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mula as a sum over B(∞) when the underlying Lie algebra is of
type A. We also interpret our description in terms of MV polytopes
and irreducible components of quiver varieties.
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0. Introduction

Let F be a p-adic field and let N− be the maximal unipotent subgroup of GLr+1(F ) with maximal
torus T . Let f ◦ denote the standard spherical vector corresponding to an unramified character χ of T .
Let T (C) be the maximal torus in the L-group GLr+1(C) of GLr+1(F ), and let z ∈ T (C) be the element
corresponding to χ via the Satake isomorphism.

The Gindikin–Karpelevich formula for the longest element of the Weyl group calculates the integral
of the function f ◦ over N−(F ) as a product over the set Φ+ of positive roots:∫

N−(F )

f ◦(n)dn =
∏

α∈Φ+

1 − t−1zα

1 − zα
, (0.1)

where t is the cardinality of the residue field of F . Recently, in the works [3,4] of Brubaker, Bump
and Friedberg, and Bump and Nakasuji, the product is written as a sum over the crystal B(∞). (See
also [21].) More precisely, they prove
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∏
α∈Φ+

1 − t−1zα

1 − zα
=

∑
b∈B(∞)

G(e)
i (b)t〈wt(b),ρ〉z−wt(b),

where ρ is the half-sum of the positive roots, wt(b) is the weight of b, and the coefficients G(e)
i (b)

are defined using so-called BZL paths. An important observation here is that the coefficient of z−wt(b)

is some power of 1 − t−1.
This definition of the coefficients makes it necessary to compute the whole crystal graph. However,

one can also define the coefficients without the need for BZL paths. In the paper [14], H.H. Kim and
K.-H. Lee adopt Lusztig’s parametrization of elements of canonical basis B and prove that∏

α∈Φ+

1 − t−1zα

1 − zα
=

∑
b∈B

(
1 − t−1)nz(φi(b))

z−wt(b).

(See Proposition 1.4 for the definition of nz(φi(b)).)
In this paper, we are interested in replacing the set B(∞) or B with different realizations of

crystals to obtain more concrete descriptions of the coefficients in the sum. Much work has been done
on realizations of crystals (e.g., [9,10,12,13,16]). In the case of B(∞) for finite-dimensional simple Lie
algebras, J. Hong and H. Lee used semistandard Young tableaux to obtain a realization of crystals [7].
In the first part of this paper, we will use the semistandard Young tableaux realization of type A
to rewrite the sum as a sum over a set T (∞) of tableaux. We observe that the appropriate data to
define the coefficient comes from a consecutive string of letters k in the tableaux, which we call a
k-segment. Our result is∏

α∈Φ+

1 − t−1zα

1 − zα
=

∑
b∈T (∞)

(
1 − t−1)seg(b)

z−wt(b), (0.2)

where seg(b) is the total number of k-segments in the tableau b as k varies. The main point is that
the exponent seg(b) can be read off immediately from the tableau b.

In the second part of the paper, we use Kamnitzer’s MV polytopes [8,9] and Kashiwara and
Saito’s geometric construction [13] of crystals to express the sum as sums over these objects, respec-
tively. The exponent seg(b) will have a concrete meaning in each of these realizations. Relationships
among these realizations of crystals are more or less known. Therefore, new descriptions will follow
from (0.2) once we make necessary interpretations.

We hope to extend our results to other finite types in future work [15].
The outline of this paper is as follows. In Section 1, we briefly review the notions of Kashi-

wara’s crystals and Lusztig’s canonical bases to fix notations, and we also review BZL paths (or string
parametrizations) and Lusztig’s parametrizations of elements of the canonical basis. In Section 2 we
recall the Young tableaux realization of B(∞). Our main result is presented in Section 3. In the last
section, we investigate connections of the main result to MV polytopes and geometric construction of
crystals.

1. Canonical bases and crystals

Let r � 1 and suppose g = slr+1 with simple roots {α1, . . . ,αr}, and let I = {1, . . . , r}. Let P and P+
denote the wight lattice and the set of dominant integral weights, respectively. Denote by Φ and Φ+ ,
respectively, the set of roots and the set of positive roots. Let {α∨

1 , . . . ,α∨
r } be the set of coroots

and define a pairing 〈 , 〉 : P∨ × P −→ Z by 〈h, λ〉 = λ(h), where P∨ is the dual weight lattice. Let
h = C ⊗Z P∨ be the Cartan subalgebra, and let hR = R ⊗Z P∨ be its real form.

Let W be the Weyl group of Φ with simple reflections {σ1, . . . , σr}. To each reduced expression
w = σi1 · · ·σik for w ∈ W , we associate a reduced word, which is defined to be the k-tuple of positive
integers i = (i1, . . . , ik), and denote the set of all reduced words i of w ∈ W by R(w). In particular,
we let w◦ be the longest element of the Weyl group and call i = (i1, . . . , iN ) ∈ R(w◦) a long word,
where N is the number of positive roots.

