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Abstract. The classical Gindikin-Karpelevich formula appears in Langlands’
calculation of the constant terms of Eisenstein series on reductive groups and
in Macdonald’s work on p-adic groups and affine Hecke algebras. The formula
has been generalized in the work of Garland to the affine Kac-Moody case,
and the affine case has been geometrically constructed in a recent paper of
Braverman, Finkelberg, and Kazhdan. On the other hand, there have been
efforts to write the formula as a sum over Kashiwara’s crystal basis or Lusztig’s
canonical basis, initiated by Brubaker, Bump, and Friedberg. In this paper,
we write the affine Gindikin-Karpelevich formula as a sum over the crystal of
generalized Young walls when the underlying Kac-Moody algebra is of affine

type A
(1)
n . The coefficients of the terms in the sum are determined explicitly

by the combinatorial data from Young walls.

0. Introduction

The classical Gindikin-Karpelevich formula originated from a certain integra-
tion on real reductive groups [GK62]. When Langlands calculated the constant
terms of Eisenstein series on reductive groups [Lan71], he considered a p-adic ana-
logue of the integration and called the resulting formula the Gindikin-Karpelevich
formula. In the case of GLn+1, the formula can be described as follows: let F be a
p-adic field with residue field of q elements and let N− be the maximal unipotent
subgroup of GLn+1(F ) with maximal torus T . Let f◦ denote the standard spherical
vector corresponding to an unramified character χ of T , let T (C) be the maximal
torus in the L-group GLn+1(C) of GLn+1(F ), and let z ∈ T (C) be the element
corresponding to χ via the Satake isomorphism. Then the Gindikin-Karpelevich
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formula is given by

(0.1)

∫
N−(F )

f◦(n) dn =
∏

α∈Δ+

1− q−1zα

1− zα
,

where Δ+ is the set of positive roots of GLn+1(C). The formula appears in Mac-
donald’s study on p-adic groups and affine Hecke algebras as well [Mac71], and
the product side of (0.1) is also known as Macdonald’s c-function.

In the paper [Gar04], Garland generalized Langlands’ calculation to affine Kac-
Moody groups and obtained an affine Gindikin-Karpelevich formula as a product
over Δ+ ∩ w−1(Δ−) for each w ∈ W , where Δ+ (resp. Δ−) is the set of positive
(resp. negative) roots of the corresponding affine Kac-Moody algebra and W is the
Weyl group. In a recent paper of Braverman, Finkelberg, and Kazhdan [BFK12],
the authors interpreted the classical Gindikin-Karpelevich formula in a geometric
way, and generalized the formula to affine Kac-Moody groups and obtained another
version of affine Gindikin-Karpelevich formula, which has an additional “correction
factor” in the product side.

On the other hand, in the works of Brubaker, Bump and Friedberg [BBF11],
Bump and Nakasuji [BN10], and McNamara [McN11], the product side of the
classical Gindikin-Karpelevich formula in type An was written as a sum over the
crystal B(∞). (For the definition of a crystal, see [HK02,Kas02].) More precisely,
they proved ∏

α∈Δ+

1− q−1zα

1− zα
=

∑
b∈B(∞)

G
(e)
i (b)q〈wt(b),ρ〉z−wt(b),

where ρ is the half-sum of the positive roots, wt(b) is the weight of b, and the coeffi-

cientsG
(e)
i (b) are defined using so-called BZL paths or Kashiwara’s parametrization.

As shown in [KL11] by H. Kim and K.-H. Lee, one can also choose a reduced word
for the longest element of the Weyl group and use Lusztig’s parametrization of
canonical bases ([Lus90,Lus91]), and the product can be written as

(0.2)
∏

α∈Δ+

1− q−1zα

1− zα
=

∑
b∈B(∞)

(1− q−1)N (φi(b))z−wt(b),

where N (φi(b)) is the number of nonzero entries in Lusztig’s parametrization φi(b).
The equation (0.2) was proved for all finite roots systems Δ, and was generalized
in a subsequent paper [KL12] to the affine Kac-Moody case using the results of
Beck, Chari, and Pressley [BCP99] and Beck and Nakajima [BN04] on PBW-type
bases. The parametrizations of basis elements in simply-laced affine cases can be
found in [BCP99, Theorem 3]. We will call them canonical parametrizations.

The use of crystals connects the Gindikin-Karpelevich formula to combinato-
rial representation theory, since much work has been done on realizations of crys-
tals through various combinatorial objects (e.g., [Kam10,Kan03,KN94,KS97,
Lit95]). Indeed, for type An, K.-H. Lee and Salisbury [LS12] expressed the right
side of (0.2) as a sum over marginally large Young tableaux using J. Hong and H.
Lee’s [HL08] description of B(∞) and the coefficients were determined by a simple
statistic seg(b) of the tableau b. Furthermore, the meaning of seg(b) was studied
in the frameworks of Kamnitzer’s MV polytope model [Kam10] and Kashiwara-
Saito’s geometric realization [KS97] of the crystal B(∞). The segment statistic
was then generalized to types Bn, Cn, Dn, and G2 in [LS14].
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The goal of this paper is to extend this approach to affine type A
(1)
n through

generalized Young walls. The notion of a Young wall was first introduced by Kang

[Kan03] in his extensive study of affine crystals. In the case of B(∞) in type A
(1)
n ,

J.-A. Kim and D.-U. Shin [KS10] considered a set of generalized Young walls to ob-
tain a realization of B(∞), while H. Lee [Lee07] established a different realization.

These constructions in type A
(1)
n are closely related to Zelevinsky’s multisegments

[Zel80] and Lusztig’s aperiodicmultisegments [Lus91], whose crystal structure was
studied by Leclerc, Thibon and Vasserot [LTV99]. In this paper, we will adopt
Kim and Shin’s realization and prove (Theorem 3.23)∏

α∈Δ+

(
1− q−1zα

1− zα

)mult(α)

=
∑

Y ∈Y(∞)

(1− q−1)N (Y )z−wt(Y ),

where Y(∞) is the set of reduced proper generalized Young walls and N (Y ) is a
certain statistic on Y ∈ Y(∞).

There are two main constructions in the proof. The first one is to establish
natural bijections starting from Y(∞) so that we may assign a Kostant partition
to an element Y of Y(∞). The second is to develop an algorithm to calculate the
number N (Y ) of distinct parts in the Kostant partition corresponding to Y . Note
that if one can read off a canonical parametrization established by Beck, Chari,
Nakajima and Pressley, directly from Y , then the corresponding Kostant partition
is readily obtained. However, to the authors’ knowledge, an efficient way to read off
a canonical parametrization from Y in the affine setting is not known. Instead, our
construction uses the more combinatorial nature of Y(∞) and produces an explicit
correspondence between Y(∞) and the set of Kostant partitions. Our method then
assigns a canonical-type parametrization to Y through the corresponding Kostant
partition. We do not know at the moment whether our parametrization coincides
with a canonical parametrization of Beck, Chari, Nakajima and Pressley.

