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1. INTRODUCTION

Ž .Let AA be a free commutative, associative, or Lie algebra over a field k,
² :let S ; AA be a set of relations in AA, and let S be the ideal of AA

generated by S. One of the fundamental problems in the theory of abstract
algebras is the reduction problem: given an element f g AA, one would like
to find a reduced expression for f with respect to the relations in S. One of
the most common approaches to this problem is to find another set of
generators for the relations in S that can replace the original relations so
that one can get an effective algorithm for the reduction problem. More

c ² :precisely, if one can find a set S of generators of the ideal S which is
closed under a certain composition of relations in S, then there exists an
easy criterion by which one can determine whether an element f g AA is
reduced with respect to S or not.

In 1965, inspired by Grobner’s suggestion, Buchberger found a criterion¨
and an algorithm of computing such a set of generators of the ideals for

w x w xcommutative algebras 16 , which were modified and refined in 17, 18 .
Such a set of generators of ideals is now referred to as a Grobner basis, and¨
it has become one of the most popular research topics in the theory of

Ž w x.commutative algebras see, for example, 3 . In 1978, Bergman developed
the theory of Grobner bases for associative algebras by proving the¨

w xdiamond lemma 4 . His idea is a generalization of Buchberger’s theory and
it has many applications to various areas of the theory of associative
algebras such as quantum groups.

For the case of Lie algebras, where the situation is more complicated
than commutative or associative algebras, the parallel theory of Grobner¨

w xbasis was developed by Shirshov in 1962 30 , which is even earlier than
Buchberger’s discovery. In that paper, which was written in Russian and
never translated in English, he introduced the notion of composition of
elements of a free Lie algebra and showed that a set of relations which is
closed under the composition has the desired property. Shirshov’s idea is
essentially the same as that of Buchberger, and it was noticed by Bokut

w xthat Shirshov’s method works for associative algebras as well 7 . For this
Žreason, we will call such a set of relations of a free Lie algebra and of a

. Ž w xfree associative algebra a Grobner]Shirsho¨ basis. See 2 for a more¨
.detailed history of Grobner]Shirshov basis. It has been used to determine¨

w xthe solvability of some word problems 29, 30, 6 and to prove some
w xembedding theorems 5, 7, 8 . In a series of works by Bokut, Klein, and

Malcolmson, Grobner]Shirshov bases for finite-dimensional simple Lie¨
algebras and for the quantized enveloping algebra of type A weren

Žw x.constructed explicitly 9]11, 14 .
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In this work, we develop the theory of Grobner]Shirshov bases for Lie¨
superalgebras and their universal enveloping algebras. This paper is orga-
nized as follows. In Section 2, after introducing the basic facts such as

Ž .super-Lyndon]Shirsho¨ words monomials and composition lemma, we
prove that a set of monic polynomials in a free Lie superalgebra is a
Grobner]Shirshov basis for a Lie superalgebra if and only if it is a¨

ŽGrobner]Shirshov basis for its universal enveloping algebra Theorem¨
.2.8 . This is a generalization of the corresponding result for Lie algebras

w xobtained in 15 . Thus the theory of Grobner]Shirshov bases for Lie¨
superalgebras and that of associative algebras are unified in this way, and
as a by-product, we obtain a purely combinatorial proof of the Poincare]´

Ž .Birkhoff]Witt theorem Proposition 2.11 .
In Section 3, we investigate the structure of Grobner]Shirshov bases for¨

Kac]Moody superalgebras and prove that, in order to find a
Grobner]Shirshov basis for a Kac]Moody superalgebra, it suffices to¨

Žconsider the completion of Serre relations of the positive part or negative
. Ž .part which is closed under the composition Theorem 3.5 . As a corollary,

we obtain the triangular decomposition of Kac]Moody superalgebras and
Ž .their universal enveloping algebras Corollary 3.6 . Our result in this

section is a generalization of the corresponding result for Kac]Moody
w xalgebras obtained in 14 .

Finally, in Section 4, we give an explicit construction of
Grobner]Shirshov bases for classical Lie superalgebras. The outline of our¨
construction can be described as follows. We first start with a Kac]Moody
superalgebra which is isomorphic to a given classical Lie superalgebra.
Using the supersymmetry and Jacobi identity, we expand the set of Serre
relations to a set R of relations and determine the set B of R-reduced
super-Lyndon]Shirshov monomials. Now comparing the number of ele-
ments of B with the dimension of the corresponding classical Lie superal-
gebra, we conclude that the set R is indeed a Grobner]Shirshov basis.¨

¨2. GROBNER]SHIRSHOV BASES FOR
LIE SUPERALGEBRAS

Let X s X j X be a Z -graded set with a linear ordering $ , and let0 1 2
U Ž a. ŽX resp., X be the semigroup of associative words on X resp., the

. U Žgroupoid of nonassociative words on X . Then the semigroup X resp.,
a U U U a a. Žthe groupoid X has the Z -grading X s X [ X resp., X s X [2 0 1 0

a U a U. ŽX induced by that of X. The elements of X and X resp., X and1 0 0 1
a. Ž .X are called e¨en resp., odd .1
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Ž .We denote by l u the length of a word u and the empty word is denoted
by 1. For an associative word u g X U , we can choose a certain arrange-

Ž .ment of brackets on u, which will be denoted by u . Conversely, there is a
a U ŽŽ ..canonical bracket removing homomorphism r : X ª X given by r u

s u for u g X U.
We consider two linear orderings - and < on X U defined as

follows:

Ž .i u - 1 for any nonempty word u; and inductively, u - ¨ when-
ever u s x uX, ¨ s x ¨ X, and x $ x or x s x and uX - ¨ X.i j i j i j

Ž . Ž . Ž . Ž . Ž .ii u < ¨ if l u - l ¨ or l u s l ¨ and u - ¨.

Ž . ŽThe ordering - resp., < is called the lexicographical ordering resp.,
.length-lexicographical ordering . We define the orderings - and < on

a Ž . Ž . Ž . Ž .X by i u - ¨ if and only if r u - r ¨ , and ii u < ¨ if and only if
Ž . Ž .r u < r ¨ .
A nonempty word u is called a Lyndon]Shirsho¨ word if u g X or

¨w ) w¨ for any decomposition of u s ¨w with ¨ , w g X U. A nonempty
word u is called a super-Lyndon]Shirsho¨ word if either it is a
Lyndon]Shirshov word or it has the form u s ¨¨ with ¨ a Lyndon]Shirshov

Uword in X . A nonempty nonassociative word u is called a1
Lyndon]Shirsho¨ monomial if either u is an element of X or

Ž .i if u s u u , then u , u are Lyndon]Shirshov monomials with1 2 1 2
u ) u ,1 2

Ž . Ž .ii if u s ¨ ¨ w then ¨ F w.1 2 2

A nonempty nonassociative word u is called a super-Lyndon]Shirsho¨
monomial if either it is a Lyndon]Shirshov monomial or it has the form

au s ¨¨ with ¨ a Lyndon]Shirshov monomial in X .1

Remark. In some literatures, the Lyndon]Shirshov words have been
referred to as regular words, normal words, Lyndon words, etc. Since the
definition of Lyndon]Shirshov words dates back to the works by Chen,

w x w xFox, and Lyndon 19 and Shirshov 27 , we decide to call them
Lyndon]Shirshov words. The definition of super-Lyndon]Shirshov words

w xcan be found in 1, 24 .

The following lemma asserts that there is a natural 1-1 correspondence
between the set of super-Lyndon]Shirshov words and the set of super-
Lyndon]Shirshov monomials.

Žw x.LEMMA 2.1 1, 19, 24, 26 . If u is a super-Lyndon]Shirsho¨ monomial,
Ž .then r u is a super-Lyndon]Shirsho¨ word. Con¨ersely, for any super-

w xLyndon]Shirsho¨ word u, there is a unique arrangement of brackets u on u
w xsuch that u is a super-Lyndon]Shirsho¨ monomial.
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Ž .Let k be a field with char k / 2, 3, and let AA be the free associativeX
algebra generated by X over k. The algebra AA becomes a Lie superalge-X
bra with the superbracket defined by

Ž .Ž .deg x deg yw xx , y s xy y y1 yxŽ .

for x, y g AA . Let LL be the subalgebra of AA generated by X as a LieX X X
superalgebra. Then LL is the free Lie superalgebra generated by X overX
k. As we can see in the following theorem, there is a canonical linear basis
for the free Lie superalgebra LL :X

Žw x.THEOREM 2.2 1, 19, 24, 26 . The set of super-Lyndon]Shirsho¨ mono-
mials form a linear basis of the free Lie superalgebra LL generated by X.X

Remark. The existence of linear bases for free Lie algebras of this form
w xwas first suggested by Hall 22 , and later by Shirshov in a more general

Žw x.form 26, 28 . The linear basis for a free Lie superalgebra given in the
above theorem is called the Lyndon]Shirsho¨ basis. It is a special case of
the Hall]Shirsho¨ basis.

Given a nonzero element p g AA we denote by p the maximal mono-X
mial appearing in p under the ordering < . Thus p s a p q Ýb w withi i

Ua , b g k, w g X , a / 0, and w < p. The coefficient a of p is calledi i i
the leading coefficient of p and p is said to be monic if a s 1.

The following lemma plays a crucial role in defining the notion of Lie
composition.

Žw x.LEMMA 2.3 19, 24, 26 . Let u and ¨ be super-Lyndon]Shirsho¨ words
such that ¨ is contained in u as a subword. Write u s a¨b with a, b g X U.

w x Ž w x . w xThen there is an arrangement of brackets u s a ¨ b on u such that ¨ is a
w xw xsuper-Lyndon]Shirsho¨ monomial, u s u and the leading coefficient of u

is either 1 or 2.

