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WEYL GROUP MULTIPLE DIRICHLET SERIES

FOR SYMMETRIZABLE KAC-MOODY ROOT SYSTEMS

KYU-HWAN LEE AND YICHAO ZHANG

Abstract. Weyl group multiple Dirichlet series, introduced by Brubaker,
Bump, Chinta, Friedberg and Hoffstein, are expected to be Whittaker co-
efficients of Eisenstein series on metaplectic groups. Chinta and Gunnells
constructed these multiple Dirichlet series for all the finite root systems using
the method of averaging a Weyl group action on the field of rational func-
tions. In this paper, we generalize Chinta and Gunnells’ work and construct
Weyl group multiple Dirichlet series for the root systems associated with sym-
metrizable Kac-Moody algebras, and establish their functional equations and
meromorphic continuation.

Introduction

Weyl group multiple Dirichlet series were introduced in the paper [3] by Brubaker,
Bump, Chinta, Friedberg and Hoffstein, and have been studied in their subsequent
works [4, 5, 7]. These multiple Dirichlet series are defined for a finite root system
Φ of rank r and a number field F containing the 2n-th roots of unity, and unify
many examples in number theory that have been studied previously on a case-by-
case basis, and are expected to be Whittaker coefficients of Eisenstein series on
metaplectic groups. This expectation is now called an Eisenstein conjecture, and
the conjecture has been proven for the root systems of type Ar [6]. Moreover, the
theory of Weyl group multiple Dirichlet series can be applied to the moments prob-
lem of the Riemann zeta function and Dirichlet L-functions. A nice survey on this
subject can be found in [9].

It is remarkable that there are two distinct constructions of these multiple Dirich-
let series. In the work of Brubaker, Bump and Friedberg [5,6], the local coefficients
are defined using the data from Kashiwara’s crystal graph [14]. More precisely, each
local coefficient is given as a sum of G(v) over the crystals v of the same weight,
where G(v) is a product of Gauss sums that are determined by the crystal graph.
The construction has been completed for most of the classical root systems.

The second construction is due to Chinta and Gunnells [10, 11]. They defined a
new Weyl group action on the field of rational functions in several variables. The
action involves Gauss sums and works for all the finite root systems in a coherent
way. By taking an average of the Weyl group action, they obtained a deformed Weyl
character and defined the local coefficients using the deformed character. The two
constructions are expected to be equivalent, and the equivalence in type A has been
established [6, 12, 16].
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Since Kac-Moody root systems naturally generalize finite root systems, it was
pointed out by Brubaker, Bump and Friedberg [5, 6] that multiple Dirichlet series
can be constructed for any symmetrizable Kac-Moody root systems. Indeed, in
this paper, we generalize Chinta and Gunnells’ construction to the root systems
associated with symmetrizable Kac-Moody algebras. So Weyl groups are infinite,
in general, and a root can have multiplicity bigger than one. Still, the results of this
paper show that the Kac-Moody multiple Dirichlet series have standard properties:
absolute convergence, functional equations and meromorphic continuation.

Nevertheless, the construction in the Kac-Moody case requires new ideas. To
generalize the action of the Weyl group, we have to separate the imaginary roots
from the real roots and work on a certain sublattice of the root lattice. Although it
may be that the field of Laurent series is more natural for the space of the action, it
is easily seen that it is not closed under the action. So it is necessary to consider the
space of formal distributions. The issue of convergence tells us that the whole space
of formal distributions is not closed under the action either. By carefully choosing
a subspace of the space of formal distributions, we define the Weyl group action
and generalize Chinta and Gunnells’s definition in the finite case. This enables us
to define the average function of the Weyl group action, and we use the function
to define the local coefficients of our Dirichlet series. Not suprisingly, the issue of
absolute convergence arises and becomes crucial at other places. Several lemmas
are proved to resolve the absolute convergence at those places. Finally, we provide
the details in the proof of the meromorphic continuation and functional equations
of our multiple Dirichlet series. In particular, we show how to obtain an overlap
between regions of analyticity before we apply Bochner’s Theorem. It turns out
that the continuation is not to all of h but to a convex subcone in the Tits cone
as a consequence of geometric properties of the action of the Weyl group on the
Cartan subalgebra.

It is expected that our multiple Dirichlet series would be related to a Whittaker
function up to a normalizing factor in the affine case. However, in the indefinite case,
the contribution coming from the imaginary roots can be much more complicated
for a Whittaker function, and it is beyond our comprehension at the present.

Similarly, the multiple Dirichlet series considered in this paper seems to be rel-

evant to the moment problem in the affine case D
(1)
4 . In a recent paper [8], Bucur

and Diaconu considered the fourth moment of quadratic Dirichlet L-functions over
rational function fields. They constructed a multiple Dirichlet series, where the

group of functional equations is the affine Weyl group D
(1)
4 . They adopted the

same averaging method as in this paper, i.e. Chinta and Gunnells’s method, and
used a deformation of the Weyl-Kac denominator function. One can see the simi-
larity between their construction and ours. (See the remark at the end of this paper
for more details.)

This paper consists of five sections. In the first section, we fix notation for Kac-
Moody root systems and for Hilbert symbols, power residue symbols and Gauss
sums. In Section 2, we show that the Weyl group action on the field of rational
functions, defined by Chinta and Gunnells, extends to the case of Kac-Moody root
systems and to the set of formal distributions, and we consider a deformed Weyl-
Kac character. In Section 3, the local coefficients of the multiple Dirichlet series
are defined using the deformed character, and some estimations for the size of the
local coefficients are made. In the next section, we review results and computations
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WEYL GROUP MULTIPLE DIRICHLET SERIES 599

in the rank one case and prepare for a proof of functional equations. In the last
section, we collect the results of the previous sections, define Weyl group multiple
Dirichlet series from the local coefficients via twisted multiplicativity, and prove
functional equations and meromorphic continuation of the multiple Dirichlet series.

1. Preliminaries

We refer the reader to [13] for a basic theory of Kac-Moody algebras. Let
A = (aij)

r
i,j=1 be an r × r symmetrizable generalized Cartan matrix of rank l

and (h,Δ,Δ∨) be a realization of A, where Δ = {α1, . . . , αr} ⊂ h∗ and Δ∨ =
{h1, . . . , hr} ⊂ h such that αj(hi) = aij , i, j = 1, . . . , r. Let g(A) be the symmetriz-
able Kac-Moody algebra associated to (h,Δ,Δ∨). Then we have dim h = 2r − l.
We denote by Φ the set of roots of g(A) and have Φ = Φ+ ∪ Φ−, where Φ+ (resp.
Φ−) is the set of positive (resp. negative) roots. Denote by Φre (resp. Φim) the set
of real (resp. imaginary) roots, and put Φre

± = Φre ∩ Φ± and Φim
± = Φim ∩ Φ±. We

fix a decomposition

(1.1) A = diag(ε1, · · · , εr)B,

where εi are positive rational numbers and B = (bij) is a symmetric half-integral
matrix, i.e. bij = bji, bii ∈ Z and bij ∈ 1

2Z. We will write bi = bii. As in
Chapter 2 of [13], we define a standard symmetric bilinear form ( , ) on h∗ such
that (αi, αj) = bij for i, j = 1, . . . , r.

We extend the sets Δ and Δ∨, and choose bases

Δ ∪ {δk | k = 1, . . . , r − l} and Δ∨ ∪ {dk | k = 1, . . . , r − l}
for h∗ and h, respectively, such that αj(dk) = 0 or 1, δk(hj) = 0 or 1 and δk(dk′) =
0 for j = 1, . . . , r and k, k′ = 1, . . . , r − l. Let P∨ be the Z-span of the basis
Δ∨∪{dk | k = 1, . . . , r− l}, and let hR = R⊗P∨ ⊂ h. We set P = {λ ∈ h∗|λ(P∨) ⊆
Z} and P+ = {λ ∈ h∗|λ(P∨) ⊆ Z≥0}. Define ωi ∈ h∗ (i = 1, . . . , r) by ωi(hj) = δij ,
ωi(dk) = 0, j = 1, . . . , r, k = 1, . . . , r− l and put ρ =

∑r
i=1 ωi. Similarly, we define

ω∨
i ∈ h (i = 1, . . . , r) by αj(ω

∨
i ) = δij , δk(ω

∨
i ) = 0, j = 1, . . . , r, k = 1, . . . , r − l

and put ρ∨ =
∑r

i=1 ω
∨
i . Define Q =

⊕r
i=1 Zαi and Q+ =

⊕r
i=1(Z≥0)αi. We have

the usual ordering on P (and on Q) given by λ ≥ μ ⇔ λ− μ ∈ Q+. For β ∈ Q, we
write β = k1α1 + · · ·+ krαr and define d(β) = β(ρ∨) = k1 + · · ·+ kr.

