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Iwahori–Hecke Algebras of SL2 over
2-Dimensional Local Fields

Kyu-Hwan Lee

Abstract. In this paper we construct an analogue of Iwahori–Hecke algebras of SL2 over 2-dimensional

local fields. After considering coset decompositions of double cosets of a Iwahori subgroup, we de-

fine a convolution product on the space of certain functions on SL2, and prove that the product is

well-defined, obtaining a Hecke algebra. Then we investigate the structure of the Hecke algebra. We

determine the center of the Hecke algebra and consider Iwahori–Matsumoto type relations.

Introduction

Hecke algebras play important roles in the representation theory of p-adic groups.

There are two important classes of Hecke algebras. One is the spherical Hecke algebra

attached to a maximal compact open subgroup, and the other is the Iwahori–Hecke

algebra attached to a Iwahori subgroup. The spherical Hecke algebra is isomorphic

to the center of the corresponding Iwahori–Hecke algebra. In the theory of higher

dimensional local fields [5], a p-adic field is a 1-dimensional local field. So the theory

of p-adic groups and their Hecke algebras is over 1-dimensional local fields.

Recently, the representation theory of algebraic groups over 2-dimensional lo-

cal fields was initiated by the works of Kapranov, Kazhdan and Gaitsgory [12], [6],

[7], [8]. In their development, Cherednik’s double affine Hecke algebras ([2]) appear

as an analogue of Iwahori–Hecke algebras. The common feature of the works men-

tioned above is the use of rank one integral structure of a 2-dimensional local field.

But there is also a rank two integral structure in a 2-dimensional local field, and it is

important in the arithmetic theory to use the rank two integral structure [5]; we refer

the reader to Fesenko’s article [4] and to the references there for recent developments.

In their paper [13], Kim and Lee constructed an analogue of spherical Hecke al-

gebras of SL2 over 2-dimensional local fields using rank two integral structure. They

also established a Satake isomorphism using Fesenko’s R((X))-valued measure de-

fined in [3] (see also [4]). In particular, the algebra is proved to be commutative. A

similar result is expected in the case of GLn and, eventually, in the case of reductive

algebraic groups.

In this paper, we construct an analogue of Iwahori–Hecke algebras of SL2 over

2-dimensional local fields coming from rank two integral structure. Our basic ap-

proach will be similar to that of [13]. More precisely, an element of the algebra is

an infinite linear combination of characteristic functions of double cosets satisfying
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certain conditions. We define a convolution product of two characteristic functions,

using coset decompositions of double cosets of an Iwahori subgroup and imposing a

restriction on the support of the product. Since a double coset of the Iwahori sub-

group is an uncountable union of cosets in general, it is necessary to prove that the

convolution product is well-defined. This will be done in the first part of the paper.

In the second part, we study the structure of the Hecke algebra. It has a natural

Z-grading and contains the affine Hecke algebra of SL2 as a subalgebra. We will find a

big commutative subalgebra, and determine its structure completely. Surprisingly, it

is different from the group algebra of double cocharacters. We will also calculate the

center of the Hecke algebra, and it turns out to be the same as the center of the affine

Hecke algebra of SL2. The classical Iwahori–Hecke algebra has a well-known presen-

tation due to Iwahori and Matsumoto [10], [11]. The relations can be understood as

deformations of Coxeter relations of the affine Weyl group. The corresponding Weyl

group of a reductive algebraic group over a 2-dimensional local field is not a Coxeter

group. In the SL2 case, A. N. Parshin obtained an explicit presentation of the (double

affine) Weyl group [15]. We will investigate Iwahori–Matsumoto type relations of

the Hecke algebra in light of Parshin’s presentation.

Now that we have spherical Hecke algebras and Iwahori–Hecke algebras of SL2

over 2-dimensional local fields with respect to rank two integral structure, next natu-

ral steps would be considering representations of SL2 over 2-dimensional local fields,

constructing the Hecke algebras for more general reductive algebraic groups, and un-

derstanding these algebras in connection with the works of Kapranov, Kazhdan and

Gaitsgory mentioned earlier. It seems that another interesting approach to the repre-

sentation theory over two-dimensional local fields could be obtained from the work

of Hrushovski and Kazhdan [9], in which they developed a theory of motivic inte-

gration. Actually, in the appendix of the paper [9], given by Avni, an Iwahori–Hecke

algebra of SL2 is constructed using motivic integration. It would be nice if one could

find any connection of it to the constructions of this paper.

There are three sections and an appendix in this paper. In the first section, we

fix notations and recall the Bruhat decomposition. The next section is devoted to

the construction of the Hecke algebra. We will show that the convolution product

is well-defined. In the third section, we study the structure of the Hecke algebra,

determining the center of the algebra and finding Iwahori–Matsumoto type relations.

In the appendix, we present a complete set of formulas for convolution products of

characteristic functions. These formulas will be essentially used for many calculations

in this paper.

