
γ∈Γ̂F /(Γ̂F∩B̂F )

Φχ(hη
mDuγ)

is convergent for all (h, u) ∈ ĤA × ÛA/(ÛA ∩ Γ̂F ). (See (3.12) for the definition of
ηmD.)

The zeta function ζF , which appears in the c(χ,w)-functions of the constant
term, satisfies a functional equation. Using this, we prove that the constant term
of the Eisenstein series satisfies a family of functional equations indexed by elements
in the affine Weyl group.

This paper has seven sections. In Section 1, we will provide a basic construction
of an affine Kac-Moody Lie algebra and its corresponding groups, and then proceed
to Section 2 where we prove an Iwasawa decomposition for these groups. Section 3
uses the Iwasawa decomposition to define an Eisenstein series. We also describe the
characters we use for this definition and our analogue of the automorphism e−rD

that appears in Garland’s definition above. In Section 4 we calculate the constant
term of our series. The content of Section 5 establishes the region of convergence
for this infinite sum, which we use in Section 6 to prove the convergence of the
Eisenstein series Eχ. Finally, in Section 7 we make use of the functional equation
for ζF to prove functional equations for the constant term of our Eisenstein series.

1. Affine Kac-Moody Lie algebras and groups

In this section, we describe the affine Kac-Moody groups that we use to define
our Eisenstein series. We will first fix notation for an affine Kac-Moody Lie alge-
bra ĝ e. Then, following Chevalley’s construction, we will use automorphisms of a
representation space V λ of ĝ e to define the associated affine Kac-Moody group Ĝλ.
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EISENSTEIN SERIES ON AFFINE KAC-MOODY GROUPS 2123

1.1. Affine Kac-Moody Lie algebras. Let g be a simple, real Lie algebra. Then
we define

(1.1) ĝ
e = (R[t, t−1]⊗ g)⊕ Rc⊕ RD,

and endow ĝ e with the standard bracket operation. (See [5] or [11].) In the expres-
sion above, c is a central element and D is the degree operator that acts as t d

dt on

R[t, t−1]⊗ g and annihilates c. We set

(1.2) ĥ e = h+ Rc+ RD,

where h is the Cartan subalgebra of g. We also set

(1.3) ĝ = (R[t, t−1]⊗ g)⊕ Rc and ĥ = h+ Rc.

Let Δ be the classical root system of g, and denote the simple roots by {α1, . . . , αl}
and the highest root by α0. Then the affine roots Δ̂ of ĝ e contain l+1 simple roots
{α1, . . . , αl+1}. By setting δ = α0 + αl+1, we can describe the set of affine roots Δ̂
associated to ĝ as

(1.4) Δ̂ = {α+ nδ | α ∈ Δ, n ∈ Z} ∪ {nδ | n ∈ Z �=0}.

The set of affine Weyl (or real) roots is denoted by Δ̂W = {α+nδ | α ∈ Δ, n ∈ Z}.
The set of the affine roots decompose into a disjoint union of positive roots Δ̂+

and negative roots Δ̂− = −Δ̂+, where

Δ̂+ = {α+ nδ | α ∈ Δ+, n ∈ Z≥0} ∪ {α+ nδ | α ∈ Δ−, n ∈ Z>0} ∪ {nδ | n ∈ Z>0}.
Similarly we can describe the positive and negative Weyl roots by setting

(1.5) Δ̂W,+ = {α+ nδ | α ∈ Δ+, n ∈ Z≥0} ∪ {α+ nδ | α ∈ Δ−, n ∈ Z>0}

and Δ̂W,− = −Δ̂W,+.
Let {hα1

, . . . , hαl+1} denote the set of simple co-roots associated to the affine

simple roots α1, . . . , αl+1. In general, for any a ∈ Δ̂, we let ha denote the cor-
responding co-root. Recall that we have the Killing form ( , ) on h, which we
normalize so that (hα0

, hα0
) = 2. As in [4], we extend this bilinear form to a non-

degenerate, bilinear form on ĥ e. For each simple root α1, . . . , αl+1 ∈ Δ̂, we define

a simple reflection wi ∈ Aut(ĥ e) for i = 1, . . . , l + 1 by

(1.6) wi(h) = h− αi(h)hαi
.

Then the affine Weyl group Ŵ is defined to be

Ŵ = 〈wi | i = 1, . . . , l + 1〉 ⊂ Aut(ĥ e).

We have

(1.7) Ŵ = W � T,

where W is the classical Weyl group, and T is a group of translations that we can
index by H ∈ hZ ([10], [11]).

As with g, the algebra ĝ has a Chevalley basis which we can construct using the
Chevalley basis for g ([2]). First, fix a Chevalley basis for g,

Ψ = {hα1
, . . . , hαl

} ∪ {Eα}α∈Δ.

Now we define some important elements of ĝ. For each a = α+ nδ ∈ Δ̂W , we let

ξa = tn ⊗ Eα and ξi(n) = tn ⊗ hαi
for i = 1, . . . , l.
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2124 K.-H. LEE AND P. LOMBARDO

Also, we set hi = hαi
for i = 1, . . . , l, and hl+1 = −hα0

+ 2
(α0,α0)

c. Using these

elements, we fix a Chevalley basis for the algebra ĝ:

Ψ̂ = {h1, . . . , hl+1} ∪ {ξa}a∈Δ̂W
∪ {ξi(n)}i=1,...,�; n∈Z≥0

.

Finally, we denote the Z-span of Ψ̂ by ĝZ. Then ĝZ is closed under the bracket
operation [ , ] for ĝ e. Using ĝZ, we can make sense of an affine Kac-Moody Lie
algebra over an arbitrary field F by setting

(1.8) ĝ
e
F = (F ⊗Z ĝZ)⊕ FD.

Let D denote the set of λ ∈ (ĥ e)∗ such that for i = 1, . . . , l+1 we have λ(hαi
) ∈

Z≥0 and λ(hαi
) = 0 for some i. This is the set of dominant, integral, normal weights

of ĝ e. In [2] we see that for each λ ∈ D, we have an irreducible ĝ e-module, V λ,
with a highest weight vector vλ. This V

λ contains a Z-module V λ
Z

satisfying

(1.9)
(ξa)

m

m!
· V λ

Z ⊆ V λ
Z ,

for any a ∈ Δ̂W and m ∈ Z≥0. We fix this Z-module V λ
Z

and call it the Chevalley
form of V λ. The representation space V λ and V λ

Z
decompose into a direct sum of

weight spaces, V λ
μ and V λ

μ,Z = V λ
μ ∩ V λ

Z
, respectively. As a highest weight module,

we know that any weight μ of V λ is of the form

(1.10) μ = λ−
l+1∑
i=1

kiαi,

where ki ∈ Z≥0. For an arbitrary field F , we set V λ
F = F ⊗Z V λ

Z
. Then V λ

F is a
highest weight ĝ e

F -module.
In the next subsection, we will use the elements of ĝ e

F to describe some special
automorphisms of the vector space V λ

F . These automorphisms generate the affine
Kac-Moody group over the arbitrary field F .

1.2. Construction of affine Kac-Moody groups. Let F be an arbitrary field.
For a ∈ Δ̂W and s ∈ F , we define the automorphism χa(s) of V

λ
F as

(1.11) χa(s) =
∑
n≥0

sn
ξna
n!

.

By (1.9) we know that this definition works for fields of arbitrary characteristic.

For each v ∈ V λ
F and a ∈ Δ̂W , there exists an n0 such that for all n ≥ n0 we have

ξna
n!

· v = 0.

Hence for each v ∈ V λ
F and a ∈ Δ̂W , the sum in (1.11) acts as a finite sum ([2]).

We let F ((X)) be the field of Laurent series in the variable X with coefficients

from F . Then σ ∈ F ((X)) has an expression as σ =
∑
i≥i0

siX
i, where i0 ∈ Z and

si ∈ F . For α ∈ Δ (the classical roots), we let

(1.12) χα(σ) =
∏
i≥i0

χα+iδ(si).

For each v ∈ V λ
F there exists an ik such that for all i ≥ ik, χα+iδ(s) · v = v for any

s ∈ F , and so for each v the product in (1.12) acts as a finite product ([2]).
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EISENSTEIN SERIES ON AFFINE KAC-MOODY GROUPS 2125

As a result of these observations, each χα(σ) is an automorphism of the repre-
sentation space V λ

F . Finally, we make the following definition.

Definition 1.13. Let F be an arbitrary field and λ ∈ D. The affine Kac-Moody
group associated to ĝ e

F and its representation space V λ
F is the following subgroup

of Aut(V λ
F ):

(1.14) Ĝλ
F =

〈
χα(σ)

∣∣ α ∈ Δ, σ ∈ F ((X))
〉
.

Remark 1.15.

(1) Since we are considering the automorphisms of V λ
F , our group depends on

the choice of λ. We fix a λ ∈ D and drop the λ from our notation.
(2) One may note that in the construction of ĜF we only used elements of ĝ

and ignored the degree operator D. In Section 3, we will extend our group
ĜF by a particular automorphism ηmD related to D, thereby establishing a
more complete relationship between ĝ e

F = ĝF ⊕FD and our group. Garland
extends his group in a similar way by the automorphism e−rD for r > 0
([4], [5]).

In the next section, we will begin working with this group when F is a field with
a non-Archimedean absolute value. Our first objective is to develop an Iwasawa
decomposition for ĜF in this case, from which we will be able to begin defining our
Eisenstein series.

2. Iwasawa decomposition for affine Kac-Moody groups

In this section, we prove an Iwasawa decomposition for ĜF , where F is a local
field with a non-Archimedean absolute value. In particular, we will apply this result
to the groups ĜFν

= Ĝν , where Fν is a completion of a global function field F .

We now consider the particular case of ĜFν
:= Ĝν , where Fν is an arbitrary field

with a non-Archimedean discrete valuation ν. For x ∈ Fν let |x|ν denote the abso-
lute value that corresponds to the valuation ν. We define Oν =

{
x ∈ Fν

∣∣ |x|ν ≤ 1
}

and Pν =
{
x ∈ Fν

∣∣ |x|ν < 1
}
, noting that Pν is the unique maximal ideal of the

ring Oν .
For any a ∈ Δ̂W and s ∈ F×

ν , we set

wa(s) = χa(s)χ−a(−s−1)χa(s) and ha(s) = wa(s)wa(1)
−1.

Likewise, for α ∈ Δ and non-zero σ ∈ Fν((X)), we set

wα(σ) = χα(σ)χ−α(−σ−1)χα(σ) and hα(σ) = wα(σ)wα(1)
−1.

Using these elements, we can define the subgroups of Ĝν that appear in the
Iwasawa decomposition of the affine Kac-Moody group. We let Fν [[X]] ⊂ Fν((X))
denote the ring of power series over Fν . We then set

Ûν =

〈
χα(σ)

∣∣∣∣ α ∈ Δ+, σ ∈ Fν [[X]] or α ∈ Δ−, σ ∈ XFν [[X]]

〉
,

Ĥν =

〈
hαi

(s)

∣∣∣∣ i = 1, . . . , l + 1, s ∈ F×
ν

〉
,
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2126 K.-H. LEE AND P. LOMBARDO

and define B̂ν to be the group generated by Ûν and Ĥν , which can be realized as a
semi-direct product Ĥν � Ûν . Finally, set

K̂ν =

〈
χα(σ)

∣∣∣∣ α ∈ Δ, σ ∈ Oν((X))

〉
,

where Oν is defined above.

Lemma 2.1 ([2], §14). Let N̂ν =

〈
wa(s)

∣∣∣∣ a∈ Δ̂W , s∈F×
ν

〉
, Ŵ = N̂ν/(N̂ν ∩ B̂ν)

= N̂ν/Ĥν , and S = {wαi
(1) | i = 1, . . . , l+ 1}. Then (Ĝν , B̂ν , N̂ν , S) is a BN-pair

for Ĝν .

Remark 2.2. There is a natural isomorphism between Ŵ = N̂ν/(N̂ν ∩ B̂ν) and the

affine Weyl group Ŵ =
〈
wi | i = 1, . . . , l + 1

〉
, which identifies the element wαi

(1)
with the simple reflection wi. See [2].

In light of the theory of BN -pairs ([12], §5; [9], §29), we have the following facts

regarding Ĝν :

Corollary 2.3. For the affine Kac-Moody group Ĝν we have:

(1) Ĝν =
⋃

w∈Ŵ

B̂νwB̂ν (disjoint union).

(2) For w ∈ Ŵ , let w = wi1 . . . wik be a reduced expression. Then we have

B̂νwB̂ν = Yi1 . . . Yik B̂ν , where Yi is a set of representatives for the cosets

(B̂νwiB̂ν)/B̂ν , for each i = 1, . . . , l + 1.

We continue by choosing a specific set of coset representatives for each Yi. To
this end, we recall a lemma from [2], §16.

Lemma 2.4. Every element x ∈ B̂νwB̂ν has an expression

x =

⎛
⎝ ∏

a∈Δ̂w

χa(sa)

⎞
⎠wy,

where sa ∈ Fν , y ∈ B̂ν , and Δ̂w = Δ̂W,+ ∩ wΔ̂W,−.

In particular, if we take w = wi for some i, each element x ∈ B̂νwiB̂ν has an
expression as x = χαi

(s)wiy with y ∈ B̂ν .

Now since we choose our Yi’s to be representatives of the coset space B̂νwiB̂/B̂ν ,
we can choose our Yi’s to consist of elements of the form χαi

(s)wi where s ∈ Fν .

Lemma 2.5 ([2], §16). For an arbitrary field F , and any a ∈ Δ̂W , we have a

homomorphism ϕa : SL2(F ) → ĜF that is defined by the conditions:

ϕa(( 1 s
0 1 )) = χa(s), ϕa(( 1 0

s 1 )) = χ−a(s),

ϕa((
0 1
−1 0 )) = wa(1), ϕa((

r 0
0 r−1 )) = ha(r)

for s ∈ Fν and r ∈ F×
ν .

For the field Fν , we know that the group SL2(Fν) contains the subgroup B
consisting of upper triangular matrices and the subgroupK = SL2(Oν). Moreoever,
we have the Iwasawa decomposition SL2(Fν) = KB. For more information see [10],
§2.
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Lemma 2.6. We have the following:

(1) ϕa(B) ⊂ B̂ν , if a ∈ Δ̂W,+.

(2) ϕa(K) ⊂ K̂ν , for any a ∈ Δ̂W .
(3) We can choose the elements of Yi for i = 1, . . . , l + 1 so that they are the

images through ϕαi
of elements in K. In particular, we may assume that

Yi ⊂ K̂ν for i = 1, . . . , l + 1.

Proof. (1) Consider an arbitrary element ( r s
0 r−1 ) ∈ B. We can express it in the

following way:

( r s
0 r−1 ) = ( r 0

0 r−1 )( 1 r−1s
0 1

).

Thus ϕa((
r s
0 r−1 )) = ha(r)χa(r

−1s). Since B̂ν is generated by Ĥν and Ûν , it suffices

to show that χa(r
−1s) ∈ Ûν . Since we assumed that a ∈ ΔW,+, we know a = α+nδ

where either n = 0 and α ∈ Δ+, or n > 0 and α ∈ Δ. We can write χa(r
−1s) =

χα(σ) by setting σ = (r−1s)Xn (see the definition of χα(σ), Section 1). The

conditions on α and n guarantee that χα(σ) ∈ Ûν . Therefore, when a ∈ Δ̂W,+ we
have the desired result.