Suppose that q is an indeterminate, and let Uq(g) be the quantized universal enveloping algebra
of g, which is a Q(q)-algebra generated by ei , f i , and qh , for i ∈ I and h ∈ P∨ , subject to certain
relations. We denote by U−

q (g) the subalgebra generated by the f i ’s.
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We write

f (c)
i := f c

i

[c]! , [c]! :=
c∏

j=1

q j − q− j

q − q−1
, c ∈ Z>0.

Given i = (i1, . . . , iN) ∈ R(w◦) and c = (c1, . . . , cN) ∈ ZN
�0, define

f c
i = f (c1)

i1
Ti1

(
f (c2)

i2

)
Ti1 Ti2

(
f (c3)

i3

) · · · Ti1 Ti2 · · · TiN−1

(
f (cN )

iN

)
, (1.1)

where Ti is the Lusztig automorphism of Uq(g) defined in Section 37.1.3 of [20] (there, it is de-
noted T ′′

i,−1). Then the set Bi = { f c
i : c ∈ ZN

�0} forms a Q(q)-basis of U−
q (g), called the PBW basis. Let

: Uq(g) −→ Uq(g) be the Q-algebra automorphism such that

ei �−→ ei, f i �−→ f i, q �−→ q−1, qh �−→ q−h,

for i ∈ I and h ∈ P∨ .

Proposition 1.1. (See [18].) Assume that i ∈ R(w◦).

(1) Assume that Li is the Z[q]-span of the basis Bi . Then Li is independent of i ∈ R(w◦), so we denote it
simply by L .

(2) Suppose that π :L −→ L /qL is the canonical projection. Then π(Bi) is a Z-basis of L /qL , inde-
pendent of i. Moreover, the restriction of π to L ∩ L is an isomorphism of Z-modules π :L ∩ L −→
L /qL , and B = π−1(π(Bi)) is a Q(q)-basis of U−

q (g).

The basis B is called the canonical basis of U−
q (g). Note that each b ∈ B satisfies b ≡ f c

i mod qL

for some i ∈ R(w◦) and c ∈ ZN
�0.

Let ẽi , f̃ i be the Kashiwara operators on U−
q (g) defined in [11]. Let A ⊂ Q(q) be the subring of

functions regular at q = 0 and define L(∞) to be the A-lattice spanned by

S = {
f̃ i1 f̃ i2 · · · f̃ it · 1 ∈ U−

q (g): t � 0, ik ∈ I
}
.

Proposition 1.2. (See [11].)

(1) Let π ′ :L(∞) −→ L(∞)/qL(∞) be the natural projection and set B(∞) = π ′(S). Then B(∞) is a
Q-basis of L(∞)/qL(∞).

(2) The operators ẽi and f̃ i act on L(∞)/qL(∞) for each i ∈ I . Moreover, ẽi :B(∞) −→ B(∞) � {0} and
f̃ i :B(∞) −→ B(∞) for each i ∈ I . For b,b′ ∈ B(∞), we have f̃ ib = b′ if and only if ẽib′ = b.

(3) For each b ∈ B(∞), there is a unique element G(b) ∈ L(∞) ∩ L(∞) such that π ′(G(b)) = b. The set
G(∞) = {G(b): b ∈ B(∞)} forms a basis of U−

q (g).

The basis B(∞) is called the crystal basis of U−
q (g), and the basis G(∞) is called the global crys-

tal basis of U−
q (g). In [5], Grojnowski and Lusztig showed that G(∞) = B. However, there are two

different, but standard, ways to parametrize elements of a canonical basis or a global crystal basis.
For a choice of i ∈ R(w◦), there is a unique path, called BZL path, from a crystal element b to the
unique weight zero crystal element b∞ . The parametrization coming from BZL paths is called the
string parametrization of b, which we will denote by ψi(b). See the definition below. On the other
hand, each canonical basis element comes from some f c

i ∈ Bi as in Proposition 1.1. From this we
obtain a parametrization c ∈ ZN

�0 of the element in the canonical basis. This latter parametrization is
called the Lusztig parametrization of b ∈ B, and we denote it by φi(b). Berenstein and Zelevinsky cal-
culated a way to link these parametrizations [1]. The connection between these two parametrizations
is crucial to our arguments below.

One may define the notion of a crystal abstractly. A Uq(g)-crystal is a set B together with maps

wt :B −→ P , ẽi, f̃ i :B −→ B � {0}, εi,ϕi :B −→ Z � {−∞},
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that satisfy a certain set of axioms (see, e.g. [6]), and a crystal morphism is defined in a natural way.
We recall the tensor product of crystals and the signature rule, which are necessary to understand
the combinatorics of B(∞).

Definition 1.3. Let B1 and B2 be Uq(g)-crystals. Then the tensor product of crystals B1 ⊗B2 is B1 ×B2
as a set, endowed with the following crystal structure. The Kashiwara operators are given by

ẽi(b1 ⊗ b2) =
{

ẽib1 ⊗ b2 if ϕi(b1) � εi(b2),

b1 ⊗ ẽib2 otherwise,

f̃ i(b1 ⊗ b2) =
{

f̃ ib1 ⊗ b2 if ϕi(b1) > εi(b2),

b1 ⊗ f̃ ib2 otherwise.

