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Gröbner–Shirshov Bases for
Irreducible sln+1-Modules

Seok-Jin Kang1 and Kyu-Hwan Lee2

Department of Mathematics, Seoul National University, Seoul 151-742, Korea
E-mail: sjkang@math.snu.ac.kr, khlee@math.snu.ac.kr

Communicated by Georgia Benkart

Received July 20, 1999

We determine the Gröbner–Shirshov bases for finite-dimensional irreducible rep-
resentations of the special linear Lie algebra sln+1 and construct explicit monomial
bases for these representations. We also show that each of these monomial bases
is in 1–1 correspondence with the set of semistandard Young tableaux of a given
shape. © 2000 Academic Press

0. INTRODUCTION

In [10], inspired by an idea of Gröbner, Buchberger discovered an effec-
tive algorithm for solving the reduction problem for commutative algebras,
which is now called the Gröbner Basis Theory. It was generalized to asso-
ciative algebras through Bergman’s Diamond Lemma [2], and the parallel
theory for Lie algebras was developed by Shirshov [21]. The key ingredi-
ent of Shirshov’s theory is the Composition Lemma, which turned out to be
valid for associative algebras as well (see [3]). For this reason, Shirshov’s
theory for Lie algebras and their universal enveloping algebras is called
Gröbner–Shirshov Basis Theory.
For finite-dimensional simple Lie Algebras, Bokut and Klein constructed

the Gröbner–Shirshov bases explicitly [5–7]. In [4], Bokut, et al. unified the
Gröbner–Shirshov basis theory for Lie superalgebras and their universal
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enveloping algebras and gave an explicit construction of Gröbner–Shirshov
bases for classical Lie superalgebras.
The main idea of the Gröbner–Shirshov Basis Theory for Lie (super)-

algebras may be summarized as follows: Let L be a Lie (super)algebra
defined by generators and relations. Then the set of relations can be com-
pleted to a basis S for the relations which are closed under composition. We
call S a Gröbner–Shirshov basis for the Lie (super)algebra L and the set of
all S-standard monomials forms a monomial basis of L.
The next natural step is to develop the Gröbner–Shirshov Basis Theory

for representations. In [15], we developed Gröbner–Shirshov basis theory
for representations of associative algebras by introducing the notion of the
Gröbner–Shirshov pair. More precisely, let �S� T � be a pair of subsets of
free associative algebra �, let J be the two-sided ideal of � generated by
S, and let I be the left ideal of the algebra A = �/J generated by (the
image of) T . Then the left A-module M = A/I is said to be defined by
the pair �S� T � and the pair �S� T � is called a Gröbner–Shirshov pair for
M if it is closed under composition, or equivalently if the set of �S� T �-
standard monomials forms a linear basis of M . In [15], we proved the gen-
eralized version of Shirshov’s Composition Lemma for a Gröbner–Shirshov
pair �S� T �.
In this paper, we apply the Gröbner–Shirshov Basis Theory for represen-

tations developed in [15] to the reduction problem for finite-dimensional
irreducible representations of the special linear Lie algebra sln+1. That is,
we determine the Gröbner–Shirshov pairs for finite-dimensional irreducible
sln+1-modules and construct explicit monomial bases for these modules. We
also show that each of these monomial bases is in 1–1 correspondence with
the set of semistandard Young tableaux of a given shape.
Let us describe our approach in more detail. Recall that the finite-

dimensional irreducible sln+1-modules are parametrized by the partitions
with at most n parts and that each of these partitions corresponds to a
Young diagram with at most n rows. Let λ be a Young diagram corre-
sponding to a partition with at most n parts and let V �λ� denote the finite-
dimensional irreducible representation of sln+1 with highest weight λ. Then
the sln+1-module V �λ� is defined by the pair �S−� Tλ�, where S− is the set of
(negative) Serre relations and Tλ is the set of annihilating relations for the
highest weight vector of V �λ�. First, we derive sufficiently many relations in
V �λ�, the set of which is denoted by ��−� �λ�, and determine the set G�λ�
of all ��−��λ�-standard monomials. We then give a bijection between G�λ�
and the set of all semistandard Young tableaux of shape λ. Hence we con-
clude that G�λ� is a monomial basis of the irreducible sln+1-module V �λ�
and that ��−��λ� is a Gröbner–Shirshov pair for V �λ�.
The monomial basis G�λ� can be given the structure of a colored orien-

ted graph, called the Gröbner–Shirshov graph, which reflects the internal
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structure of the representation V �λ�. However, the Gröbner–Shirshov graph
is usually different from the crystal graph introduced by Kashiwara [17].

1. GRÖBNER–SHIRSHOV BASIS THEORY FOR
REPRESENTATIONS

In this section, we briefly recall the Gröbner–Shirshov Basis Theory for
the representation of associative algebras which was developed in [15]. We
present the theory in a slightly different way so that it may fit into a more
general setting.
Let X be a set and let X∗ be the free monoid of associative monomials

on X. We denote the empty monomial by 1 and the length of a monomial
u by l�u�. Thus we have l�1� = 0.

Definition 1.1. A well-ordering ≺ on X∗ is called a monomial order if
x ≺ y implies axb ≺ ayb for all a� b ∈ X∗.