(2) We know that

K =

〈
( 1 s
0 1 ), (

1 0
s′ 1 )

∣∣∣∣ s, s′ ∈ Oν

〉
(see [10], §2), and so an arbitrary element of K will be a finite product of these
matrices. As a result, the image of an element in K through the homomorphism
ϕa will be a finite product of χa(s) and χ−a(s

′) with s, s′ ∈ Oν . It suffices to show

that χa(s) and χ−a(s
′) are elements of K̂ν . If a = α+ nδ, then −a = −α− nδ and

we can express χa(s) = χα(sX
n) and χ−a(s

′) = χ−α(s
′X−n). Since the coefficients

s and s′ are each elements of Oν , we have that χa(s) and χ−a(s
′) are elements of

K̂ν .
(3) Recall that Yi is a set of coset representatives for (B̂νwiB̂ν)/B̂ν , for wi ∈ S.

By Lemma 2.4 we can choose these representatives to be of the form χαi
(s)wi for

s ∈ Fν , but then

χαi
(s)wi = ϕαi

(( 1 s
0 1 ))ϕαi

(( 0 1
−1 0 )) = ϕαi

((−s 1
−1 0 )).

However, by the Iwasawa decomposition for SL2(F ), we know that (−s 1
−1 0 ) = kb for

k ∈ K and b ∈ B. Thus, we have χαi
(s)wi = ϕαi

(k)ϕαi
(b), and by part (1) of this

lemma we know that the coset χαi
(s)wiB̂ = ϕαi

(k)ϕαi
(b)B̂ = ϕαi

(k)B̂. So we can

take our representatives for (B̂νwiB̂ν)/B̂ν to be of the form ϕαi
(k) for some k ∈ K.

Finally, part (2) of this lemma implies that we can choose our Yi to be a subset of

K̂ν . �

Now we can prove that for any ν ∈ V , the affine Kac-Moody group Ĝν has an
Iwasawa decomposition.

Theorem 2.7 (Iwasawa decomposition, [2]). Let Fν be a field with a non-Archime-

dean discrete valuation ν, and let Ĝν be an affine Kac-Moody group over Fν . Then

Ĝν = K̂ν Ĥν Ûν ,

where K̂ν , Ĥν , and Ûν are defined as above.
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2128 K.-H. LEE AND P. LOMBARDO

Proof. We have already established a Bruhat decomposition for Ĝν ; in other words,

Ĝν =
⋃

w∈Ŵ

B̂νwB̂ν .

Since this is a disjoint union, it suffices to show that each B̂νwB̂ν decomposes in
the desired way. It follows from Corollary 2.3 and part (3) of Lemma 2.6 that for

each w ∈ Ŵ we have B̂νwB̂ν ⊂ K̂νB̂ν , and thus Ĝν = K̂νB̂ν . We have already
observed that B̂ν = Ĥν � Ûν , and so we obtain the Iwasawa decomposition:

Ĝν = K̂ν Ĥν Ûν .

�

The Iwasawa decomposition of an element is not uniquely determined. See Re-
mark 3.2 and Corollary 3.11.

3. Defining the Eisenstein series

For the remainder of this paper, we set F to be a global function field of genus
g. Let V denote the set of all places of F , and for ν ∈ V let Fν denote the
completion of F with respect to ν. As in the previous section, we let | · |ν denote
the corresponding non-Archimedean absolute value on Fν , and we define the local
ring Oν and its maximal ideal Pν as before. We fix a uniformizer πν ∈ Oν , so
πν generates the ideal Pν . Finally, let the integer qν denote the cardinality of the
residue field Oν/Pν .

In this section, we will use an adèlic approach and define our Eisenstein series
on the group ĜA, a restricted direct product of affine Kac-Moody groups over the
completions of the field F .

3.1. The Adelic approach. Using the completions Fν , we define the adele ring
A as the restricted direct product

A =
∏
ν∈V

′
Fν , with respect to the subrings Oν .

The units of this ring, the group of ideles A×, can also be realized as the restricted
direct product

A× =
∏
ν∈V

′
F×
ν , with respect to O×

ν ,

where O×
ν = {x ∈ Oν | |x|ν = 1} ⊂ Oν . For s = (sν) ∈ A×, we define the idelic

norm

|s| =
∏
ν∈V

|sν |ν .

We set Ĝν = ĜFν
and define the group ĜA as the restricted direct product

ĜA =
∏
ν∈V

′
Ĝν , with respect to the subgroups K̂ν .

In order to define our Eisenstein series on ĜA, we must first establish an Iwasawa
decomposition for this group. With the appropriately defined subgroups of ĜA,
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this will be a direct result of Theorem 2.7. To this end, we distinguish the certain
subgroups of ĜA. Let

K̂ =
∏
ν∈V

K̂ν , ĤA =
∏
ν∈V

′
Ĥν and ÛA =

∏
ν∈V

′
Ûν ,

where the restricted direct products are with respect to Ĥν ∩ K̂ν and Ûν ∩ K̂ν ,
respectively.

Theorem 3.1. We have the following Iwasawa decomposition for the group ĜA:

ĜA = K̂ ĤA ÛA.

Remark 3.2. In [2], Garland develops an Iwasawa decomposition for the group ĜR

and establishes that the decomposition of an element is unique. In our setting, the
Iwasawa decomposition of an element is not unique. This is potentially problematic
because we will use this decomposition to define the Eisenstein series. However, we
will see in Proposition 3.10 that due to the structure of ĤA this is not an issue.

3.2. The structure and topology of the torus. We fixed a normal weight
λ ∈ D, and hence a ĝ e-module V λ

Fν
. It is a highest weight module, so we let vλ

denote the highest weight vector. In [2] we see that the representation space V λ
Fν

decomposes into a direct sum of its weight spaces

V λ
Fν

=
⊕

μ∈(ĥ e)∗

V λ
μ,Fν

, where V λ
μ,Fν

= {v ∈ V λ
Fν

| h · v = μ(h)v, h ∈ ĥ e}.

Moreover, every weight of V λ
Fν

is of the form μ = λ −
∑l+1

i=1 kiαi, for ki ∈ Z≥0.
Using this unique expression, we define the depth of μ as

dp(μ) =
l+1∑
i=1

ki .

We fix a basis B of V λ
Z

by choosing basis vectors {vλ, v1, . . . , vn, . . . } in V λ
Z

and
ordering them so that

(1) if vi ∈ V λ
μ,Z, vj ∈ V λ

μ′,Z, and i < j, then we have dp(μ) ≤ dp(μ′), and

(2) for each weight μ of V λ
Z
, the basis vectors of V λ

μ,Z appear consecutively.

A basis of V λ
Z

that satisfies these conditions is called coherently ordered. It is
important to note that since we chose our basis vectors from V λ

Z
, the basis B serves

as a basis for V λ
F as well as V λ

Fν
for every ν ∈ V . The advantage to fixing such a

basis is that with respect to B we can view the elements of Ĥν as (infinite) diagonal
matrices which are scalar matrices when we restrict to a weight space. In addition,
the elements of Ûν are (infinite) strictly upper triangular block matrices where the
blocks are determined by the weight spaces of V λ

Z
. For more information, see [2].

By this observation, we can clearly see that elements of Ĥν commute with each
other, and Ĥν normalizes the subgroup Ûν . Since this holds for all ν ∈ V , we obtain
the same results for ĤA and ÛA.

Because the definition of our Eisenstein series depends on it, we are interested
in studying the structure of ĤA. Let h ∈ ĤA. Considering the local components,
we let

hν =

l+1∏
i=1

hαi
(si,ν).
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2130 K.-H. LEE AND P. LOMBARDO

As a result, we may write h ∈ ĤA as the product

h =
l+1∏
i=1

hαi

(
(si,ν)ν∈V

)
.

Proposition 3.3. Assume that λ ∈ D. Suppose that

hλ =
l+1∏
i=1

hλ
αi
(si,ν) ∈ Ĥλ

ν ∩ K̂λ
ν .

Then we have ordν(si,ν) = 0 for i = 1, . . . , l + 1.

Remark 3.4. We have included the superscript λ above since we must consider
different λ’s in the proof below.

Proof. As a consequence of Lemma 15.7 and Theorem 15.9 in [2], we know that for
each fundamental weight Λi there exist a positive integer mi and a surjective group
homomorphism

π(λ,miΛi) : Ĝ
λ
ν → ĜmiΛi

ν ,

and this homomorphism is characterized by the fact that it maps χλ
α(σ) to χ

miΛi
α (σ).

As a result,
l+1∏
i=1

hλ
αi
(si,ν) �−→

l+1∏
i=1

hmiΛi
αi

(si,ν),

as well. Set hλ =
∏l+1

i=1 h
λ
αi
(si,ν) and hmiΛi =

∏l+1
i=1 h

miΛi
αi

(si,ν). Since h
λ ∈ Ĥλ

ν ∩K̂λ
ν

by assumption, we have hmiΛi ∈ ĤmiΛi
ν ∩ K̂miΛi

ν . Choose a highest weight vector

1⊗ v ∈ V miΛi

Fν
= Fν ⊗ V miΛi

Z
. Then by [2] we know that

(3.5) hmiΛi · (1⊗ v) =

l+1∏
i=1

hmiΛi
αi

(si,ν) · (1⊗ v) =

(
l+1∏
i=1

s
miΛi(hαi

)

i,ν

)
⊗ v = smi

i,ν ⊗ v.

Since elements of K̂ν preserve the subspace V λ
Oν

, we have ordν(si,ν) ≥ 0.

Moreover, since Ĥλ
ν ∩ K̂λ

ν is a group, we know (hλ
ν )

−1 =
∏l+1

i=1 h
λ
αi
(s−1

i,ν ) is also in

the intersection. Applying the argument above to (hλ
ν )

−1, we find ordν(si,ν) ≤ 0.
Thus we have ordν(si,ν) = 0 for each i = 1, . . . , l + 1. �

Corollary 3.6. The subgroup ĤA ≤ ĜA may be realized in the following way:

ĤA =

{
l+1∏
i=1

hαi
(si)

∣∣∣∣∣ si ∈ A×

}
.

Proof. Proposition 3.3 shows that for almost all ν ∈ V , we have si,ν ∈ O×
ν . As a

result, these infinite tuples si are actually elements of A×. �

Remark 3.7. We have a surjective group homomorphism ϑ : (A×)l+1 −→ ĤA de-
fined by

(s1, s2, . . . , sl+1) �→ h =

l+1∏
i=1

hαi
(si).

The group (A×)l+1 inherits the product topology induced by the usual topological

structure of A×, and we give the space ĤA the quotient topology induced by the
map ϑ. We will use the map ϑ again in Section 5.
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3.3. Characters. Defining our Eisenstein series on ĜA requires that we specify a
character of the subgroup ĤA. Let | · | be the idelic norm. We define a character

by fixing a linear functional χ ∈ ĥ∗ and setting

hχ =

l+1∏
i=1

|si| χ(hαi
)

when h =
∏l+1

i=1 hαi
(si) ∈ ĤA.

Remark 3.8. If h ∈ ĤA ∩ K̂, then h =
∏l+1

i=1 hαi
(si) with si ∈

∏
ν∈V O×

ν . By our

definition of χ, we see that hχ = 1 for any h ∈ ĤA ∩ K̂, since |si| = 1 for each
i = 1, . . . , l + 1.

Fix χ ∈ ĥ∗, and define Φχ : ĜA −→ C× to be the function induced by the

character χ on ĤA and the Iwasawa decomposition for ĜA. In other words, if
g = k h u is an element of ĜA, then we set

Φχ(g) = Φχ(k h u) = hχ.

We noted earlier that the Iwasawa decomposition for ĜA is not unique, so we need
to prove that this function is well defined.

Lemma 3.9. For any place ν ∈ V, the subgroup B̂ν ∩ K̂ν is the semi-direct product
(Ĥν ∩ K̂ν)� (Ûν ∩ K̂ν).

Proof. With respect to the coherently ordered basis B, the elements of K̂ν are
matrices with elements from the ringOν and the elements of B̂ν are upper triangular
block matrices. Thus, we can view b ∈ B̂ν∩K̂ν as an upper triangular infinite block
matrix with entries from Oν . By the definition of B̂ν , we know that b = hu for
h ∈ Ĥν and u ∈ Ûν . In fact, with respect to B, the matrix h will be diagonal with
the same diagonal entries that appear in the matrix b. In particular, h ∈ Ĥν ∩ K̂ν ,
which also implies that u ∈ Ûν ∩ K̂ν . �
Proposition 3.10. Let g = k h u = k′ h′ u′ be two Iwasawa decompositions for
g ∈ ĜA. Then

Φχ(k
′ h′ u′) = Φχ(k h u).

In particular, Φχ is a well-defined function from ĜA into C×.

Proof. We begin by noting that if k h u = k′ h′ u′, then

k′−1k = h′u′(hu)−1 ∈ B̂A ∩ K̂.

By Lemma 3.9, k′−1k = h̄ū with h̄ ∈ ĤA∩K̂ and ū ∈ ÛA∩K̂. Using this information,
we see

k′ h′ u′ = k h u = k′ h̄ūhu.

Since ĤA normalizes ÛA, we can express k′ h′ u′ = k′ h̄hu1, for some u1 ∈ ÛA.
Finally, we observe that by Remark 3.8 we have

Φχ(k
′ h′ u′) = Φχ(k

′ h̄hu1) = (h̄h)χ

= h̄χ hχ = hχ = Φχ(k h u).

�
Corollary 3.11. The ĤA-component of an Iwasawa decomposition is uniquely de-
termined up to ĤA ∩ K̂.
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2132 K.-H. LEE AND P. LOMBARDO

Proof. From the proof of the above proposition, we obtain h′ u′ = h̄hu1. Since
B̂A = ĤA � ÛA, we actually have h′ = h̄h. �

3.4. An important automorphism. As in [4], we need to extend the group ĜA

by an automorphism related to the degree operatorD that appears in the associated
affine Kac-Moody Lie algebra

ĝ
e = (C[t, t−1]⊗ g)⊕ Cc⊕ CD.

In [4], Garland uses e−rD ∈ Aut(V λ
R
) for r > 0 to extend the group ĜR; however,

in our case we are considering the restricted direct product ĜA. For this reason, we
first define local automorphisms ηmνD

ν ∈ Aut(V λ
Fν
) for each ν ∈ V , and then work

with a product of the local automorphisms.
For each ν ∈ V and integer mν ∈ Z, we define ηmνD

ν to be the automorphism of
V λ
Fν

defined by the conditions

(1) the automorphism ηmνD
ν fixes each weight space V λ

μ,Fν
, and

(2) we have ηmνD
ν · v = π

mν μ(D)
ν v for v ∈ V λ

μ,Fν
.

Since ηmνD
ν acts as scalar multiplication on the weight spaces, we can consider

this automorphism as being a diagonal block matrix with respect to the coherently
ordered basis B, and as such the automorphism will commute with Ĥν and nor-
malize Ûν . Moreover, note that if we chose mν = 0, then ηmνD

ν is the identity
map.

We fix a tuple m = (mν)ν∈V such that mν ∈ Z and mν = 0 for all but a finite
number of ν. By doing so, we fix the associated automorphism ηmD defined as the
product

(3.12) ηmD =
∏
ν∈V

ηmνD
ν ∈

∏
ν∈V

Aut(V λ
Fν
).