Let u s a¨b be a super-Lyndon]Shirshov word, where ¨ is a super-
Lyndon]Shirshov subword and a, b g X U. We define the bracket on u

w xrelatï e to ¨ , denoted by u , as:¨

Ž . w x Ž w x . w xi u s a ¨ b if the leading coefficient of u is 1,¨
1Ž . w x Ž w x . w xii u s a ¨ b if the leading coefficient of u is 2,¨ 2

w xwhere the arrangement of brackets u on u is the one described in
w x w xLemma 2.3. Note that u is monic and u s u.¨¨

Similarly, if p is a monic polynomial in the free Lie superalgebra LLX
such that p is super-Lyndon]Shirshov, then we define the bracket on u

w xrelatï e to p, denoted by u to be the result of the substitution of pp
w x w x w xinstead of p in u . Clearly, u is monic and u s u.pp p
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We now define the notion of associatï e composition of the elements in
the free associative algebra AA generated by X. Let p, q be monicX

Uelements in AA with leading terms p and q. If there exist a, b g X suchX
Ž . Ž .that pa s bq s w with l p ) l b , then we define the composition of

Ž .intersection p, q to bew

p , q s pa y bq. 2.1Ž . Ž .w

UIf there exist a, b g X such that p s aqb s w, then we define the
composition of inclusion to be

p , q s p y aqb. 2.2Ž . Ž .w

Note that we have p , q < w in either case.Ž . w

Next we proceed to define the notion of Lie composition of the elements
in the free Lie superalgebra LL generated by X. Let p, q be monicX
polynomials in the free Lie superalgebra LL with leading terms p and q.X

U Ž . Ž .If there exist a, b g X such that pa s bq s w with l p ) l b , then we
² :define the composition of intersection p, q to bew

² : w x w xp , q s w y w . 2.3Ž .p qw

UIf there exist a, b g X such that p s aqb s w, then we define the
composition of inclusion to be

² : w xp , q s p y w . 2.4Ž .qw

² :We have p , q < w in this case, too.w

Remark. Our definition of Lie composition is essentially the same as
w x w xthe one given in 6, 23, 24, 29 . We modified the definition in 6, 23, 24, 29

² :to define the Lie composition p, q at one stroke.w

Ž .Let S be a set of monic polynomials in LL ; AA , let I be the Lie idealX X
Žgenerated by S in the free Lie superalgebra LL , and let J be the associa-X

.tive ideal generated by S in the free associative algebra AA . We denote byX
L s LL rI the Lie superalgebra generated by X with defining relations SX

Ž .and let UU L s AA rJ be its universal enveloping algebra.X
U Ž .For f , g g AA and w g X , we write f ' g mod S, w if f y g sX A

UÝa a s b , where a g k, a , b g X , s g S with a s b < w for each i.i i i i i i i i i i i
U Ž .Similarly, for f , g g LL and w g X , we write f ' g mod S, w if f y gX L

UŽ Ž . .s Ýa a s b , where a g k, a , b g X , s g S with a s b < w forŽ .Ž .i i i i i i i i i i i
each i. The set S is said to be closed under the associatï e composition
Ž . Ž . Ž ²resp., Lie composition if for any f , g g S, we have f , g ' 0 resp., f ,w A
: . Ž .g ' 0 mod S, w .w L
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A set of monic polynomials S in the free Lie superalgebra LL is calledX
Ž .a Grobner]Shirsho¨ basis for the ideal J resp., for the ideal I if it is¨
Ž .closed under the associative composition resp., Lie composition . By

abuse of language, we also refer to S as a Grobner]Shirshov basis for the¨
Ž .associative algebra UU L and for the Lie superalgebra L, respectively. An

associative word u is said to be S-reduced if u / asb for any s g S and
U Ž .a, b g X . A nonassociative word u is said to be S-reduced if r u is

S-reduced.
w xThe following lemma is a generalization of Lemma 1 in 9 .

Ž .LEMMA 2.4. a E¨ery nonempty word u in the free associatï e algebra
AA can be written asX

u s a u q b a s b , 2.5Ž .Ý Ýi i j j j j

Uwhere u is an S-reduced word, a , b g k, a , b g X , s g S, and a s b < ui i j j j j j j j
Ž .for all i, j. Hence the set of S-reduced words spans the algebra UU L .

Ž .b E¨ery super-Lyndon]Shirsho¨ monomial u in LL can be written asX

u s a u q b a s b , 2.6Ž . Ž .Ž .Ý Ýi i j j j j

where u is an S-reduced super-Lyndon]Shirsho¨ monomial, a , b g k,i i j
Ua , b g X , s g S, and a s b < u for all i, j. Hence the set of S-re-Ž .Ž .j j j j j j

duced super-Lyndon]Shirsho¨ monomials spans the Lie superalgebra L.

Ž . Ž .Proof. Since the proof of a is similar to that of b , we only give a
Ž .proof of b . If u is S-reduced, we are done. Thus we assume that u s asb

Ufor some s g S, a, b g X . Then u and s are super-Lyndon]Shirshov
w xw xwords and u y a u < u for some a g k. Since u y a u is a linears s

combination of super-Lyndon]Shirshov monomials whose leading terms
are less than u, we may proceed by induction, which completes the proof.

The following lemma plays a crucial role in our discussion of Grobner-¨
w xShirshov bases. It is originally due to Shirshov 30 and is now known as the

composition lemma.

Ž w x.LEMMA 2.5 cf. 1, 6, 24, 30 . If S is a Grobner]Shirsho¨ basis for the¨
ideal J, then for any f g J, the word f contains a subword s with s g S.

Ž .It is clear that if a polynomial f g LL satisfies f ' 0 mod S, w forX L
U Ž .w g X , then f ' 0 mod S, w . The converse is also true if S is closedA

under the associative composition.

LEMMA 2.6. Assume that S is closed under the associatï e composition. If
Ž . Ua polynomial f g LL satisfies f ' 0 mod S, w for w g X , then f ' 0X A L

Ž .mod S, w .
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Ž . UProof. Suppose f ' 0 mod S, w for w g X and our assertion holdsA
Xfor all w < w. Then f g J, and by the composition lemma, f s asb for

U w x Ž .some a, b g X and s g S. Since f y f ' 0 mod S, f and f < w,s A
our assertion follows by induction.

LEMMA 2.7. Let f , g g S be monic polynomials in LL such that theX
Ž .associatï e composition f , g is defined. Then we ha¨ew

² :f , g ' f , g mod S, w . 2.7Ž . Ž . Ž .ww A

Proof. We consider the composition of intersection only. The proof for
w xthe composition of inclusion is similar. Recall that w s fa q Ýa a fbf i i i

w x ² :with a fb < w and w s bg q Ýb c gd with c gd < w. Thus f , g wi i g i i i i i
w x w x Ž . Ž .s w y w s fa y bg q h s f , g q h, where h ' 0 mod S, w .f g w A

Ž . ² : Ž .Hence f , g ' f , g mod S, w .ww A

Combining Lemmas 2.6 and 2.7, we obtain the main result of this
w xsection, which is a generalization of the main theorem in 15 .

THEOREM 2.8. Let S be a set of monic polynomials in the free Lie
superalgebra LL . Then S is a Grobner]Shirsho¨ basis for the Lie superalgebra¨X
L s LL rI if and only if S is a Grobner]Shirsho¨ basis for its unï ersal¨X

Ž .en¨eloping algebra UU L s AA rJ. That is, S is closed under the Lie composi-X
tion if and only if it is closed under the associatï e composition.

The following proposition, which is a generalization of Proposition 2 in
w x9 , provides us with a criterion for determining whether a set of monic
polynomials in the free Lie superalgebra is a Grobner]Shirshov basis¨
or not.

Ž .PROPOSITION 2.9. a If the set of S-reduced words is a linear basis of
Ž .UU L s AA rJ, then S is a Grobner]Shirsho¨ basis for the ideal J of AA .¨X X

Ž .b If the set of S-reduced super-Lyndon]Shirsho¨ monomials is a
linear basis of L s LL rI, then S is a Grobner]Shirsho¨ basis for the ideal I¨X
of LL .X

Ž . Ž . Ž .Proof. Since the proof of b is the same as a , we prove a only.
Suppose on the contrary that S is not closed under the associative

Ž . Ž .composition. Then there exist f , g g S such that f , g k 0 mod S, ww A
for w g X U. By Lemma 2.4, we may write

f , g s a u q b a s b ,Ž . Ý Ýw i i j j j j

Uwhere a , b g k, u is S-reduced, a , b g X , s g S, and a s b < w fori j i j j j j j j
Ž . Ž .all i and j. Since f , g k 0 mod S, w , we have Ýa u / 0 in AA . Sincew A i i X

Ž .the set of S-reduced words is a linear basis of UU L , we have Ýa u / 0 ini i
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Ž . Ž . Ž .UU L . But, since f , g g J, we have Ýa u s 0 in UU L , which is aw i i
contradiction.

Conversely, by Lemma 2.4 and the composition lemma, we can show
that a Grobner]Shirshov basis gives rise to a linear basis for the corre-¨
sponding algebras.

Ž .THEOREM 2.10. a If S is a Grobner]Shirsho¨ basis for the Lie superal-¨
gebra L s LL rI, then the set of S-reduced super-Lyndon]Shirsho¨ monomi-X
als forms a linear basis of L.

Ž .b If S is a Grobner]Shirsho¨ basis for the unï ersal en¨eloping¨
Ž .algebra UU L s AA rJ of L, then the set of S-reduced words forms a linearX
Ž .basis of UU L .

Ž . Ž . Ž .Proof. Since the proof of b is similar to that of a , we prove a only.
By Lemma 2.4 the set of S-reduced super-Lyndon]Shirshov monomials
spans L. Assume that we have Ýa u s 0 in L, where a g k and u arei i i i
distinct S-reduced super-Lyndon]Shirshov monomials. Then Ýa u g I ini i
the free Lie super algebra LL . Since I ; J, we obtain Ýa u g J. By theX i i

Ž .composition lemma Lemma 2.5 the leading term Ýa u contains ai i
subword s with s g S. Since each u is S-reduced, we must have a s 0i i
for all i. Hence the set of S-reduced super-Lyndon]Shirshov monomials is
linearly independent.

As a corollary, we obtain a purely combinatorial proof of the
Poincare]Birkhoff]Witt theorem.´

PROPOSITION 2.11. Let L s L [ L be a Lie superalgebra with a linear0 1
� 4basis Z s z , z , . . . such that each z is homogeneous with respect to the1 2 i

Ž .Z -grading. Then a linear basis of the unï ersal en¨eloping algebra UU L of L2
is gï en by the set of all elements of the form z z ??? z where i F i andi i i k kq11 2 n

i / i if z g L .k kq1 i 1k

� 4Proof. Let Y s y , y , . . . be a Z -graded set identified with the set Z1 2 2
Ž . Ž .by a map i such that i y s z and i Y s Z with a g Z . Let LL bei i a a 2 Y

the free Lie superalgebra generated by Y. Let S ; LL be the set ofY
elements of the form

w x ky y y a y ,Ýi j i j k
k

kwhere i G j and i / j if y g Y , and a is the structure constants given byi 0 i j
w x kthe equation z z s Ý a z in L. Let I be the ideal of LL generated byi j k i j k Y

S. Then, clearly, LL rI is isomorphic to L and the set of S-reducedY
super-Lyndon]Shirshov monomials is just the set Y. By Proposition 2.9 the
set S is a Grobner]Shirshov basis for L and then by Theorem 2.8 the set¨



BOKUT ET AL.470

Ž .S is also a Grobner]Shirshov basis for UU L . Now our assertion follows¨
from Theorem 2.10.