Fix a monomial order ≺ on X∗ and let �X be the free associative algebra
generated by X over a field �. Given a nonzero element p ∈ �X , we denote
by p the maximal monomial (called the leading term) appearing in p under
the ordering ≺. Thus p = αp+∑

βiwi with α�βi ∈ �, wi ∈ X∗, α 	= 0, and
wi ≺ p. If α = 1, p is said to be monic.
Let �S� T � be a pair of subsets of monic elements of �X , let J be the two-

sided ideal of �X generated by S, and let I be the left ideal of the algebra
A = �X/J generated by (the image of) T . Then we say that the algebra
A = �X/J is defined by S and the left A-module M = A/I is defined by
the pair �S� T �. The images of p ∈ �X in A and in M under the canonical
quotient maps will also be denoted by p.

Definition 1.2. Given a pair �S� T � of subsets of monic elements of
�X , a monomial u ∈ X∗ is said to be �S� T �-standard if u 	= asb and u 	= ct
for any s ∈ S, t ∈ T , and a� b� c ∈ X∗. Otherwise, the monomial u is said
to be �S� T �-reducible. If T = 
, we will simply say that u is S-standard or
S-reducible.

Using the same argument as that in the proof of Theorem 3.2 in [15], we
can prove:

Theorem 1.3. Every p ∈ �X can be expressed as

p = ∑
αiaisibi +

∑
βjcjtj +

∑
γkuk� (1.1)

where αi� βj� γk ∈ �; ai� bi� cj� uk ∈ X∗; si ∈ S; tj ∈ T ; aisibi � p; cjtj � p;
and uk ≤ p; and uk are �S� T �-standard.
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The term
∑

γkuk in the expression (1.1) is called a normal form (or a
remainder) of p with respect to the pair �S� T � (and with respect to the
monomial order ≺). As an immediate corollary of Theorem 1.3, we obtain:

Proposition 1.4. The set of �S� T �-standard monomials spans the left
A-module M = A/I defined by the pair �S� T �.
Definition 1.5. A pair �S� T � of subsets of monic elements of �X is

a Gröbner–Shirshov pair if the set of �S� T �-standard monomials forms a
linear basis of the left A-module M = A/I defined by the pair �S� T �. In
this case, we say that �S� T � is a Gröbner–Shirshov pair for the module M
defined by �S� T �. If a pair �S�
� is a Gröbner–Shirshov pair, then we also
say that S is a Gröbner–Shirshov basis for the algebra A = �X/J defined
by S.

Let p and q be monic elements of �X with leading terms p and q. We
define the composition of p and q as follows.

Definition 1.6. (a) If there exist a and b in X∗ such that pa = bq =
w with l�p� > l�b�, then the composition of intersection is defined to be
�p� q�w = pa− bq. Furthermore, if a = 1, the composition �p� q�w is called
right-justified.

(b) If there exist a and b in X∗ such that a 	= 1, apb = q = w, then
the composition of inclusion is defined to be �p� q�w = apb− q.

Remark. The role of w is important since there can be different choices
of overlaps for given p and q, which does not occur in commutative case.
Also, we do not consider a composition of the type �p� q�w = p− aqb with
b 	= 1, p = aqb = w. This point will become critical when we consider the
notion of closedness under composition for a pair �S� T �.
Let p� q ∈ �X and w ∈ X∗. We define a congruence relation on �X as

follows: p ≡ q mod �S� T �w� if and only if p − q = ∑
αiaisibi +

∑
βjcjtj ,

where αi� βj ∈ �; ai� bi� cj ∈ X∗; si ∈ S; tj ∈ T ; aisibi ≺ w; and cjtj ≺ w.
When T = 
, we simply write p ≡ q mod �S�w�.

Definition 1.7. A pair �S� T � of subsets of monic elements in �X is
said to be closed under composition if

(i) �p� q�w ≡ 0 mod �S�w� for all p� q ∈ S, w ∈ X∗, whenever the
composition �p� q�w is defined;

(ii) �p� q�w ≡ 0 mod �S� T �w� for all p� q ∈ T , w ∈ X∗, whenever
the right-justified composition �p� q�w is defined;

(iii) �p� q�w ≡ 0 mod �S� T �w� for all p ∈ S, q ∈ T , w ∈ X∗ whenever
the composition �p� q�w is defined.

If T = 
, we will simply say that S is closed under composition.
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In the following theorem, we recall the main result of [15] which is a gen-
eralized version of Shirshov’s Composition Lemma for representations of
associative algebras. The definition of a Gröbner–Shirshov pair in this paper
is different from the one given in [15]. But, as we will see in Proposition
1.9, these two definitions coincide with each other.

Theorem 1.8 [15]. Let �S� T � be a pair of subsets of monic elements in
the free associative algebra �X generated by X; A = �X/J the associative
algebra defined by S; and M = A/I the left A-module defined by �S� T �. If
�S� T � is closed under composition and the image of p ∈ �X is trivial in M ,
then the word p is �S� T �-reducible.

