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YOUNG TABLEAUX, CANONICAL BASES, AND THE

GINDIKIN-KARPELEVICH FORMULA

Kyu-Hwan Lee and Ben Salisbury†

Abstract. A combinatorial description of the crystal B(∞) for finite-
dimensional simple Lie algebras in terms of certain Young tableaux was
developed by J. Hong and H. Lee. We establish an explicit bijection
between these Young tableaux and canonical bases indexed by Lusztig’s
parametrization, and obtain a combinatorial rule for expressing the Gindi-
kin-Karpelevich formula as a sum over the set of Young tableaux.

0. Introduction

The Gindikin-Karpelevich formula is a p-adic integration formula proved
by Langlands in [18]. He named it the Gindikin-Karpelevich formula after a
similar formula originally stated by Gindikin and Karpelevich [5] in the case of
real reductive groups. The formula also appears in Macdonald’s work [25] on
p-adic groups and affine Hecke algebras.

Let G be a split semisimple algebraic group over a p-adic field F with ring
of integers oF , and suppose the residue field oF /πoF of F has size t, where
π is a generator of the unique maximal ideal in oF . Choose a maximal torus
T of G contained in a Borel subgroup B with unipotent radical N , and let
N− be the opposite group to N . We have B = TN . The group G(F ) has
a decomposition G(F ) = B(F )K, where K = G(oF ) is a maximal compact
subgroup of G(F ). Fix an unramified character τ : T (F ) −→ C×, and define a
function f◦ : G(F ) −→ C by

f◦(bk) = (δ1/2τ)(b), b ∈ B(F ), k ∈ K,

where δ : B(F ) −→ R×
>0 is the modular character of B and τ is extended to

B(F ) to be trivial on N(F ). The function f◦ is called the standard spherical

vector corresponding to τ .
Let G∨ be the Langlands dual of G with the dual torus T∨. The set of

coroots of G is identified with the set of roots of G∨ and will be denoted by Φ.
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Finally, let z be the element of the dual torus T∨, corresponding to τ via the
Satake isomorphism.

Theorem 0.1 (Gindikin-Karpelevich formula, [18]). Given the setting above,

we have

(0.1)

∫

N−(F )

f◦(n) dn =
∏

α∈Φ+

1− t−1
z
α

1− z
α

,

where Φ+ is the set of positive roots of G∨.

Let g be the Lie algebra of G∨, and let B(∞) be the crystal basis of the
negative part U−

q (g) of the quantum group Uq(g). Then Φ is the root system
of g as well. In recent work, the integral in the Gindikin-Karpelevich formula
has been evaluated using Kashiwara’s crystal basis or Lusztig’s canonical basis.
D. Bump and M. Nakasuji [4] used decorated string parameterizations in the
crystal B(∞), which are essentially paths to the highest weight vector, while
in [26], P. McNamara used a cellular decomposition of N− in bijection with
Lusztig’s canonical basis B of U−

q (g) and computed the integral over the cells.
Both of these methods are valid for type Ar.

In the general case, H. Kim and K.-H. Lee [17] used Lusztig’s parameteriza-

tion of elements in B and proved, for all finite-dimensional simple Lie algebras
g,

(0.2)
∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

b∈B

(1− t−1)nz(φi(b))
z
−wt(b),

where nz(φi(b)) is the number of nonzero entries in the Lusztig parametrization
φi(b) of b with respect to a reduced expression i of the longest Weyl group
element.

The purpose of this paper is to describe the sum in (0.2) in a combinato-
rial way using Young tableaux. Since the canonical basis B is the same as
Kashiwara’s global crystal basis, we may replace B with B(∞). The associated
crystal structure onBmay be described in terms of the Lusztig parametrization
[2, 24] or the string parametrization [1, 13, 22], and there are formulas relating
the two given by Berenstein and Zelevinsky in [2]. Much work has been done on
realizations of crystals (e.g., [8, 9, 15, 16, 21]). In the case of B(∞) for finite-
dimensional simple Lie algebras, J. Hong and H. Lee used marginally large

semistandard Young tableaux to obtain a realization of crystals [7]. We will
use their marginally large semistandard Young tableaux realization of B(∞)
to write the right-hand side of (0.2) as a sum over a set T (∞) of tableaux. It
turns out that the appropriate data to define the coefficient comes from a con-
secutive string of letters k in the tableaux, which we call a k-segment. Define
seg(T ) to be the total number of k-segments in a tableau T for types Ar and
Cr. For other types, see Definition 3.1 (2). Our result is the following.
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Theorem 0.2. Let g be a Lie algebra of type Ar, Br, Cr, Dr, or G2. Then

(0.3)
∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

T∈T (∞)

(1− t−1)seg(T )
z
−wt(T ).

The point is that the exponent seg(T ) can be read off immediately from the
tableau T . In [20], the authors achieved this result when g is of type Ar, where
the method of proof first recovers the string parametrization of a tableau from
the lengths of k-segments. In this paper, we will adopt a different approach.
We construct a bijection from T (∞) to the set of Kostant partitions and use
the natural bijection from the set of Kostant partitions to Lusztig’s canonical
basis B (see the diagram in (3.3)). In this way, we relate a k-segment of a
tableau T with a particular positive root up to some necessary modifications.
This idea is similar to the approach used by the authors together with S.-J.

Kang and H. Ryu in the type A
(1)
r case [10].