Let S be a set of relations in the free Lie superalgebra LL generated byX
X. We will see how one can complete the set S to get a Grobner]Shirshov¨

ˆ �basis. For any subset T of LL , we define T s pra N a g k is the leadingX
Ž0. ˆ Ž0.4 �² : Ž .coefficient of p g T . Let S s S and S s f , g k 0 mod S , w NwŽ0. L

Ž0.4 �² : Ž Ž i. . Ž i.4f , g g S . For i G 1, set S s f , g k 0 mod S , w N f , g g SwŽ i. L
Ž i. Ž iy1. ˆand S s S j S .Ž iy1.

c Ž i. Ž .Then the set S s D S is a Grobner]Shirshov basis for the Lie¨iG 0
ideal I generated by S in LL . Hence, by Lemma 2.7, it is also aX

Ž .Grobner]Shirshov basis for the associative ideal J generated by S in AA .¨ X
It is easy to see that if every element of S is homogeneous in x g X, theni
every element of Sc is also homogeneous in x ’s.i

3. KAC]MOODY SUPERALGEBRAS

We now investigate the structure of Grobner]Shirshov bases for¨
Kac]Moody superalgebras. Our result is a generalization of the work by

w xBokut and Malcolmson 14 on the Grobner]Shirshov bases for Kac]¨
Moody algebras. In the section, since we consider the associative congru-
ences only, we use the notation ' in place of ' .A

� 4Let V s 1, 2, . . . , r be a finite index set and t be a subset of V. A
Ž .square matrix A s a is called a generalized Cartan matrix if iti j i, jg V

satisfies:

Ž .i a s 2 or 0 for i s 1, . . . , r and if a s 0, then i g t ,i i i i

Ž .ii if a / 0, then a g Z for i / j,i i i j F 0

Ž .iii a s 0 implies a s 0,i j ji

Ž .iv if a s 2 and i g t , then a g 2Z.i i i j

� 4 � 4 � 4Let E s e , H s h , F s f , and X s E j H j F. Wei ig V i ig V i ig V

define a Z -grading on V by setting deg i s 0 for i f t and deg i s 1 for2
i g t , and on X by deg e s deg f s deg i and deg h s 0. We give ai i i
linear ordering on X by e % h % f for all i, j, k g V and e % e ,i j k i j
h % h , f % f when i ) j. Then we have the lexicographic ordering andi j i j
the length-lexicographic ordering as in Section 2. We denote the left&
adjoint action of a Lie superalgebra by ad and the right adjoint action by ad.

Ž . Ž .The Kac]Moody superalgebra GG s GG A, t associated to A, t is defined
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to be the Lie superalgebra with generators X and the following defining
relations,

W : h h i ) j ,Ž .i j

e f y d h , e h q a e , h f q a f ,i j i j i j i i j j i j i j j

1yni jS : ad e e i ) j ,Ž . Ž .q, 1 i j

& 1yn ji
e ad e i ) j ,Ž .ž /i j

w x w xS : e , e e , e for k g h , 3.1Ž .q, 2 kq1 k k ky1

1yni jS : ad f f i ) j ,Ž . Ž .y, 1 i j

& 1yn ji
f ad f i ) j ,Ž .ž /i j

w x w xS : f , f f , f for k g h ,y, 2 kq1 k k ky1

where

a if a s 2 or a s 0i j i i i j
n s for i / j, 3.2Ž .i j ½ y1 if a s 0 and a / 0i i i j

and h is the set of indices k such that k g t , k " 1 f t , a s 0,k k
a s 0, and a q a s 0. Let S s S j S andkq1, ky1 k , kq1 k , ky1 " ", 1 ", 2
Ž . Ž .S A, t s S j W j S . We denote by GG resp., GG and GG theq y q 0 y

Ž .subalgebra of GG generated by E resp., H and F .
w xSet t s e f y d h , which belong to the relations W. We define thei j i j i, j i

˜ Ž̃ .differential substitution  s  e ª h acting as a right superderivation onj j j
AA byE

˜e  s d h ,Ž .i j i j j
3.3Ž .

Ž .Ž .deg j deg ¨˜ ˜ ˜u¨  s u ¨  q y1 u  ¨ for u , ¨ g AA .Ž . Ž . Ž . Ž .j j j E

It is easy to prove that for any p g AA ,E

Ž .Ž .deg p deg j ˜pf ' y1 f p q p  mod W , w 3.4Ž . Ž . Ž . Ž .j j j

˜for some w 4 pf . Note that  is also a right superderivation on LL .j j E

LEMMA 3.1. Let p be a homogeneous monic element of AA such thatE
Ž . Up, t is defined for w g X . Then we ha¨ei j w

˜ � 4p , t ' p  mod p j W , w .Ž . Ž .Ž .i j jw
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Proof. It suffices to consider the composition of intersection. We can
X Xwrite p s p q p with p s be , where all the terms of p are lower than p.i

XThen w s pf s be f . Since p is homogeneous, deg p s deg p . Fromj i j
Ž .3.4 , we have

Ž .Ž .deg i deg jp , t s pf y b e f y y1 f e y d hŽ .Ž . ž /i j j i j j i i j jw

Ž .Ž .deg i deg jXs p f q y1 bf e q d bhŽ .j j i i j j

Ž .Ž .deg p deg j X X ˜' y1 f p q f be q p Ž . Ž .Ž .j j i j

Ž .Ž .deg i deg j ˜q y1 b  e q d bhŽ . Ž . j i i j j

Ž .Ž .deg p deg j ˜' y1 f p q p Ž . Ž .j j

˜ � 4' p  mod p j W , w .Ž . Ž .j

In the rest of this paper, we omit brackets whenever it is convenient.
w x Ž .nNamely, the Lie product a, b is written as ab. Moreover, ad x y is&

n n nŽ .written as x y and x ad y as xy . It would be clear from the context
whether a product ab means a Lie product or not.

Ž . Ž .We write f ' g mod S, n if f y g s Ýa a s b with l a s b F n, wherei i i i i i i
n g Z , a g k, a , b g X U , and s g S.) 0 i i i i

LEMMA 3.2. Let p g S . Then for any l s 1, . . . , r, we ha¨eq

˜p  ' 0 mod S j W , l p .Ž . Ž .Ž .l q

Proof.

Case 1. Relation S :q, 1

Since e1yni j e s a e e1yni j with a g k, it suffices to prove our assertion fori j j i
p s e e1yni j for i / j. We first consider the case when a s 2. We havej i i i
only to check the cases when l s i and l s j. If l s i, we have

˜ 1yai j ˜p  s e e Ž . Ž .i j i i

deg iya ya y1i j i js e e h q y1 e e h eŽ .Ž . Ž .ž /j i i j i i i

2 deg i ya deg iya y2 2 yai ji j i jq y1 e e h e q ??? q y1 e h eŽ . Ž . Ž .Ž .ž /j i i i j i i

deg iya yai j i j' a e e q y1 a y 2 e eŽ . Ž .i j j i i j j i

2 deg i ya deg iya yai ji j i jq y1 a y 4 e e q ??? q y1 ya e e .Ž . Ž . Ž .Ž .i j j i i j j i
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If i f t , then, clearly, the coefficient of e eya i j is 0. If i g t , thenj i
a g 2Z by the assumption on the generalized Cartan matrix A, andi j
hence the coefficient of e eya i j is also 0.j i

Similarly, if l s j, we have

Ž .Ž .Ž .1ya deg i deg j1ya 1yai ji j i j˜ ˜p  s e e  s y1 h eŽ . Ž .Ž .j j i j j i

Ž .Ž .Ž .1ya deg i deg j yai j i j' y1 a e e s 0.Ž . ji i i

The proof for the case a s 0 is the same.i i

Case 2. Relation S :q, 2
Ž .Ž . Ž .Let p s e e e e with k g h. If l s k y 1, since e e e orkq1 k k ky1 kq1 k k

e e is in S , we havekq1 k q

˜ ˜p  s e e e e  s e e e hŽ . Ž . Ž . Ž . Ž .Ž .ky1 kq1 k k ky1 ky1 kq1 k k ky1

' ya e e eŽ .ky1, k kq1 k k

' 0 mod S j W , l p .Ž .Ž .q

˜Ž . Ž Ž ..Similarly, p  ' 0 mod S j W, l p .kq1 q
If l s k, since a q a s 0 and e e g S , we havek , ky1 k , kq1 kq1 ky1 q

˜ ˜p  s e e e e Ž . Ž . Ž .Ž .k kq1 k k ky1 k

s e e h e y e h e eŽ . Ž . Ž . Ž .kq1 k k ky1 kq1 k k ky1

' a e e e q a e e eŽ . Ž .k , ky1 kq1 k ky1 k , kq1 kq1 k ky1

s a q a e e e q a e e eŽ . Ž . Ž .k , ky1 k , kq1 kq1 k ky1 k , ky1 kq1 k ky1

' 0 mod S j W , l p .Ž .Ž .q

LEMMA 3.3. For any element p g Sc and j s 1, . . . , r, we ha¨eq

c˜p  ' 0 mod S j W , l p .Ž . Ž .Ž .j q

Proof. As we have seen in Section 2, we have Sc s DS Ž i. withq q
S Ž i. ; S Ž iq1. for i G 0. Hence our assertion is equivalent to saying that ifq q

Ž i. Ž i.˜Ž . Ž Ž ..p g S , then p  ' 0 mod S j W, l p for each i G 0. We use induc-q j q
˜Ž .tion on i. For i s 0, it is simply Lemma 3.2. Suppose that q  ' 0j

Ž i. Ž i. Ž iq1. Ž i.Ž Ž .. ² :mod S j W, l q for all q g S . Let p g S _ S . Then p s q, r wq q q q
Ž i. ² : Ž . Ž Ž i. .for some q, r g S and q, r ' q, r mod S , w by Lemma 2.7.wq w q
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Ž . Ž .Since l w s l p , we have

Ž i.˜ ˜² :q , r  ' q , r  mod S j W , l p .Ž . Ž .Ž .w wj j q

Ž i.˜Ž . Ž Ž ..Thus it is enough to show that q, r  ' 0 mod S j W, l p . Writew j q
Ž .p s q, r s qa y br. Then by the induction hypothesis, we havew

Ž .Ž .deg a deg j˜ ˜ ˜ ˜q , r  s q a  q y1 q  a y b r Ž . Ž . Ž . Ž . Ž .w j j j j

Ž .Ž .deg r deg j ˜y y1 b  rŽ . Ž . j

Ž i.' 0 mod S j W , l p .Ž .Ž .q

Combining Lemmas 3.1 and 3.3, we obtain:

PROPOSITION 3.4. For any element p g Sc , we ha¨eq

² : cp , t ' p , t ' 0 mod S j W , w .Ž .Ž .wi j i j qw

Proposition 3.4 implies that all the compositions between the relations
in Sc and W are trivial. Similarly, one can show that all the compositionsq
between the relations in Sc and W are also trivial. Now we can presenty
the main theorem of this section.