We will define the Eisenstein series on ĜAη
mD for our fixed automorphism ηmD.

In particular, we will consider Φχ as a function on ĜAη
mD by setting Φχ(gη

mD) =
Φχ(g).

3.5. Defining the Eisenstein series. For each completion Fν , there is the natural
injection iν : F ↪→ Fν which induces the injection F ((X)) ↪→ Fν((X)) by sending∑

i≥i0

siX
i �→

∑
i≥i0

iν(si)X
i.

From this map, we see that there is a natural injection iν : ĜF ↪→ Ĝν for each
ν ∈ V , and we may define the diagonal embedding i : ĜF ↪→

∏
ν∈V Ĝν by

χα(σ) �→
(
iν(χα(σ))

)
ν∈V .

The image of the map i is not entirely contained in the group ĜA. To see this
clearly, we construct an example of an element from ĜF that does not diagonally
embed into ĜA.

Example 3.13. Let F = Fq(T ). It is well known that all but one of the places (the
“infinite” place corresponding to 1

T ) are indexed by monic, irreducible polynomials
in Fq[T ]. We let fν(T ) denote the polynomial associated with the place ν. Set

σ = T +
1

fν1

X +
1

fν2

X2 +
1

fν3

X3 + . . . ,
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where we set the coefficient of Xi to be 1
fνi

for some νi that has not previously

appeared in the expansion. Clearly, we have 1
fν

∈ Fq(T ) for all ν, so σ ∈ F ((X)).

However, by design σ /∈ Oν((X)) for an infinite number of ν ∈ V , and as a result

iν(χα(σ)) is not an element of K̂ν for an infinite number of ν. Therefore, i(χα(σ)) /∈
ĜA.

Keeping this example in mind, we consider the subgroup Γ̂F defined by

Γ̂F = {g ∈ ĜF

∣∣ i(g) ∈ ĜA}.

By an abuse of notation, Γ̂F will be considered as a subgroup of ĜF as well as ĜA,
where in the latter case we consider the elements as being diagonally embedded.

Note that hχ = 1 for any h ∈ ĤA ∩ Γ̂F and χ ∈ ĥ∗. We also have the subgroups
ĤF , ÛF and B̂F of the group ĜF .

In the definition of the Eisenstein series, Γ̂F /(Γ̂F ∩ B̂F ) will be the coset space
over which we index our sum. Before continuing, we first establish certain facts
about Φχ.

Lemma 3.14. Let g, β ∈ ĜA, and γ ∈ Γ̂F ∩ B̂F . Then

(1) Φχ(gh
′) = (h′)χ Φχ(g) for any h′ ∈ ĤA,

(2) Φχ(gγ) = Φχ(g), and
(3) Φχ(gη

mDβγ) = Φχ(gη
mDβ).

Proof. (1) We write g = khu according to the Iwasawa decomposition. Since ĤA

normalizes ÛA, we have

Φχ(gh
′) = Φχ(khuh

′) = Φχ(khh
′u′).

Now by definition of Φχ, we know

Φχ(khh
′u′) = (hh′)χ = (h)χ(h′)χ.

Since h is the ĤA-component of g, we know this last expression equals (h′)χ Φχ(g).
(2) Using an argument similar to that of Lemma 3.9, we can show that for any

γ ∈ Γ̂F ∩ B̂A, we have a decomposition γ = h1u1 with h1 ∈ ĤA ∩ Γ̂F and u1 ∈ ÛA.
Using our Iwasawa decomposition, express g = khu. Then

Φχ(gγ) = Φχ(khuh1u1) = Φχ(khh1u
′u1)

= (hh1)
χ = (h)χ = Φχ(g),

where the second to last equality holds because h1 ∈ ĤA ∩ Γ̂F .
(3) As before we let γ = h1u1 with h1 ∈ Γ̂F ∩ ĤA and u1 ∈ ÛA. Since ηmD

commutes with ĤA and normalizes ÛA, we see ηmDγ(ηmD)−1 = h1u2 for some

u2 ∈ ÛA. Let η
mDβ = β′ηmD for some β′ ∈ ĜA. Then

Φχ(gη
mDβγ) = Φχ(gβ

′ηmDγ) = Φχ(gβ
′h1u2η

mD) Φχ(gβ
′h1u2).

We know Φχ is right invariant by ÛA, and in light of part (1) of this lemma, the
following equalities hold:

Φχ(gβ
′h1u2) = Φχ(gβ

′h1) = (h1)
χ Φχ(gβ

′) = Φχ(gβ
′)

= Φχ(gβ
′ηmD) = Φχ(gη

mDβ).

�
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2134 K.-H. LEE AND P. LOMBARDO

Due to part (3) of the previous lemma, the following definition of the Eisenstein

series Eχ on the space ĜAη
mD is well defined.

Definition 3.15. For g ∈ ĜA and χ ∈ ĥ∗, we define

(3.16) Eχ(gη
mD) =

∑
γ∈Γ̂F /(Γ̂F∩B̂F )

Φχ(gη
mDγ),

whenever the series converges to a complex number; otherwise we define Eχ(gη
mD)

= ∞.

The goal of this paper is to prove the convergence of the series Eχ. Later, we
will see that after some reductions we can consider Eχ(gη

mD) as a function on the

space ĤA × ÛA/(ÛA ∩ Γ̂F ). In the next three sections, we will prove the following
theorem:

Theorem 3.17. Let χ ∈ ĥ∗ such that Re(χ(hαi
)) < −2 for i = 1, . . . , l + 1, and

let m = (mν)ν∈V be a tuple such that mν ∈ Z≥0 and 0 <
∑

ν mν < ∞. Then the
Eisenstein series

Eχ(hη
mDu) =

∑
γ∈Γ̂F /(Γ̂F∩B̂F )

Φχ(hη
mDuγ)

is convergent for all (h, u) ∈ ĤA × ÛA/(ÛA ∩ Γ̂F ).

To prove this theorem, we first assume that χ is a real character, so χ : ĤA →
R>0. As a result, the Eisenstein series Eχ takes values in R>0 ∪ {∞}. This as-
sumption is not very restrictive because for any complex character χ, the series Eχ

is dominated by ERe(χ). Hence, we can apply the dominated convergence theorem
for the complex case after we consider the real character χ.

As in Corollary 2.3, we see that ĜF has the Bruhat decomposition into the
following disjoint union:

ĜF =
⋃

w∈Ŵ

B̂F w B̂F .

If we let Γ̂F (w) = Γ̂F ∩ (B̂F w B̂F ) and define

(3.18) Eχ,w(gη
mD) =

∑
γ∈Γ̂F (w)/(Γ̂F (w)∩B̂F )

Φχ(gη
mDγ),

then the Bruhat decomposition above allows us to express our Eisenstein series as

(3.19) Eχ(gη
mD) =

∑
w∈Ŵ

Eχ,w(gη
mD).

This is simply a regrouping of the sum in Definition 3.15. As with Eχ, we can

consider each Eχ,w as a function on the space ĤA × ÛA/(ÛA ∩ Γ̂F ). In order to
prove Theorem 3.17, it suffices to show that

(3.20)
∑
w∈Ŵ

∫
ÛA/(ÛA∩Γ̂F )

Eχ,w(hη
mDu) du < ∞

for h varying in an arbitrary compact set of ĤA and for real χ.
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If we establish the convergence (3.20), then∑
w∈Ŵ

∫
ÛA/(ÛA∩Γ̂F )

Eχ,w(hη
mDu) du =

∫
ÛA/(ÛA∩Γ̂F )

∑
w∈Ŵ

Eχ,w(hη
mDu) du

=

∫
ÛA/(ÛA∩Γ̂F )

Eχ(hη
mDu) du.(3.21)

Note that the last expression is nothing but the constant term of the Eisenstein
series Eχ.

Definition 3.22. We set

E#
χ (gηmD) =

∑
w∈Ŵ

∫
ÛA/(ÛA∩Γ̂F )

Eχ,w(gη
mDu) du

and call E#
χ the constant term of the Eisenstein series Eχ.

In the next section, we will calculate the integrals∫
ÛA/(ÛA∩Γ̂F )

Eχ,w(hη
mDu) du

for w ∈ Ŵ . In Section 5, we establish the convergence (3.20) when χ is a real

character and h varies in a compact set of ĤA. As a result, we will obtain the
almost everywhere convergence of the Eisenstein series and a concrete description
of its constant term.

4. Calculating the constant term of the Eisenstein series

In this section, we simply state the existence and properties of the measures
necessary for our calculation, leaving the details to Appendix A. Constructing these
measures involves taking the projective limit of a family of measures. For now we
will also refrain from showing that Eχ is a measurable function, a topic that we
will address in Section 6.

4.1. Definition and preliminary calculation. From Appendix A, we have an
invariant probability measure du on the space ÛA/(ÛA ∩ Γ̂F ). As was discussed
at the end of the previous section, we now turn our attention to calculating the
expression

(4.1)
∑
w∈Ŵ

∫
ÛA/(ÛA∩Γ̂F )

Eχ,w(gη
mDu) du.

We first calculate the integrals∫
ÛA/(ÛA∩Γ̂F )

Eχ,w(gη
mDu) du,

for w ∈ Ŵ .
Let Û−,F be the subgroup of ĜF consisting of the elements that are strictly lower

triangular block matrices with respect to our coherently ordered basis B of V λ
F . We

define

Ûw,F = ÛF ∩ wÛ−,Fw
−1.
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2136 K.-H. LEE AND P. LOMBARDO

Note that this definition works over Fν as well, so the notation Û−,ν and Ûw,ν are

clear. Finally, we set Û−,A and Ûw,A to be the expected restricted direct products.
The Bruhat decomposition has this refinement:

ĜF =
⋃

w∈Ŵ

Ûw,F w B̂F (disjoint union).

Moreover, every element of u ∈ Ûw,F is of the form

(4.2) u =
∏

a∈Δ̂W,+∩w Δ̂W,−

χa(sa) for sa ∈ F .

(See [4], §6; [3], §6.) It is straightforward to check that Ûw,F ⊂ Γ̂F , which implies

Γ̂F ∩ (Ûw,F w B̂F ) = Ûw,F w (Γ̂F ∩ B̂F ).

As a result, we can choose the coset representatives of Γ̂F (w)/Γ̂F (w) ∩ B̂F to be

{bw} for b ∈ Ûw,F . Thus,∫
ÛA/(ÛA∩Γ̂F )

Eχ,w(gη
mDu) du =

∫
ÛA/(ÛA∩Γ̂F )

∑
γ∈Γ̂F (w)/Γ̂F (w)∩B̂F

Φχ(gη
mDuγ) du

=

∫
ÛA/(ÛA∩Γ̂F )

∑
b∈Ûw,F

Φχ(gη
mDubw) du.

We have the following decompositions:

(4.3) ÛF = Ûw,F (ÛF ∩ wÛFw
−1) and ÛA = Ûw,A (ÛA ∩ wÛAw

−1).

This decomposition, along with the fact that Ûw,F ⊂ Γ̂F , implies that

(4.4) ÛF ∩ Γ̂F = Ûw,F (Γ̂F ∩ ÛF ∩ w ÛF w−1).

So we can consider the set of b ∈ Ûw,F as a set of coset representatives for

(Γ̂F ∩ ÛF )/(Γ̂F ∩ ÛF ∩ wÛFw
−1).

Since Γ̂F ∩ ÛF = Γ̂F ∩ ÛA, our integral∫
ÛA/(ÛA∩Γ̂F )

∑
b∈(Γ̂F∩ÛF )/(Γ̂F∩ÛF∩wÛFw−1)

Φχ(gη
mDubw) du

becomes

(4.5)

∫
ÛA/(Γ̂F∩ÛF∩wÛFw−1)

Φχ(gη
mDu′w) du′.

Here we consider the measure du′ as the measure induced from du and the projection

π′ : ÛA/(Γ̂F ∩ ÛF ∩ wÛFw
−1) � ÛA/(ÛA ∩ Γ̂F ).

Using the decomposition (4.3) for ÛA, we observe that integrating over this coset
is the same as first integrating over

ÛA/(ÛA ∩ wÛAw
−1)

and then over

(ÛA ∩ wÛAw
−1)

/
(Γ̂F ∩ ÛF ∩ wÛFw

−1).
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In Appendix A we see that the measure du′ decomposes into measures du1 and du2

on these spaces, respectively. Using these measures and decompositions, we can
manipulate our integral (4.5) to be

(4.6)

∫
Ûw,A

( ∫
(ÛA∩wÛAw−1)/(Γ̂F∩ÛF∩wÛFw−1)

Φχ(gη
mDu1u2w) du2

)
du1,

where we set Ûw,A = ÛA/(ÛA ∩ wÛAw
−1).

Since Φχ is ÛA-right invariant, we let u′
2 = w−1u2w ∈ ÛA and rewrite

Φχ(gη
mDu1u2w) = Φχ(gη

mDu1wu
′
2) = Φχ(gη

mDu1w).

As a result, the integral (4.6) becomes∫
Ûw,A

( ∫
(ÛA∩wÛAw−1)/(Γ̂F∩ÛF∩wÛFw−1)

Φχ(gη
mDu1w) du2

)
du1.

Since the values Φχ(gη
mDu1w) no longer depend on u2 and the measure du2 has a

total measure of 1, this equals∫
Ûw,A

Φχ(gη
mDu1w) du1

∫
(ÛA∩wÛAw−1)/(Γ̂F∩ÛF∩wÛFw−1)

du2

=

∫
Ûw,A

Φχ(gη
mDu1w)du1.

The following proposition summarizes our results from this subsection:

Proposition 4.7. For g ∈ ĜA and w ∈ Ŵ , we have∫
ÛA/(ÛA∩Γ̂F )

Eχ,w(gη
mDu) du =

∫
Ûw,A

Φχ(gη
mDu1w) du1.

4.2. Further calculation. We continue our computation by further manipulating
the integral in Proposition 4.7. Fix an Iwasawa decomposition g = khu. Since ηmD

normalizes ÛA, we have

Φχ(gη
mDu1w) = Φχ(khuη

mDu1w) = Φχ(hη
mDu′u1w).

The decomposition (4.3) allows us to write u′ = u′
− u′

+ for u′
− ∈ Ûw,A and u′

+ ∈
ÛA ∩ wÛAw

−1. Clearly, w−1u′
+w ∈ ÛA, so by the right invariance of Φχ we have

Φχ(hη
mDu′u1w) = Φχ(hη

mDu′
−u

′
+u1w)

= Φχ(hη
mDu′

−u
′
+u1(u

′
+)

−1ww−1u′
+w)

= Φχ(hη
mDu′

−u
′
+u1(u

′
+)

−1w).

The decomposition (4.3) also induces the natural projection

π̃ : ÛA � Ûw,A,

and we obtain that

Φχ(hη
mDu′

−u
′
+u1(u

′
+)

−1w) = Φχ(hη
mDu′

− π̃(u′
+u1(u

′
+)

−1)w).

For any u1 ∈ Ûw,A and a fixed u+ ∈ ÛA ∩ wÛAw
−1, the map that sends u1 to

π̃(u+u1(u+)
−1) is a unimodular change of variables, so the integral in Proposition
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4.7 becomes∫
Ûw,A

Φχ(gη
mDu1w) du1 =

∫
Ûw,A

Φχ(hη
mDu′

−π̃(u
′
+u1(u

′
+)

−1)w) du1

=

∫
Ûw,A

Φχ(hη
mDu′

−u1w) du1.