1 Bruhat Decomposition

In this section, we fix notations and collect some results on double cosets and coset

decompositions we will use later. We assume that the reader is familiar with basic

definitions in the theory of 2-dimensional local fields, which can be found in [18].

Let F(= F2) be a two dimensional local field with the first residue field F1 and the

last residue field F0(= Fq) of q elements. We fix a discrete valuation v : F× → Z
2 of

rank two. Recall that Z
2 is endowed with the lexicographic ordering from the right.

Let t1 and t2 be local parameters with respect to the valuation v. We have the ring O



1312 Kyu-Hwan Lee

of integers of F with respect to the rank-two valuation v. There is a natural projection

p : O → O/t1O = F0. Note that the ring O is different from the ring O21 of integers

of F with respect to the rank-one valuation v21 : F× → Z.

Let G be a connected split semisimple algebraic group defined over Z. We fix

a maximal torus T and a Borel subgroup B such that T ⊂ B ⊂ G, and we have

W0 = NG(T)/T, the Weyl group of G. We write G = G(F) and consider I = {x ∈
G(O) : p(x) ∈ B(F0)}, the double Iwahori subgroup, and W = NG(T)/T(O), the

double affine Weyl group, and obtain the following decomposition.

Proposition 1.1 ([12], [15]) We have

G =
∐

w∈W

IwI,

and the resulting identification I\G/I → W is independent of the choice of representa-

tives of elements of W .

From now on, in the rest of this paper, we assume that G = SL2 and B is the

subgroup of upper triangular matrices. The following lemma gives explicit formulas

for the decomposition in Proposition 1.1. The proof is straightforward, so we omit it.

Lemma 1.2 Assume that x =
(

a b
c d

)

∈ G.

(1) If v(a) ≤ v(b) and v(a) < v(c), then x ∈ I
(

a 0
0 a−1

)

I.

(2) If v(b) < v(a) and v(b) < v(d), then x ∈ I
(

0 b
−b−1 0

)

I.

(3) If v(c) ≤ v(a) and v(c) ≤ v(d), then x ∈ I
(

0 −c−1

c 0

)

I.

(4) If v(d) ≤ v(b) and v(d) < v(c), then x ∈ I
(

d−1 0
0 d

)

I.

We denote by C(1)
i, j and C(2)

i, j , (i, j) ∈ Z
2, the double cosets

I

(

t i
1t

j
2 0

0 t−i
1 t

− j
2

)

I and I

(

0 t i
1t

j
2

−t−i
1 t

− j
2 0

)

I, respectively.

In the following lemma, we obtain complete sets of coset representatives in the de-

composition of double cosets of the subgroup I into right cosets.

Lemma 1.3 We have C(a)
i, j =

∐

z Iz, where the disjoint union is over z in the following

list.

(1) If a = 1 and (i, j) ≥ (0, 0), then

z =

(

t i
1t

j
2 0

0 t−i
1 t

− j
2

)

,

(

t i
1t

j
2 0

t−i+k
1 t

− j+l
2 u t−i

1 t
− j
2

)

for (1, 0) ≤ (k, l) < (2i + 1, 2 j), where u ∈ O× are units belonging to a fixed set of

representatives of O/t2i−k+1
1 t

2 j−l
2 O.
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(2) If a = 1 and (i, j) < (0, 0), then

z =

(

t i
1t

j
2 0

0 t−i
1 t

− j
2

)

,

(

t i
1t

j
2 t i+k

1 t
j+l
2 u

0 t−i
1 t

− j
2

)

for (0, 0) ≤ (k, l) < (−2i,−2 j), where u ∈ O× are units belonging to a fixed set of

representatives of O/t−2i−k
1 t

−2 j−l
2 O.

(3) If a = 2 and (i, j) ≥ (0, 0), then

z =

(

0 t i
1t

j
2

−t−i
1 t

− j
2 0

)

,

(

0 t i
1t

j
2

−t−i
1 t

− j
2 −t−i+k

1 t
− j+l
2 u

)

for (0, 0) ≤ (k, l) < (2i + 1, 2 j), where u ∈ O× are units belonging to a fixed set of

representatives of O/t2i−k+1
1 t

2 j−l
2 O.

(4) If a = 2 and (i, j) < (0, 0), then

z =

(

0 t i
1t

j
2

−t−i
1 t

− j
2 0

)

,

(

t i+k
1 t

j+l
2 u t i

1t
j
2

−t−i
1 t

− j
2 0

)

for (1, 0) ≤ (k, l) < (−2i,−2 j), where u ∈ O× are units belonging to a fixed set of

representatives of O/t−2i−k
1 t

−2 j−l
2 O.