In type A
(1)
n , the correction factor in the formula of Braverman, Finkelberg,

and Kazhdan, mentioned above is given by

(0.3)

n∏
i=1

∞∏
j=1

1− q−izjδ

1− q−(i+1)zjδ
,

where δ is the minimal positive imaginary root. In the last section we will write this
correction factor as a sum over a subset of reduced proper generalized Young walls
(Proposition 4.4), obtain an expansion of the whole product as a sum over pairs of
reduced proper generalized Young walls (Corollary 4.5), and derive a combinatorial
formula for the number of points in the intersection T−γ ∩S0 of certain orbits T−γ

and S0 in the (double) affine Grassmannian (Corollary 4.6).

Acknowledgements. The authors are grateful to A. Braverman for helpful
comments. They also thank the referee for useful comments.

1. General definitions

Let I = {0, 1, . . . , n} be an index set and let (A,Π,Π∨, P, P∨) be a Cartan

datum of type A
(1)
n ; i.e.,

• A = (aij)i,j∈I is a generalized Cartan matrix of type A
(1)
n ,

• Π = {αi : i ∈ I} is the set of simple roots,
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• Π∨ = {hi : i ∈ I} is the set of simple coroots,
• P∨ = Zh1 ⊕ · · · ⊕ Zhn ⊕ Zd is the dual weight lattice,
• h = C⊗Z P∨ is the Cartan subalgebra,
• and P = {λ ∈ h∗ : λ(P∨) ⊂ Z} is the weight lattice.

In addition to the above data, we have a bilinear pairing 〈 , 〉 : P∨ × P −→ Z
defined by 〈hi, αj〉 = aij and 〈d, αj〉 = δ0,j .

Let g be the affine Kac-Moody algebra associated with this Cartan datum, and
denote by Uv(g) the quantized universal enveloping algebra of g. We denote the
generators of Uv(g) by ei, fi (i ∈ I), and vh (h ∈ P∨). The subalgebra of Uv(g)
generated by fi (i ∈ I) will be denoted by U−

v (g).
A Uv(g)-crystal is a set B together with maps

ẽi, f̃i : B −→ B � {0}, εi, ϕi : B −→ Z � {−∞}, wt: B −→ P

satisfying certain conditions (see [HK02,Kas95]). The negative part U−
v (g) has

a crystal base (see [Kas91]) which is a Uv(g)-crystal. We denote this crystal by
B(∞), and denote its highest weight element by u∞.

Finally, we will describe the set of roots Δ for g. Since we are fixing g to be of

type A
(1)
n , we may make this explicit. Define

Δcl = {±(αi + · · ·+ αj) : 1 ≤ i ≤ j ≤ n},
Δ+

cl = {αi + · · ·+ αj : 1 ≤ i ≤ j ≤ n}

to be set of classical roots and positive classical roots; i.e., roots in the root system
of gcl = sln+1. The minimal imaginary root is δ = α0 + α1 + · · ·+ αn. Then

ΔIm = {mδ : m ∈ Z \ {0}}, Δ+
Im = {mδ : m ∈ Z>0}.

We have Δ = ΔRe �ΔIm and Δ+ = Δ+
Re �Δ+

Im, where

ΔRe = {α+mδ : α ∈ Δcl, m ∈ Z}
Δ+

Re = {α+mδ : α ∈ Δcl, m ∈ Z>0} ∪Δ+
cl .

Recall mult(α) = 1 for any α ∈ ΔRe and mult(α) = n for any α ∈ ΔIm. For
notational convenience, since mult(mδ) = n, we write

Δ+
Im = {m1δ1, . . . ,mnδn : m1, . . . ,mn ∈ Z>0},

where each δj is a copy of the imaginary root δ.

2. Generalized Young walls

In this section we describe generalized Young walls. We refer the reader to
[Kan03, Zel80, Lus91, LTV99] for related constructions and background. We
start by defining the board on which all generalized Young walls will be built.
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Define

(2.1)

1
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· · ·

· · ·
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1

0

...

2

1

1

0

n

...

1

0

0

n

n− 1

...

0

n· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...

1st row

2nd row

...

(n+ 1)st row

(n+ 2)nd row

(n+ 3)rd row

...

In particular, the color of the jth site from the bottom of the ith column from the
right in (2.1) is j − i mod n+ 1.

Definition 2.1. A generalized Young wall is a finite collection of i-colored

boxes i (i ∈ I) on the board (2.1) satisfying the following building conditions.

(1) The colored boxes should be located according to the colors of the sites
on the board (2.1).

(2) The colored boxes are put in rows; that is, one stacks boxes from right to
left in each row.

For a generalized Young wall Y , we define the weight wt(Y ) of Y to be

wt(Y ) = −
∑
i∈I

mi(Y )αi,

where mi(Y ) is the number of i-colored boxes in Y .

Definition 2.2. A generalized Young wall is called proper if for any k > 
 and
k − 
 ≡ 0 mod n + 1, the number of boxes in the kth row from the bottom is less
than or equal to that of the 
th row from the bottom.

Definition 2.3. Let Y be a generalized Young wall and let Yk be the kth
column of Y from the right. Set ai(k), with i ∈ I and k ≥ 1, to be the number of
i-colored boxes in the kth column Yk.

(1) We say Yk contains a removable δ if we may remove one i-colored box
for all i ∈ I from Yk and still obtain a generalized Young wall. In other
words, Yk contains a removable δ if ai−1(k + 1) < ai(k) for all i ∈ I.

(2) Y is said to be reduced if no column Yk of Y contains a removable δ.

Let Y(∞) denote the set of all reduced proper generalized Young walls. In
[KS10], Kim and Shin defined a crystal structure on Y(∞) and proved the following
theorem. We refer the reader to [KS10] for the details.

Theorem 2.4 ([KS10]). We have B(∞) ∼= Y(∞) as crystals.
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3. Kostant partitions

Let
α
(�)
i = αi + αi−1 + · · ·+ αi−�+1, i ∈ I, 1 ≤ 
 ≤ n,

where the indices are understood mod n+ 1.

Example 3.1. Let n = 2. Then

α
(1)
0 = α0 α

(1)
1 = α1 α

(1)
2 = α2

α
(2)
0 = α0 + α2 α

(2)
1 = α1 + α0 α

(2)
2 = α2 + α1.

Let
S1 =

{
(mkδk), (ci,� δ + α

(�)
i ) :

mk>0, 1≤k≤n,

ci,�≥0, i∈I, 1≤�≤n

}
.

We introduce the generator δ(m) for m ∈ Z>0 and set

S2 = {δ(m) : m ∈ Z>0}.
Let G̃ be the free abelian group generated by S1 ∪ S2. Consider the subgroup L of

G̃ generated by the elements: for m > 0,

(3.1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ(m) −

∑
i∈I

(kδ + α
(�)
i ), m = (n+ 1)k + 
, 1 ≤ 
 ≤ n;

δ(m) − δ(k) −
n∑

i=1

(kδi), m = (n+ 1)k.

We set G = G̃/L and let G+ be the Z≥0-span of S1 ∪ S2 in G. The following
observation will play an important role.