We also have

wt(b1 ⊗ b2) = wt(b1) + wt(b2),

εi(b1 ⊗ b2) = max
(
εi(b1), εi(b2) − 〈

α∨
i ,wt(b1)

〉)
,

ϕi(b1 ⊗ b2) = max
(
ϕi(b2),ϕi(b1) + 〈

α∨
i ,wt(b2)

〉)
.

Using the tensor product rule above, one obtains a way to determine the component of a tensor
product on which a Kashiwara operator acts, called the signature rule. Let i ∈ I and set B = B1 ⊗
· · · ⊗ Bm . Take b = b1 ⊗ · · · ⊗ bm ∈ B. To calculate either ẽi or f̃ i , create a sequence of + and −
according to

(−· · ·−︸ ︷︷ ︸
εi(b1)

,+· · ·+︸ ︷︷ ︸
ϕi(b1)

, . . . ,−· · ·−︸ ︷︷ ︸
εi(bm)

,+· · ·+︸ ︷︷ ︸
ϕi(bm)

).

Cancel any +− pair to obtain a sequence of −’s followed by +’s. We call the resulting sequence
the i-signature of b, and denote it by i-sgn(b). Then ẽi acts on the component of b corresponding
to the rightmost − in i-sgn(b) and f̃ i acts on the component of b corresponding to the leftmost +
in i-sgn(b). If there is no remaining − (or +, respectively) in i-sgn(b) then we have ẽi(b) = 0 (or
f̃ i(b) = 0, respectively).

As an illustration, we apply this rule to the semistandard Young tableaux realization of Uq(slr+1)-
crystals B(λ) of highest weight representations for λ a dominant integral weight. This description is
according to Kashiwara and Nakashima. See [12] or [6] for the details of this construction includ-
ing precise definitions of εi , ϕi , wt in this case. For the fundamental weight Λ1, the crystal graph
of B(Λ1) is given by

B(Λ1): 1 2 · · · r r + 1
1 2 r − 1 r

.

Using this fundamental crystal B(Λ1), we may understand any tableaux of shape λ by embedding
the corresponding crystal B(λ) into B(Λ1)

⊗m , where m is the number of boxes in the λ shape. For
example, in type A4, we have

B(Λ1 + Λ2 + Λ3) � b =
1 3 3
3 4
5

�−→ 3 ⊗ 3 ⊗ 4 ⊗ 1 ⊗ 3 ⊗ 5 ∈ B(Λ1)
⊗6.

With this image of the embedding, we may apply the signature rule to determine on which box f̃ i
and ẽi act. In this case, with i = 3, we have 3-sgn(b) = (+, + , − , · , + ,·) = (+, · , · , · , + ,·). Thus
ẽ3b = 0 and

f̃3b =
1 3 4
3 4
5

.
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For a given i = (i1, i2, . . . , iN ) ∈ R(w◦), define the BZL path of b ∈ B(∞) as follows. Define a1 to be
the maximal integer such that ẽ a1

i1
b �= 0. Then let a2 be the maximal integer such that ẽ a2

i2
ẽ a1

i1
b �= 0.

Inductively, let a j be the maximal integer such that

ẽ
a j

i j
ẽ

a j−1
i j−1

· · · ẽ a2
i2

ẽ a1
i1

b �= 0,

for j = 1, . . . , N . Then we define ψi(b) = (a1, . . . ,aN ). Let

Ci = {
ψi(b): b ∈ B(∞)

}
.

The BZL paths are also known as string parametrizations or Kashiwara data in the literature (see,
for example [2,8]). The associated cones were studied by Littelmann in [17]. In particular, for
i = (i1, i2, . . . , iN ) ∈ R(w◦) and b ∈ B(∞), it is known that ẽ aN

iN
· · · ẽ a2

i2
ẽ a1

i1
b = b∞ , where b∞ is the

unique element of weight zero in B(∞).
In order to prove that one can obtain the coefficients in the expansion of the product in

the Gindikin–Karpelevich formula using crystals of Young tableaux, we will need to first write
the Gindikin–Karpelevich formula as a sum over elements of Lusztig’s canonical basis, as shown
in [14].

Proposition 1.4. (See [14].) Let B be Lusztig’s canonical basis and let i ∈ R(w◦). Then

∏
α∈Φ+

1 − t−1zα

1 − zα
=

∑
b∈B

(
1 − t−1)nz(φi(b))

z−wt(b),

where φi :B −→ ZN
�0 is the map which takes elements in the canonical basis to their Lusztig parametrization

and nz(φi(b)) is the number of nonzero elements in the sequence φi(b).

Remark 1.5. Proposition 1.4 holds for any finite-dimensional simple Lie algebra.