Proof Since the other cases are similar, we only prove the part (1). Consider

z =

(

t i
1t

j
2 0

0 t−i
1 t

− j
2

)

(

a b

c d

)

, z ′ =

(

t i
1t

j
2 0

0 t−i
1 t

− j
2

)

(

a ′ b ′

c ′ d ′

)

where
(

a b
c d

)

,
(

a ′ b ′

c ′ d ′

)

∈ I. We see that the condition Iz = Iz ′ is equivalent to

c ′d − cd ′ ∈ t2i+1
1 t

2 j
2 O.

We write (c, d) ∼ (c ′, d ′) if c ′d− cd ′ ∈ t2i+1
1 t

2 j
2 O. Note that if

(

a b
c d

)

∈ I then c ∈ t1O

and d is a unit. Let C be the set of pairs (c, d) ∈ O2 such that c ∈ t1O and d is a unit.

Then ∼ is an equivalence relation on C . In order to determine different cosets, we

need only to determine a set of representatives of the equivalence relation ∼, which

turn out to be

(0, 1) and (tk
1t l

2u, 1) for (1, 0) ≤ (k, l) < (2i + 1, 2 j),

where u ∈ O× are units belonging to a fixed set of representatives of O/t2i−k+1
1 t

2 j−l
2 O.

These yield the elements z in the part (1).

Remark 1.4 The disjoint union C(a)
i, j =

∐

z Iz is an uncountable union unless j = 0.

The same is true for the double cosets of K = SL2(O); see [13].
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2 Iwahori–Hecke Algebras

In this section, we define the convolution product of two characteristic functions of

double cosets of the subgroup I, and we show that the product is well-defined. Then

we construct an analogue of the Iwahori–Hecke algebra of SL2.

We fix a set of representatives R of the double affine Weyl group W to be

(2.1) R =

{

η(1)
i, j :=

(

t i
1t

j
2 0

0 t−i
1 t

− j
2

)

, η(2)
i, j :=

(

0 t i
1t

j
2

−t−i
1 t

− j
2 0

)

: (i, j) ∈ Z
2

}

.

We define a map η : G → R so that x ∈ Iη(x)I for each x ∈ G. That is, we assign to

an element x of G its representative η(x) ∈ R in the decomposition G =
∐

w∈W IwI

of Proposition 1.1.

We put

(2.2) C j =
∐

m∈Z

C(1)
m, j ∪C(2)

m, j , j ∈ Z.

We denote by χ(1)
i, j and χ(2)

i, j the characteristic functions of the double cosets C(1)
i, j

and C(2)
i, j , respectively. We will consider the following types of functions:

(2.3)
∑

r≤i

crχ
(a)
r, j ( j > 0),

∑

r≥i

crχ
(a)
r, j ( j < 0), and

∑

i≤r≤i ′

crχ
(a)
r,0

for i, i ′, j ∈ Z, a = 1, 2 and cr ∈ C. Now we define the convolution product of two

characteristic functions.

Definition 2.4 For a, b = 1, 2 and (i, j), (k, l) ∈ Z
2, we define

(2.5) (χ(a)
i, j ∗ χ(b)

k,l )(x) =

{

q−1
∑

z χ(a)
i, j

(

η(x)z−1
)

if x ∈ C j+l and jl ≥ 0,

0 otherwise,

where the sum is over the representatives z of the decomposition C(b)
k,l =

∐

z Iz.

Remark 2.6 One can construct a certain invariant R((X))-valued measure dγ on G.

Then we could define the convolution product of two functions f and g on G by

( f ∗ g)(x) =

∫

G

f (xy−1)g(y) dγ(y).

The definition of the convolution product given above is derived from this formula.

Since the cardinality of the set of the representatives z in the union is uncountable

(Remark 1.4) in general, we need to prove the following.

Theorem 2.7 The convolution product χ(a)
i, j ∗χ(b)

k,l yields a well-defined function of one

of the types in (2.3) for any a, b = 1, 2 and (i, j), (k, l) ∈ Z
2.
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Proof We write

χ(a)
i, j ∗ χ(b)

k,l =

∑

m

c(1)
m χ(1)

m, j+l +
∑

m

c(2)
m χ(2)

m, j+l, c(1)
m , c(2)

m ∈ C, m ∈ Z.

(1) Assume that b = 1, j ≥ 0 and (k, l) ≥ (0, 0). By Lemma 1.3, we need only to

consider

z =

(

tk
1t l

2 0

t−k+k ′

1 t−l+l ′

2 u t−k
1 t−l

2

)

for (1, 0) ≤ (k ′, l ′) < (2k + 1, 2l), where u ∈ O× are units belonging to a fixed

set of representatives of O/t2k−k ′+1
1 t2l−l ′

2 O.

(a) If η(x) = η(1)
m, j+l, then

η(x)z−1
=

(

tm−k
1 t

j
2 0

−t−m−k+k ′

1 t
− j−2l+l ′

2 u t−m+k
1 t

− j
2

)

.