There is a companion formula to the Gindikin-Karpelevich formula, called
the Casselman-Shalika formula, which may be viewed as the highest weight
crystal analogue of our work here. The corresponding type Ar result to this
work for the Casselman-Shalika may be found in [19]. It is also worth not-
ing that there are well-known bijections between the Lusztig parametrization,
string parametrization, and semistandard Young tableaux in type Ar. More
details may be found in [27, 29].

The outline of this paper is as follows. In Section 1, we set our basic no-
tation and review the notion of a combinatorial crystal and its properties. In
Section 2, we recall the description of B(∞) crystal given by marginally large
semistandard Young tableaux according to J. Hong and H. Lee. The definition
of seg(T ) and the proof of Theorem 0.2 will be presented in Section 3. Section
4 gives some applications to the study of symmetric functions.

Acknowledgements. B. S. would like to thank Gautam Chinta for his sup-
port during a portion of this work. He would also like to thank Travis Scrimshaw
for his help during the development of the T (∞) implementation in Sage. This
latter development was completed while both authors were visiting ICERM
during the Spring 2013 semester program entitled “Automorphic Forms, Com-
binatorial Representation Theory, and Multiple Dirichlet Series.”

1. General definitions

Let I be a finite index set and let g be a finite-dimensional simple complex Lie
algebra of rank r := #I ≥ 1 with simple roots {αi : i ∈ I} and Cartan matrix
A = (aij)i,j∈I . We denote the generators of g by ei, fi, and hi, for i ∈ I. Let
P =

⊕
i∈I Zωi and P+ =

⊕
i∈I Z≥0ωi be the weight lattice and dominant

integral weight lattice, respectively, where ωi (i ∈ I) are the fundamental
weights of g. Let {hi : i ∈ I} denote the set of coroots of g, and recall
the pairing 〈 , 〉 : P∨ × P −→ Z by 〈h, λ〉 = λ(h) with the condition that
aij = αj(hi), where P∨ =

⊕
i∈I Zhi is the dual weight lattice. The Cartan
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subalgebra of g is h = C ⊗Z P∨, and its dual is h∗ =
⊕

i∈I Cωi. We will
denote the root lattice of g by Q =

⊕
i∈I Zαi, and the positive and negative

root lattices, respectively, are Q+ =
⊕

i∈I Z≥0αi and Q− = −Q+.

Denote by Φ and Φ+, respectively, the set of roots and the set of positive
roots, and define the Weyl vector ρ by 2ρ =

∑
α∈Φ+ α. The Weyl group of

Φ is the subgroup W ⊂ GL(h∗) generated by simple reflections {si : i ∈ I}.
For each w ∈ W , there is a reduced expression w = si1 · · · sim , to which we
may associate a reduced word (i1, . . . , im). Let R(w) denote the set of all
such reduced words for a fixed w ∈ W . In particular, we consider reduced
words i = (i1, . . . , iN ) ∈ R(w◦), where w◦ is the longest element of W and
N = ℓ(w◦) = #Φ+. Elements of R(w◦) are called long words.

Let q be an indeterminate, and let Uq(g) be the quantum group associated
to g. An (abstract) Uq(g)-crystal is a set B together with maps

wt: B −→ P, ẽi, f̃i : B −→ B ⊔ {0}, εi, ϕi : B −→ Z ⊔ {−∞},

that satisfy a certain set of axioms (see, e.g., [6, 14]). Of particular interest to
us is the crystal B(∞) which is a combinatorial model of U−

q (g). The crystal
B(∞) was originally defined by Kashiwara in [12].

For the nonexceptional finite-dimensional Lie algebras, the semistandard
Young tableaux realization of Uq(g)-crystals of highest weight representations
B(λ) with λ a dominant integral weight, was constructed by M. Kashiwara and
T. Nakashima [15]. The G2 description is due to S.-J. Kang and K. Misra [11].
The Young tableaux description of B(∞) is closely related to that of B(λ) in
the sense that the basic building blocks in both characterizations come from
B(ω1) for the fundamental weight ω1. The crystal graph of B(ω1) is given in
Figure 1.1.

2. A combinatorial realization of B(∞)

This section is a summary of the results from [7]. Recall that a tableaux T
is semistandard (with respect to an alphabet J ; i.e., a totally ordered set) if
entries are weakly increasing in rows from left to right and strictly increasing
in columns from top to bottom. J. Hong and H. Lee define a tableau T to be
marginally large if, for all 1 ≤ i ≤ r, the number of i-boxes in the ith row of
T is greater than the number of all boxes in the (i + 1)st row by exactly one.
Following [7], we present the set T (∞) type-by-type.

2.1. Type A

When g is of type Ar, T (∞) is the set of marginally large semistandard
tableaux on the alphabet

J(Ar) := {1 ≺ 2 ≺ · · · ≺ r ≺ r + 1}

satisfying the following conditions.

(1) Each tableaux has exactly r rows.
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Ar : 1 2 · · · r r + 1
1 2 r − 1 r

Br : 1 · · · r 0 r · · · 1
1 r − 1 r r r − 1 1

Cr : 1 · · · r r · · · 1
1 r − 1 r r − 1 2

Dr : 1 · · · r − 1

r

r

r − 1 · · · 1
1 r − 2

r −
1

r

r

r −
1

r − 2 1

G2 : 1 2 3 0 3 2 1
1 2 1 1 2 1

Figure 1.1. The fundamental crystals B(ω1) when the un-
derlying Lie algebra is of finite type.