Remark 3.2. If we slightly abuse language, we may say that, in G, the element
δ(m) is equal to the sum of n+ 1 distinct positive “roots” of equal length m whose
total weight is mδ. In particular, if m = (n + 1)k + 
 (1 ≤ 
 ≤ n), then δ(m)

is equal to the sum of n + 1 distinct positive real roots of equal length m, and if
m = (n+1)k, then δ(m) is equal to the sum of (kδ1), . . . , (kδn), δ

(k) of equal length
m.

Example 3.3. Let n = 2. Then in G,
δ(1) = (α0) + (α1) + (α2)

δ(2) = (α0 + α2) + (α1 + α0) + (α2 + α1)

δ(3) = δ(1) + (δ1) + (δ2) = (α0) + (α1) + (α2) + (δ1) + (δ2)

δ(4) = (δ + α0) + (δ + α1) + (δ + α2)

δ(5) = (δ + α0 + α2) + (δ + α1 + α0) + (δ + α2 + α1)

δ(6) = δ(2) + (2δ1) + (2δ2) = (α0 + α2) + (α1 + α0) + (α2 + α1) + (2δ1) + (2δ2)

...

δ(9) = δ(3) + (3δ1) + (3δ2) = (α0) + (α1) + (α2) + (δ1) + (δ2) + (3δ1) + (3δ2)

...

Definition 3.4. Let p ∈ G+, and write p as a Z≥0-linear combination of
elements in S1 ∪ S2.
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(1) We say an expression of p contains a removable δ if it contains some parts
that can be replaced by δ(k) for some k > 0.

(2) We say an expression of p is reduced if it does not contain a removable δ.

Let K(∞) denote the set of reduced expressions of elements in G+. We define
the set K of Kostant partitions to be the Z≥0-span of the set S1 in G+. Notice that
the set S1 is linearly independent.

Definition 3.5. For p ∈ K, we denote by N (p) the number of distinct parts
in p.

Example 3.6. If p = 2(α0 + α1) + 5(α2 + α1) + 2(δ1) + (δ2) + (α0) + 4(α1),
then N (p) = 6.

Define a reduction map ψ : K −→ K(∞) as follows: Given p ∈ K, write it as a

Z≥0-linear combination of elements in S1. Replace k1
∑

i∈I(α
(1)
i ) in the expression,

where k1 is the largest possible, with k1δ
(1). The resulting expression is denoted

by p(1). Next, replace k2
∑

i∈I(α
(2)
i ) (or k2(δ

(1) + (δ1)) if n = 1), where k2 is the

largest possible, with k2δ
(2). The result is denoted by p(2). Continue this process

with δ(k) (k ≥ 3) using the relations in (3.1). The process stops with p(s) for some
s. By construction, p(s) ∈ K(∞), and we define ψ(p) = p(s).

Conversely, we define the unfolding map φ : K(∞) −→ K by unfolding the δ(k)’s
consecutively. That is, given q ∈ K(∞), find δ(r) with the largest r and replace it
with the corresponding sum from (3.1). The resulting expression is denoted by q(r).
Next, replace δ(r−1) with the corresponding sum from (3.1). The result is denoted

by q(r−1). Continue this process until we replace δ(1) with
∑

i∈I(α
(1)
i ) and obtain

q(1). By construction, q(1) ∈ K, and we define φ(q) = q(1).
It is clear from the definitions that ψ and φ are inverses to each other. Hence,

we have proven the following lemma.

Lemma 3.7. The reduction map ψ : K −→ K(∞) is a bijection, whose inverse
is the unfolding map φ : K(∞) −→ K.

For later use, we need to describe the unfolding map φ more explicitly.

Lemma 3.8. For p ∈ Z≥0 and q ∈ Z>0, we have

(3.2) φ
(
δ((n+1)pq)

)
=

n+1∑
j=1

(rδ + α
(s)
j−1) +

p−1∑
i=0

( n∑
j=1

(
(n+ 1)iq δj

))
,

where we write q = (n+1)r+ s, 1 ≤ s ≤ n. In particular, δ((n+1)pq) has n+1+np
parts.

Proof. We use induction on p. Assume that p = 0. Then it follows from (3.1)
that

φ
(
δ(q)

)
=

n+1∑
j=1

(rδ + α
(s)
j−1).
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Now assume that p ≥ 1. From (3.1) and the induction hypothesis, we obtain

φ
(
δ((n+1)pq)

)
= φ

(
δ((n+1)p−1q)

)
+

n∑
j=1

(
(n+ 1)p−1q δj

)
=

n+1∑
j=1

(rδ + α
(s)
j−1)+

p−2∑
i=0

( n∑
j=1

(
(n+1)iq δj

))
+

n∑
j=1

(
(n+ 1)p−1q δj

)
=

n+1∑
j=1

(rδ + α
(s)
j−1) +

p−1∑
i=0

( n∑
j=1

(
(n+ 1)iq δj

))
.

In what follows, we will establish a bijection between Y(∞) and K(∞). For
Y ∈ Y(∞), we define Nk(Y ) (k ≥ 1) to be the number of boxes in the kth row
of Y . We first define a map Ψ: Y(∞) −→ K(∞) by describing how the blocks in
a reduced proper generalized Young wall Y contribute to the parts in a reduced
Kostant partition. For Y ∈ Y(∞), 1 ≤ j ≤ n+ 1 and m ≥ 0, define Ψ(Y ; j,m) by

Ψ(Y ; j,m) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(kδj) if 1 ≤ j ≤ n and

N(n+1)m+j(Y ) = (n+ 1)k for some k > 0,

(kδ + α
(�)
j−1) if 1 ≤ j ≤ n and

N(n+1)m+j(Y ) = (n+ 1)k + 
 for some 1 ≤ 
 ≤ n, k ≥ 0,

δ(k) if j = n+ 1 and

N(n+1)(m+1)(Y ) = (n+ 1)k for some k > 0,

(kδ + α
(�)
n ) if j = n+ 1 and

N(n+1)(m+1)(Y ) = (n+ 1)k + 
 for some 1 ≤ 
 ≤ n, k ≥ 0.

(3.3)

Then

Ψ(Y ) =
∑
m≥0

n+1∑
j=1

Ψ(Y ; j,m).

Lemma 3.9. For any Y ∈ Y(∞), we have Ψ(Y ) ∈ K(∞).

Proof. Let p = Ψ(Y ). It is clear that p ∈ G+, so it remains to show the
expression of p is reduced. On the contrary, assume that p contains a removable δ.
By Remark 3.2, the expression of p contains a sum of n+1 distinct positive “roots”
of equal length, and the sum corresponds through (3.3) to a collection of rows of
Y with equal length in non-congruent positions. Then Y contains a removable δ,
which is a contradiction. Thus p does not contain a removable δ, so p is reduced.

Example 3.10. Let Y = f̃3
2 f̃

2
0 f̃

2
1 f̃2f̃1f̃0Y∞. That is, let

Y =

02102

102

2

1

.