(i) If a = 1, then we have m−k = i, and either (−m−k+k ′,− j−2l+l ′) >
(m−k, j) or (−m−k + k ′,− j −2l + l ′) > (−m + k,− j) by Lemma 1.2.

The first case gives (k ′, l ′) > (2m, 2 j + 2l) = (2i + 2k, 2 j + 2l), and

so j = 0, l ′ = 2l and 2i + 2k < k ′ < 2k + 1. Counting the number

of possible representative units in O/t2k−k ′+1
1 O, we see that c(1)

i+k is finite

and c(1)
m = 0 for all m 6= i + k. The second case gives (k ′, l ′) > (2k, 2l),

but (k ′, l ′) < (2k + 1, 2l) from the assumption, and so c(1)
m = 0 for all

m ∈ Z.

(ii) If a = 2, then we must have l ′ = 2l and −m − k + k ′ = −i. Then

k ′ < 2k + 1 implies m < i + k + 1, and counting the number of possible

representative units in O/t2k−k ′+1
1 O, we see that c(2)

m is finite for each m.

(b) If η(x) = η(2)
m, j+l, then

η(x)z−1
=

(

−tm−k+k ′

1 t
j+l ′

2 u tm+k
1 t

j+2l
2

−t−m−k
1 t

− j−2l
2 0

)

.

(c) If a = 1, then m − k + k ′ = i and l ′ = 0, and it follows from Lemma 1.2

that j ≤ −l. Since j ≥ 0 and l ≥ 0, we have j = l = l ′ = 0. The condition

1 ≤ k ′ < 2k + 1 gives i − k − 1 < m ≤ i + k − 1 and c(2)
m is finite for each m.

(d) If a = 2, then l = l ′ = 0, m + k = i and 1 ≤ k ′ < 2k + 1. Thus c(2)
i−k is finite

and c(2)
m = 0 for m 6= i − k.

Assume that b = 1, j ≤ 0 and (k, l) < (0, 0). By Lemma 1.3, we need only to consider

z =

(

tk
1t l

2 tk+k ′

1 t l+l ′

2 u

0 t−k
1 t−l

2

)

for (0, 0) ≤ (k ′, l ′) < (−2k,−2l), where u ∈ O× are units belonging to a fixed set of

representatives of O/t−2k−k ′

1 t−2l−l ′

2 O.
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(a) If η(x) = η(1)
m, j+l, then

η(x)z−1
=

(

tm−k
1 t

j
2 −tm+k+k ′

1 t
j+2l+l ′

2 u

0 t−m+k
1 t

− j
2

)

.

(i) If a = 1, then we have m−k = i, and either (m−k, j) ≤ (m+k+k ′, j+2l+l ′)

or (−m+k,− j) ≤ (m+k+k ′, j +2l+ l ′) by Lemma 1.2. The first case yields

(k ′, l ′) ≥ (−2k,−2l), but (k ′, l ′) < (−2k,−2l) from the assumption. Thus

c(1)
m = 0 for all m ∈ Z. The second case gives (k ′, l ′) ≥ (−2m,−2 j − 2l) =

(−2i − 2k,−2 j − 2l), and we must have j = 0, l ′ = −2l and −2i − 2k ≤
k ′ < −2k. Thus c(1)

i+k is finite and c(1)
m = 0 for all m 6= i + k.

(ii) If a = 2, then we have l ′ = −2l and m+k +k ′ = i. The condition k ′ < −2k

leads to i + k < m, and c(2)
m is finite for each m.

(b) If η(x) = η(2)
m, j+l, then

η(x)z−1
=

(

0 tm+k
1 t

j+2l
2

−t−m−k
1 t

− j−2l
2 t−m+k+k ′

1 t
− j+l ′

2 u

)

.

(i) If a = 1, then −m + k + k ′ = −i and l ′ = 0, and we have − j ≤ l by

Lemma 1.2. Since j ≥ 0 and l ≥ 0, we have j = l = l ′ = 0. The condition

0 ≤ k ′ < −2k yields i + k ≤ m < i − k and c(2)
m is finite for each m.

(ii) If a = 2, then l = l ′ = 0, m + k = i and 0 ≤ k ′ < −2k. Thus c(2)
i−k is finite

and c(2)
m = 0 for m 6= i − k.

Assume that b = 2, j ≥ 0 and (k, l) ≥ (0, 0). By Lemma 1.3, we need only to consider

z =

(

0 tk
1t l

2

−t−k
1 t−l

2 −t−k+k ′

1 t−l+l ′

2 u

)

for (0, 0) ≤ (k ′, l ′) < (2k + 1, 2l), where u ∈ O× are units belonging to a fixed set of

representatives of O/t2k−k ′+1
1 t2l−l ′

2 O.

(i) If η(x) = η(1)
m, j+l, then

η(x)z−1
=

(

−tm−k+k ′

1 t
j+l ′

2 u −tm+k
1 t

j+2l
2

t−m−k
1 t

− j−2l
2 0

)

.