As a corollary, we obtain:

Proposition 1.9. Let �S� T � be a pair of subsets of monic elements in �X .
Then the following are equivalent:

(a) �S� T � is a Gröbner–Shirshov pair.

(b) �S� T � is closed under composition.

(c) For each p ∈ �X , the normal form of p is unique.

Proof. �a� ⇒ �b�. Consider a composition �p� q�w. By Theorem 1.3,
we obtain a normal form of �p� q�w. Since �p� q�w is trivial in M , any nor-
mal form of �p� q�w must be zero. Moreover, �p� q�w ≺ w, which implies
�p� q�w ≡ 0 mod �S� T �w�.

�b� ⇒ �c�. Given p ∈ �X , assume that we have two normal forms∑
γkuk and

∑
γ′
kuk of p, where γk� γ

′
k ∈ �. Then

∑�γk − γ′
k�uk is trivial

in M , and by Theorem 1.8 we must have γk = γ′
k for all k.

�c� ⇒ �a�. By Proposition 1.4, we have only to check the linear inde-
pendence of �S� T �-standard monomials, which follows immediately from
the uniqueness of the normal form.

Remark. Part (b) of Proposition 1.9 gives an analogue of Buchberger’s
algorithm as we have shown in [15]. However, in general, there is no guar-
antee that this process will terminate in finite steps. Still, such an algorithm
works in many interesting cases as we can see in the following examples.

Before focusing on finite-dimensional irreducible sln+1-modules, we give
a couple of examples of the general Gröbner–Shirshov basis theory for
associative algebras and their representations. In the examples given below,
we take the field � to be the complex number � and the monomial order
≺ to be the degree–lexicographic order. That is, we define u ≺ v if and only
if l�u� < l�v� or l�u� = l�v� and u ≺ v in the lexicographic order (cf. [15]).
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Example 1.10. Let X = �d� u� with u ≺ d and

S =
{

d2u− αdud − βud2 − γd�
du2 − αudu− βu2d − γu

}
�

where α�β� γ ∈ �% The algebra A�α�β� γ� defined by S is called the down-
up algebra (cf. [1]). There is only one possible composition among the ele-
ments of S, which turns out to be trivial:

�d2u− αdud − βud2 − γd� du2 − αudu− βu2d − γu�d2u2
= −βud2u+ βdu2d

= −βu�d2u− αdud − βud2 − γd� + β�du2 − αudu− βu2d − γu�d
≡ 0 mod �S�d2u2�%

Hence S is a Gröbner–Shirshov basis for the down-up algebra A�α�β� γ�
and the monomial basis of A�α�β� γ� consisting of S-standard monomials
is given by

�ui�du�jdk�i� j� k ≥ 0�%
Let T = �du − λ� d� with λ ∈ � and let M�λ� be the left A�α�β� γ�-

module defined by the pair �S� T �. Note that there is no right-justified
composition among elements of T . Then the only possible composition
between the elements of S and T is trivial:

�d2u− αdud − βud2 − γd� du− λ�d2u
= −αdud − βud2 − γd + λd ≡ 0 mod �S� T �d2u�%

Therefore �S� T � is closed under composition, and by Proposition 1.9 the
pair �S� T � is a Gröbner–Shirshov pair for the A�α�β� γ�-module M�λ�.
Hence we obtain the monomial basis of M�λ� consisting of �S� T �-standard
monomials, �ui�i ≥ 0�.
Example 1.11. Let �q�Sn� be the Iwahori–Hecke algebra of type A with

q ∈ �×. Thus �q�Sn� is the associative algebra over � generated by X =
�T1� T2� % % % � Tn−1� with defining relations

S �
TiTj − TjTi for i > j + 1�
T 2
i − �q− 1�Ti − q for 1 ≤ i ≤ n− 1�

Ti+1TiTi+1 − TiTi+1Ti for 1 ≤ i ≤ n− 2%
(1.2)

Define Ti ≺ Tj if i < j. We claim that S can be completed to a
Gröbner–Shirshov basis � for �q�Sn� given as

� �
TiTj − TjTi for i > j + 1�
T 2
i − �q− 1�Ti − q for 1 ≤ i ≤ n− 1�

Ti+1� jTi+1 − TiTi+1� j for i ≥ j�
(1.3)
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where Ti� j = TiTi−1 · · ·Tj for i ≥ j (hence Ti� i = Ti). Since Ti+1 commutes
with Tk for j ≤ k ≤ i− 1, we have

Ti+1� jTi+1 = Ti+1TiTi−1� jTi+1 = Ti+1TiTi+1Ti−1� j
= TiTi+1TiTi−1� j = TiTi+1� j %

Hence all the relations in � hold in �q�Sn�. Note that the set B of
� -standard monomials is given by

B = �T1� j1T2� j2T3� j3 · · ·Tn−1� jn−1 � 1 ≤ jk ≤ k+ 1

for all k = 1� 2� % % % � n− 1��
where Ti� i+1 = 1. Then the number of elements in B is n! which is equal
to the dimension of �q�Sn�. Therefore, by Proposition 1.4, the set B is a
linear basis of �q�Sn�, and hence the set � is a Gröbner–Shirshov basis for
the Iwahori–Hecke algebra �q�Sn�.
For the representations of �q�Sn�, we only consider one special example.