Let W be the Weyl group of g(A) generated by the simple reflections σi ∈
GL(h∗). We have the standard actions of W on h and on h∗. For w ∈ W , we
let Φ(w) = Φ+ ∩ w−1Φ− ⊆ Φre

+ . We denote by 
(w) the length of w, and define

sgn(w) = (−1)�(w). If 
(σiw) = 
(w) + 1, then

(1.2) Φ(σiw) = Φ(w) ∪ {w−1αi},
and if 
(wσi) = 
(w) + 1, then

(1.3) Φ(wσi) = σi(Φ(w)) ∪ {αi}.
Let n ≥ 1 be an integer and let F be an algebraic number field that contains the

group μ2n of 2n-th roots of unity. Let S be a finite set of places of F containing
the archimedean ones, all those which are ramified over Q and enough others so
that the ring oS of S-integers is a principal ideal domain. We embed oS into
FS :=

∏
v∈S Fv along the diagonal. We choose a nontrivial additive character

ψ of FS such that ψ(xoS) = 1 if and only if x ∈ oS . Let S∞ be the set of
archimedean places in S, and Sfin be the set of the nonarchimedean places so
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600 KYU-HWAN LEE AND YICHAO ZHANG

that S = S∞ ∪ Sfin. We denote F∞ =
∏

v∈S∞
Fv and Ffin =

∏
v∈Sfin

Fv. Then

FS = F∞ × Ffin. Let (x, y)S =
∏

v∈S(xv, yv)v be the S-Hilbert symbol, where we
take the same convention on ( , )v as in [4], i.e. it is the inverse of the symbol
used in [17]. If c, d are coprime elements of oS , let ( cd ) denote the n-th power

residue symbol. Then we have the reciprocity law
(
c
d

)
= (d, c)S

(
d
c

)
. We fix an

isomorphism ε : μn → {x ∈ C× | xn = 1} and will suppress this isomorphism from
the notation. If t is any positive integer and a, c ∈ oS , we define the Gauss sum

g(a, c; t) =
∑

d mod c

(
d

c

)t

ψ

(
ad

c

)
.

For x,y ∈ (F×
S )r and for each i, we define

(1.4) (x,y)BS,i = (xi, yi)
bi
S

∏
j>i

(xi, yj)
2bij
S ,

where x = (x1, · · · , xr) and y = (y1, · · · , yr), and set (x,y)BS =
∏r

i=1(x,y)
B
S,i. We

also define

ξB(x,y) =

r∏
i=1

(
xi

yi

)bi ( yi
xi

)bi ∏
i<j

(
xi

yj

)2bij ( yi
xj

)2bij

,

[
x

y

]B
=

r∏
i=1

(
xi

yi

)bi

and

[
x

y

]−B

=

r∏
i=1

(
xi

yi

)−bi

when x,y ∈ (F×
S )r ∩ (oS)

r. Let Ω = o
×
SF

×,n
S , where F×,n

S is the subgroup of n-th

powers in F×
S , and let MB(Ω) be the space of functions Ψ : (F×

S )r → C such that

Ψ(ec) = (e, c)BS Ψ(c) when e ∈ Ωr and c ∈ (F×
S )r. If r = 1 and B = (t) we simply

write MB(Ω) = Mt(Ω).

2. Weyl group action on formal distributions

In this section, we generalize the Weyl group action on the field of rational
functions, defined by Chinta and Gunnells, to the case of Kac-Moody root systems
and to a subspace of formal distributions. Since the subspace contains all the
monomials, we will be able to define f |w(x) for a general formal distribution f and
a Weyl group element w whenever the resulting expression is absolutely convergent.
In particular, the Weyl group action on the deformed Weyl-Kac character will be
well defined.

Let q be a positive integer ≥ 2. We consider a collection of complex num-
bers γ(i) ∈ C, indexed by the integers modulo n, and such that γ(0) = −1 and
γ(i)γ(−i) = 1/q if i �≡ 0 mod n. We also define

m(α) =

{ n
gcd(n,(α,α)) if α ∈ Φre,

n if α ∈ Φim.

Let A = C[Q] be the group algebra of the lattice Q. An element f ∈ A can be
written as f =

∑
β∈Q c(β)xβ (c(β) ∈ C) with almost all c(β) zero. We identify

A with C[x±1
1 , · · · , x±1

r ] via xαi → xi. We also let B = C[[x1, · · · , xr]] be the
ring of power series. More generally, let E = C[[x±

1 , · · · , x±
r ]] be the set of formal

distributions, which we identify with the set of elements
∑

β∈Q c(β)xβ, c(β) ∈ C,
so that we have A ⊂ E and B ⊂ E .
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Assume fi =
∑

β∈Q ci(β)x
β ∈ E (1 ≤ i ≤ k). We say the product f1 · · · fk is

defined if for any γ ∈ Q, the sum

C(γ) =
∑

β1+···+βk=γ
βi∈Q,1≤i≤k

c1(β1) · · · ck(βk)

is absolutely convergent. If this is the case, we define

f1 · · · fk =
∑
γ∈Q

C(γ)xγ.

It follows that if a product is defined in E , it is independent of the order of its
factors. For example, we have(∑

k∈Z

xkαi

)⎛⎝∑
k≥0

xkαi

2k

⎞
⎠ = 2

∑
k∈Z

xkαi .

However, the following product is not defined:(∑
k∈Z

xkαi

)
(1− xαi)

⎛
⎝∑

k≥0

xkαi

⎞
⎠ .

The use of formal distributions are common in the theory vertex operator algebras.
For more details on formal calculus, see, e.g. [15, Chapter 2].

We shall say that f ∈ E is invertible if f ∈ B[x−1
1 , · · · , x−1

r ] ⊂ E , and f is
invertible in the ring B[x−1

1 , · · · , x−1
r ]. Its inverse in this ring will be denoted f−1.

For example, 1 − x−1
i is invertible, and its inverse is

∑∞
k=1 −xk

i (not
∑∞

k=0 x
−k
i ).

Let {fi(x)}i∈I be a family of formal distributions. We define the sum
∑

i∈I fi(x) if

the coefficient of each xβ in the sum is an absolutely-convergent series of complex
numbers.

Let E ′ be the subspace of E defined by

E ′ = {f =
∑
β

c(β)xβ ∈ E | |c(β)| � qd(β)}.

Here |c(β)| � qd(β) means that there exists a positive real number A such that
|c(β)| ≤ Aqd(β) for any β ∈ Q. Obviously, this subspace contains all the monomials;
this is the subspace where the action of the Weyl group W is always convergent.
For an element f ∈ E , denote

|f |(x) =
∑
β∈Q

|c(β)| xβ , if f(x) =
∑
β∈Q

c(β) xβ.

Trivially, f ∈ E ′ if and only if |f | ∈ E ′. Obviously A ⊂ E ′. We write B′ = B ∩ E ′.
Given f =

∑
β∈Q c(β)xβ ∈ E , we say β ∈ Q is a lower bound for f if c(γ) �= 0 implies

β ≤ γ. It is easy to see that f has a lower bound if and only if f ∈ B[x−1
1 , · · · , x−1

r ].
Let Q′ ⊆ Q be the sublattice of Q generated by m(α)α (α ∈ Φ), namely

Q′ = spanZ{m(α)α | α ∈ Φ} = spanZ{m(α)α | α ∈ Φre},
by the definition of m(α). It is easy to see that Q′ lies between nQ and Q and is a
sublattice of Q. It is also not hard to see that it is invariant under the action of W
on Q, by noting that m(wα) = m(α) and that Φre is invariant under W . Let ν :
Q → Q/Q′ be the projection and define the subspaces E ′

β := {f ∈ E ′ | ν(supp(f)) ⊂
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602 KYU-HWAN LEE AND YICHAO ZHANG

{β}} ⊂ E ′ for β ∈ Q/Q′. Similarly B′
β = B ∩ E ′

β , hence B′
0 and E ′

0 are defined, and

E ′ =
⊕

β∈Q/Q′ E ′
β . We shall need a lemma on Q′.

Lemma 2.1. (1) For any 1 ≤ i, j ≤ r, we have

2m(αi)(αi, αj)

m(αj)(αj , αj)
∈ Z.

(2) The lattice Q1 = spanZ{m(αi)αi : 1 ≤ i ≤ r} is W-invariant; hence Q′ = Q1.
(3) For any β ∈ Q′ and 1 ≤ i ≤ r, β(hi) ∈ m(αi)Z .

Proof. (1) We fix any prime p and denote vp the valuation at p. Assume vp((αi, αi))
= ti, vp((αj , αj)) = tj , and vp(n) = s. Since all quantities are integers, we have
ti, tj , s ∈ Z≥0. Now

vp(m(αi)) = s−min{ti, s} and vp(m(αj)) = s−min{tj , s}.

Since 2(αi, αj) is divisible by both (αi, αi) and (αj , αj), we have vp(2(αi, αj)) :=
k ≥ max{ti, tj}. What we are trying to show is tj − min{tj , s} ≤ k − min{ti, s},
which is obvious by dividing it into two cases: tj ≤ s and tj > s.

(2) It suffices to prove that σj(m(αi)αi) ∈ Q1 for any i, j. It holds trivially if
i = j. Now assume i �= j. By explicit calculations,

σj(m(αi)αi) = m(αi)αi −
2m(αi)(αi, αj)

m(αj)(αj , αj)
m(αj)αj ,

which is in Q1 by part (1). Hence Q1 is W-invariant, and by the definition of real
roots, Q′ = Q1.