(i) If a = 1, then it is similar to (1)(b)(i).

(ii) If a = 2, then it is similar to (1)(b)(ii).

(ii) If η(x) = η(2)
m, j+l, then

η(x)z−1
=

(

tm−k
1 t

j
2 0

t−m−k+k ′

1 t
− j−2l+l ′

2 u t−m+k
1 t

− j
2

)

.

(i) If a = 1, then it is similar to (1)(a)(i).
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(ii) If a = 2, then it is similar to (1)(a)(ii).

Assume that b = 2, j ≤ 0 and (k, l) < (0, 0). By Lemma 1.3, we need only to consider

z =

(

tk+k ′

1 t l+l ′

2 u tk
1t l

2

−t−k
1 t−l

2 0

)

for (1, 0) ≤ (k ′, l ′) < (−2k,−2l), where u ∈ O× are units belonging to a fixed set of

representatives of O/t−2k−k ′

1 t−2l−l ′

2 O.

(a) If η(x) = η(1)
m, j+l, then

η(x)z−1
=

(

0 −tm+k
1 t

j+2l
2

t−m−k
1 t

− j−2l
2 t−m+k+k ′

1 t
− j+l ′

2 u

)

.

(i) If a = 1, then it is similar to (2)(b)(i).

(ii) If a = 2, then it is similar to (2)(b)(ii).

(b) If η(x) = η(2)
m, j+l, then

η(x)z−1
=

(

tm−k
1 t

j
2 tm+k+k ′

1 t
j+2l+l ′

2 u

0 t−m+k
1 t

− j
2

)

.

(i) If a = 1, then it is similar to (2)(a)(i).

(ii) If a = 2, then it is similar to (2)(a)(ii).

A complete set of formulas for the convolution product χ(a)
i, j ∗χ(b)

k,l can be found in

the Appendix, and we obtain the following result.

Corollary 2.8

(2.9) χ(a)
i, j ∗ χ(b)

k,l =











∑

m≤i+k cmχ(b)
m, j+l, cm ∈ C, if a = 2, j > 0 and l > 0,

∑

m>i+k cmχ(b)
m, j+l, cm ∈ C, if a = 2, j < 0 and l < 0,

a finite sum otherwise.

We denote by H(G, I) the C-vector space generated by the functions of types

in (2.3). We linearly extend the convolution product ∗ defined in (2.5) to the whole

space H(G, I). It follows from Corollary 2.8 that it is well-defined. Thus we have

obtained a C-algebra structure on the space H(G, I).

Definition 2.10 The C-algebra H(G, I) will be called the Iwahori–Hecke algebra of

G (= SL2).

It can be easily checked that ι := qχ(1)
0,0 is the identity element of the algebra

H(G, I). Furthermore, we have:

Proposition 2.11 The algebra H(G, I) is an associative algebra.
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Proof Assume that α = χ(a)
i, j , β = χ(b)

k,l and γ = χ(c)
m,n. We fix the sets of representa-

tives {z1}, {z2} and {z3} in the decompositions C(a)
i, j =

∐

z1
Iz1, C(b)

k,l =
∐

z2
Iz2 and

C(c)
m,n =

∐

z3
Iz3, respectively. We write

α ∗ β =

∑

σ

c(α, β; σ)σ, where σ = χ(d)
p, j+l, d = 1, 2, p ∈ Z.

Then

c(α, β; σ) = Card{z2 : η(d)
p, j+1z−1

2 ∈ C(a)
i, j } = Card{(z1, z2) : Iη(d)

p, j+l = Iz1z2}.

The coefficient c(α, β; σ) is finite for any σ by Theorem 2.7. Similarly, we write

σ ∗ γ =

∑

τ

c(σ, γ; τ )τ , where τ = χ(e)
r, j+l+n, e = 1, 2, r ∈ Z.

We define

c(α, β, γ; τ ) = Card{(z1, z2, z3) : Iη(e)
r, j+l+n = Iz1z2z3}.

Since (α ∗ β) ∗ γ is defined, the number
∑

σ c(α, β; σ)c(σ, γ; τ ) is finite. Now it is

not difficult to see that

∑

σ

c(α, β; σ)c(σ, γ; τ ) = c(α, β, γ; τ ).

Similarly, one can show that

∑

σ ′

c(α, σ ′; τ )c(β, γ; σ ′) = c(α, β, γ; τ ),

where σ ′ is defined with regard to α∗(β∗γ). It proves the assertion of the proposition.

Remark 2.12 The argument is essentially the same as in the case of Hecke operators

on the space of modular forms; see [1], [17].

3 The Structure of H(G, I)

In this section, we investigate the structure of the Hecke algebra H(G, I). We will see

that it has a big commutative subalgebra. After that, the center will be determined

and Iwahori–Matsumoto type relations will be found.