Now we need a way to change BZL paths of elements in B(∞) to Lusztig parametrizations of
elements in B. The word we consider is

iAr := (1,2,1,3,2,1, . . . , r, r − 1, . . . ,2,1) ∈ R(w◦).

From here to the end of Section 3, any dependence on i will assume that i = iAr .
Associated to each entry in a given BZL path of a highest weight crystal B(λ) is a decoration:

a circle, a box, both a circle and a box, or neither. However, boxing does not occur in B(∞) (see [4]),
so we only describe the circling rule. In type A, we write the BZL paths in triangles of the following
form:

a1
a2 a3

a4 a5 a6

. .
. ...

...
. . .

(1.2)

It will be beneficial to write the triangular arrays using matrix indices, so reindex the above in the
following way:

a1,1
a2,1 a2,2

a3,1 a3,2 a3,3

. .
. ...

...
. . .

(1.3)

This triangular array look more natural if we recall [17] that

a1,1 � 0; a2,1 � a2,2 � 0; a3,1 � a3,2 � a3,3 � 0; . . . .
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If the entry a j,�−1 = a j,� , then we circle a j,�−1. We understand that the entries outside the trian-
gle are zero, so the rightmost entry of a row is circled if it is zero. Moreover, we call the jth row
of ψi(b) the row which starts with a j,1. Finally, to express this triangle in an inline form, we write
(a1,1;a2,1,a2,2; . . . ;ar,1, . . . ,ar,r).

Example 1.6. Let b∞ = ẽ1̃e 2
2 ẽ 2

3 ẽ 4
4 ẽ 2

2 ẽ 3
3 ẽ1̃e2b. Then

ψi(b) =
0

1 1
3 2 0

4 2 2 1

= ( 0 ; 1 ,1;3,2, 0 ;4, 2 ,2,1).

The following proposition is crucial and immediately implies Corollary 1.8 given below.

Proposition 1.7. (See [1].) The map σi : Ci −→ ZN
�0 , which takes the BZL path of an element b ∈ B(∞) to its

corresponding Lusztig parametrization, is given by

(a1,1, . . . ,ar,r) �−→ (a1,1;a2,2,a2,1 − a2,2; . . . ;ar,r,ar,r−1 − ar,r, . . . ,ar,1 − ar,2).

Corollary 1.8. (See [4,14].) Let i ∈ R(w◦).

(1) The number of circled entries in a BZL path is the same as the number of zero entries in the corresponding
Lusztig parametrization.

(2) We have

∏
α∈Φ+

1 − t−1zα

1 − zα
=

∑
b∈B(∞)

(
1 − t−1)nc(ψi(b))

z−wt(b),

where nc(ψi(b)) is the number of uncircled entries in ψi(b).

2. A combinatorial realization of B(∞)

This section is a summary of the results for type A from [7]. Recall that a tableaux b is semistan-
dard if entries are weakly increasing in rows and strictly increasing in columns. J. Hong and H. Lee
define a tableau b to be marginally large if, for all 1 � i � r, the number of i-boxes in the ith row of b
is greater than the number of all boxes in the (i + 1)st row by exactly one.

We define T (∞) to be the set of tableaux b satisfying the following conditions.

(1) Entries in b come from the alphabet {1 ≺ 2 ≺ · · · ≺ r + 1}.
(2) b is semistandard and consists of r rows.
(3) For 1 � j � r, the jth row of the leftmost column of b is a j-box.
(4) b is marginally large.

To obtain the crystal structure of T (∞), it remains to describe how the Kashiwara operators act
on tableaux in T (∞). The main difference between this procedure and the procedure to compute the
Kashiwara operators in a finite crystal is that we require each vertex to be a marginally large tableaux,
so the shape of the tableaux varies as one moves down the crystal. Indeed, to calculate f̃ ib, i ∈ I , for
some b ∈ B(∞), we apply the following procedure.

(1) Apply f̃ i to b using the i-signature of b as usual.
(2) If the result is marginally large, then we are done. If not, it is the case that f̃ i is applied to the

rightmost i-box in the ith row. Insert one column consisting of i rows to the left of the box f̃ i
acted on. This new column should have a k-box in the kth row, for 1 � k � i.
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Similarly, to calculate ẽib, one does the following.

(1) Apply ẽi to b using the i-signature of b as usual.
(2) If the result is marginally large or zero, then we are done. If not, it is the case that ẽi is applied

to the box to the right of the rightmost i-box in the ith row. Remove the column containing the
changed box, which is a column of i rows having a k-box in the kth row, for 1 � k � i.

Proposition 2.1. (See [7].) We have T (∞) ∼= B(∞) as crystals.

Example 2.2. For r = 3, the elements of T (∞) all have the form

b =
1 1 · · ·1 1 1 · · · 1 1 · · ·1 1 2 · · · 2 3 · · ·3 4 · · · 4
2 2 · · ·2 2 3 · · · 3 4 · · ·4
3 4 · · ·4

,

where the shaded parts are the required parts and the unshaded parts are variable. In particular, the
unique element of weight zero in this crystal is

b∞ =
1 1 1
2 2
3

.