However, note that u′
− ∈ Ûw,A remains fixed as u1 ranges over Ûw,A, and since du1

is Ûw,A-translation invariant, our integral may now be expressed as

(4.8)

∫
Ûw,A

Φχ(hη
mDu1w) du1.

Continuing, we note that

Φχ(hη
mDu1w) = Φχ(hη

mDu1(η
mD)−1h−1ww−1hηmDw),

and since w−1hηmDw ∈ ĤA, we obtain from Lemma 3.14, part (1),

Φχ(hη
mDu1w) = (w−1hηmDw)χ Φχ(hη

mDu1(η
mD)−1h−1w).

Since (w−1hηmDw)χ = (hηmD)wχ, the integral (4.8) becomes

(4.9) (hηmD)wχ

∫
Ûw,A

Φχ(hη
mDu1(η

mD)−1h−1w)du1.

Set Δ̂w = Δ̂W,+ ∩ w Δ̂W,−. Then applying the change of variables

hηmDu1(hη
mD)−1 �→ u1

has the following effect on our integral in (4.9):

(hηmD)wχ

∫
Ûw,A

Φχ(hη
mDu1(hη

mD)−1w)du1

= (hηmD)wχ(hηmD)−Σ

∫
Ûw,A

Φχ(u1w)du1,

where Σ =
∑

α∈Δ̂w

α. It is known ([6, p. 50]) that

∑
α∈Δ̂w

α = ρ− wρ,

where ρ ∈ ĥ∗ such that ρ(hαi
) = 1 for i = 1, . . . , l + 1. Therefore,

(hηmD)wχ(hηmD)−Σ

∫
Ûw,A

Φχ(u1w)du1 = (hηmD)wχ(hηmD)wρ−ρ

∫
Ûw,A

Φχ(u1w)du1

= (hηmD)w(χ+ρ)−ρ

∫
Ûw,A

Φχ(u1w)du1.(4.10)

Let Û−,w,A = w−1Ûw,Aw. Then w−1u1w ∈ Û−,w,A. So considering Φχ(u1w) for

u1 ∈ Ûw,A is exactly the same as considering Φχ(wu−) for u− ∈ Û−,w,A. Finally,

since we may assume w ∈ K̂, the K̂-left invariance of Φχ allows us to rewrite our
integral (4.10) as

(hηmD)w(χ+ρ)−ρ

∫
Û−,w,A

Φχ(u−)du−,

where du− is the Haar measure induced by conjugating by w−1.
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Using Definition 3.22, our results from this section appear in the following propo-
sition:

Proposition 4.11. For any g ∈ ĜA, we have

E#
χ (gηmD) =

∑
w∈Ŵ

(hηmD)w(χ+ρ)−ρ

∫
Û−,w,A

Φχ(u−)du−.

4.3. Calculating the local integrals. In this subsection, we shift our focus away
from the global ĜA and into the local pieces of Ĝν . We aim to calculate some local
integrals that will help us determine the value of the integral in Proposition 4.11.
We will see in the next subsection that the integral in Proposition 4.11 may be
expressed as a product of the local integrals that we discuss in this section.

As before we use Δ̂w to denote Δ̂W,+ ∩ wΔ̂W,−. Then Δ̂w is a finite set of
affine Weyl roots that we can explicitly describe. If w = wir . . . wi1 is a minimal

expression in terms of the generators of Ŵ , then by setting βj = wir . . . wij+1
αij ,

we have Δ̂w = {β1, . . . , βr}. Using these roots we can completely describe

Ûw,ν = {χβr
(sr) . . . χβ1

(s1) | si ∈ Fν}.
For more information see [4], §6 and [3], §6. Moreover, each element in this group
is uniquely expressed in this way, so if we set Uβi,ν = {χβi

(s) | s ∈ Fν}, then we

have that Ûw,v uniquely decomposes into Uβr,ν . . . Uβ1,ν .

In §13 of [2], we see that for any β ∈ Δ̂W the effect of conjugation by w is

(4.12) wχβ(s)w
−1 ∈ Uw·β,ν .

So if we set U−,w,ν = w−1Ûw,νw, then

U−,w,ν = Uw−1βr
. . . Uw−1β1

with uniqueness of expression. Calculating these roots we find:

w−1βj = w−1(wir . . . wij+1
αij ) = (wi1 . . . wir)(wir . . . wij+1

αij )

= wi1 . . . wijαij = −wi1 . . . wij−1
αij .

For convenience we set γj = wi1 . . . wij−1
αij and conclude

(4.13) U−,w,ν = U−γr,ν . . . U−γ1,ν .

Remark 4.14. Each of the spaces U−γi,ν is isomorphic to Fν , so we can define a
measure on these spaces using this isomorphism and the usual Haar measure μν

on Fν . The measure du− on Û−,w,ν may now be considered the product measure
induced by the μν . For more information, see Appendix A.

If we let w′ = wir−1
. . . wi1 and β′

j = wir−1
. . . wij+1

αij , then by the same con-

struction we get that Δ̂w′ = {β′
1, . . . , β

′
r−1}, and hence Ûw′,ν = Uβ′

r−1,ν
. . . Uβ′

1,ν
.

Similarly, setting U−,w′,ν = (w′)−1 Ûw′,ν w′, we obtain its unique decomposition

U−γr−1,ν . . . U−γ1,ν .

Recall that we fixed χ ∈ ĥ∗, so for every ν ∈ V we can define a function Φχ :

Ĝν → R>0 in precisely the same way we defined Φχ on ĜA. If g = khu and

h =
∏l+1

i=1 hαi
(si) for si ∈ F×

ν , then we let

Φχ(g) = hχ =

l+1∏
i=1

|si|
χ(hαi

)
ν .
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Remark 4.15. Using the same argument of Proposition 3.10, we may conclude that
this map is well defined.

It is our goal in this subsection to prove Proposition 4.16 which calculates the
value of the local integral involving the function Φχ on Ĝν . As before, we let

hα denote the co-root corresponding to α ∈ Δ̂W , and in particular, hαi
for i =

1, . . . , l+1 denote the simple co-roots corresponding to the simple roots αi. Finally,

let ρ be the element of ĥ∗ defined by ρ(hαi
) = 1 for i = 1, . . . , l + 1.

Proposition 4.16. Assume χ(hαi
) < −2 for i = 1, . . . , l+ 1. Then for any ν ∈ V

and w ∈ Ŵ ,∫
U−,w,ν

Φχ(u−) du− =
∏

α∈Δ̂W,+∩w−1Δ̂W,−

1− 1

q
−(χ+ρ)(hα)+1
ν

1− 1

q
−(χ+ρ)(hα)
ν

.

The above identity is an affine analogue of the Gindikin-Karpelevich formula
([13]). The proof is by induction on the length of w ∈ Ŵ . Our first step is to
consider a local integral over a unipotent subgroup of SL2(Fν).

For each ν ∈ V and a ∈ Δ̂W , we have a unique group homomorphism ϕa from
SL2(Fν) into Ĝν by Lemma 2.5. Moreover, SL2(Fν) has an Iwasawa decomposition
into KAU ([10]), where

K = SL2(Oν), A =
{
( a 0
0 a−1 ) | a ∈ F×

ν

}
, and U =

{
( 1 ξ
0 1

) | ξ ∈ Fν

}
.

We can define a real character on A by fixing a real number κ and setting

aκ = ( a 0
0 a−1 )κ = |a|κν .

Using this character, we define the function Φ̃κ : SL2(Fν) → R>0 by

Φ̃κ(g) = Φ̃κ(kau) = aκ for g = kau ∈ SL2(Fν),

where k ∈ K, a ∈ A and u ∈ U .

Remark 4.17. The Iwasawa decomposition of SL2(Fν) is not unique for an element.
However in [10], we see that if g = kau = k′ a′ u′, where a = ( a 0

0 a−1 ) and a′ =

( a
′ 0
0 a′−1 ), then |a|ν = |a′|ν . As a result, Φ̃κ is well defined.

We let U−,ν =
{
( 1 0
s 1 ) | s ∈ Fν

}
≤ SL2(Fν), and note that this group is isomor-

phic to the additive group Fν , and so we define a measure dũ− on U−,ν to be the
Haar measure μν on Fν normalized so that Oν has a total measure of 1. Then the
following lemma is well known.

Lemma 4.18. If we fix a real number κ < −2, then for any ν ∈ V we have∫
U−,ν

Φ̃κ(u−) dũ− =
1− 1

(qν)−κ

1− 1
(qν)−(κ+1)

.

Observe that the map ϕa of Lemma 2.5 provides an isomorphism between U−,ν

and U−a,ν . Moreover, the measures dũ− and du− are identified under this isomor-
phism. As a result, we can equate the following integrals:∫

U−a,ν

Φχ(u−) du− =

∫
U−,ν

Φ̃κ(ϕ
−1
a (u−)) dũ− ,

assuming that we choose κ ∈ R correctly.
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Lemma 4.19. Fix χ ∈ ĥ∗ to be real valued such that χ(hαi
) < −2. Then for any

ν ∈ V and a ∈ Δ̂W ,

(4.20)

∫
U−a,ν

Φχ(u−) du− =
1− 1

(qν)−χ(ha)

1− 1
(qν)−(χ(ha)+1)

.

Proof. Let ( 1 0
s 1 ) ∈ U−,ν . Then ϕa( 1 0

s 1 ) = χ−a(s) = u− ∈ Û−a,ν . The Iwasawa
decomposition of SL2(Fν) implies

( 1 0
s 1 ) = k ( b 0

0 b−1 )u.

As a result, in an Iwasawa decomposition for u−, we may take its Ĥν-component
to be of the form ϕa(

b 0
0 b−1 ) = ha(b) for some b ∈ F×

ν . Our goal is to choose κ ∈ R

so that

Φ̃κ(ϕ
−1
a (u−)) = Φχ(u−) for u− ∈ U−a,ν .

We claim that we must set κ = χ(ha). Indeed, with this choice, we have

Φ̃κ(ϕ
−1
a (u−)) = (|b|ν)κ = (|b|ν)χ(ha) = Φχ(ha(b)) = Φχ(u−).

Now the identity (4.20) is a direct result of Lemma 4.18 and our choice of κ. �

Armed with Lemma 4.19, we are prepared to prove Proposition 4.16:

Proof of Proposition 4.16. We assume χ(hαi
) < −2 for i = 1, . . . , l + 1, and we

want to show that for any ν ∈ V and w ∈ Ŵ ,∫
U−,w,ν

Φχ(u−) du− =
∏

a∈Δ̂W,+∩w−1Δ̂W,−

1− 1

q
−(χ+ρ)(ha)+1
ν

1− 1

q
−(χ+ρ)(ha)
ν

.

As mentioned previously, the proof is by induction on l(w), the length of the Weyl
group element.

Base case. To prove the base case, we assume that l(w) = 1, and therefore that

w = wi for some i = 1, . . . , l + 1. We begin by observing that Δ̂wi
= {αi}. Hence

we have Ûwi,ν = {χαi
(s) | s ∈ Fν} = Uαi,ν . Moreover, U−,wi,ν = w−1

i Uαi,νwi =
Uw−1

i ·αi,ν
= U−αi,ν , and so

∫
U−,wi,ν

Φχ(u−) du− =

∫
U−αi,ν

Φχ(u−) du− =
1− 1

(qν)
−(χ+ρ)(hαi

)+1

1− 1

(qν)
−(χ+ρ)(hαi

)

by Lemma 4.19 and the fact that ρ(hαi
) = 1.

Induction step. Now suppose we choose w ∈ Ŵ with reduced expression wir . . . wi1

and that our proposition holds for all w′ ∈ Ŵ such that l(w′) < l(w). Specifically,
we set w′ = wir−1

. . . wi1 . At the beginning of this subsection, we showed that
U−,w,ν = U−γr,νU−,w′,ν , and so our integral breaks into

(4.21)

∫
U−γr,ν

∫
U−,w′,ν

Φχ(u−,1 u−,2) du−,2 du−,1.

The measure du− decomposes naturally by Remark 4.14. Let the element u−,1 have
the Iwasawa decomposition k1h1u1. Recall that by definition Φχ is left invariant by
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K̂ν and right invariant by Ûν . In light of these observations and part (1) of Lemma
3.14, we can make the following manipulations:

Φχ(u−,1u−,2) = Φχ(k1h1u1u−,2) = Φχ(h1u1u−,2)

= Φχ(h1u1u−,2u
−1
1 h−1

1 h1u1) = Φχ(h1u1u−,2u
−1
1 h−1

1 h1)

= Φχ(h1u1u−,2u
−1
1 h−1

1 )Φχ(h1) = hχ
1 Φχ(h1u1u−,2u

−1
1 h−1

1 ).

The integral in (4.21) now becomes

(4.22)

∫
U−γr,ν

hχ
1

∫
U−,w′,ν

Φχ(h1u1u−,2u
−1
1 h−1

1 ) du−,2 du−,1 .

We wish to show u1u−,2u
−1
1 ∈ w′−1Ûνw

′, and note that it suffices to prove that

w′ (u1u−,2u
−1
1 )w′−1 ∈ Ûν . We have

w′u1u−,2u
−1
1 w′−1 = (w′u1w

′−1)(w′u−,2w
′−1)(w′u−1

1 w′−1).

Since u−,2 ∈ U−,w′,ν , we have w′u−,2w
′−1 ∈ Ûw′,ν ⊂ Ûν by definition. For any

u ∈ Uγr
we have w′uw′−1 ∈ Uw′·γr

= Uαir
, and so both w′u1w

′−1 and w′u−1
1 w′−1

are elements of Uαir
⊂ Ûν . Hence,

u1u−,2u
−1
1 ∈ w′−1Ûνw

′.

The decomposition (4.3) provides us with the unique group decomposition

w′−1Ûνw
′ = (U−,w′,ν)(w

′−1Ûνw
′ ∩ Ûν).

Let πν be the projection from w′−1Ûνw
′ � U−,w′,ν , which exists by the decompo-

sition above. Then

u1u−,2u
−1
1 = πν(u1u−,2u

−1
1 )u+

2 , for u+
2 ∈ w′−1Ûνw

′ ∩ Ûν .

Since Ĥν normalizes Ûν , we get

Φχ(h1u1u−,2u
−1
1 h−1

1 ) = Φχ(h1 πν(u1u−,2u
−1
1 ) u+

2 h
−1
1 )

= Φχ(h1 πν(u1u−,2u
−1
1 )h−1

1 h1u
+
2 h

−1
1 )

= Φχ(h1 πν(u1u−,2u
−1
1 )h−1

1 u′)=Φχ(h1 πν(u1u−,2u
−1
1 )h−1

1 ).

The map from U−,w′,ν to itself defined by u−,2 �→ πν(u1u−,2u
−1
1 ) is a unimodular

change of variables, so the integral (4.22) becomes∫
U−γr,ν

hχ
1

∫
U−,w′,ν

Φχ(h1u−,2h
−1
1 ) du−,2du−,1.