The general Gröbner–Shirshov basis theory for Iwahori–Hecke algebras
and their representations will be investigated elsewhere [16].
Let n = 4 and let M be the �q�S4�-module defined by the pair �� � T �,

where

T = �T1T2� 1 + T2� 1 + T1T2 + T2 + T1 + 1�%
It is clear that there is no right-justified composition among the elements
of T . As for the compositions between the elements of � and T , there are
three possibilities:

�T3T1 − T1T3� T1T2� 1 + T2� 1 + T1T2 + T2 + T1 + 1�T3T1T2� 1
= −T1T3� 1 − T3� 1 − T3T1T2 − T3� 2 − T3� 1 − T3

≡ −T1T3� 1 − T3� 1 − T1T3� 2 − T3� 2 − T1T3 − T3 mod �� � T �T3T1T2� 1��
�T 2

1 − �q− 1�T1 − q� T1T2� 1 + T2� 1 + T1T2 + T2 + T1 + 1�T1T2� 1
≡ −q�T1T2� 1 + T2� 1 + T1T2 + T2 + T1 + 1� ≡ 0 mod �� � T �T1T2� 1��

�T2� 1T2 − T1T2� 1� T1T2� 1 + T2� 1 + T1T2 + T2 + T1 + 1�T2� 1T2� 1
= −T1T2T 2

1 − T 2
2 T1 − T2T1T2 − T 2

2 − T2� 1 − T2

≡ −q�T1T2� 1 + T2� 1 + T1T2 + T2 + T1 + 1� ≡ 0 mod �� � T �T2� 1T2� 1�%
Thus T can be extended by adding the nontrivial composition

� = T ∪ �T1T3� 1 + T3� 1 + T1T3� 2 + T3� 2 + T1T3 + T3�%
Then it is straightforward to verify that there is no additional nontriv-
ial composition between the elements of � and � . Hence �� �� � is a
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Gröbner–Shirshov pair for the left �q�Sn�-module M defined by the pair
�� � T �. It is now easy to see that the monomial basis of M consisting of
�� �� �-standard monomials is given by

B = �T1� jT2� kT3� l � 1 ≤ j ≤ 2� 1 ≤ k ≤ 3� 1 ≤ l ≤ 4�∖�T1T2� 1� T1T3� 1� T2� 1T3� 1� T1T2� 1T3� 1�
and that dimM = 20.

2. GRÖBNER–SHIRSHOV PAIRS FOR
IRREDUCIBLE sln+1-MODULES

We now turn to finite-dimensional irreducible representations of the spe-
cial linear Lie algebra sln+1, the Lie algebra of �n+ 1� × �n+ 1� matrices
with trace 0. In this section, the base field will be the complex field � and
our monomial order will be the degree-lexicographic order.
Recall that the Lie algebra sln+1 is generated by �ei� hi� fi � 1 ≤ i ≤ n�

with the defining relations

W � �hihj� �i > j�� �eifj� − δijhi�
�eihj� + ajiei� �hifj� + aijfj�

S+ � �ei+1�ei+1ei��� ��ei+1ei�ei� �1 ≤ i ≤ n− 1��
�eiej� �i > j + 1��

S− � �fi+1�fi+1fi��� ��fi+1fi�fi� �1 ≤ i ≤ n− 1��
�fifj� �i > j + 1��

(2.1)

where the Cartan matrix �aij�1≤i� j≤n is given by

aii = 2� ai+1� i = ai� i+1 = −1� aij = 0 for �i− j� > 1% (2.2)

Let U be the universal enveloping algebra of sln+1 and let U+ (resp.
U−) be the subalgebra of U generated by E = �e1� % % % � en� (resp. F =
�f1� % % % � fn�). Then the algebra U+ (resp. U−) is the associative algebra
defined by the set S+ (resp., S−) of relations in the free associative algebra
�E on E (resp. �F on F).
For i ≥ j, we define

�eij� = �ei�ei−1�· · · �ej+1ej���� eij = eiei−1 · · · ej�
�fij� = �fi�fi−1�· · · �fj+1fj���� fij = fifi−1 · · · fj% (2.3)

(Hence �eii� = eii = ei and �fii� = fii = fi.) We also define ei ≺ ej , fi ≺ fj
if and only if i < j, and �i� j� > �k� l� if and only if i > k or i = k, j > l.
In [5], Bokut and Klein extended the set S± to obtain a Gröbner–Shirshov

basis �± for the algebra U± as given in the following proposition.
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Proposition 2.1 ([5, 19]) Let

�+ = ���eij�� �ekl�� � �i� j� > �k� l�� k 	= j − 1��
�− = ���fij�� �fkl�� � �i� j� > �k� l�� k 	= j − 1�% (2.4)

Then �± is a Gröbner–Shirshov basis for the algebra U±. In addition, in U±,

��eij�� �ej−1�k�� = �eik� and ��fij�� �fj−1�k�� = �fik�% (2.5)

Remark. The Gröbner–Shirshov bases for classical Lie algebras were
completely determined in [5–7]. There is another answer to this problem
given by Lalonde and Ram [19]. (See also [13].) For classical Lie superal-
gebras, the Gröbner–Shirshov bases were determined in [4].