For each j ∈ Z, we let H j be the subspace of H(G, I), consisting of the functions

with their supports contained in C j , where the set C j is defined in (2.2). We put

H− =
⊕

j<0

H j and H+ =
⊕

j>0

H j .

Then, clearly, we have

H(G, I) = H− ⊕ H0 ⊕ H+.
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It is easy to see that H0 is isomorphic to the (usual) affine Hecke algebra of SL2 and

that each H j ( j ∈ Z) is a right and left H0-module.

We define

Θ1,0 = χ(1)
1,0,

Θ−1,0 = χ(1)
−1,0 − (q − 1)χ(2)

−1,0 − (q − 1)χ(2)
0,0 + q(q + q−1 − 2)χ(1)

0,0,

Θ0,1 = χ(1)
0,1,

Θ0,−1 = χ(1)
0,−1 − (q − 1)

∑

i≥0 qiχ(2)
i,−1.

One can check Θ
−1
1,0 = Θ−1,0. (Recall that ι = qχ(1)

0,0 is the identity.) The elements

Θ1,0 and Θ−1,0 are the same as appear in Bernstein’s presentation of the affine Hecke

algebra H0.

Lemma 3.1 The elements Θ1,0, Θ−1,0, Θ0,1and Θ0,−1 commute with each other.

Moreover, we have:

(1) Θi
1,0 ∗ Θ

j
0,1 = q−(i+ j−1)χ(1)

i, j for i ∈ Z and j ≥ 0,

(2) Θi
−1,0∗Θ

j
0,−1 = q−(i+ j−1)χ(1)

−i,− j−(q−1)q−(i+ j−1)χ(2)
−i,− j +

∑

m>−ia=1,2 c(a)
m χ(a)

m,− j

for i ∈ Z and j > 0 and for c(a)
m ∈ C.

Proof We use the formulas in the Appendix and inductions on i and j to obtain (1)

and (2).

Let us denote by A the commutative subalgebra of H(G, I) generated by the ele-

ments Θ1,0, Θ−1,0, Θ0,1 and Θ0,−1. The structure of A is described by the following

proposition.

Proposition 3.2 The algebra A is isomorphic to the quotient of C[X, X−1,Y, Z] by

the relation Y Z = 0.

Proof We have the surjective homomorphism φ : C[X, X−1,Y, Z]/(Y Z) → A de-

fined by

φ(X) = Θ1,0, φ(X−1) = Θ−1,0, φ(Y ) = Θ0,1, φ(Z) = Θ0,−1.

It follows from (1) and (2) of Lemma 3.1 that φ is also injective.

Our next task is to determine the center of H(G, I).

Theorem 3.3 The center of H(G, I) is the same as the center of H0 generated by the

element Θ1,0 + Θ−1,0.

Proof It is well known that the element Θ1,0 +Θ−1,0 generates the center of H0 [14].

Let us check if it commutes with χ(a)
i, j , j 6= 0. First, we assume j > 0. Since χ(1)

i, j ∈ A,

it commutes with Θ1,0 + Θ−1,0. We have χ(2)
i, j = qχ(1)

i, j ∗ χ(2)
0,0. Since χ(2)

0,0 ∈ H0, we get

χ(2)
i, j ∗ (Θ1,0 + Θ−1,0) = (Θ1,0 + Θ−1,0) ∗ χ(2)

i, j . Next, we assume j < 0. We obtain,

using the formulas in the Appendix,

χ(1)
i, j ∗ (Θ1,0 + Θ−1,0) = qχ(1)

i+1, j + q−1χ(1)
i−1, j = (Θ1,0 + Θ−1,0) ∗ χ(1)

i, j .
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Since χ(2)
i, j = χ(1)

i, j ∗ χ(2)
0,0 − (1 − q−1)χ(1)

i, j , the element χ(2)
i, j also commutes with Θ1,0 +

Θ−1,0. Therefore, the element Θ1,0 + Θ−1,0 is in the center of the algebra H(G, I).

Suppose that ζ is an element in the center of H(G, I). We write ζ =
∑

j∈Z
ζ j ,

ζ j ∈ H j . Since χ(2)
0,0 ∗ H j ⊂ H j and H j ∗ χ(2)

0,0 ⊂ H j for each j, the equality

ζ ∗ χ(2)
0,0 = χ(2)

0,0 ∗ ζ yields ζ j ∗ χ(2)
0,0 = χ(2)

0,0 ∗ ζ j for each j. First, we assume j > 0.

Suppose that we choose the largest i so that

ζ j = c1χ
(1)
i, j + c2χ

(2)
i, j +

∑

m<ia=1,2

c(a)
m χ(a)

m, j , c1 6= 0 or c2 6= 0.

We get

χ(2)
0,0 ∗ ζ j = c1(1 − q−1)χ(1)

i, j + c2(1 − q−1)χ(2)
i, j +

∑

m<ia=1,2

c ′
(a)
m χ(a)

m, j .