Now applying the change of variables h1u−,2h
−1
1 �→ u−,2 has the following effect on

our integral: ∫
U−γr,ν

hχ
1

∫
U−,w′,ν

Φχ(h1u−,2h
−1
1 ) du−,2du−,1

=

∫
U−γr,ν

hχ
1h

−Υ
1

∫
U−,w′,ν

Φχ(u−,2) du−,2du−,1,

where we have
Υ =

∑
a∈(w′)−1Δ̂W,+∩Δ̂W,−

a = (w′)−1ρ− ρ

(see [6]).
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Our calculations so far have proven the following result regarding our local inte-
grals:∫

U−,w,ν

Φχ(u−) du− =

∫
U−γr,ν

h
χ+ρ−(w′)−1ρ
1

∫
U−,w′,ν

Φχ(u−,2) du−,2du−,1

=

∫
U−γr,ν

h
χ+ρ−(w′)−1ρ
1 du−,1

∫
U−,w′,ν

Φχ(u−,2) du−,2.

By our inductive hypothesis,∫
U−,w′,ν

Φχ(u−,2) du−,2 =
∏

a∈Δ̂W,+∩w′−1(Δ̂W,−)

1− 1

q
−(χ+ρ)(ha)+1
ν

1− 1

q
−(χ+ρ)(ha)
ν

.

Moreover, observe that∫
U−γr,ν

h
χ+ρ−(w′)−1ρ
1 du−,1 =

∫
U−γr,ν

Φχ+ρ−(w′)−1ρ(u−) du−,1,

and so by Lemma 4.19 we obtain

∫
U−γr,ν

h
χ+ρ−(w′)−1ρ
1 du−,1 =

1− 1

q
−(χ+ρ−(w′)−1ρ)(hγr )
ν

1− 1

q
−((χ+ρ−(w′)−1ρ)(hγr )+1)
ν

.

Since we have

(w′)−1ρ(hγr
) = ρ(w′ · hγr

) = ρ(h(w′)−1·γr
) = ρ(hαir

) = 1,

we obtain

(χ+ ρ− (w′)−1ρ)(hγr
) = (χ+ ρ)(hγr

)− 1

and ∫
U−γr,ν

h
χ+ρ−(w′)−1ρ
1 du−,1 =

1− 1

q
−(χ+ρ)(hγr )+1
ν

1− 1

q
−(χ+ρ)(hγr )
ν

.

Putting all of these calculations together we see∫
U−,w,ν

Φχ(u−) du− =

∫
U−γr,ν

h
χ+ρ−(w′)−1ρ
1 du−,1

∫
U−,w′,ν

Φχ(u−,2) du−,2

=
1− 1

q
−(χ+ρ)(hγr )+1
ν

1− 1

q
−(χ+ρ)(hγr )
ν

⎛
⎝ ∏

a∈Δ̂+∩w′−1(Δ̂−)

1− 1

q
−(χ+ρ)(ha)+1
ν

1− 1

q
−(χ+ρ)(ha)
ν

⎞
⎠ .

Finally, since Δ̂W,+ ∩ w−1Δ̂W,− = {γr} ∪ (Δ̂+ ∩ w′−1Δ̂−), we obtain the desired
result. �

4.4. Finishing the computation. In this final subsection, we use the previous
results to finish our calculation of the constant term E#

χ . Recall that by Proposition
4.11, we have

E#
χ (gηmD) =

∑
w∈Ŵ

(hηmD)w(χ+ρ)−ρ

∫
Û−,w,A

Φχ(u−)du−.

In our next step, we use Proposition 4.16 to evaluate
∫
Û−,w,A

Φχ(u−)du−.
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Note that the space Û−,w,A can be identified with the product of �(w) copies of
A. Since we have assumed that χ is real, we can apply the monotone convergence
theorem to see that∫

Û−,w,A

Φχ(u−)du− = q�(w)(1−g) lim
S

∏
ν∈S

∫
U−,w,ν

Φχ(u−) du−,

where we use the relation (A.9) and the following remark there. In the expression
above, we take S to range over the finite subsets of V . Now by Proposition 4.16,
this is equal to

lim
S

∏
ν∈S

∏
a∈Δ̂W,+∩w−1Δ̂W,−

1− 1

q
−(χ+ρ)(ha)+1
ν

1− 1

q
−(χ+ρ)(ha)
ν

=
∏

a∈Δ̂W,+∩w−1Δ̂W,−

lim
S

∏
ν∈S

1− 1

q
−(χ+ρ)(ha)+1
ν

1− 1

q
−(χ+ρ)(ha)
ν

=
∏

a∈Δ̂W,+∩w−1Δ̂W,−

∏
ν∈V

1− 1

q
−(χ+ρ)(ha)+1
ν

1− 1

q
−(χ+ρ)(ha)
ν

.

Let ζF (s) denote the zeta function associated to the function field F (see [17]).
Then

ζF (s) =
∏
ν∈V

1

1− 1
qsν

,

whenever Re(s) > 1. Since we have assumed χ(hαi
) < −2, we have that −(χ +

ρ)(ha) > 1 for any a ∈ Δ̂W,+. As a result, we obtain that

∏
ν∈V

1− 1

q
−(χ+ρ)(ha)+1
ν

1− 1

q
−(χ+ρ)(ha)
ν

=
ζF (−(χ+ ρ)(ha))

ζF (−(χ+ ρ)(ha) + 1)
.

We set

c(χ,w) = q�(w)(1−g)
∏

a∈Δ̂W,+∩w−1Δ̂W,−

ζF (−(χ+ ρ)(ha))

ζF (−(χ+ ρ)(ha) + 1)
.

Finally, we obtain the main result of this section:

Theorem 4.23. For any g = khu ∈ ĜA and χ ∈ ĥ∗ such that χ(hαi
) < −2 for

i = 1, . . . , l + 1, we have

(4.24) E#
χ (gηmD) =

∑
w∈Ŵ

(hηmD)w(χ+ρ)−ρ c(χ,w).

We saw at the end of Section 3 that in order to prove the almost everywhere
convergence of the series Eχ, it suffices to show

(4.25)
∑
w∈Ŵ

∫
ÛA/(ÛA∩Γ̂F )

Eχ,w(hη
mDu) du < ∞

for h varying in compact sets of ĤA, when χ is a real character. In this section, we
showed that the series (4.25) is the same as the series (4.24). So to establish the
almost everywhere convergence of the Eisenstein series Eχ, we direct our attention
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to proving that the series (4.24) converges for h varying in compact sets of ĤA. We
will prove this result in the next section.

We also note that Theorem 4.23 closely resembles Garland’s result for the con-
stant term of the Eisenstein series over ĜR ([4]) with the Riemann zeta function
replaced by the zeta function of the function field.

5. Convergence of the constant term

In this section, we prove the convergence of the series (4.24) by showing that if h

varies in a compact subset of ĤA, then the series (4.24) is bounded above by a theta
series in R. In order to establish this result, we require an additional condition on
the tuple m = (mν)ν∈V , which determines the automorphism ηmD. Specifically,
we will further assume that

∑
ν∈V log(qν)mv > 0; this will be important for the

calculation in Subsection 5.4.
We will approach this proof by treating the factor (hηmD)w(χ+ρ)−ρ in Subsections

5.2 through 5.5, and the factor c(χ,w) in Subsection 5.6 . In the final subsection, we
will combine the results to finish proving the convergence of the series (4.24), which
is indeed the constant term E#

χ of Eχ. We begin with considering the compact

subsets of ĤA.

5.1. Topology of the torus and compact sets. Recall that (A×)l+1 has the
product topology induced by the standard topology on A×. In Remark 3.7, we
defined the surjective group homomorphism ϑ : (A×)l+1 → ĤA, and through this

map we induce the quotient topology on ĤA. Clearly the idelic norm |·| : A× → R>0

is a continuous map. Moreover, one can see that if ϑ(s1, . . . , sl+1) =
∏l+1

i=1 hαi
(si) =

1, then |si| = 1 for each i. As a result, we have a well-defined continuous map

ϑ̄ : ĤA → (R>0)
l+1 given by

∏l+1
i=1 hαi

(si) �→ (|s1|, . . . , |sl+1|).
Let C be a compact set of ĤA and pri be the i-th projection of (R>0)

l+1. Then,
for each i, the image pri(ϑ̄(C)) is compact in R>0 and there exist ri, Ri ∈ R>0 such
that

ri < pri(ϑ̄(h)) < Ri for any h ∈ C.

If we set

r = min{r1, . . . , rl+1} and R = max{R1, . . . , Rl+1},
then for any h =

∏l+1
i=1 hαi

(si) ∈ C, we have

r < |si| < R

for i = 1, . . . , l + 1. Therefore, we conclude:

Lemma 5.1. Let C be a compact set of ĤA. Then there exists r, R ∈ R>0 such
that for any h = hα1

(s1) . . . hαl+1
(sl+1) ∈ C we have

r < |si| < R

for i = 1, . . . , l + 1.

For the rest of the section, we fix a compact subset C of ĤA along with positive
real numbers r and R that satisfy the conditions of Lemma 5.1. We wish to prove
that

(5.2)
∑
w∈Ŵ

(hηmD)w(χ+ρ)−ρ c(χ,w)
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is bounded by a theta series in R as h varies in C. Clearly

∑
w∈Ŵ

(hηmD)w(χ+ρ)−ρ c(χ,w) = (hηmD)−ρ
∑
w∈Ŵ

(hηmD)w(χ+ρ)c(χ,w).

In the next four subsections, we focus on finding a bound for (hηmD)w(χ+ρ).

5.2. Preliminary calculation. In Section 3, we fixed the automorphism ηmD

where m = (mν)ν∈V is an infinite tuple of integers such that mν = 0 for almost all

ν ∈ V . However, we could replace D with any element of ĥ e to obtain a similar
automorphism. To be more precise, let n = (nν)ν∈V be an infinite tuple of integers

where nν = 0 for almost all ν ∈ V . For h ∈ ĥ e and ν ∈ V , we define the local
automorphism ηnνh

ν to

(i) preserve each weight space V λ
μ,Fν

, and

(ii) act on each weight space by ηnνh
ν · v = π

nνμ(h)
ν v for v ∈ V λ

μ,Fν
.

Then we consider the product of these local automorphisms and define the global
automorphism ηnh :=

∏
ν∈V ηnνh

ν . Note that this automorphism only affects a finite
number of places.

An element χ ∈ ĥ∗ can be considered an element of (ĥ e)∗ by setting χ(D) = 0.

With this in mind, for χ ∈ ĥ∗ we define

(5.3) (ηnh)χ =
∏
ν∈V

|πν |nνχ(h)
ν .

One can easily see that for w ∈ Ŵ we have

(ηnh)w(χ) = (η w−1(nh))χ.

If s = (sν)ν∈V ∈ A×, then ord(s) := (ordν(sν))ν∈V is a tuple of integers with
the property that ordν(sν) = 0 for almost all ν. Then we see that

(5.4) (ηord(s)hαi )χ = (hαi
(s))χ for each i.

Moreover, since χ(D) = 0 we also have (ηmD)χ = 1.
As a notational convenience, we set χ̄ := χ+ ρ and consider the factor

(5.5) (hηmD)w(χ̄)

for some w ∈ Ŵ . Let h = hα1
(s1) . . . hαl+1

(sl+1). Then by our observation in (5.4)
we have

hw(χ̄) =

l+1∏
i=1

|si|w(χ̄)(hαi
) =

(
l+1∏
i=1

η ord(si)hαi

)w(χ̄)

.
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As a result, the factor (5.5) becomes

(
l+1∏
i=1

(η ord(si)hαi ) ηmD

)w(χ̄)

=
(
η ord(s1)hα1

+···+ord(sl+1)hαl+1
+mD

)w(χ̄)

=
(
ηw

−1(ord(s1)hα1
+ ···+ord(sl+1)hαl+1

+mD)
)χ̄

=
∏
ν∈V

|πν |
χ̄(w−1(ordν(s1,ν)hα1

+ ···+ordν(sl+1,ν)hαl+1
+mνD))

ν

=
∏
ν∈V

(
1

qν

)χ̄(w−1(ordν(s1,ν)hα1
+ ···+ordν(sl+1,ν)hαl+1

+mνD))

.(5.6)

For the remainder of this subsection, we will focus on calculating

(5.7) w−1
(
ordν(s1,ν)hα1

+ · · ·+ ordν(sl+1,ν)hαl+1
+mνD

)
.

The affine Weyl group of ĝ e can be decomposed into a semi-direct product of
the classical Weyl group and a group of translations: Ŵ = W � T . In particular,
T = {TH | H ∈ hZ}. For more information see [2], [4], or [11]. Using this product
decomposition, we may express w−1 = w1TH , for some w1 ∈ W , and H ∈ hZ.
Moreover, we note that for any H ∈ hZ the translation TH does not affect the
imaginary co-root hδ, and we recall that the classical Weyl group leaves hδ and D
invariant.

In order to calculate the element of ĥ e in (5.7), we will use this decomposition
of w−1 and a particular result from [4] which we summarize below.

Lemma 5.8 (Garland, [4]). Let h′ ∈ h and TH be the translation element associated
to H ∈ hZ. We have the following formula:

(5.9) TH · (h′ −D) = h′ +H −D +

(
(H,H)

2
+ (h′, H)

)
hδ,

where ( , ) is the normalized bilinear form on h.

We let w−1 = w1TH for w1 ∈ W and TH ∈ T . For each ν ∈ V , we set

l+1∑
i=1

ordν(si,ν)hαi
= hν + eνhδ,

where hν ∈ h and eν ∈ R. We begin our calculation by making these substitutions:

w−1
(
ord(s1,ν)hα1

+ · · ·+ ord(sl+1,ν)hαl+1
+mνD

)
= w1 TH

(
hν + eνhδ +mνD

)
.

After factoring out −mν for mν = 0, we have

w1 TH

(
hν + eνhδ +mνD

)
= w1

(
−mν TH

(
−hν

mν
−D − eν

mν
hδ

))

= w1

(
−mν

[
TH

(
−hν

mν
−D

)
− TH

(
eν
mν

hδ

)])
.
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The translation TH does not affect the imaginary root, so if we apply Lemma 5.8
we see this equals

w1

(
−mν

[
− hν

mν
+H −D +

(
(H,H)

2
−
(

hν

mν
, H

))
hδ −

(
eν
mν

hδ

)])

= w1

(
hν −mνH +mνD +

(
−mν(H,H)

2
+ (hν , H) + eν

)
hδ

)

= (w1hν)−mν(w1H) +mνD +

(
−mν(H,H)

2
+ (hν , H) + eν

)
hδ,(5.10)

where the last equality follows from the fact that the classical Weyl group element
w1 does not affect D or hδ. One can check that the same formula holds for mν = 0.

Substituting (5.10) into (5.6), we obtain that

(hηmD)w(χ̄) =
∏
ν∈V

(
1

qν

)χ̄(w−1(ordν(s1,ν)hα1
+···+ordν(sl+1,ν)hαl+1

+mνD))

=
∏
ν∈V

(
1

qν

)χ̄((w1hν)−mν(w1H)+mνD+(−mν (H,H)
2 +(hν ,H)+eν)hδ)

.

We continue to break up this product by writing it as a product of three factors
that we obtain by grouping the parts appearing in the exponent of 1

qν
. Since χ̄(D) =

0, the factor containing mνD disappears from our computation. In particular, we
have the following proposition.

Proposition 5.11. The term (hηmD)w(χ̄) appearing in E#
χ (gηmD) is the product

of the following three factors:

(i)
∏

ν∈V ( 1
qν
)χ̄(w1hν)+eν χ̄(hδ),

(ii)
∏

ν∈V ( 1
qν
)−(mν χ̄(w1H)+mν (H,H)

2 χ̄(hδ)),

(iii)
∏

ν∈V ( 1
qν
)(hν ,H)χ̄(hδ).