(3) It is enough to show this for the generators of Q′. Since Q1 = Q′, we need
only to prove it for the generators of Q1, in which case this is nothing but part
(1). �

We write x = (x1, . . . , xr) and define a change-of-variable formula by (σix)j =
(qxi)

−aijxj for a simple reflection σi ∈ W , where A = (aij) is the generalized
Cartan matrix. One can check that this definition extends to the whole group W .
For β =

∑
kiαi ∈ Q and wx = (y1, . . . , yr), w ∈ W , we define (wx)β = yk1

1 · · · ykr
r .

Then we have

(2.2) (wx)β = qd(w
−1β−β)xw−1β for w ∈ W.

In particular, we obtain (σix)
β = (qxi)

−β(hi)xβ.
In the rest of this section, we fix λ ∈ P+. We define a shifted action of W on Q

(treating Q as a set) by

σi · β = σi(β − λ− ρ) + λ+ ρ, β ∈ Q, i = 1, . . . , r.

For any β ∈ Q, we set

μi,λ(β) = μi(β) = (λ+ ρ− β)(hi), i = 1, . . . , r.

Then we have
(2.3)
μi(β)=μi(0)−β(hi), σi · β = β+μi(β)αi = σiβ+μi(0)αi, μi(σi · β) = −μi(β),

σi · (β + γ) = σi · β + σiγ, and μi(β + γ) = μi(β)− γ(hi).

Licensed to Univ of Conn, Storrs. Prepared on Fri Nov 21 15:54:31 EST 2014 for download from IP 137.99.16.10.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



WEYL GROUP MULTIPLE DIRICHLET SERIES 603

Now we define the action of W on E ′. First, fix a generator σi ∈ W and put
m = m(αi) for the moment. For an integer k, we denote by [k]m the largest multiple
of m that is smaller than or equal to k. We define, for any β ∈ Q,

Pβ,i(x) = (qxαi)[μi(β)]m(1− 1/q)

∞∑
k=0

(qm−1xmαi)k and

Qβ,i(x) = γ(biμi(β))q
μi(β)(1− (qxαi)−m)

∞∑
k=0

(qm−1xmαi)k.

Note that Pβ,i(x) and Qβ,i(x) belong to E ′
0.

Remark 2.4. The definitions of Pβ,i and Qβ,i are slightly different from those in
[11], but the definition of the action of σi will be the same as in [11].

Definition 2.5. For β ∈ Q and each i = 1, . . . , r, we define

(xβ|λσi)(x) = Pβ,i(x)x
β +Qβ,i(x)x

σi·β .

Moreover, we extend it to E ′ by⎛
⎝∑

β∈Q

c(β)xβ

⎞
⎠
∣∣∣∣∣∣
λ

σi(x) =
∑
β∈Q

c(β) (xβ|λσi)(x).

Finally, if f ∈ E ′ and w = σi1 · · ·σik ∈ W , we define

f |λw(x) = f |λσi1 |λσi2 · · · |λσik(x).

We will show that the above definition indeed defines an action of W on E ′.
In particular,

(
xβ|λw

)
(x) will be well defined, and the following definition has no

ambiguity:

Definition 2.6. If f(x) =
∑

β∈Q c(β)xβ ∈ E , then for any w ∈ W , we define

f |λw(x) =
∑
β∈Q

c(β)
(
xβ|λw

)
(x),

provided the sum on the right-hand side is absolutely convergent.

Now we begin to prove that the action of W on E ′ is well defined. It is easy
to see that for any β and i, xβ|λσi(x) ∈ E ′. However, this is not enough for our
purpose and we need to prove more:

Lemma 2.7. If f ∈ E ′, so is f |λσi for any i = 1, . . . , r.

Proof. We need to show that in the expression of f |λσi(x), all coefficients converge
absolutely, and the resulting distribution is in E ′.

Put m = m(αi) and assume f(x) =
∑

β∈Q c(β)xβ. By definition,

f |λσi(x) =
∑
β

c(β)xβ(1− q−1)(qxαi)[μi(β)]m

∞∑
k=0

(qm−1xmαi)k

+
∑
β

c(β)xσi·βγ(biμi(β))q
μi(β)

∞∑
k=0

(qm−1xmαi)k

+ (−1)
∑
β

c(β)xσi·βγ(biμi(β))q
μi(β)(qxαi)−m

∞∑
k=0

(qm−1xmαi)k.
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604 KYU-HWAN LEE AND YICHAO ZHANG

For any γ ∈ Q, denote

I1(γ) = {(k, β) | β + ([μi(β)]m +mk)αi = γ, k ∈ Z≥0, β ∈ Q},
I2(γ) = {(k, β) | σi · β +mkαi = γ, k ∈ Z≥0, β ∈ Q},
I3(γ) = {(k, β) | σi · β +m(k − 1)αi = γ, k ∈ Z≥0, β ∈ Q}.

It is easy to see that in each set, k and β determine each other. Then the coefficient
of xγ in f |λσi(x) can be written as c1(γ) + c2(γ) + c3(γ), where

c1(γ) =
∑

(k,β)∈I1(γ)

c(β)(1− q−1)q[μi(β)]mq(m−1)k,

c2(γ) =
∑

(k,β)∈I2(γ)

c(β)γ(biμi(β))q
μi(β)q(m−1)k,

c3(γ) =
∑

(k,β)∈I3(γ)

(−1)c(β)γ(biμi(β))q
−mqμi(β)q(m−1)k.

We denote c′j(γ), for j = 1, 2, 3, as the one obtained from cj(γ) by replacing all
terms in the sum with their absolute values.

We now prove c′j(γ) < ∞ and c′j(γ) � qd(γ) simultaneously. Here the former

gives f |λσ(x) ∈ E and the latter implies that it also belongs to E ′, since |cj(γ)| ≤
c′j(γ).

If j = 1 and (k, β) ∈ I1(γ), we have β + ([μi(β)]m +mk)αi = γ. Since we have
|c(β)| � qd(β) = qd(γ)−[μi(β)]m−mk, we obtain

c′1(γ) �
∞∑
k=0

qd(γ)−k � qd(γ).

Similarly, we can deal with the case j = 2 and j = 3. �
Remark 2.8. The proof of Lemma 2.7 actually shows that the k-multiple sum for
the coefficient of xγ in f |λσi1 |λσi2 · · · |λσik(x) is absolutely convergent for each γ.
To see this, we first replace f with |f |, and at each step of applying one simple
reflection, we replace all cj(γ)’s by c′j(γ)’s as in the proof. At each step we have

an element in E ′ with all coefficients positive, and in the end we have an element
in E ′, say g. On the other hand, the sum for any coefficient in any of the resulting
products should be absolutely bounded by the corresponding coefficient in g, hence
absolutely convergent.

Lemma 2.9. (1) Let w ∈ W . Then f(x) ∈ E ′ if and only if f(wx) ∈ E ′, and
f(x) ∈ E ′

0 if and only if f(wx) ∈ E ′
0.

(2) Let f1 ∈ E ′
0, f2 ∈ E ′ and assume |f1| |f2| ∈ E ′. Then for any i, we have

(2.10) (f1f2)|λσi(x) = f1(σix)(f2|λσi)(x).

In particular, this holds if f1 or f2 is a monomial.

Proof. For (1), we only need to prove one direction from each statement. By the
definition of a change of variable, if f(x) =

∑
β c(β)x

β,

f(wx) :=
∑
β

cw(β)x
β =
∑
β

c(wβ)qd(β−wβ)xβ.

Then the coefficients of f(wx) satisfy

|cw(β)| = |c(wβ)|qd(β−wβ) � qd(wβ)qd(β−wβ) = qd(β).
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WEYL GROUP MULTIPLE DIRICHLET SERIES 605

Hence the first statement is true. The second statement is now obvious, since Q′ is
invariant under the action of W .

For (2), we first prove the case when f1 is a monomial. Let m = m(αi). The
assumption |f1| |f2| ∈ E ′ is valid and both sides of (2.10) are defined. By the
definition of the action of σi, it suffices to assume that f2 is also a monomial. Let
f1(x) = xβ , β ∈ Q′ and f2(x) = xα. Then by Lemma 2.1, (2.3) and the fact that
n|bim, it is easy to see that

σi · (β + α) = σiβ + σi · α, μi(β + α) = μi(α)− β(hi),
γ(biμi(β + α)) = γ(biμi(α)), [μi(β + α)]m = [μi(α)]m − β(hi).

Since we have (σix)
β = (qxαi)−β(hi)xβ = q−β(hi)xσiβ, we obtain

(xβ+α|λσi)(x) = Pβ+α,i(x)x
β+α +Qβ+α,i(x)x

σi·(β+α)

= (qxαi)[μi(α)]m−β(hi)(1− 1/q)
∞∑
k=0

(qm−1xmαi)kxβ+α

+ γ(biμi(α))q
μi(α)−β(hi)(1− (qxαi)−m)

∞∑
k=0

(qm−1xmαi)kxσiβ+σi·α

= (σix)
βPα,i(x)x

α + (σix)
βQα,i(x)x

σi·α

= (σix)
β(xα|λσi)(x).

Let us consider the general case. Assume

f1(x) =
∑
β∈Q′

c1(β)x
β, f2(x) =

∑
β∈Q

c2(β)x
β, and (f1f2)(x) =

∑
β∈Q

c(β)xβ.

