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Quantum generalized Kac–Moody algebras via Hall algebras
of complexes
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Abstract. We establish an embedding of the quantum enveloping algebra of
a symmetric generalized Kac–Moody algebra into a localized Hall algebra of
Z2-graded complexes of representations of a quiver with (possible) loops. To
overcome difficulties resulting from the existence of infinite dimensional pro-
jective objects, we consider the category of finitely-presented representations
and the category of Z2-graded complexes of projectives with finite homology.

1. Introduction

Let A be an abelian category such that the sets Hom(A,B) and Ext1(A,B)
are both finite for all A,B ∈ A. The Hall algebra of A is defined to be the C-
vector space with basis elements indexed by isomorphism classes in A and with
associative multiplication which encodes information about extensions of objects.
Typical examples of such abelian categories arise as the category repk(Q) of finite-
dimensional representations of an acyclic quiver Q over a finite field k := Fq. This
category became a focal point of intensive research when C. Ringel [20] realized one
half of a quantum group via a twisted Hall algebra of the category. This twisted
Hall algebra is usually called the Ringel–Hall algebra. The construction was further
generalized by J. A. Green [9] to one half of the quantum group of an arbitrary
Kac–Moody algebra.

Even though there is a construction, called Drinfeld double, which glues to-
gether two copies of one-half quantum group to obtain the whole quantum group,
it is desirable to have an explicit realization of the whole quantum group in terms of
a Hall algebra. Among various attempts, the idea of using a category of Z2-graded
complexes was suggested by the works of M. Kapranov [15], L. Peng and J. Xiao
[17, 18]. In his seminal work [4], T. Bridgeland successfully utilized this idea to
achieve a Hall algebra realization of the whole quantum group. More precisely,
given a Kac–Moody algebra g, he took the category repk(Q) of finite dimensional
representations of an acyclic quiver Q associated with g, and considered the full
subcategory P of projective objects in repk(Q). By studying the category C(P) of
Z2-graded complexes in P, he showed that the whole quantum group is embedded
into the reduced localization of a twisted Hall algebra of C(P).
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The purpose of this paper is to extend Bridgeland’s construction to generalized
Kac–Moody algebras. These algebras were introduced by R. Borcherds [2] around
1988. He used a generalized Kac–Moody algebra, called the Monster Lie algebra,
to prove the celebrated Moonshine Conjecture [3]. Since then, many of the con-
structions in the theory of Kac–Moody algebras have been extended to generalized
Kac–Moody algebras. In particular, the quantum group of a generalized Kac–
Moody algebra was defined by Kang [12], and one half of the quantum group was
realized via a Hall algebra by Kang and Schiffmann [13], following Ringel–Green’s
construction.

The main difference from the usual Kac–Moody case is that the quiver Q may
have loops in order to account for imaginary simple roots. A natural question arises:

Is it possible to realize the whole quantum group of a general-
ized Kac–Moody algebra in terms of a Hall algebra of Z2-graded
complexes?

A straightforward approach would run into an obstacle. Namely, when there is a
loop, a projective object may well be infinite dimensional, and the Hall product
would not be defined.

In this paper, we show that this difficulty can be overcome by considering the
category R of finitely-presented representations of a locally finite quiver Q, pos-
sibly with loops, and the category Cfin(P) of Z2-graded complexes in the category
of projectives P ⊂ R with finite homology. In contrast to Bridgeland’s construc-
tion, however, it is not clear that the corresponding product in the Hall algebra
H(Cfin(P)) is associative. Therefore the proof of associativity for the (localized)
Hall algebra is one of the main results of this paper.

Following the approach of [4], we work in the more general setting of a category
R satisfying certain natural assumptions listed in the next subsection (Section 1.1)
which we keep throughout Sections 2–4. The main theorem (Theorem 4.6) for
this general setting states that a certain localization DH(R) of the Hall algebra
H(Cfin(P)) is isomorphic to the Drinfeld double of the (extended) Hall algebra
of R, generalizing a result of Yanagida [23]. As a corollary (Corollary 4.7), the
localized Hall algebra is shown to be an associative algebra.

In Section 5, we show that the category R of finitely-presented representations
of a locally finite quiver satisfies all the assumptions in Section 1.1 under some
minor restrictions on the quiver. As a consequence of the results of Section 4 in the
general setting, we obtain the main result for the quantum group (Theorem 5.12)
which establishes an embedding

Ξ: Uv ↪−→ DHred(R)

of the whole quantum group Uv = Uv(g) of a generalized Kac–Moody algebra g

into a reduced version of the localized Hall algebra DH(R).

1.1. Assumptions. Given an abelian category C, let K(C) denote its
Grothendieck group and write kC(X) ∈ K(C) to denote the class of an object
X ∈ C.

Throughout this paper R is an abelian category. Let P ⊂ R denote the full
subcategory of projectives and A ⊂ R the full subcategory of objects A ∈ R such
that HomR(M,A) is a finite set for any M ∈ R. There are several conditions that
we will impose on the triple (R,P,A). Precisely, we shall always assume that

(a) R is essentially small and linear over k = Fq,
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(b) R is hereditary, that is of global dimension at most 1, and has enough
projectives,

(c) for any objects P,Q,M ∈ P, the relation M ⊕P ∼= M ⊕Q implies P ∼= Q,
(d) every element in K(R) is a Q-linear combination of elements in {kR(A) |

A ∈ A},
(e) the identity kR(A) = kR(B) implies |Hom(P,A)| = |Hom(P,B)| for all

P ∈ P, A,B ∈ A.

It is clear that the category A is Hom-finite, that is HomR(A,B) is a finite
set for all A,B ∈ A. Since R has enough projectives by (b), it follows that the
subcategory A is abelian and hence a Krull–Schmidt category by [16]. It is also
easy to check that A is closed under extensions in R. We note, however, that the
category R is not necessarily Krull-Schmidt in general.

The condition (c) is required in the proof of Proposition 3.18 to show that the
localized Hall algebra DH(R) is a free module over the group algebra C[K(R) ×
K(R)]. Conditions (d) and (e) are needed in Section 2.3 to ensure that the Euler
form on A can be lifted to a bilinear form on the whole category R, albeit with
values in Q.

The class of categories R satisfying the above conditions (a)-(e) generalizes the
class of categories A satisfying Bridgeland’s conditions, also denoted (a)-(e) in [4],
although our conditions do not correspond precisely. In particular, if the category
R is Hom-finite then A = R so that condition (d) is superfluous, and it is also
clear that (c) holds since R is Krull-Schmidt in this case. One may check using
Proposition 2.4 that the remaining conditions (a), (b), (e) hold in case A = R if
and only if the conditions (a)-(e) in [4] hold for A.

1.2. Notation. Assume throughout that k = Fq is a finite field (q ≥ 2) with

q elements. Let v ∈ R>0 be such that v2 = q. We denote by v1/n the positive real
2n-th root of q for n ∈ Z≥1, and write q1/n = v2/n. We also write Z2 = Z/2Z.

2. Hall algebras

We assume that the triple (R,P,A) satisfies axioms (a)-(e) in Section 1.1.
The presentation at the begininning of this section follows [4] up to a suitable
generalization, while Sections 2.3–2.5 contain new material.

2.1. Hall algebras. Given a small category C, denote by Iso(C) the set of
isomorphism classes in C. Suppose that C is abelian. Given objects X,Y, Z ∈ C,
define Ext1C(X,Y )Z to be the set of (equivalence classes of) extensions with middle
term isomorphic to Z in Ext1C(X,Y ).

Since R has enough projectives, it follows from the definition of A that the set
Ext1A(A,B) is finite for all A,B ∈ A. The Hall algebra H(A) is defined to be the
C-vector space with basis indexed by elements A ∈ Iso(A), and with associative
multiplication defined by

(2.1) [A] � [B] =
∑

C∈Iso(A)

|Ext1A(A,B)C |
|HomA(A,B)| [C].

The unit is given by [0], where 0 is the zero object in A.
Recall from [4] that the multiplication (2.1) is a variant of the usual Hall

product (see e.g. [20]) defined as follows. Given objects A,B,C ∈ A, define the
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number

(2.2) gCA,B =
∣∣{B′ ⊂ C : B′ ∼= B, C/B′ ∼= A

}∣∣.
Writing aA = |AutA(A)| to denote the cardinality of the automorphism group of
an object A, recall that

gCA,B =
|Ext1A(A,B)C |
|HomA(A,B)| ·

aC
aA aB

.

Hence using [[A]] = [A] · a−1
A as alternative generators, the product takes the form

[[A]] � [[B]] =
∑

C∈Iso(A)

gCA,B · [[C]].

The associativity of multiplication in H(A) then reduces to the equality

(2.3)
∑
C1

gC1

A,B gDC1,C =
∑
D1

gDA,D1
gD1

B,C

which holds for any A,B,C,D ∈ Iso(A).

2.2. Twisted and extended Hall algebras. The Euler form on A is a
bilinear mapping

〈−,−〉 : A×A → Z

defined by

(2.4) 〈A,B〉 := dimk Hom(A,B)− dimk Ext
1(A,B)

for all A,B ∈ A. This form factors through the Grothendieck group K(A) (see
Lemma 2.1). We also introduce the associated symmetric form (A,B) = 〈A,B〉+
〈B,A〉.

We define the twisted Hall algebra Hv(A) to be the same as the Hall algebra
of A with a new multiplication given by

(2.5) [A] ∗ [B] = v〈kA(A),kA(B)〉[A] � [B].

We extend Hv(A) by adjoining new generators Kα for all α ∈ K(A) with the
relations

(2.6) Kα ∗Kβ = Kα+β , Kα ∗ [A] ∗K−α = v(α,kA(A)) [A],

where we use the symmetric form ( , ). The resulting algebra will be called the

extended Hall algebra and denoted by H̃v(A).

2.3. Generalized Euler form. Since the category R has enough projectives,
it follows from the definition of A that Ext1R(M,A) is a finite set for any M ∈ R
and A ∈ A. Define an Euler form 〈−,−〉 : R×A → Z by setting

〈M,A〉 := dimk HomR(M,A)− dimk Ext
1
R(M,A)

for all M ∈ R, A ∈ A. The following lemma shows that the Euler form induces a
bilinear map

〈−,−〉 : K(R)×K(A) → Z.