Following Bump and Nakasuji in [4], we wish to suppress the required columns from the tableaux
and only include the variable parts. This convention will save space, making drawing the graphs easier
and it will help make the k-segments, to be defined later, stand out. We will call this modification of
b ∈ T (∞) the reduced form of b, and denote it by b� . For example, with r = 3, we have⎛

⎜⎜⎝ 1 1 1
2 2
3

⎞
⎟⎟⎠

�

=
∗
∗
∗

,

⎛
⎜⎜⎝ 1 1 1 1 1 2

2 2 2 2
3 4 4

⎞
⎟⎟⎠

�

=
2
∗
4 4

,

⎛
⎜⎜⎝ 1 1 1 1 1 1 3

2 2 2 3 3
3 4

⎞
⎟⎟⎠

�

=
3
3 3
4

,

where ∗ should be considered as void. In particular, the resulting shape need not be a Young diagram.
Denote by T (∞)� the set of all reduced forms of b ∈ T (∞).

3. Main result

In this section, we state and prove our main result. Our description of the coefficients in the sum
will rely on certain patterns of boxes in a Young tableau.

Definition 3.1. Let b ∈ T (∞). Define a k-segment, 2 � k � r + 1, to be part of a row from b of the form

k · · · k .

Moreover, we do not consider the required collection of k-boxes beginning the kth row of b to be a
k-segment; that is, we only consider k-boxes that appear in b� . Define segk(b) to be the number of
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Fig. 3.1. The top part of T (∞)� when r = 2.

k-segments in b, and let

seg(b) :=
r+1∑
k=2

segk(b). (3.1)

We also say a k-segment has length m if the k-segment consists of m boxes.

According to the definition, there are no 1-segments, and a k-segment can only occur in rows 1
through k − 1. With this definition, we now state:

Theorem 3.2. Let Φ be the root system of slr+1 and let T (∞) be the set of marginally large tableaux defined
above. Then∏

α∈Φ+

1 − t−1zα

1 − zα
=

∑
b∈T (∞)

(
1 − t−1)seg(b)

z−wt(b). (3.2)

Before we present the proof of the theorem, we first give an example and two lemmas.

Example 3.3. Let r = 2. Then top part of T (∞) is shown in Fig. 3.1 with corresponding coefficients
shown in Fig. 3.2.

Let us consider the element

b = 1 1 1 2 3
2 3

with b� = 2 3
3

.

There is one 2-segment in the first row and one 3-segment in each of the first and second rows,
so seg2(b) = 1 and seg3(b) = 2. Thus seg(b) = 1 + 2 = 3 and the coefficient corresponding to b
is (1 − t−1)3. Notice that the decorated BZL path of b is ψi(b) = (1;2,1) with no circle, which re-
sults in (1 − t−1)3.

Now consider

b = 1 1 3
2

with
(
b′)� = 3

∗ .
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Fig. 3.2. The coefficients for the top part of T (∞) when r = 2.

Since there is no 2-segment, we have seg2(b
′) = 0. There is, however, one 3-segment in the first row,

so seg3(b
′) = seg(b′) = 1, and coefficient associated to b′ is 1 − t−1. Using the BZL path, we have

ψi(b
′) = ( 0 ; 1 ,1), so the contribution is 1 − t−1.

Lemma 3.4. Let b ∈ T (∞) and 2 � k � r + 1. Suppose there are no (k − 1)-segments in b. If m is the maximal
integer such that ẽ m

k−1b �= 0, then m is the number of k-boxes comprising all k-segments of b.

Proof. By assumption, there are no (k −1)-segments in the tableau b. Thus, by the marginal largeness
of the tableau b ∈ T (∞), the k-signature (with all (+,−)-pairs removed) of b has the form

(−,−, . . . ,−,+).

In particular, the sequence of −’s comes from k-segments in b, while + comes from the k − 1 in
the mandatory (k − 1)st row of b. Suppose there are m such minus signs. By the definition of the
signature rule, we have ẽ m

k−1b ∈ T (∞) but ẽ m+1
k−1 b = 0. The claim is proved. �

Lemma 3.5. Let b ∈ T (∞) and ψi(b) = (a1,1;a2,1,a2,2; . . . ;ar,1, . . . ,ar,r). Suppose that 2 � k � r + 1. Then
the sequence of operators

ẽ
ak−1,k−1
1 ẽ

ak−1,k−2
2 · · · ẽ

ak−1,1
k−1 · · · ẽ

a2,2
1 ẽ

a2,1
2 ẽ

a1,1
1

removes any and all j-segments from b, with 2 � j � k.

Proof. We proceed by induction on k. First we assume that k = 2. Notice that there is at most one
2-segment in b, and it must occur in the first row. It is obvious from the definition of ψi that ẽ

a1,1
1

removes this 2-segment.
Now suppose that for some k � 2, we have applied the sequence of operators to b:

ẽ
ak−2,k−2
1 · · · ẽ

ak−2,1
k−2 · · · ẽ

a2,2
1 ẽ

a2,1
2 ẽ

a1,1
1 .