Then Ψ(Y ) = (δ + α0 + α2) + (δ2) + (α2) + (α1).
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Now define a function Φ: K(∞) −→ Y(∞) in the following way. Let p be
a reduced Kostant partition. To each part of the partition, we assign a row of
a generalized Young wall using the following prescription. For 1 ≤ j ≤ n and
1 ≤ 
 ≤ n,

(3.4) Φ:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(kδj) �→ (n+ 1)k boxes in row ≡ j (mod n+ 1),

(kδ + α
(�)
j−1) �→ (n+ 1)k + 
 boxes in row ≡ j (mod n+ 1),

δ(k) �→ (n+ 1)k boxes in row ≡ 0 (mod n+ 1),

(kδ + α
(�)
n ) �→ (n+ 1)k + 
 boxes in row ≡ 0 (mod n+ 1).

To construct the Young wall Φ(p) from this data, we arrange the rows so that the
number of boxes in each row of the form (n + 1)k + j, for a fixed j, is weakly
decreasing as k increases. Hence Φ(p) is proper.

Lemma 3.11. For any p ∈ K(∞), we have Φ(p) ∈ Y(∞).

Proof. We set Y = Φ(p). Since p is reduced, p does not contain a removable
δ. Using a similar argument as in the proof of Lemma 3.9, we see that a removable
δ of Y corresponds to a removable δ of p. Thus Y does not contain a removable δ,
so Y ∈ Y(∞).

Example 3.12. Let p = (α0) + (2δ + α1 + α0) + δ(3) + (α2). Then

Φ(p) =

0

10210210

210210210

2

.

Proposition 3.13. The maps Ψ and Φ are bijections which are inverses to
each other. In particular, we have Y(∞) ∼= K(∞) as sets.

The existence of a bijection is guaranteed by the theory of Kostant partitions
and crystal bases. The importance of the proposition is that we have constructed
an explicit, combinatorial description of a bijection.

Proof. Assume that Y ∈ Y(∞). It is enough to check that a row j of Y is
mapped onto the same stack of boxes in a row ≡ j (mod n+1) by Φ ◦Ψ, since the
rows are arranged uniquely so that the number of boxes in each row of the form
(n+ 1)k + j for a fixed j is weakly decreasing as k increases. It follows from (3.3)
and (3.4) that a row j of Y is mapped onto the same stack of boxes in a row ≡ j
(mod n+ 1).

Conversely, assume that p ∈ K(∞). It is enough to check that each part of p
is mapped onto itself through Ψ ◦ Φ. Using (3.3) and (3.4), we see that it is the
case.

Remark 3.14. While one may define a crystal structure on K(∞) directly in
order to show that the bijection in Proposition 3.13 is a crystal isomorphism, the
bijection given is very explicit and easily understood, so one my simply pull back
the crystal structure on Y(∞) to K(∞) in order to obtain a crystal isomorphism.
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For 1 ≤ j ≤ n + 1 and Y ∈ Y(∞), define Sj(Y ) be the set of distinct
N(n+1)m+j(Y )’s for m ≥ 0; i.e., set

Sj(Y ) =
⋃
m≥0

{
N(n+1)m+j(Y )

}
.

When j = n+ 1, for each m ≥ 0, define (pm, qm) ∈ Z≥0 × Z≥0 by

N(n+1)(m+1)(Y ) = (n+ 1)pmqm,

with qm not divisible by n+1. IfN(n+1)(m+1)(Y ) = 0, then we put (pm, qm) = (0, 0).
We set

Q(Y ) =
( ⋃

m≥0

{(n+ 1)sqm : s = 0, 1, . . . , pm − 1}
)
∪ {0},

and let

P(Y ) =
∑
t≥1

(n+1)�t

max {pm : qm = t, m ≥ 0} .

Define

(3.5) N (Y ) = nP(Y ) +

n+1∑
j=1

#
(
Sj(Y ) \ Q(Y )

)
.

Proposition 3.15. Assume that Y ∈ Y(∞), and let p = (φ ◦ Ψ)(Y ) ∈ K,
where φ is the unfolding map defined in the proof of Lemma 3.7. Then N (Y )
is equal to the number of distinct parts in the Kostant partition p; i.e., we have
N (Y ) = N (p).

Before we prove this proposition, we provide a pair of examples. In the first
example, we do not have δ(k) in Ψ(Y ), and in the second example, we have δ(k) in
Ψ(Y ). We will see how the formula for N (Y ) works.

Example 3.16. Suppose that

Y =

02102

102

2

1

.

Then p = (φ◦Ψ)(Y ) = (δ+α0+α1)+(δ2)+(α2)+(α1), and the number of distinct
parts is 4. On the other hand,

S1(Y ) = {5, 0}, S2(Y ) = {3, 1, 0}, S3(Y ) = {1, 0}.

Now setting N3(m+1)(Y ) = 3pmqm implies (p0, q0) = (0, 1) and (pm, qm) = (0, 0) for
m ≥ 1. Thus Q(Y ) = {0} and P(Y ) = 0. So

N (Y ) = 1 + 2 + 1 + 2 · 0 = 4.
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Example 3.17. Suppose that

Y =

021

10

210210210

210210

.

Then we have

p = (φ ◦Ψ)(Y ) = φ
(
(δ1) + (α0 + α1) + δ(3) + δ(2)

)
= (δ1) + (α0 + α1) + (α0) + (α1) + (α2) + (δ1) + (δ2) + (α0 + α2)

+ (α1 + α0) + (α2 + α1)

= 2(α1 + α0) + (α0 + α2) + (α2 + α1) + 2(δ1) + (δ2) + (α0) + (α1) + (α2).

Hence the number of distinct parts is 8. On the other hand, we get

S1(Y ) = {3, 0}, S2(Y ) = {2, 0}, S3(Y ) = {9, 6, 0}.
From N3(m+1)(Y ) = 3pmqm, we obtain (p0, q0) = (2, 1), (p1, q1) = (1, 2) and
(pm, qm) = (0, 0) for m ≥ 2. Then Q(Y ) = {1, 3, 2, 0} and P(Y ) = 2 + 1 = 3. So

N (Y ) = 0 + 0 + 2 + 2 · 3 = 8.

Proof of Proposition 3.15.
Step 1: Assume that pm = 0 for all m ≥ 0. Then Ψ(Y ) has no δ(k), or

equivalently, Y is such that N(n+1)(m+1)(Y ) �= (n+ 1)k for any m ≥ 0 and k ≥ 1.

Then (φ ◦Ψ)(Y ) = Ψ(Y ) as Ψ(Y ) does not have a δ(k). On the other hand, since
pm = 0 for all m ≥ 0, we have Q(Y ) = {0} and P(Y ) = 0. Hence

N (Y ) =
n+1∑
j=1

#
(
Sj(Y ) \ {0}

)
.

For each 1 ≤ j ≤ n + 1, define Rj(Y ) to be the collection of kth rows of Y with
k ≡ j (mod n + 1). From (3.3), we see that two nonempty rows y1, y2 ∈ Rj(Y )
correspond to distinct parts in Ψ(Y ) if and only if the lengths of y1 and y2 are
different. Since # (Sj(Y ) \ {0}) is the number of distinct nonzero lengths of rows
in Rj(Y ), it is equal to the number of distinct parts in Ψ(Y ) corresponding to
Rj(Y ). Furthermore, if j �= j′, then y ∈ Rj(Y ) and y′ ∈ Rj′(Y ) correspond
to distinct parts in Ψ(Y ). Thus N (Y ) is the total number of distinct parts in
Ψ(Y ) = (φ ◦Ψ)(Y ), as required.