Ž .THEOREM 3.5. Let GG s GG A, t be a Kac]Moody superalgebra with the
Ž . c cset of defining relations S A, t s S j W j S . Then the set S j W j Sq y q y

Ž .is a Grobner]Shirsho¨ basis for the Kac]Moody superalgebra GG A, t . That¨
Ž .c c cis, S A, t s S j W j S . Hence it is also a Grobner]Shirsho¨ basis for¨q y

Ž . Ž .the unï ersal en¨eloping algebra UU GG of GG A, t .

Proof. By definition, there is no nontrivial composition among the
relations in Sc and the relations in Sc and Sc . Also, all the compositions" q y

c Žbetween the relations between S and W are trivial see the remark after"

.Proposition 3.4 . Thus we have only to consider the compositions among
² : Ž .the elements in W. We will show that p, q ' 0 mod W, w for allw

p, q g W, where w g X U is determined by p and q. There are four cases
to be considered.

Ž . Ž .If p s h h i ) j and q s h h j ) k , then w s h h h andi j j k i j k

² : w x w xp , q s w y w s h h h y h h hŽ . Ž .p qw i j k i j k

s h h h ' 0 mod W , w .Ž . Ž .i k j
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Ž .If p s e h q a e and q s h h i ) k , then w s e h h andj i i j j i k j i k

² : w x w xp , q s w y w s e h h q a e h y e h hŽ .Ž .p qw j i k i j j k j i k

s e h h q a e h ' ya e h q a e hŽ .j k i i j j k k j j i i j j k

' a a e y a a e s 0 mod W , w .Ž .k j i j j k j i j j

Ž . ² :Similarly, if p s h h i ) j and q s h f q a f , then p, q ' 0wi j j k jk k
Ž .mod W, w . Finally, if p s e h q a e and q s h f q a f , then w sj i i j j i k ik k

e h f andj i k

² : w x w xp , q s w y w s e h f q a e f y e h f y a e fŽ .Ž .p qw j i k i j j k j i k ik j k

s e f h q a e f y a e fŽ .j k i i j j k ik j k

' d h h q d a h y d a h ' 0 mod W , w ,Ž .jk j i jk i j j jk ik j

which completes the proof.

As a corollary, we obtain the triangular decomposition of Kac]Moody
superalgebras and their universal enveloping algebras.

Ž .COROLLARY 3.6. Let GG s GG A, t be a Kac]Moody superalgebra. Then
we ha¨e

GG ( GG [ GG [ GG 3.5Ž .q 0 y

and

U GG ( U GG m U GG m U GG 3.6Ž . Ž . Ž . Ž . Ž .q 0 y

as k-linear spaces.

Proof. Observe that any super-Lyndon]Shirshov monomial of degree
G 2 cannot be W-reduced if it contains h or e f as a subword. Hence byi j k

Ž .cTheorem 3.5, the set B of S A, t -reduced super-Lyndon]Shirshov
Ž .monomials is given by B s B j H j B , where B resp., B is the setq y q y

c Ž c .of S -reduced resp., S -reduced super-Lyndon]Shirshov monomials inq y
Ž .e ’s resp., f ’s . By Theorem 2.10, B is a linear basis of GG, which provesi i

Ž . Ž .the k-linear isomorphism 3.5 . The isomorphism 3.6 follows from the
Poincare]Birkhoff]Witt theorem.´

4. CLASSICAL LIE SUPERALGEBRAS

In this section, we give an explicit construction of Grobner]Shirshov¨
bases for the classical Lie superalgebras. A Grobner]Shirshov basis S is¨
said to be minimal if no proper subset of S is closed under the Lie
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composition. We first set up some notations. Recall that we omit brackets
w xwhenever it is convenient. For the elements x g X, we set x x ??? x si 1 2 m

w x � 4 � 4 Ž .x x ??? x and x ??? x x s x ??? x x m G 1 . If i ) j, we1 2 m 1 my1 m 1 my1 m
w xwrite x s x x ??? x . For simplicity, we also denote x s x . We usei j i iy1 j i i i

Ž . Ž .the lexicographical ordering for the set V = V: i, j ) k, l if and only if
i ) k or i s k, j ) l.

w xWe briefly recall the definition of classical Lie superalgebras 21 . Let
V s V [ V be a Z -graded vector space with dim V s m and dim V s n,0 1 2 0 1
and let L be the space of k-linear endomorphisms of V. For each a g Z ,2
set

L s T : V ª V N T V ; V for all b g Z .� 4Ž .a b aqb 2

Then L has a Z -graded decomposition L s L [ L and it becomes a2 0 1
Lie superalgebra with the superbracket defined by

abw xX , Y s XY y y1 YXŽ .

for X g L , Y g L , a , b g Z . The Lie superalgebra L is called thea b 2
Ž .general linear Lie superalgebra and is denoted by gl m, n .

Let ¨ , . . . , ¨ be a basis of V and ¨ , . . . , ¨ be a basis of V .1 m 0 mq1 mqn 1
Ž . Ž .Then L can be interpreted as the space of m q n = m q n matrices

over k, and we have

A 0L s A is an m = m matrix and D is an n = n matrix ,0 ½ 5ž /0 D

0 BL s B is an m = n matrix and C is an n = m matrix .1 ½ 5ž /C 0

For

A BX s g gl m , n ,Ž .ž /C D

we define the supertrace of X to be str X s tr A y tr B, where tr denotes
Ž . Ž .the usual trace function. Then the subspace sl m, n of gl m, n consisting

of the matrices with supertrace 0 forms a Lie superalgebra which is called
the special linear Lie superalgebra.

Let B be a nondegenerate consistent supersymmetric bilinear form on
V. Thus V and V are orthogonal to each other, B N is symmetric,0 1 V =V0 0

Ž .and B N is skew-symmetric which implies n must be even . For eachV =V1 1
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a g Z , define2

osp m , nŽ . a

s T g gl m , n B T¨ , wŽ . Ž .� a

Ž .a deg ¨s y y1 B ¨ , Tw for all ¨ , w g V .Ž . Ž . 4
Ž . Ž . Ž .Then the subspace osp m, n s osp m, n [ osp m, n becomes a Lie0 1

superalgebra. We set

B m , n s osp 2m q 1, 2n m G 0, n ) 0 ,Ž . Ž . Ž .
C n s osp 2, 2n y 2 n G 2 ,Ž . Ž . Ž . 4.1Ž .

D m , n s osp 2m , 2n m G 2, n ) 0 .Ž . Ž . Ž .

These subalgebras are called the ortho-symplectic Lie superalgebras of type
Ž . Ž . Ž .B m, n , C n , and D m, n , respectively.

Ž . Ž .4.1. The Special Linear Lie Superalgebra sl m, n m, n ) 0

Ž . Ž . Ž .Let E denote the m q n = m q n matrix whose i, j -entry is equali j
to 1 and all the other entries are 0, and let

x s E , y s E i s 1, 2, . . . , m q n y 1 . 4.2Ž . Ž .i i , iq1 i iq1, i

w x Ž .Then the elements x , y , z s x , y i s 1, 2, . . . , m q n y 1 generatei i i i i
Ž .the Lie superalgebra sl m, n .

� 4 � 4On the other hand, let V s 1, 2, . . . , m q n y 1 , t s m ; V, and
Ž .consider the generalized Cartan matrix A s a defined byi j i, jg V

a s 0, a s 1, a s y1,m , m m , mq1 mq1, m

< <a s y1 if i y j s 1 and i , j / m , m q 1 ,Ž . Ž .i j 4.3Ž .
< <a s 0 if i y j ) 1.i j

Ž . Ž .Let GG s GG A, t be the Kac]Moody superalgebra associated with A, t
Ž .and denote by e , f , h i s 1, . . . , m q n y 1 the generators of GG. Theni i i

Žit is straightforward to verify that the generators x , y , z i s 1, . . . , m qi i i
. Ž .n y 1 of the Lie superalgebra sl m, n also satisfy the defining relations

Ž .of the Kac]Moody algebra GG s GG A, t . Hence there exists a surjective
Ž .Lie superalgebra homomorphism f : GG ª sl m, n given by e ¬ x , f ¬ y ,i i i i

Ž .h ¬ z i s 1, 2, . . . , m q n y 1 .i i
In the following lemma, we derive more ‘‘refined’’ relations of GG, which

are used to construct a Grobner]Shirshov basis for the special linear Lie¨
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Ž . w xsuperalgebra sl m, n . Recall that we use the notation e s e e ??? ei j i iy1 j
for i ) j and e s e .i i i

Ž .LEMMA 4.1. In the Kac]Moody superalgebra GG s GG A, t , we ha¨e

e e s d e for all i , j G k , l . 4.4Ž . Ž . Ž .i j k l jy1, k i l

Proof. We proceed in several steps.