On the other hand,

ζ j ∗ χ(2)
0,0 = c1q−1χ(2)

i, j + c2χ
(1)
i, j + c2(1 − q−1)χ(2)

i, j +
∑

m<ia=1,2

c ′ ′
(a)
m χ(a)

m, j .

Thus we have c1 = c2 = 0, a contradiction. It implies that ζ j = 0.

A similar argument also works for the case j < 0, and we have ζ j = 0 in this case,

too. Thus ζ = ζ0 ∈ H0. It completes the proof.

The double affine Weyl group W is not a Coxeter group, but it has a similar pre-

sentation as one can see in the following proposition due to A. N. Parshin. It is also

related to Kyoji Saito’s elliptic Weyl groups [16].

Proposition 3.4 ([15]) The group W has a presentation given by

(3.5) W ∼= 〈s0, s1, s2 | s2
0 = s2

1 = s2
2 = e, (s0s1s2)2

= e〉.

We can easily determine elements of W corresponding to the generators in the

presentation. For example, we can take, using the same notation,

s0 =

(

0 1

−1 0

)

, s1 =

(

0 t−1
1

−t1 0

)

, s2 =

(

0 t−1
2

−t2 0

)

.

We define

(3.6)

φ0 = q
1
2 χ(2)

0,0 = q
1
2 χIs0I , φ1 = q

1
2 χ(2)

−1,0 = q
1
2 χIs1I , φ2 = q

1
2 χ(2)

0,−1 = q
1
2 χIs2I .

The elements φ0 and φ1 have the special property

φ0 ∗ H− = 0 and φ1 ∗ H+ = 0,

which follows from the formulas (2)(f) in the Appendix.
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Proposition 3.7 The following identities hold in H(G, I):

(3.8)

φ0 ∗ φ0 = (q
1
2 − q−

1
2 )φ0 + ι,

φ1 ∗ φ1 = (q
1
2 − q−

1
2 )φ1 + ι,

φ0 ∗ φ1 ∗ φ2 ∗ φ0 ∗ φ1 = φ2.

Proof We check all the relations using the formulas in the Appendix.

Remark 3.9 We can consider the relations in (3.8) as Iwahori–Matsumoto type

relations. The first two relations in (3.8) are the usual deformation. The last one in

(3.8) reflects the structure of the group algebra of W . However, we have

φ2 ∗ φ2 = (q
1
2 − q−

1
2 )

∑

m>0

qm− 1
2 χ(2)

m,−2,

which reveals a new feature of the Hecke algebra H(G, I).

Appendix

(1) (a) If (i, j) ≥ (0, 0) and (k, l) ≥ (0, 0), or if (i, j) < (0, 0) and (k, l) < (0, 0),

then

χ(1)
i, j ∗ χ(1)

k,l = q−1χ(1)
i+k, j+l, χ(1)

i, j ∗ χ(2)
k,l = q−1χ(2)

i+k, j+l.

(b) If i ≥ 0, j = 0 and l < 0, or if i < 0, j = 0 and l > 0, then

χ(1)
i,0 ∗ χ(1)

k,l = q2|i|−1χ(1)
i+k,l, χ(1)

i,0 ∗ χ(2)
k,l = q2|i|−1χ(2)

i+k,l.

(c) If j > 0, k < 0 and l = 0, then

χ(1)
i, j ∗ χ(1)

k,0 = q−2k−1χ(1)
i+k, j + (1 − q−1)

i−k−1
∑

m=i+k

qi−k−m−1χ(2)
m, j ,

χ(1)
i, j ∗ χ(2)

k,0 = (1 − q−1)

i−k−1
∑

m=i+k+1

qi−k−m−1χ(1)
m, j + q−2k−2χ(2)

i+k, j .

(d) If j < 0, k ≥ 0 and l = 0, then

χ(1)
i, j ∗ χ(1)

k,0 = q2k−1χ(1)
i+k, j + (1 − q−1)

i+k−1
∑

m=i−k

q−i+k+mχ(2)
m, j ,

χ(1)
i, j ∗ χ(2)

k,0 = (1 − q−1)

i+k
∑

m=i−k

q−i+k+mχ(1)
m, j + q2kχ(2)

i+k, j .
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(e) If i ≥ 0, j = 0, k < 0 and l = 0, then

χ(1)
i,0 ∗ χ(1)

k,0 = qmin{2i−1,−2k−1}χ(1)
i+k,0 + (1 − q−1)

i−k−1
∑

m=max{i+k,−i−k}

qi−k−m−1χ(2)
m,0,

χ(1)
i,0 ∗ χ(2)

k,0 = (1 − q−1)

i−k−1
∑

m=max{i+k+1,−i−k}

qi−k−m−1χ(1)
m,0 + qmin{2i−1,−2k−2}χ(2)

i+k,0.