Step 2: Now assume that pm ≥ 1 for some m and pm′ = 0 for all m′ �= m. From
the definition N(n+1)(m+1)(Y ) = (n+ 1)pmqm, we see that the row (n+ 1)(m+ 1)

has (n+ 1)pmqm boxes, and the corresponding part in Ψ(Y ) is δ((n+1)pm−1qm). We
obtain from Lemma 3.8

(3.6) φ
(
δ((n+1)pm−1qm)

)
=

n+1∑
j=1

(rmδ + α
(sm)
j−1 ) +

pm−2∑
i=0

( n∑
j=1

(
(n+ 1)iqm δj

))
,

where we write qm = (n + 1)rm + sm, 1 ≤ sm ≤ n. Thus φ
(
δ((n+1)pm−1qm)

)
has

npm + 1 distinct parts, some of which may be the same as other parts in Ψ(Y ). It
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follows from (3.3) that the part (rmδ + α
(sm)
j−1 ) corresponds to qm boxes in a row

≡ j (mod n+ 1) for 1 ≤ j ≤ n+ 1. Similarly, the part ((n+ 1)iqm δj) corresponds
to (n+ 1)i+1qm boxes in a row ≡ j (mod n+ 1) for 1 ≤ j ≤ n and 0 ≤ i ≤ pm − 2.
Then the number of distinct parts in (φ ◦Ψ)(Y ) is

(3.7)

npm+1+
n∑

j=1

#
(
Sj(Y )\{0, (n+1)iqm}0≤i≤pm−1

)
+#

(
Sn+1(Y )\{0, qm, (n+1)pmqm}

)
= npm +

n∑
j=1

#
(
Sj(Y ) \ {0, (n+ 1)iqm}0≤i≤pm−1

)
+#

(
Sn+1(Y ) \ {0, qm}

)
.

Since Sn+1(Y ) does not contain (n+1)iqm, 1 ≤ i ≤ pm−1, by the assumption, the
expression (3.7) is equal to

npm +
n∑

j=1

#
(
Sj(Y ) \ {0, (n+ 1)iqm}0≤i≤pm−1

)
+#

(
Sn+1(Y ) \ {0, (n+ 1)iqm}0≤i≤pm−1

)
= npm +

n+1∑
j=1

#
(
Sj(Y ) \ {0, (n+ 1)iqm}0≤i≤pm−1

)
= npm +

n+1∑
j=1

#
(
Sj(Y ) \ Q(Y )

)
= N (Y ).

Thus the number of distinct parts in (φ ◦Ψ)(Y ) is N (Y ).
Step 3: Next we assume pm=max{pm′ : m′≥0} and qm=qm′ for any pm′ ≥1.

We have δ((n+1)pm′−1qm′ ) in Ψ(Y ) for each pm′ ≥ 1, and each φ(δ((n+1)pm′−1qm′ ))

yields npm′+1 parts as in (3.6). However, we can see from (3.6) that φ(δ(n+1)pm−1qm)
with the maximal pm generates all the distinct parts including those from other pm′ ,
since qm = qm′ for all pm′ ≥ 1 by the assumption. Then the number of distinct
parts in (φ ◦Ψ)(Y ) is given by

npm + 1 +

n∑
j=1

#
(
Sj(Y ) \ {0, (n+ 1)iqm}0≤i≤pm−1

)
+#

(
Sn+1(Y ) \ {0, qm, (n+ 1)pm′ qm}1≤pm′≤pm

)
= npm +

n∑
j=1

#
(
Sj(Y ) \ {0, (n+ 1)iqm}0≤i≤pm−1

)
+#

(
Sn+1(Y ) \ {0, (n+ 1)iqm}0≤i≤pm−1

)
= npm +

n+1∑
j=1

#
(
Sj(Y ) \ Q(Y )

)
= N (Y ).

Step 4: Finally we consider the general case. We group pm’s using the rule that
pm and pm′ are in the same group if and only if qm = qm′ . For each of such groups,
we use the result in Step 3, and see that the number of distict parts in (φ ◦Ψ)(Y )
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is equal to

nP(Y ) +

n+1∑
j=1

#
(
Sj(Y ) \ Q(Y )

)
,

recalling the definitions

P(Y ) =
∑
t≥1

(n+1)�t

max {pm : qm = t, m ≥ 0} ,

Q(Y ) =
( ⋃

m≥0

{(n+ 1)sqm : s = 0, 1, . . . , pm − 1}
)
∪ {0}.

Hence the number of distinct parts in (φ ◦Ψ)(Y ) is N (Y ).

The rule for calculating the number N (Y ), for Y ∈ Y(∞), may be reinterpreted
using the following algorithm. For this algorithm, we say that two rows in Y are
distinct if their rightmost boxes are different or if their rightmost boxes are equal
but they have an unequal number of boxes.

Algorithm 3.18. Define a map ψY on Y(∞) as follows.

(1) If Y has no row with rightmost box n and length ≡ 0 mod n + 1, then
ψY(Y ) := Y .

(2) If Y has at least one row with rightmost box n and length (n+ 1)
, then
replace any row with maximal such 
 with n+1 distinct rows of length 
.

Rearrange all rows (if necessary) so that it is proper. This gives ψ
(�)
Y (Y ).

(3) Apply Step 2 with 
 replaced by 
 − 1 and Y replaced by ψ
(�)
Y (Y ). This

gives ψ
(�−1)
Y (Y ).

(4) Iterate this process until 
 = 1. Then ψY(Y ) = ψ
(1)
Y (Y ).

Note that ψY(Y ) is proper, but need not be reduced, so ψY(Y ) /∈ Y(∞) in general.
Then N (Y ) is the number of distinct rows in ψY(Y ).

Example 3.19. Let n = 2 and let Y be as in Example 3.17. Then

Y =

021

10

210210210

210210

�

021

102

210

021

10

21

02

10

�

021

102

21

021

10

2

02

10

0

1

= ψY(Y ).

Counting the number of distinct rows gives 8 = N (Y ).

Let W be the Weyl group of g and si (i ∈ I) be the simple reflections. We
fix h = (. . . , i−1, i0, i1, . . . ) as in Section 3.1 in [BN04]. Then for any integers
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m < k, the product simsim+1
· · · sik ∈ W is a reduced expression, so is the product

siksik−1
· · · sim ∈ W . We set

(3.8) βk =

{
si0si−1

· · · sik+1
(αik) if k ≤ 0,

si1si2 · · · sik−1
(αik) if k > 0.