Remark 5.12. Note the calculations in this subsection work for any w ∈ Ŵ .

In this subsection, we calculated the term (hηmD)w(χ̄) explicitly and showed that
it is a product of the factors (i), (ii), and (iii) above. In the next three subsections,
we will work with each factor individually showing that if we let h vary in a compact
set C, we have an upper bound that depends on w ∈ Ŵ .

5.3. Bounding factor (i) of the product. We wish to find an upper bound for
the product

(5.13)
∏
ν∈V

(
1

qν

)χ̄(w1hν)+eν χ̄(hδ)

.

First notice that since we set hν + eνhδ =
∑l+1

i=1 ordν(si,ν)hαi
, we have

∏
ν∈V

(
1

qν

)χ̄(w1hν)+eν χ̄(hδ)

=
∏
ν∈V

|πν |χ̄(w1hν)+eν χ̄(w1hδ)
ν =

l+1∏
i=1

(ηord(si) w1(hαi
))χ̄

=

l+1∏
i=1

(ηord(si)hαi )w
−1
1 χ̄ = hw−1

1 χ̄,
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by our observation in (5.4). Hence it is our goal to prove there exists an upper
bound for the factor

hw−1
1 χ̄

for any w1 ∈ W , the classical Weyl group.
Since the classical Weyl group is a finite group and we fixed χ̄ ∈ ĥ, we know

there exist real numbers m1 and M1 such that

m1 < w−1
1 χ̄(hαi

) < M1,

for all i = 1, . . . , l + 1 and w1 ∈ W . Moreover, we assumed at the beginning of the
section that we are choosing h to vary in a compact set C of ĤA such that for any
h = hα1

(s1) . . . hαl+1
(sl+1) ∈ C we have r < |si| < R for each i. Combining these,

we see that there exists a positive constant M such that

hαi
(si)

w−1
1 χ̄ = |si|w

−1
1 χ̄(hαi

) < M
for all i = 1, . . . , l + 1 and w1 ∈ W . Hence, we conclude:

Lemma 5.14.

(5.15)
∏
ν∈V

(
1

qν

)χ̄(w1hν)+eν χ̄(hδ)

= hw−1
1 χ̄ < Ml+1,

for all w1 ∈ W .

5.4. Bounding factor (ii) of the product. We now turn our focus to factor (ii),
so we consider the infinite product

(5.16)
∏
ν∈V

(
1

qν

)−(mν χ̄(w1H)+mν (H,H)
2 χ̄(hδ))

.

However, recall that in the definition of the automorphism ηmD we specified m =
(mν)ν∈V , where mν ∈ Z, mν = 0 for all but a finite number of ν. Now we further
assume that

∑
ν(log qν)mν > 0. Let S = {ν ∈ V | mν = 0}. Then our infinite

product above reduces to the finite product:

∏
ν∈S

(
1

qν

)−(mν χ̄(w1H)+mν (H,H)
2 χ̄(hδ))

=
∏
ν∈S

(
1

qν

)−mν χ̄(w1H) ∏
ν∈S

(
1

qν

)−mν (H,H)
2 χ̄(hδ)

.(5.17)

We will treat each product in (5.17) separately, beginning with the factor involving
χ̄(w1H). If we write ‖H‖ = (H,H)1/2 for H ∈ h, we can prove the following
lemma:

Lemma 5.18. There exists N1 > 0 such that for any H ∈ hZ and w1 ∈ W ,

(5.19)
∏
ν∈S

(
1

qν

)−mν χ̄(w1H)

< N ‖H‖
1 .

Proof. Let B0 = {H ∈ h | ‖H‖ = 1}. Then this is clearly a compact set of h, where
the topology on h is the metric topology induced by the norm ‖ · ‖. The linear map
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χ̄ : B0 → R is a continuous map, and hence is bounded. Since W preserves B0, we
can find a real number N1 such that

χ̄(w1H) < N1,

for all w1 ∈ W and H ∈ B0. Let H be any element of hZ. Then χ̄(w1H) =
χ̄(w1

H
‖H‖ ) ‖H‖, and we note that H

‖H‖ ∈ B0. So we see that for all w1 ∈ W and

H ∈ hZ,

χ̄(w1H) < N1‖H‖.
Now we have

∏
ν∈S

(
1

qν

)−mν χ̄(w1H)

= exp

(∑
ν∈S

(log qν)mνχ̄(w1H)

)

< exp

(∑
ν∈S

(log qν)mνN1‖H‖
)
.

We set N1 = exp
(∑

ν∈S(log qν)mνN1

)
, and obtain the desired inequality (5.19).

�

Next we consider the other factor from (5.17), specifically

∏
ν∈S

(
1

qν

)−mν (H,H)
2 χ̄(hδ)

.

Recalling that χ(hαi
) < −2 for each i = 1, 2, . . . , l + 1, we see χ̄(hδ) < 0. We have

∏
ν∈S

(
1

qν

)−mν (H,H)
2 χ̄(hδ)

= exp

(
1

2

∑
ν∈S

(log qν)mν‖H‖2χ̄(hδ)

)
.

We write N2 = exp
(
1
2

∑
ν∈S(log qν)mνχ̄(hδ)

)
. Since we assumed

∑
ν∈S(log qν)mν

> 0, we get 0 < N2 < 1. Thus we obtain:

Lemma 5.20. If we write

(5.21)
∏
ν∈S

(
1

qν

)−mν (H,H)
2 χ̄(hδ)

= N ‖H‖2

2 ,

then 0 < N2 < 1.

5.5. Bounding factor (iii) of the product. We finally consider factor (iii). In
particular, we find a bound for the infinite product

(5.22)
∏
ν∈V

(
1

qν

)(hν ,H)χ̄(hδ)

.

Since we set hν + eνhδ =
∑l+1

i=1 ordν(si,ν)hαi
, and (hδ, H) = 0 for all H ∈ hZ,

we can make the following changes:

(hν , H) = (

l+1∑
i=1

ordν(si,ν)hαi
− eνhδ , H ) =

l+1∑
i=1

ordν(si,ν)(hαi
, H).
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As a result, the infinite product in (5.22) becomes

∏
ν∈V

l+1∏
i=1

(
1

qν

)ordν(si,ν) (hαi
,H)χ̄(hδ)

=

l+1∏
i=1

∏
ν∈V

(
1

qν

)ordν(si,ν) (hαi
,H)χ̄(hδ)

=

l+1∏
i=1

|si| (hαi
,H)χ̄(hδ).

As before, we let B0 = {H ∈ h | ‖H‖ = 1}. For each i = 1, . . . , l+1, we consider
the continuous maps determined by the bilinear form

(hαi
, ·) : B0 → R.

Since we are only considering l + 1 different images of the compact set B0 in R,
we can find numbers n and N such that n < (hαi

, H) < N for all H ∈ B0.
Using the same argument as in Lemma 5.18, we conclude that for any H ∈ hZ and
i = 1, 2, . . . , l + 1, we have

n‖H‖ < (hαi
, H) < N‖H‖,

or equivalently,

N‖H‖χ̄(hδ) < (hαi
, H)χ̄(hδ) < n‖H‖χ̄(hδ),

since χ̄(hδ) < 0.

Since we assumed that h varies in the compact set C ⊂ ĤA, we know that
r < |si| < R for i = 1, . . . , l + 1. It is now straightforward to prove the following
lemma.

Lemma 5.23. There exists a constant N3 such that for any H ∈ hZ we have

(5.24)
∏
ν∈V

(
1

qν

)(hν ,H)χ̄(hδ)

=

l+1∏
i=1

|si| (hαi
,H)χ̄(hδ) < N (l+1)‖H‖

3 .

Now we collect the results of Subsections 5.2 through 5.5 and summarize them
in a proposition. Recall that Proposition 5.11 proved that (hηmD)wχ̄ is the product
of the factors (i), (ii) and (iii). By combining this with the results of Lemmas 5.14,
5.18, 5.20 and 5.23, we obtain:

Lemma 5.25. For w ∈ Ŵ , we write w−1 = w1 TH , where w1 ∈ W and H ∈ hZ.
We have the following upper bound for the factor (hηmD)wχ̄:

(hηmD)wχ̄ < Ml+1 N ‖H‖
1 N (l+1)‖H‖

3 N ‖H‖2

2 .

In Subsection 5.7, we wish to bound the constant term by a theta series. To this
end, we rewrite

N ‖H‖
1 N (l+1)‖H‖

3 = elog(N1 N (l+1)
3 )‖H‖ and N ‖H‖2

2 = elogN2‖H‖2

.

We set σ1 = log(N1 N (l+1)
3 ) and σ2 = − logN2. Since N2 < 1, we have σ2 > 0. We

state our final result in the following proposition:

Proposition 5.26. For w ∈ Ŵ , suppose w−1 = w1 TH , where w1 ∈ W and H ∈ hZ.
There exist constants M, σ1, and σ2 that do not depend on w ∈ Ŵ , such that σ2 > 0
and

(5.27) (hηmD)wχ̄ < Ml+1 eσ1‖H‖−σ2‖H‖2

.
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5.6. Bounding the zeta functions. In this subsection, we focus on bounding the
c(χ,w) factor in the constant term E#

χ . Recall the definition

c(χ,w) = q�(w)(1−g)
∏

a∈Δ̂W,+∩w−1Δ̂W,−

ζF (−(χ+ ρ)(ha))

ζF (−(χ+ ρ)(ha) + 1)
.

Standard techniques involving zeta functions establish the lemma below.

Lemma 5.28. Let s ∈ C and ε > 0. Then for all s such that Re(s) ≥ 1 + ε we
have ∣∣∣∣ q(1−g) ζF (s)

ζF (s+ 1)

∣∣∣∣ < Mε,

where Mε is a positive constant. In particular, we can take Mε = q(1−g)(ζF (1+ε))2.

Corollary 5.29. There exists a positive constant Mε such that for each w ∈ Ŵ we
have

c(χ,w) < M �(w)
ε .

Proof. For any a ∈ Δ̂W,+, we have ha =
∑l+1

i=1 kihαi
, where ki ∈ Z≥0 and at least

one ki = 0. Since χ(hαi
) < −2 for i = 1, . . . , l + 1, there exists ε > 0 such that

−(χ+ ρ)(ha) ≥ 1 + ε

for any a ∈ Δ̂W,+. It is known that #(Δ̂W,+ ∩ w−1Δ̂W,−) = �(w) ([12]). Now the
corollary follows from Lemma 5.28. �

Each w ∈ Ŵ can be expressed as w = w1TH for w1 ∈ W and some H ∈ hZ, and
we have �(w) ≤ �(w1) + �(TH). However, since the classical Weyl group is finite,
�(w1) can only be as large as the length of the longest element of W . Thus for each

w ∈ Ŵ ,

M �(w)
ε ≤ M �(w1)

ε M �(TH)
ε ≤ Mε M �(TH)

ε .

In (8.17) of [4], we see that there exists a postive constant σ3 such that �(TH) ≤
σ3‖H‖. In light of these observations, we have the following proposition:

Proposition 5.30. There exists a positive constants Mε, Mε, and σ3 such that

c(χ,w) < Mε Mσ3‖H‖
ε ,

for each w = w1TH ∈ Ŵ .

5.7. Bounding the constant term by a theta series. In this final subsection,
we prove that if h varies in a compact set of ĤA, then the sum

(5.31)
∑
w∈Ŵ

(hηmD)w(χ+ρ)−ρ c(χ,w)

is bounded above by a theta series. Hence the constant term of the Eisenstein E#
χ

is absolutely convergent for these compact sets.

Licensed to Univ of Conn, Storrs. Prepared on Wed Jan 29 14:04:32 EST 2014 for download from IP 137.99.16.10.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



EISENSTEIN SERIES ON AFFINE KAC-MOODY GROUPS 2153

By substituting the results of Propositions 5.26 and 5.30, we see

(hηmD)−ρ
∑
w∈Ŵ

(hηmD)w(χ+ρ) c(χ,w)

< (hηmD)−ρ
∑
H∈hZ

Ml+1 eσ1‖H‖−σ2‖H‖2

Mε Mσ3‖H‖
ε

= (hηmD)−ρ#(W )Ml+1 Mε

∑
H∈hZ

e(log(Mε)σ3+σ1)‖H‖−σ2‖H‖2

,

where #(W ) is the cardinality of the classical Weyl group W .
It is essential to note that σ2 > 0, so this theta series converges. As a result of

this computation, we have proven the following theorem.

Theorem 5.32. Let χ ∈ ĥ∗ such that χ(hαi
) < −2 for i = 1, . . . , l + 1, and let

c(χ,w) = ql(w)(1−g)
∏

a∈Δ̂W,+∩w−1Δ̂W,−

ζF (−(χ+ ρ)(ha))

ζF (−(χ+ ρ)(ha) + 1)
.

Assume that
∑

ν(log qν)mν > 0 for m = (mν). Then the infinite series∑
w∈Ŵ

(hηmD)w(χ+ρ)−ρ c(χ,w)

converges absolutely and uniformly for h varying in any compact set of ĤA.

Remark 5.33. Combining the above theorem with (3.21), Definition 3.22 and The-
orem 4.23, we have proved the identities

E#
χ (gηmD) =

∫
ÛA/(ÛA∩Γ̂F )

Eχ(gη
mDu) du =

∑
w∈Ŵ

(hηmD)w(χ+ρ)−ρ c(χ,w),

and established convergence of the constant term E#
χ .

6. Convergence of the Eisenstein series

In this section, we will use the results of the previous sections to prove the
convergence of the Eisenstein series Eχ. Recall that in Section 4, we skipped the
proof of the measurability of Eχ with respect to du. In the next subsection, we
prove this fact.

6.1. Measurability of the Eisenstein series. The constant term of the Eisen-
stein series Eχ is defined to be

E#
χ (gηmD) =

∫
ÛA/(ÛA∩Γ̂F )

Eχ(gη
mDu) du.

It is the purpose of this subsection to prove that the map u �→ Eχ(gη
mDu) is a

du-measurable function. Observe however, that since Φχ is left invariant by K̂,

and ηmD normalizes ÛA, it is enough to show that for a fixed h ∈ ĤA the map
u �→ Eχ(hη

mDu) is a du-measurable function.
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As in Section 4, we express the Eisenstein series as the sum

Eχ(hη
mDu) =

∑
w∈Ŵ

Eχ,w(hη
mDu).

In turn, each Eχ,w(hη
mDu) is also a sum of particular values for Φχ. Recall that

we set Γ̂F (w) = Γ̂F ∩ (B̂F w B̂F ) and defined

(6.1) Eχ,w(hη
mDu) =

∑
γ∈Γ̂F (w)/Γ̂F (w)∩B̂F

Φχ(hη
mDuγ),

and we saw in Section 4 that we may take the coset representatives γ above to be of
the form {bw} where b ∈ Ûw,F . Now with respect to our coherently ordered basis,

Ûw,F is a finite-dimensional space for each w ∈ Ŵ , and as such we can choose our

coset representatives of Γ̂F (w)/(Γ̂F (w) ∩ B̂F ) to come from this finite-dimensional
space.