Step 1. For all j ) k q 1, we have e e s 0.i j k l
By the Serre relations, we have e e s 0 for all j ) l q 1. Next, fix l andj l

assume that j ) k q 1, k ) l. Then by the Jacobi identity and induction
hypothesis, we get

de e s e e e s e e e q y1 e e e s 0,Ž . Ž . Ž . Ž .j k l j k ky1, l j k ky1, l k j ky1, l

Ž .Ž .where d s deg e deg e g Z . Finally, fix j and assume that i ) j ) kj k 2
q 1. Then the induction argument yields

de e s e e e s e e e q y1 e e e s 0,Ž . Ž . Ž . Ž .i j k l i iy1, j k l i iy1, j k l i k l iy1, j

Ž .Ž .where d s deg e deg e g Z .i iy1 2

Step 2. For all i, j, k g V, we have e e s e .i j jy1, k ik
If i s j, there is nothing to prove. If i ) j, then by induction argument

and Step 1, we obtain

de e s e e e s e e e q y1 e e eŽ . Ž . Ž . Ž .i j jy1, k i iy1, j jy1, k i iy1, j jy1, k i jy1, k iy1, j

s e e s e ,i i iy1, k ik

Ž .Ž .where d s deg e deg e g Z .i iy1 2

Step 3. For all i ) j, we have e e s 0 and e e s 0.i i j i j j
By the Serre relations, we have e e s 0. If i G j q 2, then Step 2i i, iy1

implies e s e e . Hence by Step 1, we obtaini j i, iy1 iy2, j

de e s e e e s e e e q y1 e e e s 0,Ž . Ž . Ž . Ž .i i j i i , iy1 iy2, j i i , iy1 iy2, j i , iy1 i iy2, j

Ž .Ž .where d s deg e deg e g Z .i i, iy1 2
Similarly, we get e e s 0 for i ) j.i j j

Step 4. For all k, l G 1, we have h e s 0.i iqk , iyl
By the relations in W, we obtain

h e s a q a q a e s 0.Ž .i iqk , iyl i , iq1 i i i , iy1 iqk , iyl
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Step 5. For all i ) j, we have e e s 0.i j iy1
If j s i y 1, then by the Serre relations, we get e e s 0. Supposei j iy1

first that j - i y 1 and i y 1 / m. Then by Step 3, we obtain

e e e s e e e eŽ . Ž .Ž .i j iy1 iy1 i iy1, j iy1 iy1

ds e e e q y1 e e e eŽ . Ž . Ž .ž /i iy1, j iy1 i iy1 iy1, j iy1

d dX

s y1 e e e e q y1 e e e eŽ . Ž . Ž . Ž . Ž .Ž .i iy1 iy1, j iy1 i iy1 iy1 iy1, j

s 0,

Ž .Ž . X Ž .Ž .where d s deg e deg e and d s deg e deg e . Multiplyingi iy1 iy1 iy1, j
both sides by f yieldsiy1

0 s e e e fŽ .Ž .i j iy1 iy1 iy1

s e e e f q e e f eŽ . Ž . Ž .Ž .i j iy1 iy1 iy1 i j iy1 iy1 iy1

s e e h q e h e q e f e e .Ž . Ž . Ž .Ž .i j iy1 iy1 i j iy1 iy1 i j iy1 iy1 iy1

The second summand is equal to 0 by Step 4. Since e f is a scalari j iy1
multiple of e e , the third summand is also equal to 0. By the Jacobii iy2, j
identity and Step 4, the first summand yields 2 e e s 0, which provesi j iy1
our claim.

Ž .Ž .If j - i y 1 and i y 1 s m, since e e e e s 0 by the Serremq 1 m m my1
relations, we get

e emq 1, j m

s e e e y e e eŽ . Ž .mq 1 m j m mq1 m m j

s y e e e e eŽ . Ž .Ž .mq 1 m m my1 my2, j

s y e e e e eŽ . Ž .Ž .mq 1 m m my1 my2, j

s y e e e e e q e e e e eŽ . Ž . Ž . Ž .Ž . Ž .mq 1 m m my1 my2, j m my1 mq1 m my2, j

s 0.

Step 6. For all n ) k G 0, m ) l G 0, we have e e s 0.mq k , myl mqk , myl
Suppose k s 0. If l s 0, then we have to show that e e s 0. Note thatm m

0 s e e e s e e e y e e e s e e e .Ž . Ž . Ž . Ž .m m my1 m m my1 m m my1 m m my1
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Multiplying both sides by f , we obtainmy 1

0 s e e e fŽ .Ž .m m my1 my1

s e e e f q e e f eŽ . Ž . Ž .Ž .m m my1 my1 m m my1 my1

s e e h s 2 e e ,Ž .m m my1 m m

which implies e e s 0.m m
Next, suppose l ) 0. If e e s 0, thenm , myl m , myl

0 s e e e eŽ .Ž .m , myl m , myl myly1 myly1

s e e e q e e eŽ . Ž .m , myl m , myly1 myly1 m , myly1 m , myl myly1

s 2 e e ,m , myly1 m , myly1

which yields e e s 0. Hence, by the downward induction,m , myly1 m , myly1
we conclude e e s 0 for all m ) l G 0.m , myl m , myl

Finally, if k ) 0, then our assertion follows from the same downward
induction argument as above.

Step 7. For all k G kX, l F lX, we have e e X X s 0.mq k , myl mqk , myl
Suppose kX s k. If l s lX, then our assertion was proven in Step 6. If

l - lX and e e X s 0, thenmq k , myl mqk , myl

0 s e e X e XŽ .mq k , myl mqk , myl myl y1

s e e X q e e X e XŽ . Ž .mq k , myl mqk , myl y1 mqk , myl myl y1 mqk , myl

s e e X .mq k , myl mqk , myl y1

Hence by the downward induction, we get e e X s 0 for allmq k , myl mqk , myl
l F lX.

If k ) kX, our assertion follows by the same downward induction argu-
ment.

Step 8. For all i G j ) 1, we have e e s 0.i j i, jy1
If i s j, then our assertion is just the Serre relation. Suppose i ) j and

i q 1 / m. Then if e e s 0, we havei j i, jy1

0 s e e e eŽ .Ž .iq1 iq1 i j i , jy1

ds e e e q y1 e e eŽ . Ž . Ž .iq1 iq1, j i , jy1 iq1 i j iq1, jy1

dX ds y1 e e q y1 e e ,Ž . Ž .iq1, j iq1, jy1 iq1, j iq1, jy1

Ž .Ž . X Ž .Ž .where d s deg e deg e and d s deg e deg e . Since i q 1iq1 i j iq1 iq1, j
/ m, we have e e s 0 and the induction argument gives ouriq1, j iq1, jy1
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relations. If i ) j, i q 1 s m, and e e s 0, then by Step 7, we geti j i, jy1
e e s e e s 0. Hence our assertion follows from the in-iq1, j iq1, jy1 m j m , jy1
duction.

Ž . Ž .Step 9. For all k / j y 1, i, j G k, l , we have e e s 0.i j k l
Fix k s i. If l s j, then our assertion holds by Step 6. If l s j y 1, then

it is just Step 8. If l - j y 1, then, by Steps 1 and 8, we have

e e s e e eŽ .i j i l i j i , jy1 jy2, l

ds e e e q y1 e e e s 0,Ž . Ž . Ž .i j i , jy1 jy2, l i , jy1 i j jy2, l

Ž .Ž .where d s deg e deg e g Z .i j i, jy1 2
Suppose k - i. If j ) k q 1, our assertion holds by Step 1. Let us

assume k G j. If k s l, then we may assume k - i y 1 by Step 5, and we
have

e e s e e eŽ .i j k i , kq2 kq1, j k

ds e e e q y1 e e e s 0.Ž . Ž . Ž .i , kq2 kq1, j k i , kq2 k kq1, j

We use induction on k y l. Note that if k ) l, then we have

de e s e e e s e e e q y1 e e e ,Ž . Ž . Ž . Ž .i j k l i j k ky1, l i j k ky1, l k i j ky1, l

Ž .Ž .where d s deg e deg e g Z . The first summand is equal to 0 by thei j k 2
case k s l. Consider the second summand. If j / k, then it is 0 by the
induction hypothesis. If j s k, then by Step 2, it is equal to

d dy1 e e e s y1 e e s 0.Ž . Ž . Ž .k ik ky1, l k i l

� 4Let X s E j H j F s e , h , f N i g V be a Z -graded set, wherei i i 2
� 4 � 4V s 1, 2, . . . , m q n y 1 and t s m is the set of odd index. Let R beq

the set of relations in Ea given by:

Ž .I. e e i ) j q 1 ,i j

Ž .II. e e i ) j ,i j iy1

Ž .III. e e i G j ) 1 ,i j i, jy1

Ž .IV. e e n ) k G 0, m ) l G 0 .mq k , myl mqk , myl

Let R be the set of relations in Fa obtained by replacing e ’s in Ry i j q
Ž .by f ’s, and let R A, t s R j W j R . Consider the Lie superalgebrai j q y

² Ž .: ² Ž .:L s LL r R A, t , where R A, t denotes the ideal in LL generatedX X
Ž .by R A, t . Then, by Lemma 4.1, there is a surjective Lie superalgebra
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Ž .homomorphism c : L ª GG defined by e ¬ e , h ¬ h , f ¬ f i g V .i i i i i i
We now prove the main result of this subsection.

Ž .THEOREM 4.2. The set R A, t of relations in LL is a Grobner]Shirsho¨¨X
basis for the Lie superalgebra L.

Ž .Proof. Set R s R A, t . As in the proof of Corollary 3.6, the set of
Ž .R A, t -reduced super-Lyndon]Shirshov monomials is B s B j H j B ,q y

where B is the set of R -reduced super-Lyndon]Shirshov monomials in" "

Ž .LL resp., in LL . We claim that the set of R -reduced Lyndon]ShirshovE F q
monomials in LL isE

X <B s e m q n ) i G j G 1 .� 4q i j

Ž .Let w be an R -reduced Lyndon]Shirshov monomial in LL . If l w s 1,q E
Ž .then there is nothing to prove. Suppose that l w ) 1. Then w s u¨ ,

where u, ¨ are R -reduced Lyndon]Shirshov monomials. By induction, weq
Ž . Ž .have w s e e , where i G j, k G l, and i, j ) k, l in the lexicographi-i j k l

cal ordering. Note that we must have i ) k, for if i s k, then j y 1 G l
and e e is a subword of w. We show that k s j y 1 and i s j. Ifi j i , jy1

k ) j, then w contains e e as a subword, and if k s j, then w containskq1, j k

e e e as a subword. Finally, if k F j y 2, then w contains e e as aŽ .kq1 k k j k
subword. Hence we must have k s j y 1. Moreover, since w is a
Lyndon]Shirshov monomial, we must have i s j. Therefore, we obtain
w s e , which proves our claim.i l

Now, let w be an R -reduced super-Lyndon]Shirshov monomial in LL .q E
Then w is a Lyndon]Shirshov monomial or w s uu with u a

aLyndon]Shirshov monomial in E . If the latter is true, then, as we have1
Žseen in the previous paragraph, we have u s e n ) k G 0, m ) lmq k , myl

.G 0 , in which case w is not R -reduced by IV. Therefore we haveq

X <B s B s e m q n ) i G j G 1 .� 4q q i j

� 4Similarly, we get B s f N m q n ) i G j G 1 .y i j
By Lemma 2.4, B spans L. Since f and c are surjective, we have
Ž . Ž . Ž .2card B G dim sl m, n . But the number of elements of B is m q n y 1,

Ž .which is equal to the dimension of sl m, n . Thus f and c are isomor-
phisms and B is a linear basis of L. Therefore, by Proposition 2.9, R is a
Grobner]Shirshov basis for L.¨

Remark. The proof of Theorem 4.2 shows that the Lie superalgebras
Ž . Ž .L, GG A, t and sl m, n are all isomorphic. Hence Theorem 4.2 gives a

Ž .Grobner]Shirshov basis for the Lie superalgebra sl m, n . Our argument¨
Ž .also shows that R A, t is actually a minimal Grobner]Shirshov basis.¨
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Ž . Ž .4.2. The Lie Superalgebras of Type B m, n m, n ) 0