Let Ti = T ′′
i,1 be the automorphism of Uv(g) as in Section 37.1.3 of [Lus93],

and let

c+ = (c0, c−1, c−2, . . . ) ∈ Z
Z≤0

≥0 and c− = (c1, c2, . . . ) ∈ ZZ>0

≥0

be functions (or sequences) that are almost everywhere zero. We denote by C>

(resp. by C<) the set of such functions c+ (resp. c−). For an element c+ =
(c0, c−1, . . . ) ∈ C> (resp. c− = (c1, c2, . . . ) ∈ C>), we define

Ec+
= E

(c0)
i0

T−1
i0

(
E

(c−1)
i−1

)
T−1
i0

T−1
i−1

(
E

(c−2)
i−2

)
· · ·

and
Ec− = · · ·Ti1Ti2

(
E

(c3)
i3

)
Ti1

(
E

(c2)
i2

)
E

(c1)
i1

.

We also define N (c+) (resp. N (c−)) to be the number of nonzero ci’s in c+ (resp.
c−).

Let c0 = (ρ(1), ρ(2), . . . , ρ(n)) be a multi-partition with n components; i.e., each
component ρ(i) is a partition. We denote by P(n) the set of all multi-partitions
with n components. Let Sc0

be defined as in [BN04, p. 352] for c0 ∈ P(n). For a
partition p = (1m12m2 · · · rmr · · · ), we define

(3.9) N (p) = #{r : mr �= 0} and |p| = m1 + 2m2 + 3m3 + · · · .
Then for a multi-partition c0 = (ρ(1), ρ(2), . . . , ρ(n)) ∈ P(n), we set

N (c0) = N (ρ(1)) + N (ρ(2)) + · · ·+ N (ρ(n)).

Let C = C> × P(n) × C<. We denote by B the Kashiwara-Lusztig canonical
basis for U+

v (g), the positive part of the quantum affine algebra.

Theorem 3.20 ([BCP99,BN04]). There is a bijection η : B −→ C such that
for each c = (c+, c0, c−) ∈ C , there exists a unique b = η−1(c) ∈ B satisfying

(3.10) b ≡ Ec+
Sc0

Ec− mod v−1Z[v−1].

Now the number N (c) is defined by N (c) = N (c+) + N (c0) + N (c−)
for each c ∈ C . Using the canonical basis B, H. Kim and K.-H. Lee expanded
the product side of the Gindikin-Karpelevich formula as a sum, and obtained the
following theorem.

Theorem 3.21 ([KL12]). We have

(3.11)
∏

α∈Δ+

(
1− q−1zα

1− zα

)mult(α)

=
∑
b∈B

(1− q−1)N (η(b))zwt(b).

In the rest of this section, we will prove a combinatorial description of the
formula (3.11) using the set Y(∞) of reduced proper generalized Young walls.

We define a map θ : P(n) −→ K as follows. For c0 = (ρ(1), ρ(2), . . . , ρ(n)) ∈
P(n), we define

θ(c0) =

n∑
i=1

m1,i(δi) +m2,i(2δi) + · · ·+mr,i(rδi) + · · · ,
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where ρ(i) = (1m1,i2m2,i · · · rmr,i · · · ) for i = 1, 2, . . . , n. Then we define a map
Θ: C −→ K by

Θ(c) = θ(c0) +
∑
i∈Z

ci(βi),

where c = (c+, c0, c−), c+ = (c0, c−1, c−2, . . . ), c− = (c1, c2, . . . ) and βi is given by
(3.8) with (βi) ∈ K.

Corollary 3.22. The map Θ: C −→ K is a bijection, and for c ∈ C , the
number of distinct parts in p = Θ(c) is the same as N (c); i.e., N (Θ(c)) = N (c).

Proof. By Theorem 3.20, the set C parametrizes a PBW type basis of U+
v (g).

Thus the set C also parametrizes a PBW basis of the universal enveloping algebra
U+(g). Now the first assertion follows from the fact that the Kostant partitions
parametrize the elements in a PBW basis of U+(g) and that the function Θ is
defined according to these correspondences. The second assertion follows from the
definitions of N for C and K, respectively.

Theorem 3.23. Let g be an affine Kac-Moody algebra of type A
(1)
n . Then

(3.12)
∏

α∈Δ+

(
1− q−1zα

1− zα

)mult(α)

=
∑

Y ∈Y(∞)

(1− q−1)N (Y )z−wt(Y ),

where N (Y ) is defined in (3.5).

Proof. By Lemma 3.7, Proposition 3.13, Theorem 3.20 and Corollary 3.22,
we have bijections

B
η−→ C

Θ−→ K ψ−→ K(∞)
Φ−→ Y(∞).

For b ∈ B, we write Y = (Φ ◦ ψ ◦ Θ ◦ η)(b) ∈ Y(∞). Then, by Proposition 3.15
and Corollary 3.22, we have N (η(b)) = N (Y ). We also see from the constructions
that wt(b) = −wt(Y ). Now the equality (3.12) follows from Theorem 3.21.

4. Connection to Braverman-Finkelberg-Kazhdan’s formula

We briefly recall the framework of the paper [BFK12]. Let G (resp. Ĝ) be
the minimal (resp. formal) Kac-Moody group functor attached to a symmetrizable
Kac-Moody root datum and let g be the corresponding Lie algebra. There is a

natural imbedding G ↪→ Ĝ. The group G has the closed subgroup functors U ⊂ B,
U− ⊂ B− such that the quotients B/U and B−/U− are naturally isomorphic to

the Cartan subgroup H of G. We denote by B̂ and Û the closures of B and U

in Ĝ, respectively. We will denote the coroot lattice of G by Λ and the set of
positive coroots by R+ ⊂ Λ. The subsemigroup of Λ generated by R+ will be
denoted by Λ+. For an element γ =

∑
aiα

∨
i ∈ Λ+ with simple coroots α∨

i , we
write |γ| =

∑
ai. We assume that G is “simply connected”; i.e., the lattice Λ is

equal to the cocharacter lattice of H.
We set F = Fq((t)) and O = Fq[[t]], where Fq is the finite field with q elements.

We let Gr = Ĝ(F)/Ĝ(O). Each λ ∈ Λ defines a homomorphism F∗ −→ H(F). We
will denote the image of t under this homomorphism by tλ, and its image in Gr will
also be denoted by tλ. We set

Sλ = Û(F) · tλ ⊂ Gr and Tλ = U−(F) · tλ ⊂ Gr.
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In a recent paper [BFK12], Braverman, Finkelberg and Kazhdan defined the
generating function

(4.1) Ig(q) =
∑
γ∈Λ+

#(T−γ ∩ S0)q−|γ|zγ ,

and computed this sum as a product using a geometric method. Now we assume

that the set of positive coroots R+ forms a root system of type A
(1)
n , and we identify

R+ with the set of positive roots Δ+ in the previous sections of this paper. In this
case, the resulting product in [BFK12] is

Ig(q) =
n∏

i=1

∞∏
j=1

1− q−izjδ

1− q−(i+1)zjδ

∏
α∈Δ+

(
1− q−1zα

1− zα

)mult(α)

.

We separate the factor
n∏

i=1

∞∏
j=1

1− q−izjδ

1− q−(i+1)zjδ
,

and call it the correction factor. Our goal of this section is to write this correction
factor and the function Ig(q) as sums over reduced proper generalized Young walls.