Lemma 2.1. The Euler form 〈M,A〉 depends only on the classes of objects
M ∈ R and A ∈ A in the Grothendieck groups K(R) and K(A), respectively.
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Proof. Suppose 0 → M ′ → M → M ′′ → 0 is an exact sequence in R. Then
there is a long exact sequence

0 → Hom(M ′′, A) → Hom(M,A) → Hom(M ′, A)

→ Ext(M ′′, A) → Ext(M,A) → Ext(M ′, A) → 0

which shows that

〈M ′′, A〉 − 〈M,A〉+ 〈M ′, A〉 = 0.

So the Euler form is well-defined on the class of M . The proof for the class of A is
similar. �

In the remainder, let us write X̂ = kR(X) to denote the class of an object X
in K(R), and continue to write kA(−) for classes in K(A). The inclusion A ⊂ R
induces a canonical map

(2.7) K(A) → K(R), kA(A) �→ Â.

Write K̄(A) ⊂ K(R) to denote the image of K(A) under this map.
Suppose that {Pi}i∈I is a complete list of isomorphism classes of indecompos-

able projective objects in P, for some indexing set I. Then define the dimension
vector of an object A ∈ A to be

dimA := (dimk HomR(Pi, A))i∈I ∈ Z⊕I .

From condition (e), we have

dimA = dimB

for any objects A,B ∈ A, whenever the classes Â = B̂ are equal in the Grothendieck
group K(R).

Lemma 2.2. Suppose that A,A′ ∈ A. Then 〈M,A〉 = 〈M,A′〉 for all M ∈ R if
and only if

dimk Hom(P,A) = dimk Hom(P,A′)

for all P ∈ P.

Proof. The only-if-part follows from the fact that 〈P,A〉 = dimk Hom(P,A)
for all P ∈ P and A ∈ A. For the if-part, let M ∈ R, A ∈ A, and suppose
0 → P → Q → M → 0 is a projective resolution. Then there is a long exact
sequence

0 −→ HomR(M,A) −→ HomR(Q,A) −→ HomR(P,A) −→ ExtR(M,A) −→ 0,

which shows that

〈M,A〉 = dimk Hom(Q,A)− dimk Hom(P,A).

The converse statement now follows. �

The above lemma now has the following consequence.

Corollary 2.3. The Euler form on R×A factors through a bilinear form

〈−,−〉 : K(R)× K̄(A) → Z.
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Now suppose X,Y ∈ R. Then it follows from condition (d) that there exist
objects A1, . . . , Ar ∈ A such that

Ŷ = c1Â1 + · · ·+ crÂr

for some coefficients ci ∈ Q. Define a bilinear form

K(R)×K(R) → Q

by setting

(2.8) 〈X̂, Ŷ 〉 =
∑
i

ci · 〈X̂, Âi〉.

and extend it through linearity. We again define a symmetric version by setting
(X̂, Ŷ ) = 〈X̂, Ŷ 〉+ 〈Ŷ , X̂〉 for any X,Y ∈ R.

Proposition 2.4. Let A be a nonzero object in A. Then the classes kA(A) ∈
K(A) and Â ∈ K(R) are both nonzero.

Proof. Consider a nonzero object A ∈ A. Since R has enough projectives,
there exists a surjection P → A → 0 for some projective P ∈ P. It follows that
Hom(P,A) is a nonzero set. We obtain

〈P,A〉 = dimk Hom(P,A)− dimk Ext(P,A) = dimk Hom(P,A) ≥ 1.

By Lemma 2.2 and Corollary 2.3, we obtain

〈P,A〉 = 〈P̂ ,kA(A)〉 = 〈P̂ , Â〉 ≥ 1.

Thus neither Â nor kA(A) is zero. �

Denote by K≥0(A) ⊂ K(A) the positive cone in the Grothendieck group gen-
erated by the classes kA(A) for A ∈ A. Define

(2.9) α ≤ β ⇐⇒ β − α ∈ K≥0(A).

Then it follows from Proposition 2.4 that ≤ is a partial order on K(A).

2.4. The extended Hall algebra H̃v(R). The algebra Hv(A) is naturally
graded by the Grothendieck group K(R):

Hv(A) =
⊕

α∈K(R)

Hv(A)(α), Hv(A)(α) :=
⊕
Â=α

C[A].

We define a slight modification of the extended Hall algebra H̃v(A) from Section
2.2. Starting again from Hv(A) with multiplication (2.5), the extended Hall algebra

H̃v(R) is defined by adjoining generators Kα for all α ∈ K(R) with the relations

(2.10) Kα ∗Kβ = Kα+β, Kα ∗ [A] ∗K−α = v(α,Â)[A].

The algebra H̃v(R) is also K(R)-graded, with the degree of each Kα equal to zero.
Note that the multiplication map

Hv(A)⊗C C[K(R)] → H̃v(R)

is an isomorphism of vector spaces.

Following Green [9] and Xiao [22], we define a coalgebra structure on H̃v(R).
We refer to [23] for the definition of a topological coalgebra, which involves a com-
pleted tensor product.
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Definition 2.5 ([9, 22]). In the extended Hall algebra H = H̃v(R) define
Δ : H → H ⊗̂C H, and ε : H → C, by setting

Δ([A]Kα) :=
∑

B,C∈Iso(A)

v〈B,C〉gAB,C · ([B]KĈ+α)⊗ ([C]Kα), ε([A]Kα) := δA,0

for all A ∈ Iso(A), α ∈ K(R), where the numbers gAB,C are defined in (2.2) and

H ⊗̂C H is the completed tensor product. This gives H̃v(R) the structure of a
topological coassociative coalgebra.

As noted in [21, Remark 1.6], the coproduct Δ on H = H̃v(R) takes values
in H ⊗H, instead of the completion H ⊗̂ H, if and only if the following condition
holds:

(2.11) Any fixed object A ∈ A ⊂ R has only finitely many subobjects B ⊂ A.

This condition is satisfied if R is the category of quiver representations considered
in Section 5.

Now we have an algebra structure and a coalgebra structure on H̃v(R). It fol-
lows from [9,22] that these structures are compatible to give a (topological) bialge-

bra structure. Below, we simply denote by H̃v(R) the bialgebra (H̃v(R), ∗, [0],Δ, ε).

The bialgebra H̃v(R) admits a natural bilinear form compatible with the bialgebra
structure called a Hopf pairing.

Definition 2.6 ([9,22,23]). Define a bilinear form (·, ·)H on H̃v(R) by setting

([A]Kα, [B]Kβ)H := v(α,β)aA δA,B

for α, β ∈ K(R), where aA = |AutA(A)| as before.

It is clear that the restriction of this bilinear form to the subalgebra Hv(A) ⊂
H̃v(R) is nondegenerate. The following result was stated for H̃v(A) in [22]. It is

easy to check that it holds for H̃v(R) as well.

Proposition 2.7 ([21,22]). The bilinear form (·, ·)H is a Hopf pairing on the

bialgebra H̃v(R), that is, for any x, y, z ∈ H̃v(R), one has

(1, x)H = ε(x), (x ∗ y, z)H = (x⊗ y,Δ(z))H

where we use the usual pairing on the tensor product space:

(x⊗ y, z ⊗ w)H = (x, z)H (y, w)H .

2.5. The Drinfeld double. We briefly recall the Drinfeld double construc-
tion for Hall bialgebras. A complete treatment of Drinfeld doubles is given in
[10, §3.2] and [21, §5.2].

In [22], Xiao showed that the extended Hall algebra H̃v(A) is a Hopf algebra
and gave an explicit formula for both the antipode σ and its inverse σ−1, provided
that A is a category of quiver representations. It can be shown that Xiao’s formulas
hold more generally provided that A ⊂ R satisfies (2.11).

Athough the formula for σ is no longer well-defined in the case where A does
not satisfy (2.11), there is a more general condition that ensures the formula for
σ−1 is still defined. Recall from [8] that an anti-equivalence between two objects
A,B ∈ A is a pair of strict filtrations

0 = Ln+1 � Ln � . . . L1 � L0 = A, 0 = L′
n+1 � L′

n � . . . L′
1 � L′

0 = B
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such that L′
i/L

′
i+1

∼= Ln−i/Ln−i+1 for all i. Two objects A and B in A are called
anti-equivalent if there exists at least one anti-equivalence between them.

It follows from results in [5] and [8] that Xiao’s formula for the map σ−1 is still
well-defined provided that the following condition holds for every pair of objects
A,B ∈ A:

(2.12) There are finitely many anti-equivalences (if any) between A and B.

Since the map σ−1 generally takes values in a certain completion of H̃v(R), an
extra condition is needed to ensure that corresponding relations in the bialgebra,
such as

m ◦ (σ−1 ⊗ id) ◦Δop = i ◦ ε,

are still well-defined. The required condition can be stated as follows:

Given any A,B ∈ A, there are finitely many pairs (A′, B′) of anti-equivalent

(2.13)

objects such that A′ ↪→ A and B � B′.

Up to minor modifications, the formulas for (and corresponding properties of) σ

and σ−1 continue to hold, respectively, in H̃v(R), whenever they are defined in

H̃v(A).
If the conditions (2.12) and (2.13) are both satisfied by the category A ⊂ R,

then the Drinfeld double of H = H̃v(R) is the vector space H ⊗H equipped with
the multiplication ◦ uniquely determined by the following conditions:

(D1) The maps

H −→ H⊗C H, a �−→ a⊗ 1

and

H −→ H⊗C H, a �−→ 1⊗ a

are injective homomorphisms of C-algebras;
(D2) For all elements a, b ∈ H, one has

(a⊗ 1) ◦ (1⊗ b) = a⊗ b;

(D3) For all elements a, b ∈ H, one has

(1⊗ b) ◦ (a⊗ 1) =
∑

(b(1), a(3))H(σ−1(b(3)), a(1))H · a(2) ⊗ b(2)

where Δ2(a) =
∑

a(1) ⊗ a(2) ⊗ a(3) and Δ2(b) =
∑

b(1) ⊗ b(2) ⊗ b(3).

The last identity is equivalent to

(2.14)
∑

(a(2), b(1))H · a(1) ⊗ b(2) =
∑

(a(1), b(2))H · (1⊗ b(1)) ◦ (a(2) ⊗ 1)

for all a, b ∈ H, where Δ(a) =
∑

a(1) ⊗ a(2) and Δ(b) =
∑

b(1) ⊗ b(2).
An argument similar to the proof given in [10, Lemma 3.2.2] shows that the

multiplication ◦ is associative.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

QUANTUM GKM ALGEBRAS VIA HALL ALGEBRAS OF COMPLEXES 9

3. Hall algebras of complexes

The material at the beginning of this section is based on [4] with a suitable
generalization. The main new material is contained in Lemma 3.3, Proposition 3.6
and Sections 3.6 and 3.7.