(2) The first column has entries 1, 2, . . . , r.

Example 2.1. For g of type A3, the elements of T (∞) all have the form

T =
1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 4 · · · 4

2 2 · · · 2 2 3 · · · 3 4 · · · 4

3 4 · · · 4

,

where the shaded parts are the required parts and the unshaded parts are
variable. In particular, the unique element of weight zero in this crystal is

T∞ =
1 1 1

2 2

3

.

2.2. Type B

When g is of type Br, T (∞) is the set of marginally large semistandard
tableaux on the alphabet

J(Br) := {1 ≺ · · · ≺ r ≺ 0 ≺ r ≺ · · · ≺ 1}

satisfying the following conditions.

(1) Each tableaux has exactly r rows.
(2) The first column has entries 1, 2, . . . , r.
(3) Contents of each box in the ith row is less than or equal to ı (with

respect to ≺).
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(4) A 0-box occurs at most once in each row.

Example 2.2. For g of type B3, the elements of T (∞) all have the form

T =
1 1 1 · · · 1 1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 0 3 · · · 3 2 · · · 2 1 · · · 1

2 2 2 · · · 2 2 3 · · · 3 0 3 · · · 3 2 · · · 2

3 0 3 · · · 3

,

where the shaded parts are the required parts and the unshaded parts are
variable. In particular, the unique element of weight zero in this crystal is

T∞ =
1 1 1

2 2

3

.

2.3. Type C

In type Cr, T (∞) is the set of marginally large semistandard tableaux on
the alphabet

J(Cr) := {1 ≺ · · · ≺ r ≺ r ≺ · · · ≺ 1}

satisfying the following conditions.

(1) Each tableaux has exactly r rows.
(2) The first column has entries 1, 2, . . . , r.
(3) Contents of each box in the ith row is less than or equal to ı (with

respect to ≺).

Example 2.3. For g of type C3, the elements of T (∞) all have the form

T =
1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 3 · · · 3 2 · · · 2 1 · · · 1

2 2 · · · 2 2 3 · · · 3 3 · · · 3 2 · · · 2

3 3 · · · 3

,

where the shaded parts are the required parts and the unshaded parts are
variable. In particular, the unique element of weight zero in this crystal is

T∞ =
1 1 1

2 2

3

.

2.4. Type D

In type Dr, T (∞) is the set of marginally large semistandard tableaux on
the alphabet

J(Dr) :=

{
1 ≺ · · · ≺ r − 1 ≺

r
r

≺ r − 1 ≺ · · · ≺ 1

}
.

satisfying the following conditions.
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(1) Each tableaux has exactly r − 1 rows.
(2) The first column has entries 1, 2, . . . , r − 1.
(3) Contents of each box in the ith row is less than or equal to ı (with

respect to ≺).
(4) The entries r and r do not appear in the same row.

Example 2.4. In type D4, the elements of T (∞) all have the form

T =
1 1 · · · 1 1 · · · 1 1 1 · · · 1 1 · · · 1 1 · · · 1 1 · · · 1 1 2 · · · 2 3 · · · 3 x1 · · ·x1 3 · · · 3 2 · · · 2 1 · · · 1

2 2 · · · 2 2 · · · 2 2 3 · · · 3 x2 · · · x2 3 · · · 3 2 · · · 2

3 x3 · · · x3 3 · · · 3

,

where xi ∈ {4, 4} for each i = 1, 2, 3, the shaded parts are the required parts,
and the unshaded parts are variable. In particular, the unique element of weight
zero in this crystal is

T∞ =
1 1 1

2 2

3

.

2.5. Type G

Lastly, when g is of type G2, the elements of T (∞) all have the form

T = 1 1 · · · 1 1 2 · · · 2 3 · · · 3 0 3 · · · 3 2 · · · 2 1 · · · 1

2 3 · · · 3
,

where the shaded parts are the required parts and the unshaded parts are
variable. In particular, the unique element of weight zero in this crystal is

T∞ = 1 1

2
.

A crystal structure can be defined on T (∞) as in [7] by embedding a tableau
T of T (∞) into a tensor power of the fundamental crystal B(ω1) via the far-
Eastern reading (where the tensor product is defined as usual [6, 14]). The
following theorem is established by J. Hong and H. Lee.

Theorem 2.5 ([7]). For underlying Lie types Ar, Br, Cr, Dr, and G2, there

is a crystal isomorphism between T (∞) and B(∞).

Following D. Bump and M. Nakasuji in [4], we wish to suppress the required
columns from the tableaux and only include the variable parts. This convention
will save space, making drawing the graphs easier and it will help make the
k-segments, to be defined later, stand out. We will call this modification of
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Figure 2.1. The top part of T (∞)♯ in type B3.

T ∈ T (∞) the reduced form of T , and denote it by T ♯, for T ∈ T (∞). For
example, in type C3, we have




1 1 1

2 2

3




♯

=
∗

∗

∗

and, in C2, 

 1 1 1 1 1 2 2

2 2 2 2




♯

= 2 2

2 2 2
,

where ∗ is used to denote a row without any variable entries. In particular, the
resulting shape need not be a Young diagram. Note that there is no essential
information lost when passing to the reduced form. Set T (∞)♯ = {T ♯ : T ∈
T (∞)}. We conclude with some examples of T (∞) crystals, of course with
only the top part of the graph computed. See Figures 2.1 and 2.2 for T (∞)♯

when g is of type B3 and G2, respectively.