Formally,

(f1f2)|λσi(x) =
∑
β∈Q

c(β)(xβ|λσi)(x)

=
∑

β1,β2∈Q

c1(β1)c2(β2)(x
β1xβ2)|λσi(x)

=
∑

β1,β2∈Q

c1(β1)c2(β2)(σix)
β1xβ2 |λσi(x)

= f1(σix)f2|λσi(x),

by the monomial case we just proved. What is missing in the calculation above
is the well-definedness of the product in the last line. However, by the assump-
tion that |f1| |f2| ∈ E ′ and elementary calculations, we can see that all coeffi-
cients in this product are absolutely bounded by the corresponding coefficients in
(|f1| |f2|)|λσi(x), which belongs to E ′ by Lemma 2.7. Hence the lemma follows. �

Proposition 2.11. Let W be the Weyl group of the symmetrizable Kac-Moody root
system Φ with symmetrization (1.1). The action of σi’s on E ′ is compatible with
the defining relation of W ; that is, the action of W is well defined on E ′.

Proof. The group W is a Coxeter group. More precisely, W is generated by σi

(i = 1, . . . , r) and the defining relations are σ2
i = 1, (σiσj)

mij = 1 for 1 ≤ i �=
j ≤ r, where mij = 2 if aijaji = 0; mij = 3 if aijaji = 1; mij = 4 if aijaji = 2;
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606 KYU-HWAN LEE AND YICHAO ZHANG

mij = 6 if aijaji = 3; mij = ∞ if aijaji ≥ 4. Here x∞ = 1 for any x by notational
convention. Therefore, we need only to consider the following four cases:⎧⎪⎪⎨

⎪⎪⎩
aij = 0, aji = 0, bi and bj are arbitrary;
aij = −1, aji = −1, bi = bj ;
aij = −1, aji = −2, bi = 2bj ;
aij = −1, aji = −3, bi = 3bj .

We need to verify the relation xβ|λσ2
i = xβ for each i, and then we need to

check in each of the four cases whether the action of the generators σi and σj is
compatible with the defining relation. It is obvious that we have a very similar
situation as in the finite case (Theorem 3.2 of [11]). Roughly speaking, we have to
verify the same identities on P’s and Q’s as Chinta and Gunnells did therein (up
to a slight modification caused from our modification on the P’s and Q’s). We will
make this precise and reduce our verification to theirs.

Recall the notation A = C[Q] ⊂ E ′. Consider the multiplicative set S in A
generated by the set {1− qmi−1(wx)miαi : w ∈ W, 1 ≤ i ≤ r}, and let S−1A be the
corresponding localized ring, namely

S−1A = A[(1− qmi−1(wx)miαi)−1 : w ∈ W, 1 ≤ i ≤ r].

On the other hand, we consider the following ring inside E ′:

R = A
[ ∞∑
k=0

(qmi−1(wx)miαi)k : w ∈ W, 1 ≤ i ≤ r

]
.

Let us first verify that R is indeed a ring, that is, all finite products in R are defined
and belong to E ′. The generators are all of the form

fβ,i(x) =
∞∑
k=0

q−kqkmid(β)xkmiβ.

Then a general finite product (i.e., a monomial in R) is of the form

g(x)fβ1,i1(x) · · · fβl,il(x), g(x) =
∑
β

c(β)xβ ∈ A.

The summation in the coefficient C(γ) of xγ in this product is absolutely bounded
by ∑

β,k1,··· ,kl≥0
β+k1mi1

β1+···+klmil
βl=γ

|c(β)|q−k1−···−klqd(γ)−d(β)

=
∑
β

∑
k1,··· ,kl≥0

k1mi1
β1+···+klmil

βl=γ−β

|c(β)|q−k1−···−klqd(γ)−d(β)

�
∑
β

∑
k1,··· ,kl≥0

|c(β)|q−k1−···−klqd(γ)−d(β)

�
∑
β

|c(β)|q−d(β)qd(γ)

� qd(γ),

since g ∈ A and c(β) = 0 for almost all β. Therefore R is a ring.
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Now consider the inclusion A ↪→ R. Since all elements in S are invertible in R
under such inclusion, there exists a unique injective ring homomorphism S−1A →
R, which is compatible with the inclusion. (Actually, this is an isomorphism.) It
follows that any identity in S−1A has a counterpart in R. In particular, all those
identities of P’s and Q’s in S−1A, verified by Chinta and Gunnells, can be carried
over here in R. Note that their P’s and Q’s in S−1A have the images that are
essentially equal to our P’s and Q’s in R. (Notice that our minor modification on
P’s and Q’s, which is just a redistribution of some monomials to make them belong
to E ′

0, does not give rise to any problem.)
Consequently, the compatibility of the W -action on monomials follows from that

of the finite case, and we refer the reader to Chinta and Gunnells’ computations in
Theorem 3.2 of [11]. �

Remark 2.12. With the above theorem established, we recall Definition 2.6 and
note that the formal distribution (f |λw)(x) is well defined for any w ∈ W and
f ∈ E if it is absolutely convergent. However, as mentioned in the introduction,
this definition does not give an action on the whole space E .

We denote the multiplicity of α ∈ Φ by mult(α) and define

Δ(x) =
∏

α∈Φ+

(1− qm(α)d(α)xm(α)α)mult(α)(2.13)

and D(x) =
∏

α∈Φ+

(1− qm(α)d(α)−1xm(α)α)mult(α).

Note that Δ(x), D(x) ∈ B0.

Lemma 2.14 (Compare with Lemma 3.3 in [11]).

(1) The formal distribution Δ(wx) is invertible in E for each w ∈ W , and we
have

Δ(x)

Δ(wx)
= sgn(w)qd(β)xβ ,

where β =
∑

α∈Φ(w) m(α)α.

(2) Let j(w,x) = Δ(x)/Δ(wx). Then the function j(w,x) satisfies the cocycle
relation

j(ww′,x) = j(w,w′x)j(w′,x) for w,w′ ∈ W.
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Proof. (1) Since m(wα) = m(α) and mult(wα) = mult(α) = mult(−α), we have

Δ(wx) =
∏

α∈Φ+

(1− qm(α)d(α)(wx)m(α)α)mult(α)

=
∏

α∈Φ+

(1− qm(α)d(w−1α)xm(α)(w−1α))mult(α) (using (2.2))

=
∏

α∈Φ+

w−1α∈Φ−

(1− qm(α)d(w−1α)xm(α)(w−1α))mult(α)

×
∏

α∈Φ+

w−1α∈Φ+

(1− qm(α)d(w−1α)xm(α)(w−1α))mult(α)

=
∏

α∈Φ−
wα∈Φ+

(1− qm(α)d(α)xm(α)α)mult(α)
∏

α∈Φ+
wα∈Φ+

(1− qm(α)d(α)xm(α)α)mult(α)

=
∏

α∈Φ(w)

(1−q−m(α)d(α)x−m(α)α)mult(α)
∏

α∈Φ+
wα∈Φ+

(1−qm(α)d(α)xm(α)α)mult(α).

It follows from Φ(w) ⊂ Φre that mult(α) = 1 for each α ∈ Φ(w), and we obtain

Δ(wx) =

⎛
⎝ ∏

α∈Φ(w)

− q−m(α)d(α)x−m(α)α

⎞
⎠Δ(x).

Since |Φ(w)| = 
(w) < ∞, we see that Δ(wx) is invertible in E . Now we have

Δ(x)

Δ(wx)
=
∏

α∈Φ(w)

− qm(α)d(α)xm(α)α = sgn(w)qd(β)xβ,

where β =
∑

α∈Φ(w) m(α)α.

(2) It is straightforward to verify the identity, using the definition of j. It can
also be proved directly using part (1). �

We need the following lemma to show that some elements to be defined later
belong to B.

Lemma 2.15. Let λ ∈ P+ and β ∈ Q.

(1) The function (wx)−βj(w,x)(xβ|λw)(x) is an element of B for w ∈ W .
(2) For any w ∈ W , the lattice point β =

∑
γ∈Φ(w) γ is a lower bound for

j(w,x)(1|λw)(x).

Proof. We prove (1) and (2) simultaneously using induction. If w = 1, there is
nothing to prove for both (1) and (2).

Assume that 
(σiw) = 
(w) + 1. Then, using Lemma 2.14 (2), we obtain

(σiwx)
−βj(σiw,x)(x

β|λσiw)(x)

= (σiwx)
−βj(σi, wx)j(w,x)

[(
Pβ,i(x)x

β +Qβ,i(x)x
σi·β) |λw]

= −(σiwx)
−βqm(αi)(wx)m(αi)αij(w,x)

[
Pβ,i(wx)(x

β|λw) +Qβ,i(wx)(x
σi·β |λw)

]
.

We first consider the term having a P factor. By induction, we have

(wx)−βj(w,x)(xβ|λw)(x) ∈ B
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and we need only to consider

(σiwx)
−β(wx)m(αi)αi(wx)[μi(β)]m(αi)

αi(wx)β

= qβ(hi)(wx)−σiβ+m(αi)αi+[μi(β)]m(αi)
αi+β

= qβ(hi)(wx)β(hi)αi+m(αi)αi+[μi(0)−β(hi)]m(αi)
αi .

We see that

β(hi) +m(αi) + [μi(0)− β(hi)]m(αi)

= m(αi) + [μi(0)− β(hi)]m(αi) − (μi(0)− β(hi)) + μi(0) > μi(0).