Assume that R is an abelian category for which the triple (R,P,A) satisfies
axioms (a)-(e) of Section 1.1. We now introduce certain categories of complexes over
R and define corresponding Hall algebras and their localizations. The associativity
of multiplication in the localized Hall algebras will be established later in Section
4.

3.1. Categories of complexes. Define a Z2-graded chain complex in R to
be a diagram

M1 M0

d1

d0

such that di ◦ di+1 = 0 for all i ∈ Z2.

A morphism s• : M• → M̃• consists of a diagram

M1 M0

M̃1 M̃0

s1

d1

d0

s0

d̃1

d̃0

with si+1 ◦ di = d̃i ◦ si.
Let CZ2

(R) denote the category of all Z2-graded chain complexes in R with

morphisms defined above. Two morphisms s•, t• : M• → M̃• are homotopic if there
are morphisms hi : Mi → M̃i+1 such that

ti − si = d̃i+1 ◦ hi + hi+1 ◦ di.

We write HoZ2
(R) for the category obtained from CZ2

(R) by identifying homotopic
morphisms.

The shift functor defines an involution

CZ2
(R)

∗←→ CZ2
(R)

which shifts the grading and changes the sign of the differential

M1 M0

d1

d0

∗←→ M0 M1

−d0

−d1

.

The image of M• under the shift functor will be denoted by M∗
• . Every complex

M• ∈ CZ2
(R) defines a class M̂• := M̂0 − M̂1 ∈ K(R) in the Grothendieck group of

R.
We are mostly concerned with the full subcategories

CZ2
(P), CZ2

(A) ⊂ CZ2
(R) and HoZ2

(P) ⊂ HoZ2
(R)

consisting of complexes of objects in P and A, respectively.
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3.2. Root category. Let Db(R) denote the (Z-graded) bounded derived cat-

egory of R, with its shift functor [1]. Let Rt(R) = Db(R)/[2] be the orbit category,

also known as the root category of R. This has the same objects as Db(R), but the
morphisms are given by

HomRt(R)(X,Y ) :=
⊕
i∈Z

HomDb(R)(X,Y [2i]).

Since R is an abelian category of finite global dimension (≤ 1) with enough pro-

jectives, the category Db(R) is equivalent to the (Z-graded) bounded homotopy

category Hob(P). Thus we can equally well define Rt(R) as the orbit category of

Hob(P).

Lemma 3.1 ([4]). There is a fully faithful functor

D : Rt(R) −→ HoZ2
(P)

sending a Z-graded complex of projectives (Pi)i∈Z to the Z2-graded complex⊕
i∈Z

P2i+1

⊕
i∈Z

P2i

0

0
.

3.3. Decompositions. From now on, we omit Z2 in the notations for cate-
gories and write

C(P) = CZ2
(P), C(A) = CZ2

(A), C(R) = CZ2
(R),

Ho(P) = HoZ2
(P), Ho(R) = HoZ2

(R).

The homology of a complex M• ∈ C(R) will be denoted

H•(M•) := (H1(M•) H0(M•)
0

0
) ∈ C(R).

To each morphism f : P → Q in the category P, we associate the following com-
plexes

(3.1) Cf := (P Q
f

0
), C∗

f := (Q P
0

−f
)

in C(P).

Lemma 3.2. Every complex of projectives M• ∈ C(P) can be decomposed
uniquely, up to isomorphism, as a direct sum of complexes of the form

M• = Cf ⊕ C∗
g

for some injective morphisms f, g in P such that
H0(M•) = coker(f) and H1(M•) = coker(g).

Proof. Consider the short exact sequences

0 −→ ker(d1)
i−→ M1

p−→ im(d1) −→ 0,

0 −→ ker(d0)
j−→ M0

q−→ im(d0) −→ 0.

Since the the category R is hereditary by assumption, all the objects appearing in
these sequences are projective. Thus the sequences split, and we can find morphisms

r : M1 → ker(d1), k : im(d0) → M0, l : im(d1) → M1, s : M0 → ker(d0)
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such that r ◦ i = id, q ◦ k = id, p ◦ l = id, and s ◦ j = id. This yields the following
split exact sequence of morphisms of complexes

ker(d1) im(d0)

M1 M0

im(d1) ker(d0)

i

0

m

k

p

d1

d0

s

m′

0

where m,m′ denote the obvious inclusions. (Note that d0 = i ◦ m ◦ q and d1 =
j ◦m′ ◦ p.) The desired decomposition of M• is thus given by setting: f = m ◦ q,
g = −m′ ◦ l.

Now suppose there is an isomorphism M•
∼= Cf ′ ⊕C∗

g′ for some other pair f ′, g′

of injective morphisms in P. Then one can easily define corresponding isomorphisms
of complexes Cf ′ ∼= Cf and Cg′ ∼= Cg, showing uniqueness. �

Given M• ∈ C(P), it will be convenient to write the decomposition in Lemma
3.2 as

M• = M+
• ⊕M−

•

where M+
• = Cf and M−

• = C∗
g . Let the sign map

ε : Z2 → {+,−}
be defined by ε(0) = +, ε(1) = −.

Lemma 3.3. Let M•, N• ∈ C(P). Then there is an isomorphism

HomC(R)(M•, N•) ∼= HomC(R)(H•(M•), H•(N•))⊕
{ ⊕

i,j∈Z2

HomR(M
ε(j)
i , N

ε(i)
j+1)

}
of k-vector spaces.

Proof. First suppose that P
f−→ Q, P ′ g−→ Q′ is a pair of injective morphisms

in P. We note that there is a short exact sequence

(3.2) 0 −→ HomR(Q,P ′) −→ HomC(R)(Cf , Cg) −→ HomR(X,Y ) −→ 0

for X = coker f , Y = coker g. One may also check directly that

(3.3) HomC(R)(Cf , C
∗
g )

∼= HomR(P,Q′).

The decomposition of HomC(R)(M•, N•) now follows easily by applying Lemma
3.2 to both M• and N•, respectively, and by using the involutive shift functor ∗
together with (3.2) and (3.3). �

3.4. Acyclic complexes. Given a projective object P ∈ P, there are associ-
ated acyclic complexes

(3.4) KP := (P P
id

0
), K∗

P := (P P
0

−id
).

Notice that M• ∈ C(P) is acyclic precisely if M•
∼= 0 in Ho(P).

Lemma 3.4. If M• ∈ C(P) is an acyclic complexes of projectives, then there
exist objects P,Q ∈ P, unique up to isomorphism, such that M•

∼= KP ⊕K∗
Q.
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Proof. If M• is acyclic, then by Lemma 3.2 we have M• = Cf ⊕ C∗
g for

some isomorphisms f : P ∼= P ′ and g : Q ∼= Q′ of projectives. It follows that
M•

∼= KP ⊕K∗
Q. Since the complexes KP and K∗

Q are unique up to isomorphism,
the objects P,Q are unique up to isomorphism as well. �

Lemma 3.5. Suppose that P
f−→ Q and P ′ f ′

−→ Q′ are injective morphisms in
P. Then coker f ∼= coker f ′ in R, if and only if there is an isomorphism

Cf ⊕KL′ ∼= KL ⊕ Cf ′

of complexes in C(P), for some objects L,L′ ∈ P.

Proof. This is a reformulation of Schanuel’s lemma. We refer to [7, Theorem
0.5.3] for the proof. �

Proposition 3.6. Suppose M•,M
′
• ∈ C(P). Then there exists an isomorphism

M• ⊕K ′
•
∼= K• ⊕M ′

•

for some acyclic complexes K•,K
′
• ∈ C(P), if and only if H•(M•) ∼= H•(M

′
•) in

C(R).

Proof. This follows directly from Lemmas 3.2 and 3.5, and by applying ∗ to
the latter. �

3.5. Extensions of complexes. Given any morphism s• : M• → N• of com-
plexes in C(P), we can form a corresponding exact sequence

0 −→ N∗
• −→ Cone(s•) −→ M• −→ 0

of complexes in C(P), where the middle term is defined by

Cone(s•) = (N0 ⊕M1 N1 ⊕M0

d1

d0

)

with

d0 :=

[
−dN1 s0
0 dM0

]
, d1 :=

[
−dN0 s1
0 dM1

]
.

This leads to the following result.

Lemma 3.7 ([4]). Let M•, N• ∈ C(P). The mapping s• �→ Cone(s•) defines an
isomorphism

HomHo(R)(M•, N
∗
• )

∼= Ext1C(R)(M•, N•).

We also have the following.

Lemma 3.8. Suppose P
f−→ Q, P ′ g−→ Q′ are injective morphisms in the category

P. Let X,Y ∈ R denote the cokernels: X = coker f , Y = coker g. Then the
following hold.

(i) HomHo(R)(Cf , Cg) ∼= HomR(X,Y );

(ii) HomHo(R)(Cf , C
∗
g )

∼= Ext1R(X,Y ).

Proof. The category R can be identified as a full subcategory of Db(R) by
considering any object in R as a complex concentrated in degree 0. It follows that

HomR(X,Y ) ∼= HomDb(R)(X,Y ) ∼= HomRt(R)(X,Y ).
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The objects X,Y have the projective resolutions

0 → P
f−→ Q � X → 0, 0 → P ′ g−→ Q′ � Y → 0.

So the complexes Cf , Cg are quasi-isomorphic to X,Y respectively, and isomor-
phisms (i), (ii) thus follow by Lemmas 3.1. �

Note that the isomorphism in Lemma 3.8 (i) may be given explicitly by s• �→ s,
where s : A → B is the unique morphism making the diagram

(3.5)

0 P Q X 0

0 P ′ Q′ Y 0

s1 s0 s

commutative.

3.6. Hall algebras of complexes. We denote by Cfin(P) the full subcategory
of C(P) consisting of all complexes with finite homology, i.e. complexes M• such
that

H•(M•) = (H1(M•) H0(M•)
0

0
) ∈ C(A).

The following result will be crucial for our definition of the Hall algebra of Cfin(P).

Lemma 3.9. The set Ext1C(R)(M•, N•) is finite for all M•, N• ∈ Cfin(P).