3. Main result

In this section, Xr = Ar, Br, Cr , Dr, or G2. This first definition is a
generalization of that given in [20].

Definition 3.1. Let T ∈ T (∞).
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Figure 2.2. The top part of T (∞)♯ in type G2.

(1) Define a k-segment, k ∈ J(Xr) \ {1}, to be a maximal sequence of k-
boxes in one row of T . By definition, we do not consider the required
collection of k-boxes beginning the kth row of T to be a k-segment.

(2) Let seg′(T ) be the total number of segments of T . We define seg(T )
type-by-type.

• In type Ar or Cr, we simply define seg(T ) = seg′(T ).
• In type Br, we set eB(T ) to be the number of rows i that contain
both 0-segment and ı-segment, and define seg(T ) = seg′(T ) −
eB(T ).

• In type Dr, we set eD(T ) to be the number of rows i that contain
ı-segment but neither r- nor r-segment, and define

seg(T ) = seg′(T ) + eD(T ).

• In type G2, if the first row contains both 0-segment and 1-segment,
we define seg(T ) = seg′(T )− 1; otherwise, seg(T ) = seg′(T ).

Example 3.2. Let Xr = A3 and

T =
1 1 1 1 1 1 1 1 1 2 2 3 3

2 2 2 2 3 3 4 4

3 4 4

.

Then seg(T ) = seg′(T ) = 5, since there are a 2-segment and a 3-segment in the
first row, a 3-segment and a 4-segment in the second row, and a 4-segment in
the third row.
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Example 3.3. Let Xr = B3 and

T =
1 1 1 1 1 1 1 1 1 2 2 0 3 1 1 1

2 2 2 2 3 3 2 2

3 0 3

.

Immediately, we see seg′(T ) = 8. The first row has a 0-segment and a 1-
segment, and the third row has both a 0-segment and a 3-segment. Thus
eB(T ) = 2, and we obtain seg(T ) = seg′(T )− eB(T ) = 6.

Example 3.4. Let Xr = D4 and

T =
1 1 1 1 1 1 1 1 1 2 2 3 1 1 1

2 2 2 2 3 4 3 3

3 4 3

.

Clearly, seg′(T ) = 8. The first row has a 1-segment but no 4- nor 4-segment.
The second row does not have a 2-segment, while the third row has a 3-segment
and a 4-segment. Thus eD(T ) = 1, where the sole contribution comes from the
first row. Then we have

seg(T ) = seg′(T ) + eD(T ) = 8 + 1 = 9.

Example 3.5. Let Xr = G2 and

T = 1 1 1 1 1 1 3 3 0 3 2 1 1

2 3 3 3 3
.

Then seg(T ) = seg′(T ) − 1 = 6 − 1 = 5, since the first row contains both a
0-segment and a 1-segment.

Now we will relate tableaux in T (∞) to Kostant partitions. Set R = {(α) :
α ∈ Φ+}, where each (α) is considered as a formal symbol. Define R to be
the free abelian group generated by R, and let R+ be the set of the elements
in R with coefficients from Z≥0. An element of R+ should be considered as a
Kostant partition, and will denoted by a boldface Greek letter; i.e.,

α =
∑

(α)∈R

c(α)(α).

If c(α) 6= 0, then we call (α) a part of α.

We define a map Ξ: T (∞) −→ R+ by associating elements of R+ to seg-
ments of T ∈ T (∞). In the following, ℓi,k(T ) denotes the number of k-boxes
in the ith row of T , and each segment is in the ith row except for the type G2.
We define Ξ on a case-by-case basis.

• g is of type Ar:

k ··· k 7→ ℓi,k(T )(αi + αi+1 + · · ·+ αk−1), 1 ≤ i < k ≤ r + 1;
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• g is of type Br:

k ··· k 7→ ℓi,k(T )(αi + αi+1 + · · ·+ αk−1), 1 ≤ i < k ≤ r,

0 7→ (αi + αi+1 + · · ·+ αr), 1 ≤ i ≤ r,

k ··· k 7→ ℓi,k(T )(αi + · · ·+ αk−1 + 2αk + · · ·+ 2αr), 1 ≤ i < k ≤ r,

ı ··· ı 7→ 2ℓi,ı(T )(αi + · · ·+ αr−1 + αr), 1 ≤ i ≤ r;

• g is of type Cr:

k ··· k 7→ ℓi,k(T )(αi + αi+1 + · · ·+ αk−1), 1 ≤ i < k ≤ r,

k ··· k 7→ ℓi,k(T )(αi + · · ·+ αr−1 + αr + αr−1 + · · ·+ αk), 1 ≤ i ≤ k ≤ r;

• g is of type Dr:

k ··· k 7→ ℓi,k(T )(αi + αi+1 + · · ·+ αk−1), 1 ≤ i < k ≤ r − 1,

r ··· r 7→ ℓi,r(T )(αi + αi+1 + · · ·+ αr−2 + αr−1), 1 ≤ i ≤ r − 1,

r ··· r 7→ ℓi,r(T )(αi + αi+1 + · · ·+ αr−2 + αr), 1 ≤ i ≤ r − 1,

k ··· k 7→ ℓi,k(T )(αi + · · ·+ αr−1 + αr + αr−2 + · · ·+ αk), 1 ≤ i < k ≤ r − 1,