Then, by the induction hypothesis, all j-segments for 2 � j � k − 1 are removed and we denote by b′
the resulting tableau. We apply to the tableau b′ the product of operators

ẽ
ak−1,k−1
1 ẽ

ak−1,k−2
2 · · · ẽ

ak−1,1
k−1 .
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Since there are no (k − 1)-segments in the tableaux b′ , applying ẽ
ak−1,1
k−1 will take any k-segment in

the (k − 1)st row completely out of the tableau and will take any k-segment not in the (k − 1)st
row to a (k − 1)-segment by Lemma 3.4. Applying this same argument to each of ẽ

ak−1,2
k−2 , . . . , ẽ

ak−1,k−1
1

consecutively, we prove the assertion of the lemma. �
Proof of Theorem 3.2. Let b ∈ T (∞). We will use the same notation b to denote the corresponding
element in B(∞). In order to prove the theorem, we have only to show that seg(b) = nc(ψi(b)) by
Corollary 1.8; that is, we need only to show that the number of all segments in b is equal to the
number of uncircled entries in ψi(b). Recall that we may write ψi(b) in a triangular array (1.3). Let
nck(ψi(b)) be the number of uncircled entries in the kth row of the triangular array. We will prove
segk(b) = nck−1(ψi(b)) for each k. Then it will follow that seg(b) = nc(ψi(b)).

We first consider 2-segments. By definition, the ẽ1 operator changes a 2-box to a 1-box. However,
the only 2-boxes that this will affect are boxes in a 2-segment in the first row of b. With this ob-
servation, we apply ẽ

a1,1
1 to the tableau b where a1,1 is the length of the 2-segment. If a1,1 = 0 (i.e.,

there is no 2-segment), then we obtain a circle, but if a1,1 > 0, then there is a 2-segment and we do
not get a circle. In both cases, seg2(b) = nc1(ψi(b)).

Now consider any k-segments in b, for 2 < k � r + 1. By definition, any k-segment must appear
between the first and (k − 1)st row. Note that eliminating a k-segment from the tableaux b occurs in
the (k −1)st row of ψi(b) according to Lemma 3.5. If there are no k-segments anywhere in b, then the
(k − 1)st row of ψi(b) will consist of k − 1 zeros, each of which is circled. Thus segk(b) = 0 (because
there are no k-segments), which is exactly the number of uncircled entries in the (k − 1)st row. On
the other hand, if there is a k-segment in the jth row, where 1 � j � k − 1, then we have segk(b) � 1.
In particular, suppose that the length of the k-segment in the jth row is m1. If there are no other
k-segments anywhere in b, then ẽ m1

j · · · ẽ m1
k−1 removes this k-segment entirely by Lemma 3.5, so the

(k − 1)st row of ψi(b) has the form

(m1, . . . ,m1︸ ︷︷ ︸
k− j times

,0, . . . ,0).

The only entry which is not circled is the last m1, so segk(b) is again exactly the number of uncircled
entries in that row; i.e., segk(b) = 1 = nck−1(ψi(b)).

Assume that there exists another k-segment in some row between 2 and j, say in row 2 � � < j.
Suppose that the k-segment in the �th row has length m2. Then the (k − 1)st row of ψi(b) has the
form

(m1 + m2, . . . ,m1 + m2︸ ︷︷ ︸
k− j times

,m2, . . . ,m2︸ ︷︷ ︸
j−� times

,0, . . . ,0).

In this case, segk(b) = 2 and there are two uncircled entries in this row, so they match.
Continuing this way shows that segk(b) = nck−1(ψi(b)), which concludes the proof. �
From the above proof, we have obtained an interpretation of the string parametrization into infor-

mation about the corresponding tableau:

Corollary 3.6. Let b ∈ T (∞) and ψi(b) = (a1,1;a2,1,a2,2; . . . ;ar,1, . . . ,ar,r). Then ai, j is the sum of lengths
of (i + 1)-segments in rows 1 through i − j + 1 of the tableau b.

The following corollary will play an important role in the next section.

Corollary 3.7. Let b ∈ T (∞), and we denote by the same notation b for the corresponding elements in B(∞)

and B. Then we obtain

seg(b) = nz
(
φi(b)

) = nc
(
ψi(b)

)
.

Proof. In the proof of Theorem 3.2, we showed seg(b) = nc(ψi(b)). By Corollary 1.8, we have
nz(φi(b)) = nc(ψi(b)). �
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4. Connections to MV polytopes and quiver varieties

In this section, we investigate connections of our results to other realizations of crystals. In par-
ticular, we will interpret the meaning of segments of a tableau into the MV polytope model and
Kashiwara–Saito’s geometric construction of crystals, respectively. In the beginning of each of the
following subsections, we briefly review the theory of MV polytopes and geometric construction of
crystals. We refer the reader to the papers [8,9,13] for more details.