Proof. This follows by using the involution ∗ together with Lemma 3.8 and
combining with Lemmas 3.2 and 3.7. �

Since the category Cfin(P) is not necessarily Hom-finite, we must consider a gen-
eralization of the coefficients appearing in the definition (2.1) of the Hall product.
First define a bilinear map, μ : C(P)× C(P) → Q, given by

μ(M•, N•) := 〈M̂+
0 , N̂+

1 〉+ 〈M̂+
1 , N̂−

1 〉+ 〈M̂−
0 , N̂+

0 〉+ 〈M̂−
1 , N̂−

0 〉(3.6)

=
∑
i, j

〈
M̂

ε(j)
i , N̂

ε(i)
j+1

〉
where 〈 , 〉 : K(R)×K(R) → Q denotes the generalized Euler form (Section 2.3).

Then for any M•, N•, P• ∈ Cfin(P), we define

(3.7) h(M•, N•) := qμ(M•,N•) |HomC(R)(H•(M•), H•(N•))|
where q is the cardinality of k, and we also write

e(M•, N•)P• := |Ext1C(R)(M•, N•)P• |
which is well-defined by Lemma 3.9.

In the remainder, let us write X = Iso(Cfin(P)) for the set of isomorphism
classes in Cfin(P).

Definition 3.10. The Hall algebra H(Cfin(P)) is defined to be the C-vector
space with basis elements [M•] indexed by isoclasses M• ∈ X , and with multiplica-
tion defined by

[M•]� [N•] := v〈M̂0,N̂0〉+〈M̂1,N̂1〉
∑
P•∈X

e(M•, N•)P•

h(M•, N•)
[P•],

for all M•, N• ∈ Cfin(P).
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Remark 3.11. Suppose there are complexes M•, N• ∈ Cfin(P) such that
HomC(R)(M•, N•) is a finite set. Then it can be checked using Lemma 3.3 and
the definition of Euler form that

|HomC(R)(M•, N•)| = h(M•, N•).

The above definition thus generalizes the (twisted) Hall algebras of complexes of
projectives defined by Bridgeland in [4].

3.7. Localization. As before, let us write M̂• = M̂0 − M̂1 ∈ K(P), for each
M• ∈ C(P). The following result shows that the acyclic complexes KP introduced
in Section 3.4 define elements of H(Cfin(P)) with particularly simple properties.

Lemma 3.12. For any projective object P ∈ P and any complex M• ∈ Cfin(P)
the following identities hold in H(Cfin(P)):

[KP ]� [M•] = v〈P̂ ,M̂•〉 · [KP ⊕M•],(3.8)

[M•]� [KP ] = v−〈M̂•,P̂ 〉 · [KP ⊕M•].(3.9)

Proof. It is easy to check directly from (3.6) that

μ(KP ,M•) = 〈P̂ , M̂+
1 〉+ 〈P̂ , M̂−

1 〉, μ(M•,KP ) = 〈M̂+
0 , P̂ 〉+ 〈M̂−

0 , P̂ 〉
so that

h(KP ,M•) = q〈P̂ ,M̂1〉, h(M•,KP ) = q〈M̂0,P̂ 〉.

The complexes KP are homotopy equivalent to the zero complex, so Lemma 3.7
shows that the extension group in the definition of the Hall product vanishes. Tak-
ing into account Definition 3.10 gives the result. �

Lemma 3.13. For any projective object P ∈ P and any complex M• ∈ Cfin(P)
the following identities are true in H(Cfin(P)):

[KP ]� [M•] = v(P̂ ,M̂•)[M•]� [KP ],(3.10)

[K∗
P ]� [M•] = v−(P̂ ,M̂•)[M•]� [K∗

P ].(3.11)

Proof. Equation (3.10) is immediate from Lemma 3.12. Equation (3.11) fol-
lows by applying the involution ∗. �

In particular, since K̂P = 0 ∈ K(R), we have for P,Q ∈ P,

[KP ]� [KQ] = [KP ⊕KQ], [KP ]� [K∗
Q] = [KP ⊕K∗

Q],(3.12) [
[KP ], [KQ]

]
=

[
[KP ], [K

∗
Q]
]
=

[
[K∗

P ], [K
∗
Q]
]
= 0,(3.13)

where [x, y] := x � y − y � x. Note that any element of the form [KP ] � [K∗
P ] is

central.
Let us write C0 ⊂ Cfin(P) to denote the full subcategory of all acyclic com-

plexes of projectives. It then follows from (3.12) and (3.13) that the subspace
H(C0) ⊂ H(Cfin(P)) spanned by the isoclasses of objects in C0 is closed under the
multiplication � and has the structure of a commutative associative algebra.

The following result is also clear.

Lemma 3.14. The left and right actions of H(C0) on H(Cfin(P)) given by re-
stricting multiplication make the Hall algebra H(Cfin(P)) into an H(C0)-bimodule.
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Notice that the basis Z := {[M•] ∈ H(C0)} is a multiplicative subset in H(C0).
Let us write DH0(R) = H(C0)Z to denote the localization of H(C0) at Z. More
explicitly, we have

DH0(R) = H(C0)
[
[M•]

−1 : M• ∈ C0
]
.

The assignment P �→ KP extends to a group homomorphism

K : K(R) −→ DH0(R)×.

This map is given explicitly by writing an element α ∈ K(R) in the form α = P̂−Q̂
for objects P,Q ∈ P and then setting Kα := KP̂ � K−1

Q̂
. Composing with the

involution ∗ gives another map

K∗ : K(R) −→ DH0(R)×.

Taking these maps together and extending linearly defines a C-linear map from the
group algebra

C[K(R)×K(R)]
∼→ DH0(R),

which is an isomorphism by Lemma 3.4. It follows that the set {Kα �K∗
β | α, β ∈

K(R)} gives a C-basis of DH0(R)

Definition 3.15. The localized Hall algebra, DH(R), is the right DH0(R)-
module obtained from H(Cfin(P)) by extending scalars,

DH(R) := H(Cfin(P))⊗H(C0) DH0(R).

That is, DH(R) is the localization H(Cfin(P))Z . We also consider DH(R) as a
DH0(R)-bimodule by setting

(3.14) (Kα �K∗
β)� [M•] := v(α−β,M̂•) · [M•]� (Kα �K∗

β)

for all M• ∈ Cfin(P) and α, β ∈ K(R). We thus have a well-defined binary operation

−�− : DH(R)×DH(R) → DH(R)

which agrees with the map induced from the multiplication in Definition 3.10 by
restricting along the canonical map H(Cfin(P)) → DH(R).

Given a complex M• ∈ Cfin(P), define a corresponding element EM• in DH(R)
given by

EM• := v〈M̂
+
1 −M̂−

0 ,M̂•〉K−M̂+
1
�K∗

−M̂−
0

� [M•].

Then we claim that

(3.15) EM•⊕K• = EM•

for any acyclic complex of projectivesK• ∈ C0. Indeed, suppose thatK• = KP⊕K∗
Q

for some P,Q ∈ P. Then clearly M•⊕̂K• = M̂•, and it follows by Lemma 3.12 that

EM•⊕K• = v〈M
+
1 ⊕̂P−M−

0 ⊕̂Q,M•⊕̂K•〉 ·K−M+
1 ⊕̂P �K∗

−M−
0 ⊕̂Q

� [KP ⊕K∗
Q ⊕M•]

= v〈M̂
+
1 −M̂−

0 , M̂•〉 ·K−M̂+
1
�K∗

−M̂−
0

� [M•],

so we get the same element EM• .
We note that a minimal projective resolution of A ∈ A need not be unique

because the category C(P) is not Krull–Schmidt in general. However, it will be
convenient to fix a (not necessarily minimal) resolution for each object A ∈ A.
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Definition 3.16.

(i) For each object A ∈ A, fix a projective resolution

(3.16) 0 −→ PA
fA−→ QA −→ A −→ 0

and the complex CA is defined to be CfA ∈ C(P).
(ii) Given objects A,B ∈ A, write EA,B to denote the element ECA⊕C∗

B
in

DH(R).

The next lemma shows that the definition of EA,B is independent of the choice
of resolutions defining CA and CB.

Lemma 3.17. Suppose A,B ∈ A, and let M• ∈ Cfin(P) be any complex such
that A ∼= H0(M•) and B ∼= H1(M•). Then EM• = EA,B.

Proof. Let M• be such a complex. By Proposition 3.6 there exist acyclic
complexes K•,K

′
• in C0(P) such that [M• ⊕K•] ∼= [CA ⊕ C∗

B ⊕K ′
•], and the result

follows from (3.15). �

The following result provides an explicit basis for the localized Hall algebra.

Proposition 3.18. The algebra DH(R) is free as a right DH0(R)-module, with
basis consisting of elements EA,B indexed by all pairs of objects A,B ∈ Iso(A).

Proof. Suppose M• ∈ X , and set A = H0(M•), B = H1(M•). Then EM• =
EA,B by Lemma 3.17, and one may check using (3.14) that

[M•] = v〈Q̂−P̂ ,M̂•〉EA,B � [KP ⊕K∗
Q],

for P = M+
1 and Q = M−

0 . This shows that the elements EA,B span DH(R) as a
DH0(R)-module.

It remains to check that the elements EA,B are DH0(R)–linearly independent.
Notice that the Hall algebra H(Cfin(P)) is naturally graded as a C-vector space by
the set Iso(A)× Iso(A):

H(Cfin(P)) =
⊕

(A,B)∈Iso(A)2

H(A,B), H(A,B) :=
⊕

H0(M•)
A,H1(M•)
B

C[M•].

Since the action of H(C0) on H(Cfin(P)) is Iso(A)2-homogeneous, it follows that
DH(R) also has an Iso(A)2-grading. It is thus clear that the elements EA,B span
distinct graded components of DH(R). To see that each component is a free
DH0(R)-module of rank one, it remains to check that for each y ∈ DH(R), we
have EA,B � y = 0 implies y = 0.