Ž . Ž .Let E denote the 2m q 2n q 1 = 2m q 2n q 1 matrix whosei j
Ž .i, j -entry is 1 and all the other entries are 0. Set

x s E y E 1 F i F n y 1 ,Ž .i 2 mqiq1, 2 mqiq2 2 mqnqiq2, 2 mqnqiq1

x s E q E ,n 2 mqnq1, 1 mq1, 2 mq2 nq1

x s E y E 1 F i F m y 1 ,Ž .nq i i , iq1 mqiq1, mqi

'x s 2 E y E , 4.5Ž . Ž .mq n m , 2 mq1 2 mq1, 2 m

y s E y E 1 F i F n y 1 ,Ž .i 2 mqiq2, 2 mqiq1 2 mqnqiq1, 2 mqnqiq2

y s E y E ,n 1, 2 mqnq1 2 mq2 nq1, mq1

y s E y E 1 F i F m y 1 ,Ž .nq i iq1, i mqi , mqiq1

'y s 2 E y E .Ž .mq n 2 mq1, m 2 m , 2 mq1

w x Ž .Then the elements x , y , z s x , y i s 1, 2, . . . , m q n generate thei i i i i
Ž . Ž . Ž .ortho-symplectic Lie superalgebra B m, n s osp 2m q 1, 2n m, n ) 0

and x , y are the odd generators.n n
� 4 � 4On the other hand, let V s 1, 2, . . . , m q n , t s n ; V, and consider

Ž .the generalized Cartan matrix A s a defined byi j i, jg V

a s 0, a s 1, a s y2,n , n n , nq1 mqn , mqny1

< <a s y1 if i y j s 1, i , j / n , n q 1 , m q n , m q n y 1 ,Ž . Ž . Ž .i j

< <a s 0 if i y j ) 1. 4.6Ž .i j

Ž . Ž .Let GG s GG A, t be the Kac]Moody superalgebra associated with A, t
Ž .and denote by e , f , h i s 1, 2, . . . , m q n the generators of GG. Then, asi i i

Ž .in the case of sl m, n , one can verify that the generators x , y , zi i i
Ž . Ž .i s 1, 2, . . . , m q n of the Lie superalgebra osp 2m q 1, 2n satisfy the

Ž .defining relations of the Kac]Moody superalgebra GG A, t . Hence there
Žexists a surjective Lie superalgebra homomorphism f : GG ª osp 2m q

. Ž .1, 2n given by e ¬ x , f ¬ y , h ¬ z i s 1, 2, . . . , m q n . As in Sectioni i i i i i
4.1, we first derive more relations in GG, which are used to construct a

Ž .Grobner]Shirshov basis for the ortho-symplectic Lie superalgebra B m, n¨
Ž . Ž .s osp 2m q 1, 2n m, n ) 0 .

Ž .LEMMA 4.3. In the Kac]Moody superalgebra GG s GG A, t , we ha¨e

e e s d e if i , j G k , l , m q n ) k ,Ž . Ž .i j k l jy1, k i l

w xe e e s 0 i , j, k g V , 4.7Ž . Ž .mq n , i mqn , j mqn , k

e e e e s 0 i , j, k , l g V .Ž . Ž . Ž .mq n , i mqn , j mqn , k mqn , l
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Proof. As in Lemma 4.1, we will prove our assertion in several steps.

Ž . Ž .Step 1. For all i, j ) k, l and m q n ) k, we have e e s d e .i j k l jy1, k i l
Ž . Ž .If we remove the m q n th row and the m q n th column of A, then

Ž .we get the generalized Cartan matrix for the Lie superalgebra sl m, n .
Thus we have only to consider the case when i s m q n. Suppose k F m
q n y 2. If j s m q n, then e e s 0 as in Step 1 of the proof ofmq n k l
Lemma 4.1. If j - m q n, then we have

e e s e e eŽ .mq n , j k l mqn mqny1, j k l

ds e e e q y1 e e eŽ . Ž . Ž .mq n mqny1, j k l mqn k l mqny1, j

s d e e s d e ,jy1, k mqn mqny1, l jy1, k mqn , l

Ž .Ž .where d s deg e deg e .mq n mqny1, j
If k s m q n y 1 and j s m q n, then e e s e and ifmq n mqny1, l mqn, l

j - m q n y 1, then

e emq n , j mqny1, l

s e e eŽ .mq n , j mqny1 mqny2, l

ds e e e q y1 e e eŽ . Ž . Ž .mq n , j mqny1 mqny2, l mqny1 mqn , j mqny2, l

ds e e e q y1 d e e ,Ž . Ž .mq n , j mqny1 mqny2, l jy1, mqny2 mqny1 mqn , l

Ž .Ž .where d s deg e deg e . As in Step 5 of the proof of Lemmamq n, j mqny1
4.1, we have e e s 0, which proves our claim.mq n, j mqny1

w xStep 2. For all i g V, we have e e e s 0.mq n mqn mqn, i
w x w xIt is clear that e e e s 0. Suppose that e e e smq n mqn mqn mqn mqn mqn, i

0 for i - m q n. Multiplying both sides by e , we obtainiy1

w x0 s e e e emq n mqn mqn , i iy1

ds e e e e q y1 e e e eŽ . Ž . Ž . Ž .Ž .mq n mqn mqn , i iy1 mqn iy1 mqn mqn , i

dX

s e e e q y1 e e e eŽ . Ž . Ž .Ž .mq n mqn mqn , iy1 mqn mqn iy1 mqn , i

w xs e e e ,mq n mqn mqn , iy1

for d, dX g Z , and the downward induction on i gives our claim.2
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w xŽ .Step 3. e e e e e s 0.mq n mqn mqny1 mqn mqny1
If m / 1, then by the Serre relation, we get

w xe e e e eŽ .mq n mqn mqny1 mqn mqny1

w xs e e e e eŽ .mq n mqn mqny1 mqn mqny1

w xq e e e e eŽ .mq n mqn mqn mqny1 mqny1

w xs y e e e e emq n mqn mqn mqny1 mqny1

� 4qe e e e e s 0.Ž .mq n mqn mqn mqny1 mqny1

If m s 1, then

w xe e e e eŽ .nq1 nq1 n nq1 n

w x w xs e e e e e q e e e e eŽ . Ž .nq1 nq1 n nq1 n nq1 nq1 nq1 n n

� 4s e e e e e y e e e e eŽ . Ž .Ž . Ž .nq1 nq1 nq1 n n nq1 nq1 n nq1 n

w x w xs y e e e e e y e e e e eŽ . Ž .nq1 nq1 n nq1 n nq1 n nq1 nq1 n

w xs y2 e e e e e ,Ž .nq1 nq1 n nq1 n

w xw xwhich yields e e e e e s 0.nq1 nq1 n nq1 n

Step 4. For all i g V, we have

w xe e e e s 0, e e e e s 0.Ž . Ž .mq n mqn mqny1 mqn , i mqn mqn , i mqn mqny1

w x Ž .Ž .Let a s e e e e and b s e e e e .mq n mqn mqny1 mqn, i mqn mqn, i mqn mqny1
If m / 1, then by Steps 2 and 3, we obtain

w x0 s e e e emq n mqn mqn , i mqny1

� 4s e e e e q e e e eŽ . Ž .mq n mqn mqn , i mqny1 mqn mqny1 mqn mqn , i

� 4s e e e e y b s a y 2b ,mq n mqn mqny1 mqn , i

and

w x0 s e e e e e eŽ .Ž .mq n mqn mqny1 mqn mqny1 mqny2, i

w x w xs e e e e q e e e eŽ .mq n mqn mqny1 mqn , i mqn mqn mqny1 mqny2, i

= e eŽ .mq n mqny1

� 4s a q e e e e e e s a q b.Ž .mq n mqn mqny1 mqny2, i mqn mqny1
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Hence we have a s b s 0. Similarly, if m s 1, then we get a q b s 0 and
a q 2b s 0, which implies a s b s 0.

� 4Step 5. For all i, j g V, we have e e e s 0.mq n mqn, i mqn, j
If j s m q n or j s m q n y 1, our assertion holds by Steps 2 and 4.

We will use the downward induction on j. Suppose j - m q n y 1 and
� 4e e e s 0 for all i g V. Then we havemq n mqn, i mqn, j

� 40 s e e e emq n mqn , i mqn , j jy1

s e e e q e e e eŽ . Ž .Ž .mq n mqn , i mqn , j mqn mqn , i jy1 mqn , j

� 4s e e e q d e e eŽ .mq n mqn , i mqn , jy1 i j mqn mqn , iy1 mqn , j

� 4s e e e ,mq n mqn , i mqn , jy1

which proves our claim.

w xStep 6. For all i, j, k g V, we have e e e s 0.mq n, i mqn, j mqn, k
If i s m q n, Step 5 implies

e e e s e e e q e e e s 0.Ž . Ž . Ž .mq n mqn , j mqn , k mqn mqn , j mqn , k mqn , j mqn mqn , k

If i - m q n, by the above observation, we get

w xe e emq n , i mqn , j mqn , k

s e e e eŽ . Ž .mq n mqny1, i mqn , j mqn , k

w xs e e e emq n mqny1, i mqn , j mqn , k

d w xq y1 e e e eŽ . mq n mqn , j mqn , k mqny1, i

dX

w xs y1 d e e eŽ . mq n , j mqn mqn , i mqn , k

dY

w xq y1 d e e e s 0,Ž . mq n , k mqn mqn , j mqn , i

where d, dX, dY g Z .2
It remains to prove the last relation. But it is an immediate consequence

of Step 6.