4.1. MV polytopes

We require the Bruhat order � on the Weyl group. We recall that there is an order on P∨ , which
we will also denote by �, defined by μ � ν if and only if μ − ν is a sum of positive coroots. We
will also need a twisted partial order �w (w ∈ W ) on P∨ such that μ �w ν if and only if w−1 · μ �
w−1 · ν . We let Γ = {w · Λi: w ∈ W , i ∈ I}.

Let M• = (Mγ )γ ∈Γ be a collection of integers. We say that M• satisfies the edge inequalities if

Mw·Λi + Mwσi ·Λi − Mw·Λi−1 − Mw·Λi+1 � 0 (4.1)

for all i ∈ I and w ∈ W , where we understand Mw·Λ−1 = 0 and Mw·Λr+1 = 0. From such a collection,
we define the pseudo-Weyl polytope

P(M•) = {
α ∈ hR: 〈α,γ 〉 � Mγ for all γ ∈ Γ

}
.

Associated to such a pseudo-Weyl polytope is a map w �−→ μw defined by the equation

〈μw , w · Λi〉 = Mw·Λi .

The coweights μw should be regarded as vertices of the pseudo-Weyl polytope, and the collection
(μw)w∈W is called the GGMS datum of the pseudo-Weyl polytope.

Let w ∈ W and i, j ∈ I be such that wσi > w , wσ j > w , and i �= j. Define a sequence M• =
(Mγ )γ ∈Γ to satisfy the tropical Plücker relation at (w, i, j) provided |i − j| > 1, or if |i − j| = 1 and

Mwσi ·Λi + Mwσ j ·Λ j = min(Mw·Λi + Mwσiσ j ·Λ j , Mwσ jσi ·Λi + Mw·Λ j ).

We say M• satisfies the tropical Plücker relations if it satisfies the tropical Plücker relations at each
(w, i, j) ∈ W × I2. Finally, a collection M• = (Mγ )γ ∈Γ is called a BZ datum of coweight (μ1,μ2) if the
following hold:

(1) M• satisfies the tropical Plücker relations.
(2) M• satisfies the edge inequalities.
(3) If μ• = (μw)w∈W is the GGMS datum of P(M•), then μe = μ1 and μw◦ = μ2, where e is the

identity element of W .

Definition 4.1. If M• is a BZ datum of coweight (μ1,μ2), then the corresponding pseudo-Weyl poly-
tope P(M•) is called an MV polytope of coweight (μ1,μ2).

For ν ∈ P∨ and a BZ datum M• of coweight (μ1,μ2), we define ν + P(M•) = P(M ′•), where
M ′

γ = Mγ + 〈ν,γ 〉 for each γ ∈ Γ and M ′• is a BZ datum of coweight (μ1 + ν,μ2 + ν). This yields
an action of P∨ on the set of BZ datum, and hence on the set of MV polytopes. The orbit of an MV
polytope of coweight (μ1,μ2) under this action is called a stable MV polytope of coweight μ1 − μ2.
Note that, for each stable MV polytope of weight μ, we may choose the unique representative of
coweight (ν + μ,ν). Denote the set of all stable MV polytopes by MV .

Assume that i = (i1, . . . , iN ) ∈ R(w◦) is an arbitrary long word. We set w i
k = σi1 · · ·σik and β i

k =
w i

k−1 · α∨
ik

for each 1 � k � N . (Here, we understand w i
0 = e, the identity element of the Weyl group.)

The reduced word i determines a path in P(M•) given by the consecutive vertices μe,μσi1
, . . . ,μw◦ ,
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and we obtain the vector Li(P(M•)) = (c1, . . . , cN) consisting of the lengths of the edges along the
i-path in P(M•); that is,

μw i
k
− μw i

k−1
= ckβ

i
k.

Thus, each positive coroot β i
k determines a direction in the coweight lattice and ck gives the length of

the β i
kth leg in the polytope. The vector Li(P(M•)) = (c1, . . . , cN) is called the i-Lusztig datum of the

MV polytope P(M•).

Proposition 4.2. (See [9].) For any i ∈ R(w◦), there is a bijection betweenMV and ZN
�0 given by the i-Lusztig

datum of an MV polytope.

We have already discussed that the Lusztig parametrization of an element b ∈ B is a bijection
φi :B −→ ZN

�0 for any i ∈ R(w◦). Thus, for any b ∈ B, there is an associated MV polytope, which we
denote by P(b), with i-Lusztig datum φi(b).

Since we are considering the root system of type A, we have an isomorphism η :hR −→ h∨
R given

by η(α∨
i ) = αi for i ∈ I . If P is a stable MV polytope of coweight μ, then we also say that A is of

weight η(μ) and write wt(P) = η(μ). Kamnitzer proved the following.

Theorem 4.3. (See [9].) The map b �−→ P(b) is a weight preserving bijection B −→ MV such that
φi(b) = Li(P(b)).