Let us writeM• = CA⊕C∗
B. Then it will suffice to show that for any x ∈ H(C0),

the element
[M•]� x ∈ H(Cfin(P))

is a Z-torsion element only if x = 0. Suppose that

x = c1z1 + · · ·+ cnzn

for some constants c1, . . . , cn ∈ C and distinct elements z1, . . . , zn ∈ Z. One may
check using Lemma 3.4 and condition (c) in Section 1.1, that for any z ∈ Z the
elements z1 � z, . . . , zn � z are also distinct. Next suppose that [M•]� (x� z) = 0
in H(Cfin(P)). This gives an equation

c1 · [M•]� z1 � z + · · ·+ cn · [M•]� zn � z = 0.
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One may again use condition (c) together with Lemmas 3.2 and 3.4 to check that
the terms appearing in this dependence relation are unit multiples of distinct basis
elements in X . So the relation must be trivial: c1 = · · · = cn = 0, which gives
x = 0. This completes the proof. �

4. Associativity via the Drinfeld double

In this section we prove that DH(R) is the Drinfeld double of the bialgebra

H̃v(R) under suitable finiteness conditions. As a corollary, we show that DH(R) is
an associative algebra with respect to the multiplication described in the previous
section.

4.1. Multiplication formulas. Suppose A,B ∈ A and recall the element
EA,B in DH(R) defined in Definition 3.16. Notice that the image under the invo-
lution ∗ is given by E∗

A,B = EB,A. Let us write

EA := EA,0, FB := E0,B

so that FA = E∗
A.

Lemma 4.1. Suppose A,B ∈ A. The following equality holds in DH(R).

EA � EB = v〈A,B〉
∑

C∈Iso(A)

|Ext1R(A,B)C |
|HomR(A,B)|EC

Proof. Let CA, CB be the complexes associated to A,B in Definition 3.16.
Then using the formula

h(CA, CB) = q〈Q̂A,P̂B〉 · |HomR(A,B)|

together with the relations Â = Q̂A − P̂A and B̂ = Q̂B − P̂B in the Grothendieck
group K(R), we have

[CA]� [CB] = v〈P̂A,P̂B〉+〈Q̂A,Q̂B〉
∑

M•∈X

e(CA, CB)M•

h(CA, CB)
[M•]

= v〈A,B〉−〈Â,P̂B〉+〈P̂A,B̂〉
∑

M•∈X

|Ext1C(R)(CA, CB)M• |
|HomR(A,B)| [M•].

It follows by (3.14) that

EA � EB = v〈P̂A,Â〉+〈P̂B,B̂〉+(P̂B ,Â) ·K−PA⊕̂PB
� [CA]� [CB]

= v〈A,B〉+〈P̂A+P̂B , Â+B̂〉
∑

M•∈X

|Ext1C(R)(CA, CB)M• |
|HomR(A,B)| K−PA⊕̂PB

� [M•].(4.1)

Consider an extension

(4.2) 0 −→ CB −→ M• −→ CA −→ 0.

By Lemma 3.7, we may assume M• = Cone(s•) for some morphism s• : CA → C∗
B,

so that

M• = PB ⊕ PA QB ⊕QA

d1

d0

,
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where

d1 =

(
fB s1
0 fA

)
, d0 =

(
0 s0
0 0

)
.

Since fA, fB are monomorphisms, so is d1. Thus d1 ◦ d0 = 0 implies that s0 = 0.
Setting C = H0(M•), it follows that (4.2) induces an extension

0 −→ B −→ C −→ A −→ 0.

One may check that this extension agrees with the corresponding image of (4.2)
under the isomorphism

Ext1C(R)(CA, CB) ∼= Ext1R(A,B)

given by Lemma 3.7 and Lemma 3.8 (ii). It follows that∑
H0(M•)=C

|Ext1C(R)(CA, CB)M• | = |Ext1R(A,B)C |.

Finally, notice that Ĉ = Â + B̂ for any extension C of A by B. Putting
everything together shows that equation (4.1) becomes

EA � EB = v〈A,B〉
∑

M•∈X
v〈P̂A+P̂B , Ĥ0(M•)〉 ·

|Ext1C(R)(CA, CB)M• |
|HomR(A,B)| K−PA⊕̂PB

� [M•]

= v〈A,B〉
∑

C∈Iso(A)

|Ext1R(A,B)C |
|HomR(A,B)|EC

which completes the proof. �

Lemma 4.2. Let A,B ∈ A. The following equations hold in DH(R),

(i) EA � FB =
∑

A1,B1,B2

v〈B̂−B̂1, Â−B̂〉gBB1,B2
gAB2,A1

aB2
·K∗

B̂−B̂1
� EA1,B1

,

(ii) FB � EA =
∑

A1,A2,B1

v〈Â−Â1, B̂−Â〉gAA1,A2
gBA2,B1

aA2
·KÂ−Â1

� EA1,B1
,

where each sum runs over classes of objects in Iso(A).

Proof.

(i) Again let CA, CB be complexes associated to A,B as in Definition 3.16. By
definition, the product [CA]� [C∗

B] is equal to

v〈Q̂A,P̂B〉+〈P̂A,Q̂B〉
∑

M•∈X

e(CA, C
∗
B)M•

h(CA, C∗
B)

[M•].

Then using μ(CA, C
∗
B) = 〈P̂A, Q̂B〉, it is easy to check that

h(CA, C
∗
B) = q〈P̂A,Q̂B〉.

This gives

[CA]� [C∗
B] = v〈Â,P̂B〉−〈P̂A,B̂〉

∑
M•∈X

e(CA, C
∗
B)M• · [M•],
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where we have used the equalities Q̂A = P̂A + Â and Q̂B = P̂B + B̂ in K(R). It
thus follows by (3.14) that

EA � FB = v〈P̂A,Â〉+〈P̂B,B̂〉−(P̂B,Â) ·K−P̂A
�K∗

−P̂B
� [CA]� [C∗

B]

= v〈P̂A−P̂B,Â−B̂〉 ·K−P̂A
�K∗

−P̂B
�

∑
M•∈X

e(CA, C
∗
B)M• · [M•].(4.3)

Now suppose that M• is an extension of CA by C∗
B. By Lemma 3.7, we may

assume that M• = Cone(s•) for some s• ∈ HomHo(R)(CA, CB). The extension thus
takes the form

QB PB

QB ⊕ PA PB ⊕QA

PA QA

0

i1

−fB

i0

f1

p1

f0

p0

fA

0

where f0 =
(−fB s0

0 0

)
, f1 =

( 0 s1
0 fA

)
, and fA, fB are defined in (3.16). This extension

induces an exact commutative diagram

(4.4)

0 H0(M•) H0(CA)

PB M0/ im f1 QA/ im fA 0

0 QB ker f1 0

H1(C
∗
B) H1(M•) 0,

i0

−fB

p0

f0

i1 p1

where “i0” denotes the map induced by i0, etc.
Since the map induced by i1 in (4.4) is an isomorphism, it follows that the

direct summands in the decomposition M• = M+
• ⊕ M−

• of Lemma 3.2 have the
form

M+
• = (PA M+

0

f+
1

0
), M−

• = (QB M−
0

0

f−
0

)

where the maps f−
0 , f+

1 are obtained from f0, f1 by restriction.
The objects A1 = H0(M•) and B1 = H1(M•) thus have projective resolutions

PA M+
0 A1 0,

f+
1 M−

0 QB B1 0
f−
0

respectively. This gives relations

M̂+
1 = P̂A, M̂−

0 = Q̂B − B̂1 = P̂B + B̂ − B̂1
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in K(R). Substituting in (4.3), we have

EA � FB

=
∑

M•∈X
v〈M̂

+
1 −M̂−

0 +B̂−B̂1,Â−B̂〉 · e(CA, C
∗
B)M• ·K−M̂+

0
�K∗

−M̂−
0 +B̂−B̂1

� [M•]

=
∑

M•∈X
v〈B̂−B̂1,Â−B̂〉 · e(CA, C

∗
B)M• ·K∗

B̂−B̂1
� EM• .

(4.5)

One may check directly using (4.4) that the map s : A → B induced by

(3.5) coincides with the connecting homomorphism H0(CA)
δ−→ H1(CB) in the

long exact sequence of cohomology. In particular, note that H0(M•) � ker s, and
H1(M•) � coker s.

Hence, we may conclude that

(4.6)
∑
P•∈X

H0(P•)
A1, H1(P•)
B1

e(CA, C
∗
B)P• · EP•

= |{h ∈ HomR(A,B) | kerh � A1, cokerh � B1}| · EA1,B1
.

By the equality on [23, p.984], the preceding equation may be rewritten as

(4.7)
∑

H0(P•)
A1,

H1(P•)
B1

e(CA, C
∗
B)P• · EP• =

∑
B2∈Iso(A)

gBB1,B2
gAB2,A1

aB2
· EA1,B1

.

The equality in part (i) is now obtained by combining (4.3), (4.7) and (2.3).
(ii) This follows by interchanging A and B in (i) and taking ∗ on both sides. �

4.2. Embedding H̃v(R) in DH(R). In this subsection we make some more
precise statements about the relationships between the various Hall algebras we
have been considering.

Consider the injective linear map I+ : H̃v(R) ↪−→ DH(R) defined by

[A] ∗Kα �→ EA �Kα,

and let DH+(R) ⊂ DH(R) denote the image of this map.

Proposition 4.3. The restriction of multiplication in DH(R) makes the sub-

space DH+(R) into an associative algebra, and the embedding I+ : H̃v(R) ↪−→
DH(R) restricts to an isomorphism H̃v(R) ∼= DH+(R) of (unital) associative al-
gebras.

Proof. The result follows from Lemma 4.1, together with a comparison of the
relations (2.6) defining the extended Hall algebra with the relation (3.14) in the
localized Hall algebra. �

Composing with the involution ∗ gives another embedding

I− : H̃v(R) ↪−→ DH(R),

defined by [B] ∗ Kβ �→ FB � K∗
β , whose image DH−(R) is again an associative

algebra such that I− restricts to an algebra isomorphism H̃v(R) ∼= DH−(R).
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4.3. Drinfeld double of H̃v(R).

Lemma 4.4. The multiplication map ∇ : a ⊗ b �→ I+(a) � I−(b) defines an
isomorphism of vector spaces

∇ : H̃v(R)⊗C H̃v(R) −→ DH(R).

Proof. It follows from Proposition 3.18 that the algebra DH(R) has a C-basis
consisting of elements

EA,B �Kα �K∗
β, A,B ∈ Iso(A), α, β ∈ K(R).

Recall the partial order on K(A) defined in (2.9) and define DH≤γ for γ ∈ K(A) to
be the subspace of DH(R) spanned by elements from this basis for which kA(A)+
kA(B) ≤ γ. We claim that

(4.8) DH≤γ �DH≤δ ⊂ DH≤γ+δ, γ, δ ∈ K(A),

so that this defines a filtration on DH(R).
Suppose that M•, N• ∈ Cfin(P) and let

γ = kA(H0(M•)) + kA(H1(M•)), δ = kA(H0(N•)) + kA(H1(N•)).