Recall that the finite-dimensional irreducible representations of sln+1 are
indexed by the partitions with at most n parts and that each of these par-
titions corresponds to a Young diagram with at most n rows. Thus we will
identify a partition with the corresponding Young diagram.
Let λ = �λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0� be a partition with at most n parts and

let V �λ� denote the finite-dimensional irreducible representation of sln+1
with highest weight λ. Set

mi = λi − λi+1 for i = 1� 2� % % % � n% (2.6)

(Here, λn+1 = 0.) Then it is well-known (see [14], for example) that the
sln+1-module V �λ� can be regarded as a U−-module defined by the pair
�S−� Tλ�, where

Tλ = �fmi+1
i � i = 1� % % % � n�% (2.7)

For convenience, we define

Hi+1� k =
k∏

s=i+1

( i−1∏
t=1

�fs� t�as� t
)
�fs� i�as� i−rs �fs� i+1�as� i+1+rs

( s∏
t=i+2

�fs� t�as� t
)
�

for i� k and as� t� rs ∈ �≥0.
We will say that a relation R = 0 holds in U− whenever R belongs to

the two-sided ideal of �F generated by S−. Similarly, we will say that a
relation R = 0 holds in V �λ� whenever R is contained in the left ideal of
U− generated by Tλ.
We now can state the main theorem of this paper.

Theorem 2.2. Let λ = �λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0� be a partition with at
most n parts and let V �λ� denote the finite-dimensional irreducible represen-
tation of sln+1 with highest weight λ. Then the relations

an� j∑
rn=0

· · ·
aj+1� j∑
rj+1=0

bj� j!
�bj� j + �r�j+1�!

Bj� j+1f
bj� j+�r�j+1
j Hj+1� n = 0� (2.8)
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an� j∑
rn=0

· · ·
ai+1� j∑
ri+1=0

bi� j∑
ri=−k

Bj� i+1
�r�i!

(
bi� j + k

ri + k

)
f
�r�i
j

× �fi� j�bi� j−ri�fi� j+1�ri+k
( i∏

t=j+2
�fi� t�ai� t

)
Hi+1� n = 0�

(2.9)

where bi� j = mj + 1 + ∑n
s=i+1�as� j+1 − as� j�, Bj� i+1 = ∏n

s=i+1
(
as� j
rs

)
, �r�i =∑n

s=i rs, and the summand is 0 whenever �r�i < 0, hold in V �λ�.
The proof of Theorem 2.2 will be given in the next section. In the rest

of the section, assuming that Theorem 2.2 is proved, we will determine the
Gröbner–Shirshov pair for the irreducible representation V �λ� of sln+1 with
highest weight λ.
Let �λ be the subset of �X consisting of the elements from (2.8)

and (2.9),
an� j∑
rn=0

· · ·
aj+1� j∑
rj+1=0

bj� j!
�bj� j + �r�j+1�!

Bj� j+1f
bj� j+�r�j+1
j Hj+1� n�

an� j∑
rn=0

· · ·
ai+1� j∑
ri+1=0

bi� j∑
ri=−k

Bj� i+1
�r�i!

(
bi� j + k

ri + k

)
f
�r�i
j

× �fi� j�bi� j−ri�fi� j+1�ri+k
( i∏

t=j+2
�fi� t�ai� t

)
Hi+1� n%

Note that the maximal monomials in the relations (2.8) are of the form

f
bj� j
j

n∏
s=j+1

s∏
t=1

f
as� t
s� t

with rn = · · · = rj+1 = 0. Similarly, the maximal monomials in the relations
(2.9) are of the form

f
bi� j
i� j f

k
i� j+1

i∏
t=j+2

f
ai� t
i� t

n∏
s=i+1

s∏
t=1

f
as� t
s� t

with rn = · · · = ri+1 = ri = 0.
Our observation yields the first half of the following proposition.

Proposition 2.3. (a) The set G�λ� of ��−� �λ�-standard monomials is
given by

G�λ� =
{ n∏

i=1

i∏
j=1

f
ai� j
i� j � 0 ≤ ai� j ≤ bi� j − 1

}
� (2.10)

where bi� j = mj + 1 + ∑n
s=i+1�as� j+1 − as� j�. Note that, since bi� j involves

those as� t ’s with s ≥ i+ 1 only, the ai� j ’s can be determined recursively.
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(b) The set G�λ� is in 1–1 correspondence with the set of all semistan-
dard Young tableaux of shape λ.

Proof. We need only to prove part (b). Let Yλ = ��i� j� � 1 ≤ i ≤ n� 1 ≤
j ≤ λi� be the Young diagram corresponding to λ. (Note that λi = mi +
mi+1 + · · · +mn.) A semistandard Young tableau of shape λ is a function τ
from the set Yλ into the set �1� 2� % % % � n� n+ 1� such that

τ�i� j� ≤ τ�i� j + 1� and τ�i� j� < τ�i+ 1� j� for all i and j%

As usual, we can present a semistandard Young tableau by an array of
colored boxes. The following are examples of semistandard Young tableaux
of shape 251, 352, and 51 + 253, respectively.