Assume that P ∈MV . We define nz(Li(P)) to be the number of nonzero entries in the i-Lusztig
datum Li(P). We see from the definitions that nz(Li(P)) is nothing but the number of edges in the
i-path of P. The next corollary is obtained from Corollary 3.7 and Theorem 4.3.

Corollary 4.4. Let b ∈ T (∞) and denote by the same notation b the corresponding element in B. Then we
have

seg(b) = nz
(
Li

(
P(b)

))
.

We are now ready to present the Gindikin–Karpelevich formula as a sum over MV polytopes.

Corollary 4.5. Let Φ be the root system of slr+1 . Then for any i ∈ R(w◦), we have

∏
α∈Φ+

1 − t−1zα

1 − zα
=

∑
P∈MV

(
1 − t−1)nz(Li(P))

z−wt(P).

Proof. The corollary follows from Theorem 4.3, Corollary 4.4 and Theorem 3.2. �
4.2. Quiver varieties

Let I = {1, . . . , r} be the set of vertices and H be the set of arrows such that i −→ j with i − j =
±1, i, j ∈ I . Then (I, H) is the double quiver of type Ar :

1 2 · · · r.

If h ∈ H is the arrow i −→ j, then we set out(h) = i and in(h) = j. We choose an orientation Ω ⊂ H
of the quiver and its opposite Ω so that we have

(I,Ω) = 1 ←− 2 ←− · · · ←− r, (4.2)

(I,Ω) = 1 −→ 2 −→ · · · −→ r. (4.3)
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Given an I-graded vector space V = ⊕r
i=1 Vi , we set

dim V =
∑
i∈I

dim(Vi)αi ∈ Q +,

where Q + = ⊕r
i=1 Z�0αi . Now define C-vector spaces

EV :=
⊕
h∈H

Hom(Vout(h),Vin(h)),

EV,Ω :=
⊕
h∈Ω

Hom(Vout(h),Vin(h)).

The group GV := ∏
i∈I GL(Vi) acts on both EV and EV,Ω by

(g, x) = (
(gi), (xh)

) �−→ (
gin(h)xh g−1

out(h)

)
.

Let ω be the nondegenerate, GV-invariant, symplectic form on EV defined by

ω(x, y) :=
∑
h∈H

ε(h)Tr(xh yh),

where ε : H −→ {±1} is the function such that ε(h) = 1 if h ∈ Ω and ε(h) = −1 if h ∈ Ω . Let glV =⊕
i∈I End(Vi) be the Lie algebra of GV , which acts on EV via A · x = [A, x], for A ∈ glV and x ∈ EV .

Let μ : EV −→ glV be the moment map associated with the GV-action on EV , whose ith component
μi : EV −→ End(Vi) is given by

μi(x) =
∑
h∈H

i=in(h)

ε(h)xhxh.

Finally, we define

ΛV = {
x ∈ EV: μ(x) = 0

}
.

The variety ΛV is called the Lusztig quiver variety. For α = ∑r
i=1 kiαi ∈ Q + , let V(α) = ⊕r

i=1 Vi(α) be
an I-graded vector space with dim V(α) = α. Let IrrΛ(α) denote the set of irreducible components of
Λ(α) := ΛV(α) and define

X(∞) =
⊔

α∈Q +
Irr Λ(α).

Kashiwara and Saito defined a crystal structure on X(∞) and showed the following theorem.

Theorem 4.6. (See [13].) There is a crystal isomorphism X(∞) ∼= B(∞).

For k, � ∈ Z such that 1 � k � � � r, we define (V(k, �), x(k, �)) to be the representation of (I,Ω)

with V(k, �)i = C for k � i � � and V(k, �)i = 0 otherwise. The maps x(k, �) between the nonzero
vector spaces are the identity and zero otherwise. The representation (V(k, �), x(k, �)) is indecompos-
able, and any indecomposable finite-dimensional representation (V, x) of (I,Ω) is isomorphic to some
(V(k, �), x(k, �)).

The following proposition is well-known.

Proposition 4.7. (See [19].) Let (I,Ω) be the quiver of type Ar from (4.2). The irreducible components of ΛV
are the closures of conormal bundles of the GV-orbits in EV,Ω .

Assume that X ∈ X(∞) is an irreducible component of ΛV for some V = V(α). Then there exists
the corresponding GV-orbit O , which consists of all the representations of (I,Ω) that are isomorphic
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to a sum V(X) of indecomposable representations (V(k, �), x(k, �)). We define γ (X) to be the number
of different indecomposable representations (not counting multiplicity) in the sum V(X). We also set
wt(X) = dim V. We obtain the following interpretation of Theorem 3.2 in the framework of the quiver
variety:

Corollary 4.8. Let Φ be the root system of slr+1 . Then

∏
α∈Φ+

1 − t−1zα

1 − zα
=

∑
X∈X(∞)

(
1 − t−1)γ (X)

zwt(X). (4.4)
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