Then consider an extension of complexes

0 −→ M• −→ P• −→ N• −→ 0.

The long exact sequence in homology can be split to give two long exact sequences

0 −→ K −→ H0(M•) −→ H0(P•) −→ H0(N•) −→ L −→ 0,

0 −→ L −→ H1(M•) −→ H1(P•) −→ H1(N•) −→ K −→ 0

for some objects K,L ∈ A. It follows that there is a relation in K(A),

γ + δ = kA(H0(P•)) + kA(H1(P•)) + 2(kA(K) + kA(L))

which proves (4.8).
Suppose now that N• = CA and M• = C∗

B for some objects A,B ∈ A. Then
K = 0, and by Lemmas 3.1, 3.7, and 3.8

Ext1C(R)(N•,M•) = HomR(A,B),

and the extension class is completely determined by the connecting morphism
H0(N•) → H1(M•). By Proposition 2.4, we therefore know that kA(L) = 0 exactly
when the extension is trivial. It follows that in the graded algebra associated to
the filtered algebra DH(R), one has a relation

∇([A] ∗Kα ⊗ [B] ∗Kβ) = v−(α,B̂) · EA,B �Kα �K∗
β .

It follows that ∇ takes a basis to a basis and is hence an isomorphism. �

As a corollary, we have

Corollary 4.5. The algebra DH(R) has a linear basis consisting of elements

EA �Kα � FB �K∗
β , A,B ∈ Iso(A), α, β ∈ K(R).

Now we state the main result of this section.

Theorem 4.6. Suppose that A ⊂ R satisfies conditions (2.12) and (2.13).
Then the algebra DH(R) is isomorphic to the Drinfeld double of the bialgebra

H̃v(R).
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Proof. Because of the description of the basis of DH(R) (Corollary 4.5) and
the definition of Drinfeld double, the proof of the theorem is reduced to check

equation (2.14) for the elements consisting of the basis of H̃v(R).
Let us write equation (2.14) in the present situation:

(4.9)
∑

(a2, b1)H · I+(a1)� I−(b2)
?
=

∑
(a1, b2)H · I−(b1)� I+(a2).

Now let A,B ∈ A and α, β ∈ K(R). Let us write

Δ([A]Kα) =
∑

A1,A2

v〈A1,A2〉gAA1,A2
· ([A1]KÂ2+α)⊗ ([A2]Kα),

Δ([B]Kβ) =
∑

B2,B1

v〈B2,B1〉gBB2,B1
· ([B2]KB̂1+β)⊗ ([B1]Kβ).

By the Hopf pairing (Definition 2.6 and Proposition 2.7) and (3.14), the left
hand side of (4.9) becomes

LHS of (4.9) =
∑

A1,A2,B1,B2

v〈A1,A2〉gAA1,A2
v〈B2,B1〉gBB2,B1

([A2]Kα, [B2]KB̂1+β)H

· EA1
�KÂ2+α � FB1

�K∗
β

=v(α,β)
∑

A1,A2,B1,B2

v〈A1,A2〉+〈B2,B1〉gAA1,A2
gBB2,B1

([A2], [B2])H

· EA1
�KÂ2

� FB1
�Kα �K∗

β.

Similarly, the right hand side becomes

RHS of (4.9)

= v(α,β)
∑

A1,A2,
B1,B2

v〈A1,A2〉+〈B2,B1〉gAA1,A2
gBB2,B1

([A1], [B1])H ·FB2
�K∗

B̂1
�EA2

�Kα�K∗
β .

After removing the term v(α,β) ·Kα�K∗
β from both sides, equation (4.9) reduces

to

∑
A1,A2,B1,B2

v〈A1,A2〉+〈B2,B1〉gAA1,A2
gBB2,B1

([A2], [B2])H · EA1
�KÂ2

� FB1

?
=

∑
A1,A2,B1,B2

v〈A1,A2〉+〈B2,B1〉gAA1,A2
gBB2,B1

([A1], [B1])H ·FB2
�K∗

B̂1
�EA2

.

(4.10)

By Definition 2.6 and (3.14), the left hand side of (4.10) becomes

LHS of (4.10)

=
∑

A1,A2,B1,B2

v〈A1,A2〉+〈B2,B1〉gAA1,A2
gBB2,B1

aA2
δA2,B2

· EA1
�KÂ2

� FB1

=
∑

A1,A2,B1

v〈A1,A2〉+〈A2,B1〉gAA1,A2
gBA2,B1

aA2
· EA1

�KÂ2
� FB1

=
∑

A1,A2,B1

v〈Â2,B̂1〉−〈Â2,Â1〉gAA1,A2
gBA2,B1

aA2
·KÂ2

� EA1
� FB1

.
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Thus by Lemma 4.2 (i) we have

LHS of (4.10) =
∑

A1,A2,A3,B1,B2,B3

v〈B̂2−Â2, Â−B̂〉gA1

B2,A3
gAA1,A2

gBA2,B1
gB1

B3,B2
·aA2

aB2

·KÂ2
�K∗

B̂2
� EA3,B3

.

Similar computations using Lemma 4.2 (ii) show that the right hand side of
(4.10) becomes

RHS of (4.10) =
∑

A1,A2,A3,B1,B2,B3

v〈Â1−B̂1, B̂−Â〉gA2

A3,A1
gB2

A1,B3
gBB2,B1

gAB1,A2
· aB1

aA1

·KÂ1
�K∗

B̂1
� EA3,B3

.

It follows by associativity (2.3) that this can be rewritten as

RHS of (4.10) =
∑

A1,A3,B1,B3

v〈Â1−B̂1, B̂−Â〉
∑

A′
2,B

′
2

g
A′

2

B1,A3
gAA′

2,A1
gBA1,B′

2
g
B′

2

B3,B1
· aB1

aA1

·KÂ1
�K∗

B̂1
� EA3,B3

.

One may check that this expression agrees with the LHS of (4.10), which completes
the proof. �

It is now possible to verify that the multiplication in DH(R) is associative.

Corollary 4.7. If the category R is Hom-finite (so that A = R) or if the
subcategory A ⊂ R satisfies conditions (2.12) and (2.13), then the algebra DH(R)
is associative.

Proof. If R = A, then it follows by Remark 3.11 that the algebra DH(R) is
isomorphic to the localized Hall algebra DH(A) defined in [4]. It follows by results
in [4] that the category C(A) is Hom-finite, so that H(C(P)) and DH(A) are both
associative in this case.

The remaining statement is a consequence of Theorem 4.6 since the multipli-
cation in the Drinfeld double is associative. �

Remark 4.8. From the above result we can only conclude that the algebra
H(Cfin(P)) is “locally associative” in general, in the sense that given x, y, z ∈
H(Cfin(P)) we have

u� (x� (y � z)− (x� y)� z) = 0

for some element u ∈ Z.

4.4. Reduction. Define the reduced localized Hall algebra by setting [M•] = 1
in DH(R) whenever M• is an acyclic complex, invariant under the shift functor.
More formally, we set

DHred(R) = DH(R)/
(
[M•]− 1 : H•(M•) = 0, M•

∼= M∗
•

)
.

By Lemma 3.4 this is the same as setting

[KP ]� [K∗
P ] = 1

for all P ∈ P. One can check that the shift functor ∗ defines involutions of
DHred(R).

We have the following triangular decomposition.
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Proposition 4.9. The multiplication map [A] ⊗ α ⊗ [B] �→ EA � Kα � FB

defines an isomorphism of vector spaces

H(A)⊗C C[K(R)]⊗C H(A) −→ DHred(R).

Proof. The same argument given for Lemma 4.4 also applies here. �

4.5. Commutation relations. In this subsection, we prove commutation re-
lations among generators that are important to understand DHred(R).

Lemma 4.10. Suppose A1, A2 ∈ A satisfy

HomR(A1, A2) = 0 = HomR(A2, A1).

Then [EA1
, FA2

] = 0.

Proof. It follows from (4.5) and (4.6) that EA1
�FA2

= EA1,A2
. Exchanging

A1 and A2 in this equation and taking ∗ on both sides gives FA2
� EA1

= EA1,A2

as well, and the result follows. �

Lemma 4.11. Suppose A ∈ A satisfies EndA(A) = k. Then

[EA, FA] = (q − 1) · (K∗
Â
−KÂ).

Proof. Using formulas (4.5) and (4.6) again, we have EA�FA = EA,A+(q−
1) ·K∗

A. Taking ∗ on both sides gives the equation FA �EA = EA,A + (q− 1) ·KA,
since EA,A is ∗-invariant. The result follows by subtracting these equations. �

5. Realization of quantum groups

5.1. Quivers. Let Q be a locally finite quiver with vertex set I and (oriented)
edge set Ω. For σ ∈ Ω we denote by h(σ) and t(σ) the head and tail, respectively,

and sometimes use the notation t(σ)
σ→ h(σ). We will denote by ci the number of

loops at i ∈ I (i.e., the number of edges σ with h(σ) = t(σ) = i). A (finite) path
in Q is a sequence σm · · ·σ1 of edges which satisfies h(σi) = t(σi+1) for 1 ≤ i < m.
For each i ∈ I, we let ei denote the trivial path. We again let h(x) and t(x) denote
the head and tail vertices of a path x.

Consider the sub-quiver Q̄ ⊂ Q with vertex set Ī = I and edge set Ω̄ =
Ω\{σ|h(σ) = t(σ)}. We make the following assumptions throughout:

(A) There are no infinite paths of the form i0 → i1 → i2 → · · · in Q̄. In
particular, Q̄ is acyclic and Q has no oriented cycles other than loops.

(B) Each vertex of the quiver Q has either zero loops or more than one loop,
i.e. ci �= 1 for all i ∈ I.

It follows from (A) that I is partially ordered, with i � j if there exists a path x
such that t(x) = j and h(x) = i, and the set (I,�) satisfies the descending chain
condition.

From now on, we assume that the quiver Q satisfies the conditions (A) and
(B).

Example 5.1. Write Ln to denote the quiver consisting of a single vertex
I = {1} and n loops. If n ≥ 2, then the quiver Q = Ln trivially satisfies the
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assumptions (A) and (B). Below is a diagram for L4.