1 2 1 2 2
2 3 3

4 4

1 1 2
2 3

Let ��λ� denote the set of all semistandard tableaux of shape λ. We
define a map 6� G�λ� → ��λ� as follows:

(a) Let 6�1� be the semistandard Young tableau τλ defined by
τλ�i� j� = i for all i and j.

(b) Let w = ∏n
i=1

∏i
j=1 f

ai� j
i� j be an ��−� �λ�-standard monomial in

G�λ�. We define 6�w� to be the semistandard Young tableau τ obtained
from τλ by applying the words fi� j successively (as a left U−-action) in the
following way:

The word fi� j changes the rightmost occurrence of the box j in the jth

row of τλ to the box i+ 1 .

For example, for the word w = f1f
2
2 f3� 1f

2
3 in G�51 +52 + 253�, 6�w� is

the semistandard Young tableau

4 4

1 1 2 4
2 3 3 .

It is now straightforward to verify that 6 is a bijection between G�λ� and
��λ�.
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By Proposition 1.4, G�λ� is a spanning set of V �λ�, and since
dim V �λ� = #��λ� (see, for example, [18]), it is actually a linear basis of
V �λ�. Therefore, we conclude:

Theorem 2.4. The pair ��−��λ� is a Gröbner–Shirshov pair for the irre-
ducible sln+1-module V �λ� with highest weight λ, and the set G�λ� is a mono-
mial basis for V �λ�.

3. THE RELATIONS IN V �λ�

In this section, we will derive sufficiently many relations in V �λ� in a
series of lemmas so that we would get a proof of Theorem 2.2. Recall that
we say that a relation R = 0 holds in U− whenever R belongs to the two-
sided ideal of �F generated by S−, and that a relation R = 0 holds in V �λ�
whenever R is contained in the left ideal of U− generated by Tλ.
We start with some relations in U− which will play an important role in

deriving the other relations in V �λ�.
Lemma 3.1. The following relations hold in U−:

�fij��fj−1� k�m = m�fj−1� k�m−1�fik� + �fj−1� k�m�fij� �m ≥ 1�% (3.1)

Proof. If m = 1, then there is nothing to prove. Assume that the rela-
tions in (3.1) hold for some fixed m. Since �fik��fj−1� k� = �fj−1� k��fik� in
U−, Proposition 2.1 yields

�fij��fj−1� k�m+1 = m�fj−1� k�m−1�fik��fj−1� k� + �fj−1� k�m�fij��fj−1� k�
= m�fj−1� k�m�fik� + �fj−1� k�m��fik� + �fj−1� k��fij��
= �m+ 1��fj−1� k�m�fik� + �fj−1� k�m+1�fij��

as desired.

For i� j� k ≥ 0 and as� t� rs ∈ �≥0, we define

Fi+1� k =
k∏

s=i+1

( i−1∏
t=1

�fs� t�as� t
)( s∏

t=i+2
�fs� t�as� t

)
�

Gi+1� k =
k∏

s=i+1

( i−1∏
t=1

�fs� t�as� t
)( s∏

t=i+1
�fs� t�as� t

)
�

Bj� i =
n∏
s=i

(
as� j
rs

)
� �r�i =

n∑
s=i

rs�

bi� j = mj + 1+
n∑

s=i+1
�as� j+1 − as� j�%
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Then we can derive the following set of relations in V �λ�:
Lemma 3.2. In V �λ�, we have

f
ci
i

n∏
s=i+1

(i−1∏
t=1

�fs� t�as� t
)( s∏

t=i+1
�fs� t�as� t

)
= f

ci
i Gi+1� n = 0� (3.2)

where as� t ∈ �≥0 and ci = mi + 1+∑n
s=i+1 as� i+1.

Proof. Note that Fi+1� n involves only �fs� t� such that �s� t� > �i� i� and
t 	= i + 1. Hence, by Proposition 2.1, Fi+1� n commutes with fi. Since f

mi+1
i

belongs to Tλ, we have

f
mi+1
i Fi+1� n = 0%

Thus the relation (3.2) holds when as� i+1 = 0 for all i+ 1 ≤ s ≤ n. Assume
that the relation (3.2) holds when as� i+1 = 0 for i+ 1 ≤ s ≤ k and as� i+1 ∈
�≥0 are arbitrary for k+ 1 ≤ s ≤ n with some fixed k. Then we have

f
ci
i Fi+1� kGk+1� n = 0%

Furthermore, assume that, for some fixed ak� i+1 = l > 0, we have

f
ci+l
i Fi+1� k−1

(i−1∏
t=1

�fk� t�ak� t
)
�fk� i+1�l

( k∏
t=i+2

�fk� t�ak� t
)
Gk+1� n = 0% (3.3)