Since w−1αi > 0 by (1.2) and μi(0) ≥ 1, we have proved that the term having a
P factor is an element of B. Putting β = 0, we also prove, by induction, that the
term having a P factor in this case has a lower bound

w−1αi +
∑

β∈Φ(w)

β =
∑

β∈Φ(σiw)

β.

Now we consider the term having a Q factor. Again by induction, we need only
to consider

(σiwx)
−β(wx)m(αi)αi(wx)−m(αi)αi(wx)σi·β = qβ(hi)(wx)−σiβ+σi·β

= qβ(hi)(wx)μi(0)αi ,

and see that the term is an element of B as well. Putting β = 0 again, we have the
same lower bound as above. This completes the induction. �

Since λ ∈ P+, we have μi(0) > 0 and consider the sum

s(x, λ) =
∑
w∈W

j(w,x)(1|λw)(x).

Lemma 2.16. s(x, λ) is an element of B.

Proof. Lemma 2.15 says that we only need to show that s(x, λ) is well defined.
Consider any γ ∈ Q. It is clear from Lemma 2.15 that if 
(w) is big enough, then
our lower bound obtained there will be large enough to exclude the xγ term in
j(w,x)(1|λw)(x). In other words, only finitely many terms in s(x, λ) contribute to
the coefficient of xγ , hence the series is absolutely convergent. �

Note that Δ(x) is a unit in B. We define

h(x;λ) = Δ(x)−1s(x, λ) = Δ(x)−1
∑
w∈W

j(w,x)(1|λw)(x) ∈ B and

N(x;λ) = h(x;λ)D(x) ∈ B.

Remark 2.17. The function h(x;λ) should be considered as a deformed Weyl-Kac
character. More precisely, when n = 1, the change of variables qxαi → z−αi

for each i makes the function zλh(x;λ) the Weyl-Kac character of the irreducible
representation V (λ) of the Kac-Moody algebra g(A). See [13] for the details on
Weyl-Kac characters.

Proposition 2.18 (See Theorem 3.5 in [11]). The distribution (h|λw)(x, λ) is well
defined and (h|λw)(x, λ) = h(x;λ), for each w ∈ W .
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Proof. Fix any w′ ∈ W , and we first prove that (s|λw′)(x, λ) is well defined and
that (s|λw′)(x, λ)=j(w′,x)−1s(x, λ). Indeed, if we write (1|λw) (x) =

∑
β cw(β)x

β,
then

(s|λw′)(x, λ) =
∑
β

∑
w

cw(β)j(w,w
′x)(xβ|λw′)(x)

=
∑
w

∑
β

cw(β)j(w,w
′x)(xβ|λw′)(x)

= j(w′,x)−1
∑
w

j(ww′,x)(1|λww′)(x)

= j(w′,x)−1s(x, λ),

where the switch of the two summations can be justified by absolute convergence
as follows.

From Lemma 2.15, we know that j(w,x)(1|λw)(x) has a lower bound given by
the sum of roots in Φ(w); namely, all the nonzero terms should have exponents
bigger than such a sum of roots. Write such a bound as β(w), and we see that
d(β(w)) → ∞, as 
(w) → ∞.

Now we can prove the absolute convergence by showing that for each γ ∈ Q
there are at most finitely many w ∈ W such that∑

β

cw(β)j(w,w
′x)(xβ|λw′)(x) = (j(w,x)(1|λw)(x)) |λw′

contributes to the coefficient of xγ . We know that j(w,x) is a monomial supported
on Q′, so∑

β

cw(β)j(w,w
′x)(xβ|λw′)(x) = j(w,w′x)(1|λww′)(x)

= j(w′,x)−1 (j(ww′,x)(1|λww′)(x)) .

This distribution is bounded below by β(ww′)− β(w′), and with w′ fixed we have

d(β(ww′)− β(w′)) → ∞, as 
(w) → ∞.

So if 
(w) is large, the contribution of

(j(w,x)(1|λw)(x)) |λw′

to the coefficient of xγ is zero. Therefore the switching of the double sum is justified.
Let us prove the proposition. Assume that

Δ(x)−1 =
∑
β∈Q′

a(β)xβ and s(x, λ) =
∑
β∈Q

c(β)xβ.

Then we have

(h|λw)(x, λ) =
∑
γ∈Q

⎛
⎝∑

β∈Q′

a(β)c(γ − β)

⎞
⎠ (xγ |λw)(x)

=
∑
γ∈Q

⎛
⎝∑

β∈Q′

a(β)c(γ − β)

⎞
⎠ (wx)β(xγ−β|λw)(x)

= Δ(wx)−1(s|λw)(x, λ) = h(x, λ),

and the convergence also follows from this. �

Licensed to Univ of Conn, Storrs. Prepared on Fri Nov 21 15:54:31 EST 2014 for download from IP 137.99.16.10.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



WEYL GROUP MULTIPLE DIRICHLET SERIES 611

Fix a simple root αi and let m = m(αi) for the time being. We write N(x;λ) =∑
μ∈Q aμx

μ. Given any β ∈ Q, we set

Sβ,i = {β + kmαi | k ∈ Z},

and define

Nβ,i(x) =
∑

μ∈Sβ,i

aμx
μ ∈ B.

Now choose β ∈ Q and define

fβ,i(x) =

⎧⎪⎪⎨
⎪⎪⎩

Nβ,i(x)− γ(−biμi(β))(qx
αi)(−μi(β))mNσi·β,i(x)

1− qm−1xmαi
if m � μi(β);

Nβ,i(x)

1− qm−1xmαi
otherwise.

Here, as before, we denote by (k)m the remainder upon division of k by m. By our
convention, 1− qm−1xm

i is invertible in E , with inverse
∑∞

k=0 q
k(m−1)xkm

i .

Proposition 2.19 (Compare with Theorem 3.6 in [11]). We have

fβ,i(σix) =

{
(qxαi)(μi(β))m−μi(0)fβ,i(x) if m � μi(β);

(qxαi)m−μi(0)fβ,i(x) otherwise.

Proof. Assume that m � μi(β). We write Nβ,i(x) =
(∑

k∈Z aβ+kmαi
xkmαi

)
xβ and

define

Bβ,i(x) =
∑
k∈Z

aβ+kmαi
xkmαi ∈ B0,

so that we have Nβ,i(x) = Bβ,i(x)x
β. We also define

Fβ,i(x) =
Nβ,i(x) +Nσi·β,i(x)

1− qm−1xmαi
=

Bβ,i(x)x
β +Bσi·β,i(x)x

σi·β

1− qm−1xmαi
.

We obtain from Proposition 2.18 that

N(x;λ)

1− qm−1xmαi

is invariant under the action of |λσi. Indeed, the action is well defined by the same
argument as in the proof of Proposition 2.18. The invariance follows from that of
h(x, λ) and the invariance of D(x)(1− qm−1xmαi)−1 under the change of variable
x → σix. Then it implies that Fβ,i is invariant under |λσi. On the other hand,
applying σi to Fβ,i, we get

Fβ,i(x) = (Fβ,i|λσi)(x) =
Bβ,i(σix)(x

β|λσi)(x) +Bσi·β,i(σix)(x
σi·β |λσi)(x)

1− q−m−1x−mαi
.

Using this, we compute further and obtain

fβ,i(x) =
Bβ,i(σix)(qx

αi)[μi(β)]mxβ−Bσi·β,i(σix)γ(−biμi(β))(qx
αi)−m−μi(β)xσi·β

1− q−m−1x−mαi
.

Now the assertion of the proposition follows from this.
The proof for the case that m|μi(β) is similar, and we omit the details. �
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3. The coefficients H

In this section we define the coefficients H and find bounds for them. The
coefficientsH will be the essential data in defining the Weyl group multiple Dirichlet
series.

We specialize γ(i) to be

γ(i) =

{
g(1, �; i)/q if i �≡ 0 (mod n),

−1 otherwise,

where � is a prime in oS and q is the norm of � in oS . We define

�β
Q = (�k1 , · · · , �kr) ∈ (oS)

r and �λ
P = (�l1 , · · · , �lr) ∈ (oS)

r,

where β =
∑r

i=1 kiαi ∈ Q+ and λ =
∑r

i=1 liωi ∈ P+. Denote the xβ-coefficient of
N(x;λ) by

(3.1) H(�β
Q;�

λ
P ).

We fix a generator � for each prime ideal of oS . For a = (a1, · · · , ar) ∈ (oS)
r,

we have decompositions

(3.2) a = u
∏
�

�β�

Q = u
∏
�

�λ�

P , u ∈
(
o
×
S

)r
,

with β� ∈ Q+ and λ� ∈ P+ for each prime �. We define H(c;m) for any

c,m ∈ (oS)
r ∩ (F×

S )r in what follows. First we set H(u;m) = 1 for u ∈
(
o
×
S

)r
.

If we have gcd(c1 · · · cr, c′1 · · · c′r) = 1 for c = (c1, · · · , cr) and c′ = (c′1, · · · , c′r), we
require that the twisted multiplicativity should hold:

(3.3) H(cc′;m) = ξB(c, c
′)H(c;m)H(c′;m).

We also require the relation

(3.4) H(c;mm′) =

[
m′

c

]−B

H(c;m)

if gcd(c1 · · · cr,m′
1 · · ·m′

r) = 1 for c = (c1, · · · , cr) and m′ = (m′
1, · · · ,m′

r). Now
note that we have defined the coefficients H(c;m) for any c,m ∈ (oS)

r ∩ (F×
S )r.