In Appendix A, we construct the measure du by expressing ÛA/(ÛA ∩ Γ̂F ) as
a projective limit of compact spaces. Part of this construction is important for
this discussion, so we briefly state some definitions from that section. For the
coherently ordered basis B = {vλ, v1, . . . }, we let V λ

Fν ,s
denote the Fν-span of the

vectors {vλ, v1, . . . , vs}. By setting Ûν,s = {u ∈ ÛFν
| u|V λ

Fν,s
≡ id}, we may define

the restricted direct product

ÛA,s =
∏′

Ûν,s with respect to the subgroup Ûν,s ∩ K̂ν ,

and let
Û

(s)
A

= ÛA/ÛA,s.

As proved in the appendix, ÛA = lim←−
s

Û
(s)
A

. Since we may choose our coset rep-

resentatives γ ∈ Γ̂F (w)/(Γ̂F (w) ∩ B̂F ) so that they come from a finite-dimensional

space, there exists an s large enough so that for any u ∈ ÛA,s and γ as above, we

have uγ = γu′ for some u′ ∈ ÛA. Then we observe that

(6.2) Φχ(hη
mDuγ) = Φχ(hη

mDγu′) = Φχ(hη
mDγ).

Using Φχ and γ ∈ Γ̂F (w)/(Γ̂F (w) ∩ B̂F ), we define the function ψγ from ÛA to
R>0 by setting

(6.3) ψγ(u) = Φχ(hη
mDuγ).

By the observation (6.2) in the previous paragraph, ψγ defines a function on the

finite-dimensional space ÛA/ÛA,s for s large enough. We will see in Appendix A

that we may consider ÛA/ÛA,s as embedded into the group of upper triangular
(s + 1) × (s + 1) block matrices with entries from A. Most importantly, for any

γ ∈ Γ̂F (w)/(Γ̂F (w) ∩ B̂F ) the function ψγ can be written as a composition of

continuous maps and hence measurable on the space ÛA/ÛA,s. Then it follows from
the definition of the measure du in Appendix A that the function ψγ is a measurable

function on ÛA/(ÛA ∩ Γ̂F ).

For a fixed h ∈ ĤA and w ∈ Ŵ , we define the function ψw from ÛA/(ÛA ∩ Γ̂F )
to R>0 by sending

u �−→ Eχ,w(hη
mDu) =

∑
γ∈Γ̂F (w)/(Γ̂F (w)∩B̂F )

ψγ(u).
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The function ψγ is a positive, measurable function for every γ above, and so ψw(u)

is also a measurable function on ÛA/(Γ̂F ∩ ÛA). To see this, we view

(6.4) ψw = sup{finite sums of ψγ},
and note that this is measurable.

Likewise, for a fixed h ∈ ĤA we can consider Eχ as a function from the quotient

ÛA/(ÛA ∩ Γ̂F ) to the positive real numbers by sending u �→ Eχ(hη
mDu). Since Eχ

can be expressed as the sum over the affine Weyl group of the positive, measurable
functions ψw, we arrive at the result below.

Lemma 6.5. For any h ∈ ĤA, the function Eχ is a du-measurable function into
the positive real numbers.

6.2. Convergence of the series. The Eisenstein series Eχ on ĜAη
mD can be

considered as the function from ĤA × ÛA/(ÛA ∩ Γ̂F ) to R>0 defined by

(6.6) (h, u) �→ Eχ(h η
mD u).

Moreover, Theorem 5.32 proved that the constant term

E#
χ (gηmD) =

∫
ÛA/(ÛA∩Γ̂F )

Eχ(gη
mDu) du =

∑
w∈Ŵ

(hηmD)w(χ+ρ)−ρ c(χ,w)

is absolutely convergent for h varying in compact sets of ĤA. However, this also
tells us that the Eisenstein series Eχ is integrable with respect to du for h varying

in any compact subset of ĤA. Hence the series Eχ is convergent almost everywhere

on ĤA × ÛA/(ÛA ∩ Γ̂F ), since ĤA is locally compact. Moreover, we can prove the
following proposition:

Proposition 6.7. Let χ ∈ ĥ∗ be a real character such that χ(hαi
) < −2 for i =

1, . . . , l+1, and let m = (mν)ν∈V be a tuple such that mν ∈ Z≥0 and 0 <
∑

ν mν <
∞. Then the series Eχ(hη

mDu) (absolutely) converges to a positive real number

for all (h, u) ∈ ĤA × ÛA/(ÛA ∩ Γ̂F ).

Proof. The remarks in the previous paragraph tell us that the series Eχ(hη
mDu)

converges for all (h, u) ∈ ĤA× ÛA/(ÛA∩ Γ̂F ) off a set of measure zero. Assume that

Eχ(hη
mDu) = ∞ for some (h, u). We claim that there exists a subset U ′ ⊂ ÛA of

positive measure such that hηmDu′(hηmD)−1 ∈ ÛA ∩ K̂ for all u′ ∈ U ′. If the claim
is true, we will have

Eχ(hη
mDu′u) = Eχ(hη

mDu) = ∞
for all u′ ∈ U ′. Since the set U ′u has positive measure, it is a contradiction.

Now we prove the claim. We write u′ = (u′
ν) ∈ ÛA ∩ K̂ and consider

u′
ν =

∏
α∈Δ+

χα(σα)

l∏
i=1

hαi
(σi)

∏
α∈Δ−

χα(σ
′
α),

where σα ∈ Oν [[X]], σ′
α ∈ XOν [[X]] and σi ∈ Oν [[X]] with σi ≡ 1 (mod X).

It follows from direct computation that if σα = a0 + a1X + a2X
2 + · · · , then

ηmνDχα(σα)η
−mνD = χα(τα), where τα = a0 + a1π

mν
ν X + a2π

2mν
ν X2 + · · · . Since

mν ≥ 0, we have τα ∈ Oν [[X]]. Similarly, if ηmνDχα(σ
′
α)η

−mνD = χα(τ
′
α), we have

τ ′α ∈ XOν [[X]].
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We also write h = (hν)ν∈V and hν =
∏l+1

i=1 hαi
(si,ν). Then we obtain

hαi
(si,ν)χα(σα)hαi

(si,ν)
−1 = χα(s

α(hαi
)

i,ν σα)

by (13.10) of [2]. If s
α(hαi

)

i,ν σα ∈ Oν [[X]], we can only allow σα from πsOν [[X]] for

some s ∈ Z>0 so that s
α(hαi

)

i,ν σα ∈ Oν [[X]]. Since ordν(si,ν) = 0 for almost all ν,
this modification can be done in finitely many steps. We can do similar modification
with χα(σ

′
α).

Using this process, we can construct a set U ′ ⊂ ÛA such that hηmDu′(hηmD)−1 ∈
ÛA ∩ K̂ for all u′ ∈ U ′. One can also see that such a set U ′ has positive measure.

�

Having established this important proposition, the following theorem is a sim-
ple consequence of the dominated convergence theorem and the fact that ERe(χ)

dominates Eχ for any complex character χ.

Theorem 6.8. For a complex-valued χ ∈ ĥ∗ such that Re(χ)(hαi
) < −2 for i =

1, . . . , l+1, and for a tuple m = (mν)ν∈V such that mν ∈ Z≥0 and 0 <
∑

ν mν < ∞,
the infinite series

Eχ(hη
mDu) =

∑
γ∈Γ̂F /Γ̂F∩B̂F

Φχ(hη
mDuγ)

absolutely converges for all (h, u) ∈ ĤA × ÛA/(ÛA ∩ Γ̂F ).

7. Functional equations for the constant term

In this section, we will establish meromorphic continuation of the constant term
of the Eisenstein series and prove their functional equations. We will begin by
stating some results for the zeta function of the global function field F .

7.1. Background on the zeta function of a function field. We refer the reader
to [17] for specifics on the definition of the zeta function associated to a global
function field F . The following result from [17] describes the functional equation
for ζF (s).

Theorem 7.1. Let F be a global function field in one variable over a finite constant
field Fq. Suppose F is of genus g. Then there exists a polynomial LF (u) ∈ Z[u] of
degree 2g such that

(7.2) ζF (s) =
LF (q

−s)

(1− q−s)(1− q1−s)
,

for Re(s) > 1. Moreover, (7.2) provides an analytic continuation of ζF to the
complex plane. If we set ξF (s) = q(g−1)sζF (s), then we have the functional equation

(7.3) ξF (s) = ξF (1− s).

Using the functional equation for ξF (s), we prove the following lemma:

Lemma 7.4. Let ζF (s) be the zeta function associated to F , and ξF (s)=q(g−1)sζF (s)
its completed form. Then the following identities hold:

ζF (s)

ζF (1− s)
= q(2s−1)(1−g),

ζF (−s)

ζF (1 + s)
= q(−2s−1)(1−g),
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and
ζF (s)

ζF (1− s)

ζF (−s)

ζF (1 + s)
= q−2(1−g).

Proof. These computations follow by replacing ζF (s) with qs(1−g)ξF (s) and using
the functional equation of ξF (s). For example, consider this calculation for the
second identity:

ζF (−s)

ζF (1 + s)
=

ζF (−s)

ζF (1− (−s))
=

q−s(1−g) ξF (−s)

q(1+s)(1−g) ξF (1− (−s))

=
q−s(1−g)

q(1+s)(1−g)
= q(−2s−1)(1−g).

The first identity follows in the same manner, and the third one is simply the
product of the other two identities. �
7.2. Meromorphic continuation. We first note that the function c(χ,w) is well

defined as a meromorphic function for any χ ∈ (ĥe
C
)∗. We assume that

(7.5) Re(χ+ ρ)(hδ) < 0.

Since ρ(hδ) = h∨, the dual Coxeter number, this assumption is equivalent to

(7.6) Re χ(hδ) < −h∨.

We fix ε > 0, and set

Cε = {χ ∈ (ĥeC)
∗ |Re(χ+ ρ)(hδ) < −ε}.

Recall that if a ∈ Δ̂W,+, we have ha = hα + mhδ for some α ∈ Δ and m ∈ Z≥0.

Thus there exists a finite set Ξε ⊂ Δ̂W,+ such that Re (χ + ρ)(ha) < −1 for all

a ∈ Δ̂W,+ \ Ξε and for any χ ∈ Cε.

Let F ⊂ Cε be the set of all χ ∈ Cε such that the function ζF (−(χ+ρ)(ha))
ζF (−(χ+ρ)(ha)+1) has

a pole for some a ∈ Ξε. Then F is contained in the union of a countable, locally
finite family of hyperplanes.

Lemma 7.7. Suppose that B is a bounded open subset of (ĥe
C
)∗ whose closure is

contained in the set Cε. Assume that the function ζF (−(χ+ρ)(ha))
ζF (−(χ+ρ)(ha)+1) has no pole for

any χ ∈ B and for any a ∈ Ξε. Then there are positive constants M ′
ε and Mε such

that for each w ∈ Ŵ we have

|c(χ,w)| < M ′
εM

�(w)
ε .

Proof. Since Ξε is a finite set and independent of w, this lemma is proved by a
slight modification of the proof of Corollary 5.29. �
Theorem 7.8. The constant term E#

χ (gηmD) =
∑

w∈Ŵ (hηmD)w(χ+ρ)−ρ c(χ,w) is

a meromorphic function for χ ∈ (ĥe
C
)∗ satisfying Re(χ+ ρ)(hδ) < 0, or equivalently

Reχ(hδ) < −h∨.

Proof. Assume that B is a bounded open subset of (ĥe
C
)∗ whose closure is con-

tained in the set Cε \ F , where the set F is defined above. Consider a compact

subset C of ĤA. If we replace Corollary 5.29 with Lemma 7.7, all the other ar-
guments in the proof of Theorem 5.32 remain valid to prove that the infinite sum∑

w∈Ŵ (hηmD)w(χ+ρ)−ρ c(χ,w) converges uniformly and absolutely as χ varies over
B and h varies over C. Since ε was arbitrary, the theorem follows. �
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7.3. Proving functional equations. We wish to prove functional equations for
the constant term of the Eisenstein series Eχ on ĜA. The following property of the
function c(χ,w) is essential.

Proposition 7.9. With c(χ,w) defined as above and w,w′ ∈ Ŵ , we have

(7.10) c(χ,ww′) = c(w′ ◦ χ,w) c(χ,w′),

where w ◦ χ is the usual shifted action of Ŵ on ĥ∗, i.e. w ◦ χ = w(χ+ ρ)− ρ.

We will prove this proposition at the end of this section. First, we show that
this proposition leads to the following functional equation for the constant term of
the Eisenstein series.

Theorem 7.11. Assume that χ ∈ (ĥe
C
)∗ satisfies the condition Reχ(hδ) < −h∨.

Then we have Re (w ◦ χ)(hδ) < −h∨ and

(7.12) E#
χ (gηmD) = c(χ,w)E#

w◦χ(gη
mD),

for any w ∈ Ŵ .

Proof. For the first assertion, we only need to consider the simple reflections wi ∈
Ŵ . We have

(wi ◦ χ)(hδ) = (wi(χ+ ρ)− ρ)(hδ) = (χ− (χ+ ρ)(hi)αi)(hδ) = χ(hδ).

Since we assumed Reχ(hδ) < −h∨, the first assertion follows.

Now we fix an arbitrary element w of the affine Weyl group. Then for any w̄ ∈ Ŵ
we set w′ = w̄w−1 so that w̄ = w′w. Now by Proposition 7.9, we have

E#
χ (gηmD) =

∑
w̄∈Ŵ

(hηmD)w̄◦χ c(χ, w̄) =
∑

w′∈Ŵ

(hηmD)(w
′w)◦χ c(χ,w′w)

=
∑

w′∈Ŵ

(hηmD)w
′◦(w◦χ)c(w ◦ χ,w′) c(χ,w)

= c(χ,w)
∑

w′∈Ŵ

(hηmD)w
′◦(w◦χ)c(w ◦ χ,w′) = c(χ,w) E�

w◦χ(gη
mD).

�
In order to establish this functional equation for E#

χ , it suffices to prove Propo-
sition 7.9.

Proof of Proposition 7.9. Recall that we want to show that for any w,w′ ∈ Ŵ , we
have

c(χ,ww′) = c(w′ ◦ χ,w) c(χ,w′).

We proceed by an induction argument, and first consider the following cases.

Case 1. Suppose that wi is a simple reflection, w ∈ Ŵ satisfies

�(wwi) = 1 + �(w),

and w−1 = wir . . . wi1 is a reduced expression. Then since Δ̂W,+ ∩ w−1Δ̂W,− =

Δ̂w−1 the discussion in Section 4.3 shows

Δ̂W,+ ∩ w−1Δ̂W,− = {β1, . . . βr},
where βj = wir . . . wij+1αij . If we let w̄ = wwi, then we can see

Δ̂W,+ ∩ w̄−1Δ̂W,− = {wiβ1, . . . , wiβr} ∪ {αi}.
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Now we have

c(χ, w̄) = q(1+l(w))(1−g)
∏

α∈Δ̂W,+∩w̄−1Δ̂W,−

ζF (−(χ+ ρ)(hα))

ζF (−(χ+ ρ)(hα) + 1)

= q(1−g) ζF (−(χ+ ρ)(hαi
))

ζF (−(χ+ ρ)(hαi
) + 1)

ql(w)(1−g)

·
∏

α∈Δ̂W,+∩w−1Δ̂W,−

ζF (−(χ+ ρ)(hwiα)

ζF (−(χ+ ρ)(hwiα) + 1)

= c(χ,wi) c(wi ◦ χ,w),
since (χ+ ρ)(hwiα) = wi(χ+ ρ)(hα) = (wi ◦ χ+ ρ)(hα). This is our desired result,
so we move on to our second case.