Multiplying by �fk� i+1� from the left and using Lemma 3.1, we obtain

0 = �fk� i+1�f ci+li Fi+1� k−1

(i−1∏
t=1

�fk� t�ak� t
)
�fk� i+1�l

( k∏
t=i+2

�fk� t�ak� t
)
Gk+1� n

= �ci + l�f ci+l−1i Fi+1� k−1

(i−1∏
t=1

�fk� t�ak� t
)
�fk� i��fk� i+1�l

( k∏
t=i+2

�fk� t�ak� t
)
Gk+1� n

+ f
ci+l
i Fi+1� k−1

(i−1∏
t=1

�fk� t�ak� t
)
�fk� i+1�l+1

( k∏
t=i+2

�fk� t�ak� t
)
Gk+1� n%

It follows that

f
ci+l−1
i Fi+1� k−1

(i−1∏
t=1

�fk� t�ak� t
)
�fk� i��fk� i+1�l

( k∏
t=i+2

�fk� t�ak� t
)
Gk+1� n (3.4)

= − 1
ci + l

f
ci+l
i Fi+1� k−1

(i−1∏
t=1

�fk� t�ak� t
)
�fk� i+1�l+1

( k∏
t=i+2

�fk� t�ak� t
)
Gk+1� n%
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Now, by multiplying the left-hand side of the relation (3.3) by �fk� i� and
using the relation (3.4) obtained in the above, we get

0 = �fk� i�f ci+li Fi+1� k−1

(i−1∏
t=1

�fk� t�ak� t
)
�fk� i+1�l

( k∏
t=i+2

�fk� t�ak� t
)
Gk+1� n

= f
ci+l
i Fi+1� k−1

(i−1∏
t=1

�fk� t�ak� t
)
�fk� i��fk� i+1�l

( k∏
t=i+2

�fk� t�ak� t
)
Gk+1� n

= − 1
ci + l

f
ci+l+1
i Fi+1� k−1

(i−1∏
t=1

�fk� t�ak� t
)
�fk� i+1�l+1

( k∏
t=i+2

�fk� t�ak� t
)
Gk+1� n�

which is the relation (3.3) for ak� i+1 = l+ 1. Hence, by induction, we obtain
the relation (3.2) when as� i+1 = 0 for i + 1 ≤ s ≤ k − 1 and as� i+1 are
arbitrary for k ≤ s ≤ n. By applying the induction once more, we obtain
the desired relations.

We now derive the relations in (2.8).

Lemma 3.3. In V �λ�, we have
an� j∑
rn=0

· · ·
aj+1� j∑
rj+1=0

bj� j!
�bj� j + �r�j+1�!

Bj� j+1f
bj� j+�r�j+1
j Hj+1� n = 0% (3.5)

Proof. If as� j = 0 for j + 1 ≤ s ≤ n, then the above relations are just
the relations proved in Lemma 3.2. Assume that the relations hold when
as� j = 0 for j + 1 ≤ s ≤ k and as� j are arbitrary for k + 1 ≤ s ≤ n with k
fixed. Then we have

an� j∑
rn=0

· · ·
ak+1� j∑
rk+1=0

bj� j!
�bj� j + �r�k+1�!

Bj�k+1f
bj� j+�r�k+1
j Gj+1� kHk+1� n = 0%

Furthermore, for some fixed ak� j = l > 0, suppose that we have the
relations

∑
rn�%%%�rk+1

l∑
rk=0

bj� j!Bj�k

�bj� j + �r�k�!
f
bj� j+�r�k
j Gj+1� k−1

(j−1∏
t=1

�fk� t�ak� t
)

× �fk� j�l−rk�fk� j+1�ak� j+1+rk
( k∏
t=j+2

�fk� t�ak� t
)
Hk+1� n = 0%

Multiplying by �fk� j+1� from the left, we get

0 = ∑
rn� %%%�rk+1

l∑
rk=0

bj� j!Bj�k

�bj� j + �r�k�!
�fk� j+1�f

bj� j+�r�k
j Gj+1� k−1

(j−1∏
t=1

�fk� t�ak� t
)

× �fk� j�l−rk�fk� j+1�ak� j+1+rk
( k∏
t=j+2

�fk� t�ak� t
)
Hk+1� n
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= ∑
rn� %%%�rk+1

l∑
rk=0

bj� j!Bj�k

�bj� j + �r�k − 1�!f
bj� j+�r�k−1
j Gj+1� k−1

(j−1∏
t=1

�fk� t�ak� t
)

× �fk� j�l+1−rk�fk� j+1�ak� j+1+rk
( k∏
t=j+2

�fk� t�ak� t
)
Hk+1� n

+ ∑
rn� %%%�rk+1

l∑
rk=0

bj� j!Bj�k

�bj� j + �r�k�!
f
bj� j+�r�k
j Gj+1� k−1

(j−1∏
t=1

�fk� t�ak� t
)

× �fk� j�l−rk�fk� j+1�ak� j+1+rk+1
( k∏
t=j+2

�fk� t�ak� t
)
Hk+1� n

= ∑
rn� %%%�rk+1

l∑
rk=0

bj� j!�Bj�k + B′
j� k�

�bj� j + �r�k − 1�! f
bj� j+�r�k−1
j Gj+1� k−1

(j−1∏
t=1

�fk� t�ak� t
)

× �fk� j�l+1−rk�fk� j+1�ak� j+1+rk
( k∏
t=j+2

�fk� t�ak� t
)
Hk+1� n�

where

Bj�k = Bj�k+1

(
l

rk

)
� B′

j� k = Bj�k+1

(
l

rk − 1

)
for 1 ≤ rk ≤ l�

Bj� k = 0 if rk = l + 1� and B′
j� k = 0 if rk = 0%

Dividing out by the leading coefficient bj� j , we get the relation (3.5) for
ak� j = l + 1. Using the induction twice as in Lemma 3.2, we obtain the
desired relations.