We fix q for the time being. Let hR = R ⊗ P∨ ⊂ h. For s ∈ h, we write
s = Re(s) +

√
−1 Im(s) with Re(s), Im(s) ∈ hR. We define the evaluation map

EVq : E × h → C by

EVq

⎛
⎝∑

β

c(β)xβ, s

⎞
⎠ =
∑
β

c(β)q−β(s),

whenever it is convergent. Similarly, we define |EV |q : E × h → C by

|EV |q

⎛
⎝∑

β

c(β)xβ, s

⎞
⎠ =
∑
β

|c(β)q−β(s)| =
∑
β

|c(β)|q−β(Re(s)),

whenever it is convergent.

Proposition 3.5. Let β ∈ Q and w ∈ W , and suppose that

(3.6) Re(αi(s)) > 1 for each i = 1, . . . , r.
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WEYL GROUP MULTIPLE DIRICHLET SERIES 613

Then we have

|EV |q
(
j(w,x)(xβ|λw), s

)
≤ 3�(w)q−d(β)q(w

−1·β)(ρ∨−Re(s)).

Proof. We may assume that s is real, i.e. s = Re(s). We use induction on the
length of w. If w = 1, then

|EV |q
(
j(1,x)(xβ|λ1), s

)
= |EV |q (xβ) = q−β(s).

Now assume that 
(σjw) = 
(w) + 1 for w ∈ W and write m = m(αj). We see
from (1.2) that w−1αj is a positive root, and we get w−1αj(ρ

∨ − s) < 0 from the
assumption. We consider

|EV |q(Pβ,j(wx), s) = |EV |q
(
(q(wx)αj )[μj(β)]m 1− 1/q

1− (q(wx)αj )
m
/q

, s

)

=
(
qd(w

−1αj)q−w−1(αj)(s)
)[μj(β)]m 1− 1/q

1−
(
qd(w

−1αj)q−w−1(αj)(s)
)m

/q

=
(
qw

−1αj(ρ
∨−s)
)[μj(β)]m 1−1/q

1−
(
qw

−1αj(ρ∨−s)
)m

/q

≤ q[μj(β)]mw−1αj(ρ
∨−s)(3.7)

and

|EV |q (Qβ,j(wx), s) ≤ |EV |q

(
qμj(β)

1− (q(wx)αj )
−m

1− (q(wx)αj )m /q
, s

)

= qμj(β) |EV |q
(
− (q(wx)αj )

−m
+

1− 1/q

1− (q(wx)αj )
m
/q

, s

)

≤ qμj(β)

(
q−mw−1αj(ρ

∨−s) +
1− 1/q

1− qmw−1αj(ρ∨−s)/q

)

= qμj(β)−mw−1αj(ρ
∨−s) 1 + qmw−1αj(ρ

∨−s)(1− 2/q)

1− qmw−1αj(ρ∨−s)/q

≤ 2qμj(β)−mw−1αj(ρ
∨−s).(3.8)

Combining (3.7) and (3.8) with the computation

j(σjw,x)(x
β|λσjw) = j(σj , wx)j(w,x)

[(
Pβ,j(x)x

β +Qβ,jx
σj ·β) |λw]

=−qm(wx)mαj j(w,x)
[
Pβ,j(wx)(x

β|λw)+Qβ,j(wx)(x
σj ·β |λw)

]
,

we obtain by induction

|EV |q
(
j(σjw,x)(x

β|λσjw), s
)

≤ q(m+[μj(β)]m)w−1αj(ρ
∨−s) |EV |q

(
j(w,x)(xβ|λw), s

)
+ 2qμj(β) |EV |q

(
j(w,x)(xσj·β |λw), s

)
≤ 3�(w)q−d(β)q(m+[μj(β)]m)w−1αj(ρ

∨−s)+(w−1·β)(ρ∨−s)

+ 2 · 3�(w)q−d(β)q(w
−1·σj ·β)(ρ∨−s).
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614 KYU-HWAN LEE AND YICHAO ZHANG

The exponent of q in the first term becomes

(m+ [μj(β)]m)w−1αj(ρ
∨ − s) + (w−1 · β)(ρ∨ − s)

≤ μj(β)w
−1αj(ρ

∨ − s) + (w−1 · β)(ρ∨ − s)

=
(
(σjw)

−1 · β)
)
(ρ∨ − s).

The exponent of q in the second term is

(w−1 · σj · β)(ρ∨ − s) =
(
(σjw)

−1 · β)
)
(ρ∨ − s).

Therefore, we obtain

|EV |q
(
j(σjw,x)(x

β|λσjw), s
)
≤ 3�(w)+1q−d(β)q((σjw)−1·β))(ρ∨−s).

�

Given β ∈ Q+, we define

N
(�)
β,i (x;m) =

∑
j≥0

H(�β+jmαi

Q ;m)xβ+jmαi ,

wherem = m(αi). Let λ ∈ P+ be such that�λ
P is the�-factor in the decomposition

of m, i.e. λ = λ� in (3.2). We write

m′ = m/�λ
P = (m′

1, · · · ,m′
r),

and set μi(β) = μi,λ(β) = (λ+ ρ− β)(hi) as before. We put q = |�| and define

f
(�)
β,i (x;m)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N
(�)
β,i (x;m)− q−1g(m′

i,�;−biμi(β))(qx
αi)(−μi(β))mN

(�)
σi·β,i(x;m)

1− qm−1xmαi
if μi(β) � m;

N
(�)
β,i (x;m)

1− qm−1xmαi
otherwise .

Theorem 3.9 (Compare with Theorem 4.1 in [11]). We have

f
(�)
β,i (σix;m) =

{
(qxαi)(μi(β))m−μi(0)f

(�)
β,i (x;m) if m � μi(β);

(qxαi)m−μi(0)f
(�)
β,i (x;m) otherwise.

Proof. We first establish the following identities:

(3.10) N
(�)
β,i (x;m) =

[
m′

�β
Q

]−B

Nβ,i(x) and f
(�)
β,i (x;m) =

[
m′

�β
Q

]−B

fβ,i(x).

From the twisted multiplicativity, we obtain

H(�β+jmαi

Q ;m) = H(�β+jmαi

Q ;�λ
Pm

′)

=

[
m′

�β+jmαi

Q

]−B

H(�β+jmαi

Q ;�λ
P )

=

[
m′

�β
Q

]−B

H(�β+jmαi

Q ;�λ
P ),
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since

(
m′

i

�jm

)−bi

=

(
m′

i

�j

)−bim

= 1. Then we have

N
(�)
β,i (x;m) =

[
m′

�β
Q

]−B∑
j≥0

H(�β+jmαi

Q ;�λ
P )x

β+jmαi =

[
m′

�β
Q

]−B

Nβ,i(x).

Since we have σi · β = β + μi(β)αi and the multiplicativity of the power residue
symbol, we obtain

N
(�)
σi·β,i(x;m) =

[
m′

�σi·β
Q

]−B

Nσi·β,i(x) =

[
m′

�β
Q

]−B (
m′

i

�

)−biμi(β)

Nσi·β,i(x).

On the other hand,

g(m′
i, �;−biμi(β)) =

(
m′

i

�

)biμi(β)

g(1, �;−biμi(β)).

Now it it straightforward to see that

f
(�)
β,i (x;m) =

[
m′

�β
Q

]−B

fβ,i(x).

Thus we have proved the identities in (3.10). Now the theorem follows from
(3.10) and Proposition 2.19. �

4. Rank one computations

In this section, we gather results from [2], [4] and [11] and make some compu-
tations as a preparation to obtain functional equations of the Weyl group multiple
Dirichlet series in the next section.

For j ∈ Z>0, Ψ ∈ Mj(Ω) and a ∈ oS , we define

D(s, a; Ψ, j) =
∑

0	= c∈oS/o×
S

g(a, c; j)Ψ(c)|c|−s|a|s/2.

This series is absolutely convergent for Re(s) > 3/2. Let m = n/gcd(n, j) and set

Gm(s) =
(
(2π)−(m−1)(s−1)Γ(ms−m)/Γ(s− 1)

)[F :Q]/2

.

Define

D∗(s, a; Ψ, j) = Gm(s)ζF (ms−m+ 1)D(s, a,Ψ, j),

where ζF is the Dedekind zeta function of F . If Ψ ∈ Mj(Ω) and η ∈ F×
S , we define

Ψ̃η(c) = (η, c)jSΨ(η−1c−1).

The following result is fundamental.

Theorem 4.1 ([2]). The function D∗(s, a; Ψ, j) has a meromorphic continuation
to C and is holomorphic except for possible simple poles at s = 1± 1/m. Moreover,
there exist S-Dirichlet polynomials P (s; aη, j) such that

D∗(s, a; Ψ, j) =
∑

η∈F×
S /F×,n

S

P (s; aη, j)D∗(2− s, a; Ψ̃η, j).
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616 KYU-HWAN LEE AND YICHAO ZHANG

Let m = (m1, · · · ,mr) ∈ (oS)
r ∩ (F×

S )r be fixed for the rest of this section. Let
A be the ring of Laurent polynomials in |�v|si , i = 1, . . . , r, where v runs over the
places in Sfin. We define

(4.2) MB(Ω) = A⊗MB(Ω).