ı ··· ı 7→ ℓi,ı(T )
(

(αi + · · ·+ αr−1) + (αi + · · ·+ αr−2 + αr)
)

, 1 ≤ i ≤ r − 1;

• g is of type G2:

2 ··· 2 in the first row 7→ ℓ1,2(T )(α1),

3 ··· 3 in the first row 7→ ℓ1,3(T )(α1 + α2),

0 in the first row 7→ (2α1 + α2),

3 ··· 3 in the first row 7→ ℓ1,3(T )(3α1 + α2),

2 ··· 2 in the first row 7→ ℓ1,2(T )(3α1 + 2α2),

1 ··· 1 in the first row 7→ 2ℓ1,1(T )(2α1 + α2),

3 ··· 3 in the second row 7→ ℓ2,3(T )(α2).

Then Ξ(T ) is defined to be the sum of elements in R+ corresponding to seg-
ments of T as prescribed by the above rules.

Example 3.6. Let T be the type B3 tableaux from Example 3.3. Then

Ξ(T ) = 2(α1) + (α1 + α2 + α3) + (α1 + α2 + 2α3)

+ 3 · 2(α1 + α2 + α3) + 2(α2) + 2 · 2(α2 + α3) + (α3) + 2(α3)

= 2(α1) + 7(α1 + α2 + α3) + (α1 + α2 + 2α3) + 2(α2) + 4(α2 + α3)

+ 3(α3).

The following proposition is essential for the proof of the main theorem.

Proposition 3.7. The map Ξ: T (∞) −→ R+ is a bijection. Moreover, seg(T )
is equal to the number of distinct parts of Ξ(T ) for T ∈ T (∞).
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Table 3.1. Positive roots listed by type.

Xr Φ(Xr)
Ar βi,k = αi + · · ·+ αk, 1 ≤ i ≤ k ≤ r

Br
βi,k = αi + · · ·+ αk, 1 ≤ i ≤ k ≤ r

γi,k = αi + · · ·+ αk−1 + 2αk + · · ·+ 2αr, 1 ≤ i < k ≤ r

Cr
βi,k = αi + · · ·+ αk, 1 ≤ i ≤ k ≤ r − 1

γi,k = αi + · · ·+ αr−1 + αr + αr−1 + · · ·+ αk, 1 ≤ i ≤ k ≤ r

Dr

βi,k = αi + · · ·+ αk, 1 ≤ i ≤ k ≤ r − 1
βi,r = αi + · · ·+ αr−2 + αr, 1 ≤ i ≤ r − 1

γi,k = αi + · · ·+ αr−1 + αr + αr−2 + · · ·+ αk, 1 ≤ i < k ≤ r − 1
G2 α1, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2, α2

Table 3.2. The canonical realization of positive roots listed
by type, following [3].

Xr Φ(Xr)
Ar βi,k = ǫi − ǫk+1, 1 ≤ i ≤ k ≤ r

Br

βi,k = ǫi − ǫk+1, 1 ≤ i ≤ k ≤ r − 1
βi,r = ǫi, 1 ≤ i ≤ r

γi,k = ǫi + ǫk, 1 ≤ i < k ≤ r

Cr
βi,k = ǫi − ǫk+1, 1 ≤ i ≤ k ≤ r − 1

γi,k = ǫi + ǫk, 1 ≤ i ≤ k ≤ r

Dr

βi,k = ǫi − ǫk+1, 1 ≤ i ≤ k ≤ r − 1
βi,r = ǫi + ǫr, 1 ≤ i ≤ r − 1

γi,k = ǫi + ǫk, 1 ≤ i < k ≤ r − 1

G2
ǫ1 − ǫ2, −ǫ1 + ǫ3, −ǫ2 + ǫ3,

ǫ1 − 2ǫ2 + ǫ3, −ǫ1 − ǫ2 + 2ǫ3, −2ǫ1 + ǫ2 + ǫ3

Proof. As before, let ℓi,k(T ) be the length of the k-segment in the ith row of
T . It is important to notice that the data {ℓi,k(T )}i,k completely determines
T . For the readers convenience, a list of positive roots for each type is provided
in Table 3.1 (and Table 3.2). We will prove the proposition on a type-by-type
basis, where, in each type, we construct a map Υ: R+ −→ T (∞) which is the
inverse of Ξ. Since the types Ar and Cr are simpler than the types Br, Dr,
and G2, we deal with the types Ar and Cr first.

Type Ar: We see from Table 3.1 that Φ+ = {βi,k : 1 ≤ i ≤ k ≤ r}, so an

element α ∈ R+ can be written as α =
∑

ci,k(βi,k). Define Υ: R+ −→ T (∞)
by setting Υ(

∑
ci,k(βi,k)) to be the tableaux such that

ℓi,k+1(T ) = ci,k, 1 ≤ i ≤ k ≤ r,
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where we write T = Υ(
∑

ci,k(βi,k)). Then it is straightforward to check that Υ
and Ξ are inverse to each other, and we also obtain that seg(T ) is the number
of (βi,k)’s with nonzero coefficient ci,k, which is exactly the number of distinct
parts of α.