Case 2. Suppose wi is a simple reflection and w ∈ Ŵ such that �(wwi) = �(w)− 1.
If this is the case, then w has a reduced expression w = wi1 . . . wir where wir = wi.
If we set w′ = wi1 . . . wir−1

, then w = w′wi and w′ = wwi, and �(w′wi) = 1+ �(w′).
As such, we can apply the result of Case 1 to this situation with χ̃ = wi ◦χ and we
see

c(χ̃, w) = c(χ̃, w′wi) = c(wi ◦ χ̃, w′) c(χ̃, wi) = c(χ,wwi) c(χ̃, wi).

So by solving for the factor c(χ,wwi), we see that

c(χ,wwi) = c(wi ◦ χ,w) c(wi ◦ χ,wi)
−1.

In order to prove our result for this case, it suffices to show that

(7.13) c(χ,wi) c(wi ◦ χ,wi) = 1.

Observe that

c(χ,wi) c(wi ◦ χ,wi) = q2(1−g) ζF (−(χ+ ρ)(hαi
))

ζF (−(χ+ ρ)(hαi
) + 1)

ζF (−(wi ◦ χ+ ρ)(hαi
))

ζF (−(wi ◦ χ+ ρ)(hαi
) + 1)

= q2(1−g) ζF (−(χ+ ρ)(hαi
))

ζF (−(χ+ ρ)(hαi
) + 1)

ζF ((χ+ ρ)(hαi
))

ζF ((χ+ ρ)(hαi
) + 1)

.

In Lemma 7.4, we calculated the value of this product of zeta functions, so we
conclude that

c(χ,wi)c(wi ◦ χ,wi) = q2(1−g) q−2(1−g) = 1.

As a result, we see c(χ,wwi) = c(wi ◦ χ,w)c(χ,wi), the desired result. We now
consider the general case.

General case. The proof is by induction on the length of w′. If �(w′) = 1, then the
proofs of Case 1 and Case 2 secure our result. Now suppose the result holds for
�(w′) ≤ k. We consider w′′ ∈ Ŵ such that �(w′′) = k + 1, and write w′′ = w′wi for
some simple reflection wi and with �(w′′) = �(w′) + 1. By Cases 1 and 2 and the
induction hypothesis, we obtain

c(χ,ww′′) = c(χ,ww′wi) = c(wi ◦ χ,ww′) c(χ,wi)

= c((w′wi) ◦ χ,w) c(wi ◦ χ,w′) c(χ,wi)

= c((w′wi) ◦ χ,w) c(χ,w′wi) = c(w′′ ◦ χ,w) c(χ,w′′),

since c(wi ◦ χ,w′) c(χ,wi) = c(χ,w′wi). This completes our proof of Proposition
7.9. �
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Appendix A. Measures

In this appendix, we will describe various measures that are important for our
calculation of the constant term of an Eisenstein series. The first subsection ad-
dresses the technique of constructing a measure by means of a projective limit of a
family of measures.

A.1. The projective limit construction of a measure. We begin by stating
a result of [1]. Let {U (s), πs

s′}s∈Z>0
be a projective family of compact spaces, and

equip each U (s) with a regular, Borel, probability measure du(s). If s > s′, then by
our assumption we have the map

πs
s′ : U

(s) � U (s′).

We say {du(s)}s∈Z>0
is a consistent family of measures with respect to the projec-

tions πs
s′ if for any measurable set X ′ ⊂ U (s′) we have

du(s)((πs
s′)

−1(X ′)) = du(s′)(X ′),

for any s > s′.

Theorem A.1 ([1]). Suppose {U (s), πs
s′}s∈Z>0

is a projective family of compact

spaces where du(s) is a regular, Borel, probability measure on U (s). If {du(s)}s∈Z>0

is a consistent family of measures with respect to the projections πs
s′ , then

(1) there is a unique regular, Borel, probability measure du on the projective
limit lim←−

s

U (s),

(2) if π(s′) : lim←−
s

U (s) � U (s′) is the canonical projection, then for any measur-

able set X ⊂ U (s′) we have

du((π(s′))−1(X)) = du(s′)(X).

Corollary A.2. Under the conditions of Theorem A.1, if we further assume that
each measure du(s) is translation invariant, then du is also translation invariant.

Proof. Our measure du is a Borel measure, so it is enough to show that this property
holds for any open set Y ⊂ lim←−

s

U (s). However, the projective limit of topological

spaces inherits the coarsest topology such that the canonical projections π(s) are
all continuous. It is a standard result that a basis for this topology consists of the
sets (π(s))−1(X(s)) for an open set X(s) ⊂ U (s). Hence, the translation invariance
of the measure du is a result of part (2) of Theorem A.1, and the invariance of the
measure du(s). �

A.2. Measure on the arithmetic quotient. As mentioned in Section 4, we need
to define a measure on the quotient space ÛA/(ÛA ∩ Γ̂F ). The main result of [1]

allows us to define this measure du by expressing ÛA/(ÛA∩Γ̂F ) as a projective limit

of compact spaces Û
(s)
A

/Γ̂
(s)

Û
equipped with a consistent family of measures du(s).

For a similar construction over Q, see [4].
Recall that we fixed a coherently ordered basis B = {vλ, v1, v2, . . . } which

we use as a basis for the vector space V λ
Fν
. For s ∈ Z>0, set V λ

Fν ,s
to be the
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Fν-span of the vectors {vλ, v1, . . . , vs}, and Ûν,s = {u ∈ ÛFν
| u

∣∣
V λ
Fν,s

≡ id}. We

define the restricted direct product

ÛA,s :=
∏′

Ûν,s with respect to the subgroups Ûν,s ∩ K̂ν ,

and let

Û
(s)
A

:= ÛA/ÛA,s.

We first note that any element u ∈ Û
(s)
A

is an infinite tuple (uν)ν∈V . In [2] we
see that each uν is in the subgroup of (s + 1) × (s + 1), strictly upper triangular
block matrices with entries from Fν , where the blocks are determined by the weight
spaces of V λ

Z
. Moreover, we know that for all but a finite number of ν, our entries

are from Oν . As such, we may identify Û
(s)
A

with n copies of A, for some n. We

give Û
(s)
A

the topology that makes this identification a homeomorphism and denote

this homeomorphism by φ(s).

Lemma A.3. We have

(1) Û
(s)
A

is a locally compact group for every s ∈ Z>0,

(2) ÛA
∼= lim←−

s

Û
(s)
A

.

Proof. The first part follows from the local compactness of A and the homeomor-

phism φ(s). In order to prove the second part, we first check that {Û (s)
A

, πs
s′}

forms a projective system. Suppose we have s > s′. Then V λ
Fν ,s′

⊂ V λ
Fν ,s

for all

ν ∈ V . As a result we have that ÛA,s ⊂ ÛA,s′ and obtain a unique surjective map

πs
s′ : Û

(s)
A

� Û
(s′)
A

such that πs
s′ ◦ p(s) = p(s

′), where p(s) : ÛA → ÛA/ÛA,s = Û
(s)
A

is

the canonical projection. Now it is clear that {Û (s)
A

, πs
s′} is a projective system and

we have a surjective map

Φ : ÛA � lim←−
s

Û
(s)
A

,

such that π(s) ◦ Φ = p(s) for every s ∈ Z>0, where π(s) denotes the canonical

projections from lim←−
s

Û
(s)
A

to Û
(s)
A

. In order to prove the isomorphism, we only need

to show that Φ is an injective map.
Suppose that x ∈ ker(Φ). Then x ∈ ker(π(s) ◦ Φ) for every s ∈ Z>0. By the

commutativity of our maps, we have that x ∈ ker(p(s)) for every s ∈ Z>0, and so

x ∈
⋂

s∈Z>0

ÛA,s = {id}. Thus, Φ is injective as well as surjective and we obtain the

desired isomorphism between ÛA and lim←−
s

Û
(s)
A

. �

Under the homeomorphism φ(s), the product measure μ̄(s) = μ × · · · × μ on

An becomes a Haar measure on Û
(s)
A

. To see this, note that the effect of left

multiplication in Û
(s)
A

through this homeomorphism is an affine transformation of
An. In other words, for x and y in An we have

xy = Ax(y) + bx,

where Ax is a linear transformation of An and bx ∈ An. The invariance of μ̄(s)

is hence a direct result of the change of variables theorem and the fact that
| det(Ax)| = 1 for all x.
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We wish to define a measure on ÛA/(Γ̂F ∩ ÛA). The next lemma establishes this
space as a projective limit of compact spaces.

Lemma A.4. Let Γ̂
(s)

Û
= p(s)(Γ̂F ∩ ÛA), where p(s) : ÛA � ÛA/ÛA,s = Û

(s)
A

is the

canonical projection. Then

(1) we have ÛA/(Γ̂F ∩ ÛA) ∼= lim←−
s

Û
(s)
A

/Γ̂
(s)

Û
, and

(2) for each s ∈ Z>0 the space Û
(s)
A

/Γ̂
(s)

Û
is compact and has an invariant

probability measure du(s) induced from the measure μ̄(s) on Û
(s)
A

.

Proof. (1) Since πs
s′(Γ̂

(s)

Û
)=Γ̂

(s′)

Û
, we obtain the induced projection π̄s

s′ : Û
(s)
A

/Γ̂
(s)

Û
→

Û
(s′)
A

/Γ̂
(s′)

Û
, and the collection

{
Û

(s)
A

/Γ̂
(s)

Û
, π̄s

s′

}
s∈Z>0

is a projective family. Then

we have the natural map

ÛA
∼= lim←−

s

Û
(s)
A

→ lim←−
s

Û
(s)
A

/Γ̂
(s)

Û
.

Considering the kernel of the map, we obtain

ÛA/(Γ̂F ∩ ÛA) ∼= lim←−
s

Û
(s)
A

/Γ̂
(s)

Û
.

(2) Recall that we can consider the space Û
(s)
A

to be embedded into the group
of strictly upper triangular (s + 1) × (s + 1) block matrices with entries from A.

Similarly, Γ̂
(s)

Û
can be considered as a discrete subspace of Û

(s)
A

, consisting of strictly

upper triangular (s + 1) × (s + 1) block matrices with entries from F diagonally

embedded in A. As a result, the quotient space Û
(s)
A

/Γ̂
(s)

Û
is a classical object and

it is well known that this is a compact space. For more information see [16].

Moreover, since Γ̂
(s)

Û
is a discrete subgroup of the unimodular group Û

(s)
A

, we

have an invariant measure du(s) on Û
(s)
A

/Γ̂
(s)

Û
induced from μ̄(s) on Û

(s)
A

([16]), and

we normalize du(s) to have total measure 1. �

Finally, we must prove that the measures du(s) form a consistent family. The
induced measure du(s) may be considered as the restriction of the measure μ̄(s) to a

fundamental domain for Û
(s)
A

/Γ̂
(s)

Û
. For each s ∈ Z>0, we choose a fundamental do-

main Ω(s) for Û
(s)
A

/Γ̂
(s)

Û
such that πs

s′(Ω
(s)) = Ω(s′). Then we have, for a measurable

subset X of Û
(s′)
A

,

(A.5) μ̄(s)
(
(πs

s′)
−1(X) ∩ Ω(s)

)
= μ̄(s′)(X ∩ Ω(s′)).

Lemma A.6. The set {du(s)}s∈Z>0
forms a consistent family of measures.

Proof. Let π̄(s) : Û
(s)
A

→ Û
(s)
A

/Γ̂
(s)

Û
be the canonical projection for s ∈ Z>0. Suppose

that X is a measurable set of Û
(s′)
A

/Γ̂
(s′)

Û
. Then by our observation above

du(s′)(X) = μ̄(s′)

(
(π̄(s′))−1(X) ∩ Ω(s′)

)
.
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To establish the consistency of the measures, we need to calculate du(s)((π̄s
s′)

−1(X)).
Using (A.5), we obtain

du(s)((π̄s
s′)

−1(X)) = μ̄(s)

(
(π̄s

s′ ◦ π̄(s))−1(X) ∩ Ω(s)

)

= μ̄(s)

(
(π̄(s′) ◦ πs

s′)
−1(X) ∩ Ω(s)

)

= μ̄(s′)

(
(π̄(s′))−1(X) ∩ Ω(s′)

)
= du(s′)(X),

and we conclude that these measures form a consistent family. �
Finally, we obtain the main result of this appendix in the following proposition.

Proposition A.7. There exists a unique, ÛA-left invariant, probability measure du
on the arithmetic quotient ÛA/(ÛA ∩ Γ̂F ).

Proof. This follows from Lemma A.6 and Theorem A.1. �
A.3. Measures on other spaces. Before we discuss measures on other spaces,
we briefly recall some constructions from Section 4. With respect to our coherently
ordered basis B, we fix Û−,F to be the group of strictly lower triangular block

matrices and set Ûw,F to be ÛF ∩ wÛ−,Fw
−1. This definition works for all of our

fields Fν , and so we can define

Ûw,A :=
∏
ν∈V

′
Ûw,ν with respect to Ûw,ν ∩ K̂ν .

By the decomposition (4.3), we know

(A.8) ÛA = Ûw,A (ÛA ∩ wÛAw
−1),

and we have the covering projection

π′ : ÛA/(Γ̂F ∩ ÛF ∩ wÛFw
−1) � ÛA/(ÛA ∩ Γ̂F ).

We define the measure du′ on ÛA/(Γ̂F ∩ ÛF ∩wÛFw
−1) to be the one induced from

the measure du on ÛA/(ÛA ∩ Γ̂F ) through the projection π′.
In light of the decompositions (A.8), our measure du′ decomposes into two mea-

sures,

(i) the measure du1 on Ûw,A, and

(ii) the measure du2 on (ÛA ∩ wÛAw
−1)

/
(Γ̂F ∩ ÛF ∩ wÛFw

−1).

We construct the measure du2 by expressing this space as a projective limit of
compact spaces equipped with a Haar probability measure. We omit the details
and note that the construction will be very similar to our proofs regarding the
construction of the measure du on ÛA/(ÛA∩ Γ̂F ). Using Theorem A.1, the measure
du2 is a Haar probability measure.

To construct du1, we recall that every element of u ∈ Ûw,A takes the form

u =
∏

a∈Δ̂W,+∩w−1Δ̂W,−

χa(sa) , for sa ∈ A.

For more information, see Section 4.3. The set Δ̂W,+ ∩ w−1Δ̂W,− is finite and of

size �(w). As in Lemma A.3, we have a homeomorphism from Ûw,A to A�(w). The
product measure induced from �(w) copies of the Haar measure μ on A becomes a
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Haar measure on Ûw,A, where we normalize μ so that μ(A/F ) = 1. We set du1 to
be this measure.

If we consider the Haar measure μ′
ν on Fν with the normalization μ′

ν(Oν) = 1
for each ν ∈ V , we obtain from 2.1.3 of [18] that

(A.9) μ = q(1−g)
∏
ν

μ′
ν .

If we let du′
1,ν be the measure on Ûw,Fν

, then we have

du1 = q�(w)(1−g)
∏
ν

du′
1,ν .

A similar relation holds between du− for Û−,w,A and the product of measures on
local components in Section 4.4.
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