Then it is natural to set Mt(Ω) = A⊗Mt(Ω) for t ∈ Z>0. We write

si = αi(s) for s ∈ h

and regard an element of MB(Ω) as a function on h × (F×
S )r. Denote by ι the

diagonal embedding:

ι : F×
S → (F×

S )r, x → (x, x, · · · , x).

If Ψ ∈ MB(Ω) and a = (a1, · · · , ar) ∈ (oS/o
×
S )

r, we define

Ψa
i (s; c) = (a, ι(c))BS,i Ψ(s; a1, · · · , aic, · · · , ar),

where the notation (·, ·)BS,i is defined in (1.4).

Lemma 4.3 ([4]). We have Ψa
i ∈ Mbi(Ω).

We define a shifted action of W on h by

σi ◦ s = σi(s− ρ∨) + ρ∨.

Now we define an action of σi on MB(Ω) as follows. For Ψ ∈ MB(Ω), we set

(σiΨ)(s; a)=
∑

η∈F×
S /F×,n

S

(ι(η), a)BS,i P (si ; ηmia
−hi , bi) Ψ(σi◦s; a1, · · · , aiη−1, · · · , ar),

where

a−hi =
∏
j

a
−αj(hi)
j =

∏
j

a
−aij

j .

The element a−hi was denoted by bi in [11], while we set bi = (αi, αi) in this paper.
The following proposition plays a crucial role in describing functional equations.

Proposition 4.4 ([4]). If Ψ ∈ MB(Ω), then σiΨ ∈ MB(Ω).

If c = (c1, · · · , cr) ∈ (oS)
r and s ∈ h, we set

(4.5) |c|sQ =

r∏
i=1

|ci|αi(s) = |c1|s1 · · · |cr|sr and |c|sP =

r∏
i=1

|ci|ωi(s).

We let ĉ be the (r− 1)-tuple (c1, · · · , ĉi, · · · , cr) for c = (c1, · · · , cr), where the hat
on ci indicates that this entry is omitted. Let Ψ ∈ MB(Ω). We define

E(si, ĉ;m,Ψ, i) =
∑

0	=ci∈oS/o×
S

H(c1, · · · , ci, · · · , cr;m)Ψ(s; c1, · · · , ci, · · · , cr)|ci|−si

=
∑

0	=ci∈oS/o×
S

H(c;m)Ψ(s; c)|ci|−si .
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We also define

Ẽ(s, ĉ;m,Ψ, i) =
∑

0	=ci∈oS/o×
S

H(c1, · · · , ci, · · · , cr;m)Ψ(s; c1, · · · , ci, · · · , cr)

· |ci|−si |ĉ|−s
Q |m|sP

=
∑

0	=ci∈oS/o×
S

H(c;m)Ψ(s; c)|c|−s
Q |m|sP .

Let m = m(αi) and si = αi(s). We set

E∗(si, ĉ;m,Ψ, i) = Gm(si)ζF (msi −m+ 1)E(si, ĉ;m,Ψ, i) and

Ẽ∗(s, ĉ;m,Ψ, i) = Gm(si)ζF (msi −m+ 1)Ẽ(s, ĉ;m,Ψ, i).

The following proposition adapts the functional equation (Theorem 4.1) of the
Kubota’s Dirichlet series D∗(s, a; Ψ, j) for our purpose.

Proposition 4.6. Let C =
∏

j 	=i c
−aij

j . Then the function E∗(si, ĉ;m,Ψ, i) (resp.

Ẽ∗(s, ĉ;m,Ψ, i)) has a meromorphic continuation to C (resp. h) and is holomorphic
except for possible simple poles at si = 1± 1/m. Moreover, we have the functional
equations

(4.7) E∗(si, ĉ;m,Ψ, i) = |Cmi|1−siE∗(2− si, ĉ;m, σiΨ, i) and

(4.8) Ẽ∗(s, ĉ;m,Ψ, i) = Ẽ∗(σi ◦ s, ĉ;m, σiΨ, i).

Proof. With Theorem 3.9 established, the meromorphic continuation and functional
equation of E∗ follows from Theorem 5.8 of [11]. Now the meromorphic continuation

of Ẽ∗ is clear, and its functional equation is obtained from that of E∗ by direct
computation. �

5. The multiple Dirichlet series

In this section, we define the Weyl group multiple Dirichlet series from the local
coefficients via twisted multiplicativity, and prove functional equations and mero-
morphic continuation of the multiple Dirichlet series. As mentioned in the intro-
duction, it is expected that our multiple Dirichlet series would be related to a
Whittaker function up to a normalizing factor in the affine case. However, it is also
expected that, in the indefinite case, the contribution coming from the imaginary
roots is much more complicated.

Let m = (m1, · · · ,mr) ∈ (oS)
r be fixed. Then we have m = u

∏
� �λ�

P , u ∈
(o×S )

r, with λ� ∈ P+. Let Ψ ∈ MB(Ω), and we define a function Z(s;m,Ψ) on h

by

Z(s;m,Ψ) =
∑
c

H(c;m)Ψ(s; c)|c|−s
Q |m|sP ,

where the sum is over c = (c1, · · · , cr) such that 0 �= ci ∈ oS/o
×
S for i = 1, . . . , r.

Although this is a function on h, except the factor |m|sP , it only depends on
(s1, · · · , sr).

In order to investigate the convergence of Z(s;m,Ψ), we first prove the following
lemma.
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618 KYU-HWAN LEE AND YICHAO ZHANG

Lemma 5.1. Let q be the norm of a prime � ∈ oS and consider

EVq

(
D(x)

Δ(x)
, s

)
=
∏

α∈Φ+

(
1− qm(α)α(ρ∨−s)−1

1− qm(α)α(ρ∨−s)

)mult(α)

.

Assume that Re(αi(s)) > 1 for each i = 1, . . . , r. Then the product EVq

(
D(x)
Δ(x) , s

)
is absolutely convergent for sufficiently large q. In this case, if Re(αi(s)) > 1 + ε
for each 1 ≤ i ≤ r, we have

|EV |q
(
D(x)

Δ(x)
, s

)
∼ 1 +O(q−ε),

where the implicit constant only depends on ε.

Proof. We may assume that s is real and that Re(αi(s)) ≥ 1 + logq r + ε for
sufficiently large q and for each i = 1, . . . , r. We have

1− qm(α)α(ρ∨−s)−1

1− qm(α)α(ρ∨−s)
= 1 +

qm(α)α(ρ∨−s)(1− q−1)

1− qm(α)α(ρ∨−s)
.

Therefore

log

(
EVq

(
D(x)

Δ(x)
, s

))
∼
∑

α∈Φ+

mult(α)
qm(α)α(ρ∨−s)

1− qm(α)α(ρ∨−s)
.

For each k ∈ Z>0, there are at most rk linearly independent root vectors all together
for positive roots with depth k in the Kac-Moody algebra g(A); that is to say,∑

α∈Φ+
d(α)=k

mult(α) ≤ rk.

Then we have∑
α∈Φ+

mult(α)
qm(α)α(ρ∨−s)

1− qm(α)α(ρ∨−s)
≤
∑

α∈Φ+

mult(α) qα(ρ
∨−s)

≤
∞∑
k=1

rkq−k(logq r+ε) =

∞∑
k=1

q−kε =
1

qε − 1
≤ Aq−ε,

where A could be chosen to be (1 − 2−ε)−1. The last assertion of the proposition
follows from this by taking the natural exponential function, and we see that the
implied constant only depends on ε, that is, independent of q. �

Theorem 5.2. Assume that Ψ ∈ MB(Ω). The series Z(s;m,Ψ) absolutely con-
verges for s ∈ h satisfying the condition:

Re(αi(s)) = Re(si) > max{1 + log2 r, 2} for each i = 1, . . . , r.

Proof. We may assume that s is real. Since the function Ψ is bounded, it is sufficient
to consider ∑

C

|H(c;m)||c|−s
Q =

∏
�

∑
β∈Q+

|H(�β
Q;�

λ�

P )||�|−β(s),

which only depends on (s1, · · · , sr). We fix � for the time being, and write q = |�|.
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Suppose that w = σi1 · · ·σik ∈ W is a reduced expression. Then one can show
that

w−1 · β = μi1(β)σik · · ·σi2αi1 + · · ·+ μik−1
(β)σikαik−1

+ μik(β)αik + β.

Using this identity with β = 0, let us prove that, for any M > 0, if 
(w) is large,
then

(5.3) (w−1 · 0)(ρ∨ − s) ≤ −M
(w) ·min{si − 1: 1 ≤ i ≤ r}.
Note first that it holds trivially for any w if M = 1. In general, since w−1 · 0 is the
weighted sum of all roots in Φ(w) by μi(0) ≥ 1, i = 1, . . . , r, it is enough to show
that as 
(w) → ∞,

1


(w)

∑
α∈Φ(w)

d(α) → ∞.

Indeed, for any M > 0, let M ′ = {α ∈ Φ+ : d(α) ≤ 2M}. If 
(w) > 2M ′, then∑
α∈Φ(w)

d(α) > 2M(
(w)−M ′) > M
(w),

and (5.3) is proved.
We first assume that q is sufficiently large so that we have

si ≥ 2 + logq r + ε for each i = 1, . . . , r.