Type Cr: From Table 3.1, we have Φ+ = {βi,k : 1 ≤ i ≤ k ≤ r − 1} ∪ {γi,k :

1 ≤ i ≤ k ≤ r}. Write an element α ∈ R+ as α =
∑

ci,k(βi,k) +
∑

di,k(γi,k),
and define Υ(α) to be the tableau T such that

ℓi,k+1(T ) = ci,k and ℓi,k(T ) = di,k.

Then Υ is the inverse of Ξ, and seg(T ) is the number of distinct parts in Ξ(T ).
Type Br: In this case, for each i ∈ I, both the 0-segment and ı-segment

in the ith row contribute the same part (βi,r) from the definition of Ξ above.
Since we have Φ+ = {βi,k : 1 ≤ i ≤ k ≤ r} ∪ {γi,k : 1 ≤ i < k ≤ r}, write
an element α ∈ R+ as α =

∑
ci,k(βi,k) +

∑
di,k(γi,k). Define Υ(α) to be the

tableau T such that

ℓi,k+1(T ) = ci,k, ℓi,k(T ) = di,k, ℓi,ı(T ) =
⌊ci,r

2

⌋

and

ℓi,0(T ) =

{
0 if ci,r is even,

1 otherwise,

where ⌊n⌋ denotes the largest integer less than or equal to n.
In order to see that Ξ and Υ are inverse to each other, it is enough to con-

sider 0-segment and ı-segment in the ith row and the corresponding partition
ci,r(βi,r). Assume that T has only possibly a 0-segment and ı-segment in the
ith row. Then Ξ(T ) = ci,r(βi,r), where ci,r = 2ℓi,ı(T )+ ℓi,0(T ) with ℓi,0(T ) = 0
or 1. Now we see that

ℓi,ı (Υ(Ξ(T ))) =
⌊ci,r

2

⌋
=

⌊
2ℓi,ı(T ) + ℓi,0(T )

2

⌋
= ℓi,ı(T )

and ℓi,0 (Υ(Ξ(T ))) = ℓi,0(T ). Thus we have Υ(Ξ(T )) = T . Next we consider a
partition α = ci,r(βi,r). Then we have

Ξ(Υ(α)) =
(
2
⌊ci,r

2

⌋
+ ci,r

)
(βi,r) = ci,r(βi,r) = α,

where ci,r = 0 if ci,r is even, or ci,r = 1 otherwise. Hence Υ is the inverse of Ξ.
Furthermore, since eB(T ) counts the number of rows i such that both ℓi,ı(T )

and ℓi,0(T ) are nonzero, it is now clear that seg(T ) = seg′(T ) − eB(T ) is the
number of distinct parts in Ξ(T ).

Type Dr: In this type, we have Φ+ = {βi,k : 1 ≤ i ≤ k ≤ r − 1} ∪ {βi,r :

1 ≤ i ≤ r − 1} ∪ {γi,k : 1 ≤ i < k ≤ r − 1}. We need to pay attention to
an xi-segment (xi ∈ {r, r}) and ı-segment in the ith row, since these segments
do not exactly match up with the corresponding parts (βi,r−1) and (βi,r). We
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write an element α ∈ R+ as α =
∑

ci,k(βi,k) +
∑

di,k(γi,k). Define Υ(α) to
be the tableau T such that

ℓi,k+1(T ) = ci,k for 1 ≤ i ≤ k ≤ r − 2, ℓi,k(T ) = di,k for 1 ≤ i < k ≤ r − 1,

ℓi,r(T ) = max(0, ci,r−1 − ci,r), ℓi,r(T ) = max(0, ci,r − ci,r−1),

ℓi,ı(T ) = min(ci,r−1, ci,r).

In order to see that Υ is the inverse of Ξ, it is enough to consider an xi-
segment (xi ∈ {r, r}) and ı-segment in the ith row and the corresponding
partition ci,r−1(βi,r−1) + ci,r(βi,r). Recall that, by definition, an r-segment
and r-segment cannot simultaneously appear in the same row of T . Assume
that T has only possibly an r-segment and ı-segment in the ith row. Then
Ξ(T ) = ci,r−1(βi,r−1)+ ci,r(βi,r), where ci,r−1 = ℓi,r(T )+ ℓi,ı(T ), ci,r = ℓi,ı(T )
and ci,r−1 ≥ ci,r. Write T ′ = Υ(Ξ(T )). Then

ℓi,r(T
′) = max(0, ci,r−1 − ci,r) = ci,r−1 − ci,r = ℓi,r(T )

ℓi,r(T
′) = max(0, ci,r − ci,r−1) = 0 = ℓi,r(T ),

ℓi,ı(T
′) = min(ci,r−1, ci,r) = ci,r = ℓi,ı(T ).

Thus T ′ = T = Υ
(
Ξ(T )

)
.

Next we assume that α = ci,r−1(βi,r−1) + ci,r(βi,r) with ci,r−1 ≥ ci,r. Then
Υ(α) does not have r-segment, since ℓi,r(Υ(α)) = 0. And we have

Ξ(Υ(α)) =
(
max(0, ci,r−1 − ci,r) + min(ci,r−1, ci,r)

)
(βi,r−1)

+ min(ci,r−1, ci,r)(βi,r)

= ci,r−1(βi,r−1) + ci,r(βi,r) = α.

Thus Υ is the inverse of Ξ in this case. The other case where T has only
possibly an r-segment and ı-segment in the ith row can be proved similarly.