� 4Let X s E j H j F s e , h , f N i g V be a Z -graded set, wherei i i 2
� 4 � 4V s 1, 2, . . . , m q n and t s n is the set of odd index. Let R be theq

set of relations in Ea given by:

Ž .I. e e m q n G i ) j q 1 ) 1 ,i j

Ž .II. e e m q n G i ) j G 1 ,i j iy1

Ž .III. e e m q n ) i G j ) 1 ,i j i, jy1

Ž .IV. e e m ) k G 0, n ) l G 0 ,nqk , nyl nqk , nyl
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w x Ž .V. e e e m q n G i G j ) 1 ,mq n, i mqn, j mqn, jy1

� 4 Ž .VI. e e e m q n G i ) j G 1 ,mq n, i mqn, j mqn, iy1

Ž .Ž . Ž .VII. e e e e m q n G i ) n G j G 1 ,mq n, i mqn, j mqn, i mqn, j

Ž .Ž . Ž .VIII. e e e e n G i ) j ) 1 .mq n, i mqn, j mqn, i mqn, jy1

Let R be the set of relations in Fa obtained by replacing e ’s in Ry i j q
Ž .by f ’s, and let R A, t s R j W j R . Consider the Lie superalgebrai j q y

² Ž .:L s LL r R A, t . Then, by Lemma 4.3, there exists a surjective LieX
superalgebra homomorphism c : L ª GG defined by e ¬ e , h ¬ h , andi i i i

Ž .f ¬ f i g V . Then we have:i i

Ž .THEOREM 4.4. The set R A, t of the relations in LL is aX
Grobner]Shirsho¨ basis for the Lie superalgebra L.¨

Ž . Ž . Ž .Proof. Set R s R A, t . As in the case of sl m, n , the set of R A, t -
reduced super-Lyndon]Shirshov monomials is B s B j H j B . Weq y
claim that the set of R -reduced Lyndon]Shirshov monomials in LL isq E

BX s e N i G j j e e N i ) j .� 4 � 4q i j mqn , i mqn , j

Ž .Let w be an R -reduced Lyndon]Shirshov monomial in LL . If l w s 1,q E
Ž .there is nothing to prove. If l w ) 1, then w s u¨ , where u, ¨ are

R -reduced Lyndon]Shirshov monomials. Hence by induction, we haveq
u, ¨ g BX . We show that either u s e , ¨ s e with j ) l orq mqn, j mqn, l
u s e , ¨ s e , which would prove our claim. We need to consider thei iy1, l
following four cases.

Ž .Case 1. u s e , ¨ s e i G j, k G l :i j k l
Ž . Ž .Since u¨ is Lyndon]Shirshov, we have i, j ) k, l lexicographically. If

i s k s m q n, then u s e , ¨ s e with j ) l. If i s k - m q n,mq n, j mqn, l
then j y 1 G l, and e e contains e e as a subword. Hence w is noti j k l i j i , jy1
R -reduced by III. If i s j ) k and k s i y 1, then u and ¨ have theq
desired form and we are done. If i s j ) k and k F i y 2, then w is not
R -reduced by I. If i ) k and i ) j, then we must have k s i y 1, sinceq
e s e e and e F e by the definition of Lyndon]Shirshov mono-i j i iy1, j iy1, j k l
mials. Hence w is not R -reduced by II.q

Ž .Case 2. u s e , ¨ s e e i ) j, k G l :k l mqn, i mqn, j
Since u¨ is Lyndon]Shirshov, we have k s m q n and l G i. Then w is

not R -reduced by V, since w contains e e e as aŽ .q mqn , i mqn , i mqn , iy1
subword.

Ž .Case 3. u s e e , ¨ s e i ) j, k G l :mq n, i mqn, j k l
Since u¨ is Lyndon]Shirshov, we have e ) e G e . It followsmq n, i k l mqn, j

� 4that k s m q n and i ) l G j. Hence w contains e e emq n , i mqn , j mqn , iy1
as a subword, and w is not R -reduced by VI.q



BOKUT ET AL.488

Ž .Case 4. u s e e , ¨ s e e i ) j, k ) l :mq n, i mqn, j mqn, k mqn, l
Ž . Ž .Since u¨ is Lyndon]Shirshov, we have i, j ) k, l and e Fmq n, j

e e . Thus we have j - k and either i s k ) j ) l or i ) k ) j. Ifmq n, k mqn, l
i s k ) j ) l, then w contains e e e e as a sub-Ž . Ž .mq n , i mqn , j mqn , i mqn , jy1
word, and w is not R -reduced by VII or VIII. If i ) k ) j, then wq

� 4contains e e e as a subword, and w is not R -reducedmq n , i mqn , j mqn , iy1 q
by VI.

Now, let w be an R -reduced super-Lyndon]Shirshov monomial in LL .q E
Then w is Lyndon]Shirshov or w s uu with u a Lyndon]Shirshov mono-

amial in E . If the latter is true, then we have the following three1
possibilities:

Ž . Ž .i u s e m ) k G 0, n ) l G 0 ,nqk , nyl

Ž . Ž .ii u s e 1 F j F n ,mq n, j

Ž . Ž .iii u s e e m q n G i ) n G j G 1 .mq n, i mqn, j

Ž . Ž .But the cases i and iii cannot occur by IV and VII. Therefore the set of
R -reduced super-Lyndon]Shirshov monomials is given byq

< <B s e N i G j j e e i ) j j e e 1 F j F n .� 4 � 4 � 4q i j mqn , i mqn , j mqn , j mqn , j

Similarly, we get

< < <B s f i G j j f f i ) j j f f 1 F j F n .� 4 � 4 � 4y i j mqn , i mqn , j mqn , j mqn , j

By Lemma 2.4 B spans L. Since f and c are surjective, we have
Ž . Ž .card B G dim osp 2m q 1, 2n . But the number of elements of B is

Ž .2 Ž .2 m q n q m q 3n, which is equal to the dimension of osp 2m q 1, 2n .
Ž .Hence B is a linear basis of L and by Proposition 2.9, R s R A, t is a

Grobner]Shirshov basis for the Lie superalgebra L.¨
Remark. The proof of Theorem 4.4 shows that the Lie superalgebras
Ž . Ž . Ž .L, GG A, t and B m, n s osp 2m q 1, 2n are all isomorphic. Hence

Theorem 4.4 gives a Grobner]Shirshov basis for the Lie superalgebra¨
Ž . Ž . Ž .B m, n s osp 2m q 1, 2n . Our argument also shows that R A, t is

actually a minimal Grobner]Shirshov basis.¨

Ž . Ž .4.3. The Lie Superalgebras of Type B 0, n n ) 0

Ž . Ž . Ž .Let E denote the 2n q 1 = 2n q 1 matrix whose i, j -entry is 1i j
and all the other entries are 0. Set

x s E y E 1 F i F n y 1 ,Ž .i iq1, iq2 nqiq2, nqiq1

'x s 2 E q E ,Ž .n 1, 2 nq1 nq1, 1

y s E y E 1 F i F n y 1 ,Ž .i iq2, iq1 nqiq1, nqiq2

4.8Ž .

'y s 2 E y E .Ž .n 1n 2 nq1, 1
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w xThen the elements x , y , z s x , y generate the Lie superalgebrai i i i i
Ž . Ž . Ž .B 0, n s osp 1, 2n n ) 0 and x , y are the odd generators.n n

� 4 � 4On the other hand, let V s 1, 2, . . . , n , t s n ; V, and consider the
Ž .generalized Cartan matrix A s a defined byi j i, jg V

a s 2, a s y2,n , n n , ny1

< <a s y1 if i y j s 1, i , j / n , n y 1 ,Ž . Ž .i j 4.9Ž .
< <a s 0 if i y j ) 1.i j

Ž . Ž .Let GG s GG A, t be the Kac]Moody superalgebra associated with A, t
Ž .and denote by e , f , h i s 1, 2, . . . , n the generators of GG. Then, by thei i i

same argument as in the proof of Lemma 4.3, we obtain:

Ž .LEMMA 4.5. In the Kac]Moody superalgebra GG s GG A, t , we ha¨e

e e s d e if i , j G k , l , n ) k ,Ž . Ž .i j k l jy1, k i l

w xe e e s 0 i , j, k g V , 4.10Ž . Ž .ni n j nk

e e e e s 0 i , j, k , l g V .Ž . Ž . Ž .ni n j nk nl

� 4Let X s E j H j F s e , h , f N i g V be a Z -graded set, wherei i i 2
� 4 � 4V s 1, 2, . . . , n and t s n ; V is the set of odd index. Let R be theq

set of relations in Ea given by:

Ž .I. e e n G i ) j q 1 ) 1 ,i j

Ž .II. e e n G i ) j G 1 ,i j iy1

Ž .III. e e n ) i G j ) 1 ,i j i, jy1

w x Ž .IV. e e e n G i G j ) 1 ,n, i n, j n, jy1

� 4 Ž .V. e e e n G i ) j G 1 ,n, i n, j n, iy1

Ž .Ž . Ž .VI. e e e e n G i ) j ) 1 .n, i n, j n, i n, jy1

Let R be the set of relations in Fa obtained by replacing e ’s in Ry i j q
Ž .by f ’s, and let R A, t s R j W j R . Consider the Lie superalgebrai j q y

² Ž .:L s LL r R A, t . Then there is a surjective Lie superalgebra homomor-X
phism c : L ª GG, and using the same argument as in the proof of
Theorem 4.4, we obtain:

Ž .THEOREM 4.6. The set R A, t of the relations in LL is aX
Grobner]Shirsho¨ basis for the Lie superalgebra L.¨

Remark. The set of R -reduced super-Lyndon]Shirshov monomials inq
LL is given byE

< <B s e i G j j e e i G j ,� 4 � 4q i j n , i n , j
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Ž . Ž . Ž .and the Lie superalgebras L, GG A, t , and B 0, n s osp 1, 2n are all
Ž .isomorphic. Moreover, R A, t is a minimal Grobner]Shirshov basis.¨

Ž . Ž .4.4. The Lie Superalgebras of Type C n n G 2

Ž . Ž . Ž .Let E denote the 2n q 1 = 2n q 1 matrix whose i, j -entry is 1i j
and all the other entries are 0. Set

x s E y E ,1 13 nq2, 2

x s E y E 2 F i F n y 1 ,Ž .i iq1, iq2 nqiq1, nqi

x s E ,n nq1, 2 n

y s E q E ,1 31 2, nq2

4.11Ž .

y s E y E 2 F i F n y 1 ,Ž .i iq2, iq1 nqi , nqiq1

y s E .n 2 n , nq1

w x Ž .Then the elements x , y , z s x , y i s 1, 2, . . . , n are the generators ofi i i i i
Ž . Ž .the Lie superalgebra C n s osp 2, 2n y 2 , and x , y are the odd gener-1 1

ators.
� 4 � 4Let V s 1, 2, . . . , n , t s 1 ; V and consider the generalized Cartan
Ž .matrix A s a defined byi j i, jg V

a s 0, a s 1, a s y2,11 12 ny1, n

< <a s y1 if i y j s 1, i , j / 1, 2 , n y 1, n ,Ž . Ž . Ž .i j 4.12Ž .
< <a s 0 if i y j ) 1.i j

Ž . Ž .Let GG s GG A, t be the Kac]Moody superalgebra associated with A, t
Ž .and denote by e , f , h i s 1, 2, . . . , n the generators of GG. Then there isi i i

Ž .a surjective Lie superalgebra homomorphism f : GG ª osp 2, 2n y 2 given
Ž .by e ¬ x , f ¬ y , h ¬ z i s 1, 2, . . . , n .i i i i i i

By a similar argument in the proof of Lemma 4.3, we can derive a more
refined set of relations in GG, which gives a Grobner]Shirshov basis for the¨

Ž . Ž .Lie superalgebra osp 2, 2n y 2 n G 2 . Since the argument is a variation
of the one given in Lemma 4.3, we omit the proof here.