(f) If i < 0, j = 0, k ≥ 0 and l = 0, then

χ(1)
i,0 ∗ χ(1)

k,0 = qmin{−2i−1,2k−1}χ(1)
i+k,0 + (1 − q−1)

min{i+k−1,−i−k−1}
∑

m=i−k

q−i+k+mχ(2)
m,0,

χ(1)
i,0 ∗ χ(2)

k,0 = (1 − q−1)

min{i+k,−i−k−1}
∑

m=i−k

q−i+k+mχ(1)
m,0 + qmin{−2i−1,2k}χ(2)

i+k,0.

(2) (a) If j > 0 and l > 0, then

χ(2)
i, j ∗ χ(1)

k,l = (1 − q−1)
∑

m≤i+k

qi+k−mχ(1)
m, j+l,

χ(2)
i, j ∗ χ(2)

k,l = (1 − q−1)
∑

m≤i+k

qi+k−mχ(2)
m, j+l.

(b) If j < 0 and l < 0, then

χ(2)
i, j ∗ χ(1)

k,l = (1 − q−1)
∑

m>i+k

q−i−k+m−1χ(1)
m, j+l,

χ(2)
i, j ∗ χ(2)

k,l = (1 − q−1)
∑

m>i+k

q−i−k+m−1χ(2)
m, j+l.

(c) If (i, j) ≥ (0, 0), k < 0 and l = 0, or if (i, j) < (0, 0), k ≥ 0 and l = 0, then

χ(2)
i, j ∗ χ(1)

k,0 = q−1χ(2)
i−k, j , χ(2)

i, j ∗ χ(2)
k,0 = q−1χ(1)

i−k, j .

(d) If j > 0, k ≥ 0 and l = 0, then

χ(2)
i, j ∗ χ(1)

k,0 = (1 − q−1)

i+k
∑

m=i−k+1

qi+k−mχ(1)
m, j + q2k−1χ(2)

i−k, j ,

χ(2)
i, j ∗ χ(2)

k,0 = q2kχ(1)
i−k, j + (1 − q−1)

i+k
∑

m=i−k

qi+k−mχ(2)
m, j .
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(e) If j < 0, k < 0 and l = 0, then

χ(2)
i, j ∗ χ(1)

k,0 = (1 − q−1)

i−k
∑

m=i+k+1

q−i−k+m−1χ(1)
m, j + q−2k−1χ(2)

i−k, j ,

χ(2)
i, j ∗ χ(2)

k,0 = q−2k−2χ(1)
i−k, j + (1 − q−1)

i−k−1
∑

m=i+k+1

q−i−k+m−1χ(2)
m, j .

(f) If i ≥ 0, j = 0 and l < 0, or if i < 0, j = 0 and l > 0, then

χ(2)
i,0 ∗ χ(1)

k,l = 0, χ(2)
i,0 ∗ χ(2)

k,l = 0.

(g) If i ≥ 0, j = 0 and l > 0, then

χ(2)
i,0 ∗ χ(1)

k,l = (1 − q−1)

i+k
∑

m=−i+k

qi+k−mχ(1)
m,l,

χ(2)
i,0 ∗ χ(2)

k,l = (1 − q−1)

i+k
∑

m=−i+k

qi+k−mχ(2)
m,l.

(h) If i < 0, j = 0 and l < 0, then

χ(2)
i,0 ∗ χ(1)

k,l = (1 − q−1)

−i+k−1
∑

m=i+k+1

q−i−k+m−1χ(1)
m,l,

χ(2)
i,0 ∗ χ(2)

k,l = (1 − q−1)

−i+k−1
∑

m=i+k+1

q−i−k+m−1χ(2)
m,l.

(i) If i ≥ 0, j = 0, k ≥ 0 and l = 0, then

χ(2)
i,0 ∗ χ(1)

k,0 = (1 − q−1)

i+k
∑

m=max{i−k+1,−i+k}

qi+k−mχ(1)
m,0 + qmin{2i,2k−1}χ(2)

i−k,0,

χ(2)
i,0 ∗ χ(2)

k,0 = qmin{2i,2k}χ(1)
i−k,0 + (1 − q−1)

i+k
∑

m=max{i−k,−i+k}

qi+k−mχ(2)
m,0.

(j) If i < 0, j = 0, k < 0 and l = 0, then

χ(2)
i,0 ∗ χ(1)

k,0 = (1 − q−1)

min{i−k,−i+k−1}
∑

m=i+k+1

q−i−k+m−1χ(1)
m,0 + qmin{−2i−2,−2k−1}χ(2)

i−k,0,

χ(2)
i,0 ∗ χ(2)

k,0 = qmin{−2i−2,−2k−2}χ(1)
i−k,0 + (1 − q−1)

min{−i+k−1,i−k−1}
∑

m=i+k+1

q−i−k+m−1χ(2)
m,0.
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