Since eD(T ) counts the number of rows i that contain ı-segment but neither
r- or r-segment, we can see that seg(T ) = seg′(T ) + eD(T ) is the number of
distinct parts in Ξ(T ).

Type G2: This is similar to the type B2 case proved above, so we skip the
details. �

Define a map pr : R+ −→ Q− to be the (negative of the) canonical projec-
tion; i.e.,

pr
( ∑

(α)∈R

c(α)(α)
)
= −

∑

α∈Φ+

c(α)α ∈ Q−.

Then define the map wt: T (∞) −→ Q− to be wt = pr ◦ Ξ. This is the same
function wt for the crystal structure on T (∞) defined by J. Hong and H. Lee.

It is well-known that for any i = (i1, i2, . . . , iN) ∈ R(w◦), we can write
elements of Φ+ as

(3.1) β1 = αi1 , β2 = si1(αi2 ), . . . , βN = si1 · · · siN−1
(αiN ).
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To this data, Lusztig associates a PBW type basis Bi of U
−
q (g) consisting of

the elements of the form

fc

i
= f

(c1)
β1

· · · f
(cN)
βN

,

where c = (c1, c2, . . . , cN ) ∈ ZN
≥0,

f
(cj)
βj

= T ′′
i1,−1 · · ·T

′′
ij−1,−1(f

(cj)
ij

),

and f
(c)
i is the cth divided power of fi. (See Section 37.1.3 and Chapter 40

of [24] for more details, including the definition of T ′′
i,−1.) The Z[q]-span L of

Bi is independent of i. Let π : L −→ L /qL be the natural projection. The
image π(Bi) is also independent of i; we denote it by B. The restriction of π

to L ∩ L is an isomorphism of Z-modules π : L ∩ L −→ L /qL , where is
the bar involution of Uq(g) fixing the generators ei and fi, for all i ∈ I, and
sending q 7→ q−1. Then the preimage B = π−1(B) is a Q(q)-basis of U−

q (g),

called the canonical basis. For i ∈ R(w◦), define a map φi : B −→ ZN
≥0 by

setting φi(b) = c, where c ∈ ZN
≥0 is given by

b ≡ fc

i mod qL .

Then φi is a bijection. Define wt(b) = −
∑N

j=1 cjβj ∈ Q−, and define nz(φi(b))

to be the number of nonzero cj’s for φi(b) = (c1, . . . , cN) and b ∈ B.
Now we can state the main theorem of this paper.

Theorem 3.8. Let g be a Lie algebra of type Ar, Br, Cr, Dr or G2 and fix a

long word i ∈ R(w◦). Then we have

∏

α∈Φ+

1− t−1
z
α

1− z
α

=
∑

b∈B

(1− t−1)nz(φi(b))
z
−wt(b)(3.2)

=
∑

T∈T (∞)

(1− t−1)seg(T )
z
−wt(T ).

Proof. The first equality is Proposition 1.4 in [17], so we need only prove the sec-
ond equality. Since a long word i ∈ R(w◦) is fixed, the positive roots β1, . . . , βN

are determined as in (3.1). Define a map Ψi : B −→ R+ by

Ψi(b) =

N∑

j=1

cj(βj),

where φi(b) = (c1, . . . , cN ). Since the weight space decomposition of U−
q (g) is

preserved under the classical limit q → 1 (see, e.g., [6]), the theory of Kostant
partitions for the negative part U−(g) of the universal enveloping algebra U(g)
tells us that Ψi is a bijection. Moreover, nz(φi(b)) is the same as the number
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of distinct parts in Ψi(b) by construction. So we have the following diagram.

(3.3)

T (∞) B

R+

Θi = Ψ−1

i
◦ Ξ

Ξ Ψi

By Proposition 3.7, the map Θi := Ψ−1
i

◦ Ξ defines a bijection between T (∞)
and B. Since wt = pr ◦Ψi on B, we have

(3.4) wt(Θi(T )) = (pr ◦Ψi ◦Θi)(T ) = (pr ◦ Ξ)(T ) = wt(T ).

We also have

(3.5) seg(T ) = nz(Θi(T ))

for all T ∈ T (∞), since each of seg(T ) and nz(Θi(T )) is equal to the number
of distinct parts of Ξ(T ) by Proposition 3.7 and the observation made above.
Finally, applying the bijection Θi to (3.2), we replace B with T (∞), nz(φi(b))
with seg(T ), and wt(b) with wt(T ) to complete the proof. �

We have obtained the following corollary, which is of its own interest.

Corollary 3.9. For each i ∈ R(w◦), the map Θi : T (∞) −→ B is a bijection

such that

wt(T ) = wt(Θi(T )),

seg(T ) = nz(φi(Θi(T ))).

Remark 3.10. The map Θi is not a crystal isomorphism in general.

Example 3.11. Consider T from Example 3.3 and choose i = (3, 2, 3, 2, 1, 2, 3,
2, 1). Then we have

β1 = α3, β2 = α2 + 2α3, β3 = α2 + α3, β4 = α2, β5 = α1 + 2α2 + 2α3,
β6 = α1 + α2 + 2α3, β7 = α1 + α2 + α3, β8 = α1 + α2, β9 = α1.