L4 : 1©
σ1

σ2

σ3

σ4

Let R = kQ denote the path algebra, with basis given by the set of paths and
multiplication defined via concatenation. The elements ei are pairwise orthogonal
idempotents. It follows from (A) that the subring eiRei is isomorphic to a free
associative k-algebra on ci generators. (If ci = 0 then eiRei ∼= k.) Hence each left
ideal Pi := Rei is an indecomposable projective R-module. It can then be checked
that R splits as a direct sum

(5.1) R =
⊕
i∈I

Pi

of pairwise non-isomorphic projective left R-submodules.
A representation of Q over k is a collection (Vi, xσ)i∈I,σ∈Ω, where Vi is a (pos-

sibly infinite dimensional) k-vector space and xσ ∈ Homk(Vt(σ), Vh(σ)). We let
Repk(Q) denote the abelian category consisting of the representations of Q over
k which are of finite support, i.e. such that Vi = 0 for almost all i. A representa-
tion (Vi, xσ) ∈ Repk(Q) is called finite-dimensional if each Vi is finite-dimensional.
For such a representation, set dim(Vi, xσ) = dim(Vi) = (dimk Vi) ∈ N⊕I . We
denote by repk(Q) the full subcategory of R consisting of the finite dimensional
representations of Q.

Any representation of Q is naturally an R-module for the path algebra R.
Whenever it is convenient, particularly in the next subsection, we will consider
representations of Q as R-modules. It follows from the decomposition (5.1) that
any left R-module M has a decomposition into k-subspaces, M =

⊕
i∈I M(i), with

M(i) = eiM . Then we have dim(M) = (dimk M(i)) ∈ N⊕I for a finite dimensional
R-module M , which is equal to the dimension vector as a representation. We say
that an R-module is of finite support if the associated representation is.

Recall that any M ∈ Repk(Q) has the standard presentation of the form

(5.2) 0 −→
⊕
σ∈Ω

Ph(σ) ⊗k et(σ)M
f−−→

⊕
i∈I

Pi ⊗k eiM
g−−→ M −→ 0.

Let Projk(Q) denote the full subcategory of Repk(Q) whose objects are finitely-
generated, projective R-modules. Let R be the full subcategory of Repk(Q) whose
objects are finitely presented representations of Q, i.e. the full subcategory consist-
ing of all objects M for which there exists a presentation

P → Q → M → 0

for some P,Q ∈ Projk(Q).
As in Section 1.1, define P ⊂ R to be the full subcategory of projectives in R

and A ⊂ R the full subcategory of objects A ∈ R such that HomR(M,A) is a finite
set for any M ∈ R. It is easy to see that P = Projk(Q). For the category A, we
have the following characterization.
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Lemma 5.2. The category A is equal to the full subcategory of R consisting of
all finite-dimensional representations, i.e. A = repk(Q).

Proof. Assume that A ∈ repk(Q). From the standard resolution (5.2), we see
that A ∈ R. Clearly, A is finite as a set. Since any M ∈ R is finitely generated, the
set HomR(M,A) is also finite. Thus A is an object of A. For the converse, assume
that M ∈ Repk(Q) is infinite dimensional. Then there is a vertex i ∈ I such that
eiM is infinite dimensional. For each a ∈ eiM , we have a homomorphism Pi → M
given by ei �→ a. Thus HomR(Pi,M) is an infinite set and M does not belong to
A. �

5.2. Krull–Schmidt property for Projk(Q). Since the endomorphism ring
EndR(Pi) is not local in general, the usual Krull–Schmidt theorem does not hold
in the category Projk(Q). In this subsection, we describe a suitable analogue.

First note the following.

Lemma 5.3. Suppose i, j ∈ I are distinct vertices such that (ReiR)∩ (RejR) �=
0. Then either i ≺ j or j ≺ i.

Proof. It follows from the stated condition that there are paths x, x′, y, y′

such that xeiy and x′ejy
′ are both nonzero and

xy = xeiy = x′ejy
′ = x′y′.

We then have xy = x′y′ = σ1 · · ·σn, for some σ1, . . . , σn ∈ Ω. Let 1 ≤ l, l′ ≤ n
be such that x = σ1 · · ·σl, y = σl+1 · · ·σn, x

′ = σ1 · · ·σl′ , and y′ = σl′+1 · · ·σn.
Suppose without loss of generality that l < l′. Then z = σl+1 · · ·σl′ is a path such
that h(z) = i and t(z) = j. Thus i ≺ j. �

Let R-Mod denote the abelian category of all left R-modules of finite support.
We identify R-Mod with Repk(Q), and consider P = Projk(Q) as a full subcategory
of R-Mod. We write supp(M) := {i | M(i) �= 0} for M ∈ R-Mod. Recall that
for any idempotent e ∈ R there is an exact functor from the category R-Mod to
(eRe)-Mod given by M �→ eM . Now suppose M ∈ P. Then M(i) is a finitely-
generated, projective (eiRei)-module. Since eiRei is a free associative k-algebra,
M(i) is a free (eiRei)-module of finite rank, say ri(M). (See, for example, [7].)
Write rkP(M) = (ri(M))i∈I ∈ N⊕I to denote the vector formed by these ranks.
Notice that ri(Pi) = 1 and rj(Pi) = 0 unless j � i. It follows that the vectors,
rkP(Pi), form a basis for Z⊕I .

Given a subset J ⊆ I, consider the set J� = {i ∈ I | i � j for some j ∈ J}. If
J is finite then so is J� by (A), and there are corresponding idempotents

eJ =
∑
j∈J

ej and e�J =
∑
i∈J�

ei.

Lemma 5.4. Suppose J ⊆ I is a finite subset and write e = e�J . Then there is
an equivalence between (eRe)-Mod and the full subcategory of R-Mod consisting of
modules M such that supp(M) ⊆ J .

Proof. Consider the functor R-Mod → (eRe)-Mod : M �→ eM . Then eRe =
Re, and an inverse functor is given by extending the action of Re on M ∈ (eRe)-
Mod to all of R by letting

⊕
i/∈J�

Pi act by zero. �

Lemma 5.5. Suppose a is a finitely generated left ideal of R. For i, j ∈ I, the
following hold.
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(i) The ideal a is a projective left R-module.
(ii) Any nonzero R-module homomorphism, φ : Pi → a, is injective.
(iii) Suppose φi : Pi → a and φj : Pj → a are homomorphisms such that

im(φi) ∩ im(φj) �= 0. Then either im(φi) ⊆ im(φj) or im(φj) ⊆ im(φi).
(iv) As a left R-module, a is isomorphic to a finite direct sum of copies of the

modules {Pi}i∈I .

Proof.

(i) Suppose a ⊆ R is a left ideal with S ⊆ a a finite set of generators. Then
S ⊆ ReJ for some finite set J and it follows that supp(a) ⊆ J�. If we set e = e�J ,
then a ⊆ eRe, which shows that a is a left ideal of a hereditary ring and thus
projective as an eRe-module. It follows that a is a projective R-module by Lemma
5.4.

(ii) The image im(φ) ⊆ a is a projective left R-module by (i). So the exact
sequence

0 → ker(φ) → Pi → im(φ) → 0

splits. Since Pi is indecomposable, it follows that φ is injective.
(iii) Letting φi(ei) = v and φj(ej) = w, we have im(φi) = Rv and im(φj) =

Rw. We thus have (Reiv) ∩ (Rejw) �= 0. It follows by Lemma 5.3 that i � j or
j � i. Assume without loss of generality that j � i. It then follows from the proof
of Lemma 5.3, that there exists a path x such that w = ejw = ejxeiv = xv. It
follows that im(φj) = Rw = R(xv) ⊆ Rv = im(φi).

(iv) First set J1 := supp(a), and choose a maximal vertex j1 ∈ J1. Then
aj1 is an ej1Rej1-module with a finite set, say S1, of free generators of size n1 :=
rj1(a) �= 0. It follows from (ii) that for each generator v ∈ S1 the mapping,
Pj1 → a : ej1 �→ v, defines an injective R-module homomorphism. By (iii), we thus
have a corresponding isomorphism

(Pj1)
⊕n1

∼−→ RS1 ⊆ a.

Next choose a maximal vertex j2 belonging to the subset

J2 := {j ∈ J1 | rj(a)− n1 · rj(Pj1) > 0}.

It follows that aj2 = ej2a is a free ej2Rej2 -module of rank n1 ·rj(Pj1)+n2, for some
n2 > 0. Let S2 = S2

1 �S2
2 be a set of free ej2Rej2 -generators such that S2

1 generates
ej2(RS1). Then S2

2 has size n2, and it follows as in the previous paragraph that we
have an embedding

(Pj2)
⊕n2

∼−→ RS2
2 ⊆ a.

By the maximality of j1 we have j1 � j2. It is also clear that RS2
2 � RS1. It

follows by (iii) that (RS1) ∩ (RS2
2 ) = 0. We thus obtain an embedding

(Pj1)
⊕n1 ⊕ (Pj2)

⊕n2
∼−→ RS1 +RS2

2 ⊆ a.

Continuing in this way the process eventually terminates, since supp(a) is finite,
yielding the desired decomposition. �

The following is an analogue of the Krull–Schmidt theorem for the category of
finitely-generated projective R-modules.
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Proposition 5.6. Given any finitely-generated, projective left R-module M ∈
Projk(Q), there is an R-module isomorphism

M ∼=
⊕
i∈I

P⊕ni
i

for some nonnegative integers ni, only finitely many of which are nonzero. More-
over, given another such decomposition, M ∼=

⊕
i∈I P

⊕mi
i , we must have mi = ni

for all i.

Proof. Since M is finitely generated, J = supp(M) is finite. Letting e = e�J ,
we see that M is a projective module of the hereditary ring eRe. It follows from
[6, Theorem 5.3] or [14] that M is isomorphic to a finitely generated left ideal of
eRe. Hence Lemma 5.5 yields a decomposition

M ∼=
⊕
i∈I

P⊕ni
i .

It follows that

rkP(M) =
∑
i∈I

ni · rkP(Pi).