Finally, we can derive the relations in (2.9), which completes the proof
of Theorem 2.2.

Lemma 3.4. The relations

an� j∑
rn=0

· · ·
ai+1� j∑
ri+1=0

bi� j∑
ri=−k

Bj� i+1
�r�i!

(
bi� j + k

ri + k

)
f
�r�i
j

× �fi� j�bi� j−ri�fi� j+1�ri+k
( i∏
t=j+2

�fi� t�ai� t
)
Hi+1� n = 0� (3.6)

where the summand is 0 whenever �r�i < 0, hold in V �λ�.
Proof. In Lemma 3.3, set ai� j = bi� j = mj + 1 +∑n

s=i+1�as� j+1 − as� j�,
ai� j+1 = 0, and as� j+1 = as� j = 0 for j + 1 ≤ s ≤ i − 1. Then bj� j = 0 and
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we have
an� j∑
rn=0

· · ·
ai+1� j∑
ri+1=0

bi� j∑
ri=0

Bj� i+1
�r�i!

(
bi� j
ri

)
f
�r�i
j

× �fi� j�bi� j−ri�fi� j+1�ri
( i∏
t=j+2

�fi� t�ai� t
)
Hi+1� n = 0�

which is just a scalar multiple of the relation (3.6) for k = 0. Assume that
the relations in (3.6) hold for some fixed k. Multiplying by �fi� j+1� from the
left, we get

0 = ∑
rn� %%%�ri+1

bi� j∑
ri=−k

Bj� i+1
�r�i!

(
ai� j + k

ri + k

)
�fi� j+1�f �r�i

j

× �fi� j�bi� j−ri�fi� j+1�ri+k
( i∏
t=j+2

�fi� t�ai� t
)
Hi+1� n

= ∑
rn� %%%�ri+1

bi� j∑
ri=−k

Bj� i+1
��r�i − 1�!

(
ai� j + k

ri + k

)
f
�r�i−1
j

× �fi� j�bi� j−ri+1�fi� j+1�ri+k
( i∏
t=j+2

�fi� t�ai� t
)
Hi+1� n

+ ∑
rn� %%%�ri+1

bi� j∑
ri=−k

Bj� i+1
�r�i!

(
ai� j + k

ri + k

)
f
�r�i
j

× �fi� j�bi� j−ri�fi� j+1�ri+k+1
( i∏
t=j+2

�fi� t�ai� t
)
Hi+1� n

= ∑
rn� %%%�ri+1

bi� j∑
ri=−�k+1�

Bj� i+1
�r�i!

B′′f �r�i
j

× �fi� j�bi� j−ri�fi� j+1�ri+k+1
( i∏
t=j+2

�fi� t�ai� t
)
Hi+1� n�

where

B′′ =
(

ai� j + k

ri + k+ 1

)
+

(
ai� j + k

ri + k

)
=

(
ai� j + k+ 1
ri + k+ 1

)
for ri ≥ −k

and

B′′ = 1 if ri = −�k+ 1�%
By induction, we obtain the desired relations.
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FIG. 1. The Gröbner–Shirshov graph G�51 + 53�.

4. GRÖBNER–SHIRSHOV GRAPH

Let G�λ� be the monomial basis of the irreducible sln+1-module V �λ�
consisting of �� ��λ�-standard monomials. We define a colored oriented
graph structure on the set G�λ� (and hence on the set of semistandard
Young tableaux of shape λ) as follows: for each i = 1� 2� % % % � n, we define

w
i−→w′ if and only if w′ = fiw.
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FIG. 2. The crystal graph B�51 + 53�.

The resulting graph will be called the Gröbner–Shirshov graph for the
irreducible sln+1-module V �λ� (with respect to the monomial order ≺).
However, the Gröbner–Shirshov graph G�λ� is usually different from the
crystal graph introduced by Kashiwara [17, 18]. In most cases, the crystal
graph B�λ� has a vertex receiving more than one arrow, whereas the
Gröbner–Shirshov graph G�λ� (with respect to any monomial order) can-
not have such a vertex. It would be an interesting problem to investigate
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the behavior of a Gröbner–Shirshov pair and a Gröbner–Shirshov graph
with respect to various monomial orders.
In Fig. 1 we give an example of the Gröbner–Shirshov graph G�λ� of the

irreducible sl4-module V �λ� with highest weight λ = 51 + 53 = �2� 1� 1�,
where 5i are the fundamental weights. We draw the graph in such a way
that it may reveal the weight structure of V �λ�. If we avoid the crossings in
drawing the Gröbner–Shirshov graph, we will always obtain a tree as one
can see easily from the definition. For comparison, we also give the crystal
graph B�λ� of V �λ� in Fig. 2.
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