Let Y0 denote the subset of Y(∞) consisting of the reduced proper gener-
alized Young walls with empty rows in positions ≡ 0 mod n + 1. We define a
map ξ : P(n) −→ Y0 by the following assignment. If p = (ρ(1), . . . , ρ(n)) is a
multi-partition, then the parts of the partition ρ(j) give the lengths of the rows
≡ j mod n + 1 in a reduced proper generalized Young wall ξ(p) = Y ∈ Y0. The
following is clear from the definition.

Lemma 4.1. The map ξ : P(n) −→ Y0 defined above is a bijection.

Example 4.2. Let n = 2. If

p =

⎛⎜⎝ ,

⎞⎟⎠ ,

then the corresponding element in Y0 is

Y = ξ(p) =

02102

102

02

10

0

10

.

For Y ∈ Y0, define

M (Y ) =
n∑

i=1

(i+ 1)Mi(Y ),

where Mi(Y ) is the number of nonempty rows ≡ i mod n + 1 in Y . Moreover, we
define |Y | to be the total number of blocks in Y .
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Example 4.3. Let Y be as in Example 4.2. Then

M (Y ) = 2 · 3 + 3 · 3 = 15 and |Y | = 15.

Let us consider N (Y ) for Y ∈ Y0, where N (Y ) is defined in (3.5). Since Y
has empty rows in positions ≡ 0 mod n+1, we have (pm, qm) = (0, 0) for all m ≥ 0,
and obtain Q(Y ) = {0} and P(Y ) = 0. Hence we have

(4.2) N (Y ) =
n∑

j=1

#(Sj(Y ) \ {0}) for Y ∈ Y0.

Proposition 4.4. Let g be an affine Kac-Moody algebra of type A
(1)
n . Then

n∏
i=1

∞∏
j=1

1− q−izjδ

1− q−(i+1)zjδ
=

∑
Y ∈Y0

(1− q)N (Y )q−M (Y )z|Y |δ.

Proof. We have
∞∏
j=1

1− q−izjδ

1− q−(i+1)zjδ
=

∞∏
j=1

(
1 +

∞∑
k=1

(1− q)q−k(i+1)zkjδ

)
=

∑
ρ(i)∈P(1)

(1− q)N (ρ(i))q−(i+1)M(ρ(i))z|ρ(i)|δ,

where N (ρ(i)) = #{r : mr �= 0} and |ρ(i)| = m1 + 2m2 + · · · are defined in
(3.9) and we set M(ρ(i)) = m1 + m2 + · · · for ρ(i) = (1m12m2 · · · ) ∈ P(1). For a
multi-partition ρ = (ρ(1), . . . , ρ(n)) ∈ P(n), define

N (ρ) =
n∑

i=1

N (ρ(i)), |ρ| =
n∑

i=1

|ρ(i)| and M (ρ) =
n∑

i=1

(i+ 1)M(ρ(i)).

Then we have
n∏

i=1

∞∏
j=1

1− q−izjδ

1− q−(i+1)zjδ
=

n∏
i=1

∑
ρ(i)∈P(1)

(1− q)N (ρ(i))q−(i+1)M(ρ(i))z|ρ(i)|δ

=
∑

ρ∈P(n)

(1− q)N (ρ)q−M (ρ)z|ρ|δ.(4.3)

Using the map ξ in Lemma 4.1, one can see that N (ρ) = N (ξ(ρ)), M (ρ) =
M (ξ(ρ)) and |ρ| = |ξ(ρ)| for ρ ∈ P(n), and the proposition follows from (4.3).

The following formula provides a combinatorial description of the affine Gindikin-
Karpelevich formula proved by Braverman, Finkelberg and Kazhdan.

Corollary 4.5. When g is an affine Kac-Moody algebra of type A
(1)
n , we have

(4.4) Ig(q) =

n∏
i=1

∞∏
j=1

1− q−izjδ

1− q−(i+1)zjδ

∏
α∈Δ+

(
1− q−1zα

1− zα

)mult(α)

=
∑

(Y1,Y2)∈Y(∞)×Y0

(1− q−1)N (Y1)(1− q)N (Y2)q−M (Y2)z−wt(Y1)+|Y2|δ.

Furthermore, comparing (4.4) with (4.1), we obtain a combinatorial formula
for the number of points in the intersection T−γ ∩ S0:
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Corollary 4.6. We have

#(T−γ ∩ S0) =
∑

(Y1,Y2)∈Y(∞)×Y0

−wt(Y1)+|Y2|δ=γ

(1− q−1)N (Y1)(1− q)N (Y2)q|γ|−M (Y2),

where γ ∈ Λ+ is identified with the corresponding element of the root lattice of g.

Example 4.7. Assume n = 1 and γ = δ. Then we have

(Y1, Y2) =

(
∅ , 0

)
,

(
01 ,∅

)
, or

⎛⎝ 10 ,∅

⎞⎠ .

From the first pair, we get (1 − q−1)0(1 − q)1q2−2 = 1 − q. The second yields
(1 − q−1)1(1 − q)0q2−0 = q2 − q, and the third (1 − q−1)2(1 − q)0q2−0 = (q − 1)2.
Thus we have

#(T−γ ∩ S0) = 1− q + q2 − q + (q − 1)2 = 2(q − 1)2.

Appendix A. Implementation in Sage

Together with Lucas Roesler and Travis Scrimshaw, the fourth named author
has implemented generalized Young walls and the statistics developed here in the
open-source mathematical software Sage [SCc08,S+14]. We conclude with some
examples using our package.

First we may verify examples given above. To verify Example 3.16, we have
the following, where Y.number of parts() refers to N (Y ).

sage : Yinf = c r y s t a l s . i n f i n i t y . GeneralizedYoungWalls ( 2 )

sage : Y = Yinf ( [ [ 0 , 2 , 1 , 0 , 2 ] , [ 1 , 0 , 2 ] , [ 2 ] , [ ] , [ 1 ] ] )

sage : Y. pp ( )

1 |
|

2 |
2 | 0 | 1 |

2 | 0 | 1 | 2 | 0 |
sage : Y. number o f part s ( )

4

Similarly, to see Examples 3.17 and 3.19 using Sage, use the following com-
mands.

sage : Yinf = c r y s t a l s . i n f i n i t y . GeneralizedYoungWalls ( 2 )

sage : row1 = [ 0 , 2 , 1 ]

sage : row2 = [ 1 , 0 ]

sage : row3 = [2 , 1 , 0 , 2 , 1 , 0 , 2 , 1 , 0 ]

sage : row6 = [ 2 , 1 , 0 , 2 , 1 , 0 ]

sage : Y = Yinf ( [ row1 , row2 , row3 , [ ] , [ ] , row6 ] )



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMBINATORICS OF THE GINDIKIN-KARPELEVICH FORMULA 163

sage : Y. pp ( )

0 | 1 | 2 | 0 | 1 | 2 |
|
|

0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |
0 | 1 |

1 | 2 | 0 |
sage : Y. number o f part s ( )

8

Note that the remaining crystal structure pertaining to generalized Young walls
has also been implemented. We continue using the Y from the previous example.