From Example 3.6, we obtain

φi(Θi(T )) = (3, 0, 4, 2, 0, 1, 7, 0, 2),

and see that seg(T ) = nz(φi(Θi(T ))) = 6.

4. Applications

Throughout this section, we let q be a formal indeterminate. In [23], Lusztig
defined a q-analogue of Kostant’s partition function as follows. For µ ∈ P , set

P(µ; q) :=
∑

(c1,...,cN)∈Z
N
≥0

µ=c1β1+···+cNβN

qc1+···+cN ,
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1

1− t−1 1− t−1 1− t−1

1− t−1

1− t−1

(1− t−1)2(1− t−1)2

1− t−1 1− t−1

(1− t−1)2
1− t−1

1 2 3

1

2
3

1

2 3
1

2
3

Figure 3.1. The coefficients for the top part of T (∞) in type
B3. Compare with Figure 2.1.

1

1− t−1 1− t−1

1− t−1 1− t−1 (1− t−1)2 1− t−1

1− t−1 (1− t−1)2
1− t−1

(1− t−1)2 (1− t−1)2 (1− t−1)2 1− t−1

1 2

1 2 1 2

1 2
1

21 2 1 2

Figure 3.2. The coefficients for the top part of T (∞) in type
G2. Compare with Figure 2.2.

where {β1, . . . , βN} = Φ+. Note that P(µ; q) = 0 if µ /∈ Q+. We immediately
obtain a way to write this q-analogue as a sum over T (∞).

Definition 4.1. For T ∈ T (∞), define |T | to be the number of boxes in T ♯,

counting a box ı in the ith row, if any, with multiplicity 2 for each i in types
Br, Dr, and G2.
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Proposition 4.2. For µ ∈ Q+, we have

P(µ; q) =
∑

T∈T (∞)
−wt(T )=µ

q|T |.

Proof. We write Ξ(T ) = c1(β1) + · · · + cN (βN ), where {β1, . . . , βN} = Φ+, so
that wt(T ) = −c1β1 − · · · − cNβN . Then, from the definition of Ξ, one can
see that |T | = c1 + · · · + cN . Now the assertion is clear from the definition of
P(µ; q). �

The above proposition enables us to write the Kostka-Foulkes polynomial
Kλ,µ(q) (λ, µ ∈ P+) in terms of T (∞). Namely, we have

Kλ,µ(q) :=
∑

w∈W

(−1)ℓ(w)P(w(λ+ ρ)− (µ+ ρ); q)

=
∑

w∈W

(−1)ℓ(w)
∑

T∈T (∞)
−wt(T )=w(λ+ρ)−(µ+ρ)

q|T |.

For µ ∈ P , let Wµ = {w ∈ W : wµ = µ}, and set Wµ(q) =
∑

w∈Wµ
qℓ(w).

Applying Theorem 3.8, we can write the Hall-Littlewood function Pµ(z; q) as
a sum over T (∞). That is, we have

Pµ(z; q) :=
1

Wµ(q)

∑

w∈W

w

(
z
µ
∏

α∈Φ+

1− qz−α

1− z
−α

)

=
1

Wµ(q)

∑

T∈T (∞)

(1− q)seg(T )
∑

w∈W

z
w(µ+wt(T )).

Recall that Kλ,µ(q) provides a transition matrix from Pµ(z; q) to the character
χλ(z). More precisely, we have

χλ(z) =
∑

µ∈P+

µ≤λ

Kλ,µ(q)Pµ(z; q).

We hope to establish other applications of our formulas to the study of sym-
metric functions and related topics in future work.

5. Sage implementation

The listed second author, together with Travis Scrimshaw, have implemented
T (∞) into Sage [28, 30], as well as the statistics seg(T ) and |T |. We conclude
here with some examples using the newly developed code.

Example 5.1. We recreate the data from Example 3.4.

sage: Tinf = InfinityCrystalOfTableaux("D4")

sage: row1 = [1,1,1,1,1,1,1,1,1,2,2,-3,-1,-1,-1]

sage: row2 = [2,2,2,2,3,-4,-3,-3]
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sage: row3 = [3,-4,-3]

sage: T = Tinf(rows=[row1,row2,row3])

sage: T.pp()

1 1 1 1 1 1 1 1 1 2 2 -3 -1 -1 -1

2 2 2 2 3 -4 -3 -3

3 -4 -3

sage: T.weight()

(-9, -2, -5, -2)

sage: [T.epsilon(i) for i in T.index_set()]

[5, 0, 3, 5]

sage: [T.phi(i) for i in T.index_set()]

[-2, 3, 0, -2]

sage: T.e(1).pp()

1 1 1 1 1 1 1 1 1 2 -3 -1 -1 -1

2 2 2 2 3 -4 -3 -3

3 -4 -3

sage: T.f(4).pp()

1 1 1 1 1 1 1 1 1 1 2 2 -3 -1 -1 -1

2 2 2 2 2 3 -4 -3 -3

3 -4 -4 -3

sage: T.reduced_form().pp()

2 2 -3 -1 -1 -1

3 -4 -3 -3

-4 -3

sage: T.seg()

9

sage: T.content()

16

The crystal graph T (∞) down to depth 3 is outputted using the following
commands.

sage: Tinf = InfinityCrystalOfTableaux("D4")

sage: S = Tinf.subcrystal(max_depth=3)

sage: G = Tinf.digraph(subset=S)

sage: view(G,tightpage=True)
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