Since the vectors {rkP(Pi)}i∈I form a basis for Z⊕I , the decomposition must be
unique. �

5.3. Assumptions (a)-(e). Let Si be a simple module supported only at
i ∈ I. Then we obtain from (5.2) the standard resolution

0 −→ P ′
i −→ Pi −→ Si −→ 0,

where P ′
i =

⊕
j∈I P

⊕nj

j for some integers nj . Then clearly nj = 0 unless j � i. In

particular, if i is a minimal vertex then P ′
i = P⊕ci

i and hence

(5.3) (1− ci) P̂i = Ŝi

which is non-zero by assumption (B). Now if i ∈ I is not minimal, then by assump-
tion (A) the set {j | j � i} is finite. We may thus use (5.2) and (5.3) inductively

to write P̂i as a linear combination

(5.4) P̂i =
1

1− ci
Ŝi +

∑
j≺i

rijŜj , rij ∈ Q.

The following proposition makes it possible to apply the results in the gen-
eral setting of the previous sections to the category R of finitely-presented quiver
representations.

Proposition 5.7. The triple (R,P,A) satisfies the assumptions (a)-(e) in
Section 1.1.

Proof.

(a) It is clear.
(b) Since the path algebra R is hereditary, the category R is hereditary as well.

Furthermore, R has enough projectives by definition.
(c) It is clear that P = Projk(Q), so this condition follows easily from Propo-

sition 5.6.
(d) It follows from the expression (5.4).
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(e) If kR(A) = kR(B) for A,B ∈ A, the standard resolution (5.2) tells us that
eiA and eiB have the same number of elements for each i ∈ I. Then |Hom(Pi, A)| =
|Hom(Pi, B)| for each i ∈ I, and thus |Hom(P,A)| = |Hom(P,B)| for P ∈ P by
Proposition 5.6. �

It is also clear that the subcategory A ⊂ R satisfies the finite subobjects
condition (2.11), since each object A ∈ A is a finite dimensional vector space by
Lemma 5.2. Thus A also satisfies conditions (2.12) and (2.13).

Remark 5.8. The quiver L1 is called the Jordan quiver, and its path alge-
bra is isomorphic to the polynomial algebra k[x]. For each λ ∈ k, there is the
one-dimensional simple modules Sλ over k[x] where x acts as λ. Considering the

standard resolution (5.2), we see Ŝλ = 0, and the assumptions (d) and (e) are not
satisfied. Nonetheless, the Jordan quiver is related to classical examples of Hall
algebras. One can find details, for example, in [21].

5.4. Quantum generalized Kac-Moody algebras. In this subsection we
recall the basic definitions concerning quantum generalized Kac–Moody algebras.
We keep the assumptions on the choice of v as in Section 1.2.

Let I be a countable index set, and fix a symmetric Borcherds–Cartan matrix
A = (aij)i,j∈I whose entries aij , by definition, satisfy (i) aii ∈ {2, 0,−2,−4, . . .}
and (ii) aij = aji ∈ Z≤0 for all i, j. Put Ire = {i ∈ I | aii = 2} and Iim = I\Ire,
and assume that we are given a collection of positive integers m = (mi)i∈I , called
the charge of A, with mi = 1 whenever i ∈ Ire. We put

[n] =
vn − v−n

v − v−1
, [n]! = [1][2] · · · [n],

[
n
k

]
=

[n]!

[n− k]![k]!
.

The quantum generalized Kac–Moody algebra associated with (A,m) is defined to
be the (unital) C-algebra Uv generated by the elements Ki,K

−1
i , Eik, Fik for i ∈ I,

k = 1, . . . , mi, subject to the following set of relations: for i, j ∈ I, k = 1, . . . , mi

and l = 1, . . . , mj ,

KiK
−1
i = K−1

i Ki = 1, KiKj = KjKi,(5.5)

KiEjlK
−1
i = vaijEjl, KiFjlK

−1
i = v−aijFjl,(5.6)

EikFjl − FjlEik = δlkδij
Ki −K−1

i

v − v−1
,(5.7)

EikEjl − EjlEik = FikFjl − FjlFik = 0 if aij = 0, and(5.8)

1−aij∑
n=0

(−1)n
[
1− aij

n

]
E

1−aij−n
ik EjlE

n
ik

=

1−aij∑
n=0

(−1)n
[
1− aij

n

]
F

1−aij−n
ik FjlF

n
ik = 0 if i ∈ Ire and i �= j.

The algebra Uv is equipped with a Hopf algebra structure as follows (see [1,12]):

Δ(Ki) = Ki ⊗Ki,

Δ(Eik) = Eik ⊗K−1
i + 1⊗ Eik, Δ(Fik) = Fik ⊗ 1 +Ki ⊗ Fik,

ε(Ki) = 1, ε(Eik) = ε(Fik) = 0,

S(Ki) = K−1
i , S(Eik) = −EikKi, S(Fik) = −K−1

i Fik.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

30 J. D. AXTELL AND K.-H. LEE

We have an involution τ : Uv −→ Uv defined by Eik �→ Fik, Fik �→ Eik and
Ki �→ K−1

i for i ∈ I and k = 1, . . . , mi. We denote by U0
v the subalgebra

generated by K±1
i , and by U+

v (resp. U−
v ) the subalgebra generated by Eik (resp.

Fik). Similarly, we define U≥0
v (resp. U≤0

v ) to be the subalgebra generated by K±1
i

and Eik (resp. K±1
i and Fik) for i ∈ I and k = 1, . . . , mi. Then

U0
v
∼= C[K±1

i ]i∈I ,

and the involution τ identifies U+
v with U−

v .
The following result provides a triangular decomposition for Uv.

Proposition 5.9 ([1]). The multiplication maps

U0
v ⊗C U+

v −→ U≥0
v , U0

v ⊗C U−
v −→ U≤0

v ,

and
U+

v ⊗C U0
v ⊗C U−

v −→ Uv

are isomorphisms of vector spaces.

5.5. Embedding of U≥0
v into a Hall algebra. Let A = (aij)i,j∈I be a

symmetric Borcherds–Cartan matrix such that each row has only finitely many
nonzero entries and aii �= 0 for any i ∈ I. Fix a locally finite quiver Q associated
to A satisfying conditions (A) and (B): each vertex i has 1− aii/2 loops, and two
distinct vertices i and j are connected with −aij arrows for i �= j. Then, since
aii �= 0 for any i ∈ I, the condition (B) is satisfied, and we can always choose an
orientation for Q so that (A) is satisfied.

If i ∈ Ire, then there exists a unique simple object Si ∈ Repk(Q) supported
at i. On the other hand, if i ∈ Iim then the set of simple objects supported
at i is in bijection with kci : if σ1, . . . , σci denote the simple loops at i then to
λ = (λ1, . . . , λci) ∈ kci corresponds the simple module Si,λ = (Vj , xσ)j∈I,σ∈Ω with
dimkVj = δij and xσk

= λk · id for k = 1, . . . , ci.
Let us now assume that the charge m = (mi)i∈I satisfies

mi ≤ |kci | = qci for each i ∈ I.

We choose λ(l) ∈ kci for l = 1, . . . , mi in such a way that λ(l) �= λ(l′) for l �= l′.
Then we set Sil = Si,λ(l) for i ∈ Iim and l = 1, . . . , mi, and simply set Si1 = Si

for i ∈ Ire. Since Sil have the same projectives in the standard resolution (5.2) for
all l = 1, . . . , mi, they define a unique class in K(R). We will denote this unique

class by Ŝi for any i ∈ I.
The following lemma will be used in the proof of Theorem 5.11.

Lemma 5.10. Let K̄(A) denote the image of the map K(A) → K(R) defined
in (2.7). Then the map dim : K̄(A) → Z⊕I is well-defined and is an isomorphism.
That is,

Z⊕I � K̄(A) ↪→ K(R).

Proof. The map dim : K̄(A) → Z⊕I is well-defined by condition (e) which is
verified in Proposition 5.7. Clearly, the map is surjective. As noted already, there
is a unique class Ŝi which represents all simple modules Sil in A for each i ∈ I.
Thus the map is injective. �

The following theorem, due to Kang and Schiffmann, is an extension of well-
known results of Ringel [20] and Green [9] from the case of a finite quiver without
loops to a locally finite quiver with loops:
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Theorem 5.11 ([13]). Suppose k = Fq is such that |kci | ≥ mi for all i ∈ I.
Then there are injective homomorphisms of algebras

U+
v ↪−→ Hv(A) and U≥0

v ↪−→ H̃v(R)

defined on generators by K±1
i �→ K±1

Ŝi
for i ∈ I,

Eil �→ [Sil] · (q − 1)−1 for i ∈ I,

where Sil and Ŝi are defined right before Lemma 5.10.

Proof. Let H̃v,k(Q) be the extended, twisted Hall algebra defined in [13]. It
is shown in [13] that

U+
v ↪−→ Hv(A) and U≥0

v ↪−→ H̃v,k(Q).

Thus we have only to check that there exists an injective algebra homomorphism

H̃v,k(Q) ↪→ H̃v(R). The only difference between the two algebras is that, while

H̃v(R) is extended by K(R), the algebra H̃v,k(Q) is extended by Z⊕I . Thus the

embedding of H̃v,k(Q) into H̃v(R) follows from Lemma 5.10. �

5.6. Embedding of Uv into DHred(R). We keep the notations in the previ-
ous subsection. In particular, the matrix A is a Borcherds–Cartan Matrix and Q is
a fixed quiver corresponding to A. Suppose that Uv is the quantum group of the
generalized Kac-Moody algebra associated with A.

Now we state and prove the main result of this paper.

Theorem 5.12. There is an injective homomorphism of algebra

Ξ: Uv ↪−→ DHred(R),

defined on generators by

Ξ(Eil) = (q − 1)−1 · ESil
, Ξ(Fil) = (−v) · (q − 1)−1 · FSil

,

Ξ(Ki) = KŜi
, Ξ(K−1

i ) = K∗
Ŝi
,

where l = 1, 2, . . . , mi and Ŝi is the unique class representing Sil in K(R) for
each i ∈ I.

Proof. We have a commutative diagram of linear maps

U+
v ⊗U0

v ⊗U−
v Hv(A)⊗ C[K(R)]⊗Hv(A)

Uv DHred(R)

Θ

Ξ

where the vertical arrows are the isomorphisms described in Propositions 4.9 and
5.9, respectively, and the homomorphism Θ is constructed out of the homomor-
phisms of Theorem 5.11. The map Ξ is a well-defined algebra homomorphism by
Theorem 5.11 and by Lemmas 4.10, 4.11 and Corollary 4.7, which show that the
generators satisfy the defining relations of the quantum group. It is clear from this
diagram that Ξ is injective. �
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