sage : Y. weight ( r o o t l a t t i c e=True )

−7∗alpha [ 0 ] − 7∗ alpha [ 1 ] − 6∗ alpha [ 2 ]

sage : Y. f ( 1 ) . pp ( )

0 | 1 | 2 | 0 | 1 | 2 |
1 |
|

0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |
0 | 1 |

1 | 2 | 0 |
sage : Y. e ( 0 ) . pp ( )

1 | 2 | 0 | 1 | 2 |
|
|

0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 |
0 | 1 |

1 | 2 | 0 |
sage : Y. content ( )

20

One may also generate the top part of the crystal graph.

sage : Yinf = c r y s t a l s . i n f i n i t y . GeneralizedYoungWalls ( 2 )

sage : S = Yinf . s ub c r y s t a l (max depth=4)

sage : G = Yinf . digraph ( subse t=S)

sage : view (G, t ightpage=True )

We conclude by mentioning that highest weight crystals realized by generalized
Young walls have also been implemented in Sage, following Theorem 4.1 of [KS10].

sage : Delta = RootSystem ( [ ’A’ , 3 , 1 ] )

sage : P = Delta . w e i g h t l a t t i c e ( extended=True )

sage : La = P. fundamental weights ( )

sage : YLa = c r y s t a l s . GeneralizedYoungWalls (3 , La [ 0 ] )

sage : S = YLa . subc r y s t a l (max depth=6)

sage : G = YLa . digraph ( subse t=S)

sage : view (G, t ightpage=True )
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Charles Cochet. MR1997677 (2004g:17013)

[KL11] H. H. Kim and K.-H. Lee, Representation theory of p-adic groups and canonical bases,
Adv. Math. 227 (2011), no. 2, 945–961, DOI 10.1016/j.aim.2011.02.017. MR2793028
(2012i:22025)

[KL12] H. H. Kim and K.-H. Lee, Quantum affine algebras, canonical bases, and q-
deformation of arithmetical functions, Pacific J. Math. 255 (2012), no. 2, 393–415, DOI
10.2140/pjm.2012.255.393. MR2928558

[KN94] M. Kashiwara and T. Nakashima, Crystal graphs for representations of the q-
analogue of classical Lie algebras, J. Algebra 165 (1994), no. 2, 295–345, DOI
10.1006/jabr.1994.1114. MR1273277 (95c:17025)

[KS97] M. Kashiwara and Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89
(1997), no. 1, 9–36, DOI 10.1215/S0012-7094-97-08902-X. MR1458969 (99e:17025)

[KS10] J.-A. Kim and D.-U. Shin, Generalized Young walls and crystal bases for quantum
affine algebra of type A, Proc. Amer. Math. Soc. 138 (2010), no. 11, 3877–3889, DOI
10.1090/S0002-9939-2010-10428-8. MR2679610 (2011k:17030)

http://www.ams.org/mathscinet-getitem?mr=2791904
http://www.ams.org/mathscinet-getitem?mr=1712630
http://www.ams.org/mathscinet-getitem?mr=1712630
http://www.ams.org/mathscinet-getitem?mr=3060455
http://www.ams.org/mathscinet-getitem?mr=2066942
http://www.ams.org/mathscinet-getitem?mr=2066942
http://www.ams.org/mathscinet-getitem?mr=2587444
http://www.ams.org/mathscinet-getitem?mr=2587444
http://www.ams.org/mathscinet-getitem?mr=2094114
http://www.ams.org/mathscinet-getitem?mr=2094114
http://www.ams.org/mathscinet-getitem?mr=0150239
http://www.ams.org/mathscinet-getitem?mr=0150239
http://www.ams.org/mathscinet-getitem?mr=1881971
http://www.ams.org/mathscinet-getitem?mr=1881971
http://www.ams.org/mathscinet-getitem?mr=2457716
http://www.ams.org/mathscinet-getitem?mr=2457716
http://www.ams.org/mathscinet-getitem?mr=2630039
http://www.ams.org/mathscinet-getitem?mr=2630039
http://www.ams.org/mathscinet-getitem?mr=1971463
http://www.ams.org/mathscinet-getitem?mr=1971463
http://www.ams.org/mathscinet-getitem?mr=1115118
http://www.ams.org/mathscinet-getitem?mr=1115118
http://www.ams.org/mathscinet-getitem?mr=1357199
http://www.ams.org/mathscinet-getitem?mr=1357199
http://www.ams.org/mathscinet-getitem?mr=1997677
http://www.ams.org/mathscinet-getitem?mr=1997677
http://www.ams.org/mathscinet-getitem?mr=2793028
http://www.ams.org/mathscinet-getitem?mr=2793028
http://www.ams.org/mathscinet-getitem?mr=2928558
http://www.ams.org/mathscinet-getitem?mr=1273277
http://www.ams.org/mathscinet-getitem?mr=1273277
http://www.ams.org/mathscinet-getitem?mr=1458969
http://www.ams.org/mathscinet-getitem?mr=1458969
http://www.ams.org/mathscinet-getitem?mr=2679610
http://www.ams.org/mathscinet-getitem?mr=2679610


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMBINATORICS OF THE GINDIKIN-KARPELEVICH FORMULA 165

[Lan71] R. P. Langlands, Euler products, Yale University Press, New Haven, Conn.-London, 1971.
A James K. Whittemore Lecture in Mathematics given at Yale University, 1967; Yale
Mathematical Monographs, 1. MR0419366 (54 #7387)

[Lee07] H. Lee, Realizations of crystal B(∞) using Young tableaux and Young walls, J. Al-
gebra 308 (2007), no. 2, 780–799, DOI 10.1016/j.jalgebra.2006.05.015. MR2295089
(2008f:17027)

[Lit95] P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142

(1995), no. 3, 499–525, DOI 10.2307/2118553. MR1356780 (96m:17011)
[LS12] K.-H. Lee and B. Salisbury, A combinatorial description of the Gindikin-Karpelevich

formula in type A, J. Combin. Theory Ser. A 119 (2012), no. 5, 1081–1094, DOI
10.1016/j.jcta.2012.01.011. MR2891384

[LS14] K.-H. Lee and B. Salisbury, Young tableaux, canonical bases, and the Gindikin-
Karpelevich formula, J. Korean Math. Soc. 51 (2014), no. 2, 289–309, DOI
10.4134/JKMS.2014.51.2.289. MR3178585

[LTV99] B. Leclerc, J.-Y. Thibon, and E. Vasserot, Zelevinsky’s involution at roots of unity,
J. Reine Angew. Math. 513 (1999), 33–51, DOI 10.1515/crll.1999.062. MR1713318
(2001f:20011)

[Lus90] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math.
Soc. 3 (1990), no. 2, 447–498, DOI 10.2307/1990961. MR1035415 (90m:17023)

[Lus91] G. Lusztig,Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math.
Soc. 4 (1991), no. 2, 365–421, DOI 10.2307/2939279. MR1088333 (91m:17018)

[Lus93] G. Lusztig, Introduction to quantum groups, Progress in Mathematics, vol. 110,
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