Ž .LEMMA 4.7. In the Kac]Moody superalgebra GG s GG A, t , we ha¨e

e e s d e if i , j G k , l and k / n y 1 when i s n ,Ž . Ž .i j k l jy1, k i l

� 4e e e s 0 n ) i ,Ž .ni ny1, j ny1, k
4.13Ž .� 4e e e s 0 i , j, k g V ,Ž .ni ny1, j nk

e e e e s 0 i , j, k , l g V .Ž . Ž . Ž .ni ny1, j n , k ny1, l
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� 4Let X s E j H j F s e , h , f N i g V be a Z -graded set, wherei i i 2
� 4 � 4V s 1, 2, . . . , n and t s 1 ; V is the set of odd index. Let R be theq

set of relations in Ea given by:

Ž .I. e e n G i ) j q 1 ) 1 ,i j

Ž .II. e e n ) i ) j G 1 ,i j iy1

Ž .III. e e n G i G j ) 1 ,i j i, jy1

Ž .IV. e e n G i G 1 ,i1 i1

� 4 Ž .V. e e e n ) j G i G 1 ,n, i ny1, j ny1

� 4 Ž .VI. e e e n ) j G i ) 1 ,n, i ny1, j n, iy1

w x Ž .VII. e e e n G i ) 1 ,n, i n, i ny1

Ž .Ž . Ž .VIII. e e e e n ) j ) 1 ,n, 1 ny1, j n, 1 ny1, j

Ž .Ž . Ž .IX. e e e e n ) j ) i ) 1 .n, i ny1, j n, i ny1, jy1

Let R be the set of relations in Fa obtained by replacing e ’s in Ry i j q
Ž .by f ’s, and let R A, t s R j W j R . Consider the Lie superalgebrai j q y

² Ž .:L s LL r R A, t . Then there is a surjective Lie superalgebra homomor-X
Ž .phism c : L ª GG defined by e ¬ e , f ¬ f , h ¬ h i g V . Moreover,i i i i i i

we have:

Ž .THEOREM 4.8. The set R A, t of the relations in LL is aX
Grobner]Shirsho¨ basis for the Lie superalgebra L.¨

Proof. Since our argument is similar to the one for the proof of
Theorem 4.4, we just give a sketch of the proof. We first prove that the set

Ž .of R A, t -reduced Lyndon]Shirshov monomials in LL is given byX

X < <B s e i G j j e e n ) j G i G 1 and i , j / 1, 1 ,Ž . Ž .� 4 � 4q i j n , i ny1, j

and conclude the set B of R -reduced super-Lyndon]Shirshov monomi-q q
als in LL is equal to BX .E q

We see that B s B j H j B spans L, whereq y

< <B s f i G j j f f n ) j G i G 1 and i , j / 1, 1Ž . Ž .� 4 � 4y i j n , i ny1, j

is the set of R -reduced super-Lyndon]Shirshov monomials in LL . They F
number of elements in B is 2n2 q n y 2, which is equal to the dimension

Ž . Ž .of osp 2, 2n y 2 n G 2 . Hence the homomorphisms f and c are
isomorphisms, and B is a linear basis of L, which proves our assertion.

Ž . Ž . Ž .Remark. The Lie superalgebras L, GG A, t , and C n s osp 2, 2n y 2
Ž .are all isomorphic and R A, t is a minimal Grobner]Shirshov basis.¨
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Ž . Ž .4.5. The Lie Superalgebras of Type D m, n m G 2, n ) 0

Ž . Ž . Ž .Let E denote the 2m q 2n = 2m q 2n matrix whose i, j -entry isi j
1 and all the other entries are 0. Set

x s E y E 1 F i F n y 1 ,Ž .i 2 mqi , 2 mqiq1 2 mqnqiq1, 2 mqnqi

x s E q E ,n 2 mqn , 1 mq1, 2 mq2 n

x s E y E 1 F i F m y 1 ,Ž .nq i i , iq1 mqiq1, mqi

x s E y E ,mq n m , 2 my1 my1, 2 m

y s E y E 1 F i F n y 1 ,Ž .i 2 mqiq1, 2 mqi 2 mqnqi , 2 mqnqiq1

4.14Ž .

y s E y E ,n 1, 2 mqn 2 mq2 n , mq1

y s E y E 1 F i F m y 1 ,Ž .nq i iq1, i mqi , mqiq1

y s E y E .mq n 2 my1, m 2 m , my1

w x Ž .Then the elements x , y , z s x , y i s 1, 2, . . . , m q n are the genera-i i i i i
Ž . Ž .tors of the Lie superalgebra D m, n s osp 2m, 2n , and x , y are then n

odd generators.
� 4 � 4Let V s 1, 2, . . . , m q n , t s n , and consider the generalized Cartan
Ž .matrix A s a defined byi j i, jg V

a s 0, a s 1, a s y1,nn n , nq1 mqny2, mqn

a s 0, a s y1, a s 0,mq ny1, mqn mqn , mqny2 mqn , mqny1

< <a s y1 if i y j s 1, and i , j / n , n q 1 ,Ž . Ž .i j
4.15Ž .

m q n y 1, m q n , m q n , m q n y 1 ,Ž . Ž .
< <a s 0 if i y j ) 1, and i , j / m q n y 2, m q n ,Ž . Ž .i j

m q n , m q n y 2 .Ž .

Ž . Ž .Let GG s GG A, t be the Kac]Moody superalgebra associated with A, t
Ž .and denote by e , f , h i s 1, 2, . . . , m q n the generators of GG. Theni i i

Ž .there is a surjective Lie superalgebra homomorphism f : GG ª osp 2m, 2n
Ž .given by e ¬ x , f ¬ y , h ¬ z i s 1, 2, . . . , m q n .i i i i i i

We modify some of our notations:

Ž .i We neglect e ; if j F m q n y 2, we write e smq n, mqmy1 mqn, j
e e .mq n mqny2, j

Ž .ii We introduce a modified Kronecker’s delta:

1 if i s j or i s j q 1 s m q n y 1,
d̂ si j ½ 0 otherwise.
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In the following lemma, we list a set of relations in GG which would yield
Ž . Ž .a Grobner]Shirshov basis for the Lie superalgebra D m, n s osp 2m, 2n¨

Ž .m G 2, n ) 0 . We omit the proof which is similar to that of Lemma 4.3.

Ž .LEMMA 4.9. In the Kac]Moody superalgebra GG s GG A, t , we ha¨e

ˆe e s d e if i , j G k , l , i , k / m q n , m q n y 1 ,Ž . Ž . Ž . Ž .i j k l jy1, k i l

e e s 0 if i ) n ,mq n , i mqny1, i

e e s e e if i F n ,mq n , i mqny1, iy1 mqn , iy1 mqny1, i

� 4e e e s 0 i , j, k g V ,Ž .mq n , i mqny1, j mqny1, k

� 4e e e s 0 i , j, k g V ,Ž .mq n , i mqny1, j mqn , k

e e e e s 0 i , j, k , l g V .Ž . Ž . Ž .mq n , i mqny1, j mqn , k mqny1, l

4.16Ž .

� 4Let X s E j H j F s e , h , f N i g V be a Z -graded set, wherei i i 2
� 4 � 4V s 1, 2, . . . , m q n and t s n ; V is the set of odd index. Let R beq

the set of relations in Ea given by:

Ž Ž . Ž ..I. e e i ) j q 1, i, j / m q n, m q n y 2 , e e ,i j mqn mqny1

Ž . Ž .II. e e m q n ) i ) j , e e m q n y 2 G j ,i j iy1 mqn, j mqny2

Ž .III. e e i G j ) 1 with j F m q n y 2 when i s m qi j i, jy1
Ž .n, e e e ,mq n mqn mqny2

Ž .IV. e e m q n y 2 G i ) n , e e ymqn , i mqny1, i mqn, i mqny1, iy1
Ž .e e i F n ,mq n, iy1 mqny1, i

Ž .V. e e m G k G 0, n ) l G 0 ,nqk , nyl nqk , nyl

� 4 Ž . �VI. e e e i - j - m q n , e emq n , i mq ny 1, j mq ny 1 mq n , i mq ny 1, i
4 Ž .e i F n ,mq ny1

� 4 Ž .VII. e e e m q n y 2 G i ,mq n, i mqn, i mqny1

� 4 Ž . �VIII. e e e 1 - i - j - m q n , e emq n, i mqny1, j mqn, iy1 mqn, i mqny1, i
4 Ž .e i F n ,mq n, iy1

Ž .Ž . ŽIX. e e e e n q 1 - i q 1 - j - m qmq n, i mqny1, j mqn, i mqny1, jy1
. Ž .Ž . Ž .n , e e e e i F n, i - j .mq n, i mqny1, j mqn, i mqny1, j

Let R be the set of relations in Fa obtained by replacing e ’s by f ’sy i j i j
Ž .in R , and let R A, t s R j W j R . Consider the Lie superalgebraq q y

² Ž .:L s LL r R A, t . Then there is a surjective Lie superalgebra homomor-X
Ž .phism c : L ª GG defined by e ¬ e , f ¬ f , h ¬ h i g V , and wei i i i i i

have:

Ž .THEOREM 4.10. The set R A, t of the relations in LL is aX
Grobner]Shirsho¨ basis for the Lie superalgebra L.¨



BOKUT ET AL.494

Ž . Ž .Proof. As in the case of C n s osp 2, 2n y 2 , we only give a brief
sketch of the proof here. The set of R -reduced super-Lyndon]Shirshov"

Ž .monomials in LL resp., LL is given byE F

< <B s e i G j j e e i - j or i s j F n ,� 4 � 4q i j mqn , i mqny1, j

< <B s f i G j j f f i - j or i s j F n .� 4 � 4y i j mqn , i mqny1, j

Ž .Hence the number of elements in the set of R A, t -reduced super-
Ž .2Lyndon]Shirshov monomials in LL is 2 m q n y m q n, which is equalX

Ž . Ž .to the dimension of the Lie superalgebra D m, n s osp 2m, 2n . There-
Ž .fore, B is a linear basis of L and R A, t is a Grobner]Shirshov basis¨

for L.

Ž . Ž . ŽRemark. The Lie superalgebras L, GG A, t , and D m, n s osp 2m,
. Ž .2n are all isomorphic and R A, t is a minimal Grobner]Shirshov basis.¨
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