From the definition of H(�β
Q;�

λ�

P ), we have∑
β∈Q+

H(�β
Q;�

λ�

P )q−β(s) = EVq (N(x;λ), s)

= EVq

(
D(x)

Δ(x)
, s

)
EVq

(∑
w∈W

j(w,x)(1|λw)(x), s
)
.

We obtain from Lemma 5.1, Proposition 3.5 and (5.3) that

∑
β∈Q+

|H(�β
Q;�

λ�

P )|q−β(s) ≤ |EV |q
(
D(x)

Δ(x)
, s

)
|EV |q

(∑
w∈W

j(w,x)(1|λw)(x), s
)

≤ |EV |q
(
D(x)

Δ(x)
, s

) ∑
w∈W

3�(w)q(w
−1·0)(ρ∨−s)

≤ |EV |q
(
D(x)

Δ(x)
, s

) ∑
w∈W

3�(w)q−�(w)(1+ε)

≤ |EV |q
(
D(x)

Δ(x)
, s

)(
1 +

∞∑
k=1

(
3r

q1+ε

)k
)

∼ 1 +O(q−1−ε)(5.4)

for sufficiently large q. Here we applied the trivial case M = 1 of (5.3).
For a general q, since Re(αi(s)) > 1 + log2 r ≥ 1 + logq r for each i, the same

estimation as in Lemma 5.1 shows that

|EV |q
(
D(x)

Δ(x)
, s

)
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is absolutely convergent. Using (5.3) and choosing M large enough so that 6r <
qM(1+ε),

|EV |q

(∑
w∈W

j(w,x)(1|λw)(x), s
)

�
∑
w∈W

3�(w)q−M�(w)(1+ε)

�
(
1 +

∞∑
k=1

(
3r

qM(1+ε)

)k
)

� 1.

Therefore, all factors in ∏
�

∑
β∈Q+

|H(�β
Q;�

λ�

P )||�|−β(s)

are absolutely convergent, and the absolute convergence of the whole product is
obtained using (5.4). �

For any α ∈ Φ, we define

ζα(s) = ζF (1 +m(α)α(s− ρ∨)) and Gα(s) = Gm(α) (1 + α(s− ρ∨)) .

It is easy to see that Gα(σi ◦ s) = Gσiα(s) and ζα(σi ◦ s) = ζσiα(s). Then we have,
for w ∈ W ,

(5.5) Gα(w ◦ s) = Gw−1α(s) and ζα(w ◦ s) = ζw−1α(s).

In particular, Gαi
(σi ◦ s) = G−αi

(s) and ζαi
(σi ◦ s) = ζ−αi

(s). Now we define

G(w, s) =
∏

α∈Φ(w)

Gα(s)ζα(s)

G−α(s)ζ−α(s)
.

Let F = {s ∈ hR | αi(s) = si ≥ 1 for all i = 1, . . . , r}. We define the shifted Tits
cone X ⊆ hR to be

X =
⋃

w∈W

w ◦ F.

Proposition 5.6 ([1, 13]). The shifted Tits cone X is a convex cone, and we have
X = hR if and only if |W | < ∞.

Let L = {s ∈ hR | αi(s) = si > max{2, 1 + log2 r} for all i = 1, . . . , r}, and we
define

X0 = convex hull

( ⋃
w∈W

w ◦ L
)

⊆ X.

Theorem 5.7. The Dirichlet series Z(s;m,Ψ) has meromorphic continuation to
all s ∈ h such that Re(s) ∈ X0 and satisfies the functional equation

Z(w ◦ s;m, wΨ) = G(w, s)Z(s;m,Ψ)

for each w ∈ W , where the action of w on Ψ is given by the composition of simple
reflections σi. The set of polar hyperplanes is contained in the W -translates of the
hyperplanes si = 1±m(αi)/n.

Proof. If r = 1, we essentially have the Kubota’s series, and we are done in this
case. Let us assume r ≥ 2 from now on. It follows that 1 + log2 r ≥ 2.
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The Dirichlet series defining Z(s;m,Ψ) is absolutely convergent by Theorem 5.2
in the region Λ0 = {s ∈ h | Re(s) ∈ L}. We write

Z(s;m,Ψ) =
∑
c

H(c;m)Ψ(s; c)|c|−s
Q |m|sP

=
∑
ĉ

∑
0	=ci∈oS/o×

S

H(c;m)Ψ(s; c)|c|−s
Q |m|sP

= |m|sP
∑
ĉ

E(si, ĉ;m,Ψ, i)∏
j 	=i |cj |sj

,(5.8)

where ĉ is the (r − 1)-tuple (c1, · · · , ĉi, · · · , cr) with ci omitted.
With the expression (5.8), let us first continue Z(s;m,Ψ) to a larger region as

follows. We consider the modified series

Zi(s;m,Ψ) = (si − 1−m(αi)/n)(si − 1 +m(αi)/n)Z(s;m,Ψ) and

F(si, ĉ;m,Ψ, i) = (si − 1−m(αi)/n)(si − 1 +m(αi)/n)E(si, ĉ;m,Ψ, i).

By Proposition 4.6, F is analytic on C with a functional equation. We claim that
for any ε > 0, on the region with Re(si) ≥ 1 + log2 r + ε, we have

F(si, ĉ;m,Ψ, i) = O

⎛
⎝∏

j 	=i

|cj |1+log2 r+ε

⎞
⎠ ,

where the implied constant is independent of ĉ. Actually, since the multiple sum∑
c

H(c;m)Ψ(s; c)|c|−s
Q |m|sP

is absolutely convergent on the region with Re(sj) ≥ 1+ log2 r+ ε (1 ≤ j ≤ r), the
general term

E(si, ĉ;m,Ψ, i)∏
j 	=i |cj |sj

over ĉ in (5.8) is then bounded and the claim follows by taking the infimum. By
the functional equation, we have for Re(si) ≤ 1− log2 r − ε,

F(si, ĉ;m,Ψ, i) = O

⎛
⎝|C|1−Re(si)

∏
j 	=i

|cj |1+log2 r+ε

⎞
⎠

= O

⎛
⎝∏

j 	=i

|cj |−aij(1−Re(si))+1+log2 r+ε

⎞
⎠ .

In particular, on the line Re(si) = 1− log2 r − ε we have

F(si, ĉ;m,Ψ, i) = O

⎛
⎝∏

j 	=i

|cj |1+(1−aij)(log2 r+ε)

⎞
⎠ .

Now by the Phragmén-Lindelöf Theorem, on the strip defined by 1 − log2 r − ε ≤
Re(si) ≤ 1 + log2 r + ε, we have the bound

F(si, ĉ;m,Ψ, i) = O

⎛
⎝∏

j 	=i

|cj |1+(1−aij)(log2 r+ε)

⎞
⎠ .
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Finally, by putting the above bounds into Zi and considering the expression (5.8),
we then see that for any u ∈ R, there exists a positive real number u′ such that the
series Zi (over ĉ) is absolutely convergent on the region

A(u, u′) = {s ∈ h : Re(αi(s)) > u, Re(αj(s)) > u′, j �= i}.

Note here that the dependence on the variables other than the si’s in |m|sP does
not affect the absolute convergence. This provides the analytic continuation of Zi

and hence the meromorphic continuation of Z, from Λ0 to Λ0 ∪A(u, u′).
By the functional equations in Proposition 4.6 again, Z can be meromorphically

continued to σi◦Λ0. Now we choose u so that A(u, u′) intersects both Λ0 and σi◦Λ0.
Since the union of these pieces is (simply) connected, the function Zi is analytic
on the union of these regions. Applying Bochner’s Tube-Domain Theorem, we see
that we may continue Z meromorphically to Λi, the convex hull of Λ0∪σi ◦Λ0. On
this region, we have, by Proposition 4.6,

G(σi, s)Z(s;m,Ψ) =
1

G−αi
(s)ζ−αi

(s)

∑
ĉ

Ẽ∗(s, ĉ;m,Ψ, i)

=
1

Gαi
(σi ◦ s)ζαi

(σi ◦ s)
∑
ĉ

Ẽ∗(σi ◦ s, ĉ;m, σiΨ, i)

=
∑
ĉ

Ẽ(σi ◦ s, ĉ;m, σiΨ, i)

= Z(σi ◦ s, ;m, σiΨ).

Now we extend the meromorphic continuation to Re(s) ∈ X0. The argument is
similar to that of the finite case ([3,4]), though we need to make some modifications.
If Λ1 = h or Λ2 = h, we are done. If not, we consider Λ1 ∪ Λ2. It is easy
to see that the union is simply connected since both are convex. Because they
intersect nontrivially, Z is continued to the union. We multiply Z by linear factors
to eliminate the possible poles on such a union, and then apply Bochner’s Theorem.
Then consider Λ3 and the union Λ1 ∪Λ2 ∪Λ3 similarly. At the end, either we stop
somewhere and we have continuation to h or we have continuation to the convex

hull, say Λ
(1)
0 , of

⋃
i Λi. In the latter case, repeat the whole procedure from the

beginning by replacing Λ0 by Λ
(1)
0 , except that all the translates of Λ

(1)
0 intersect

Λ
(1)
0 nontrivially and we do not need to do the growth estimate of the E-series.
Such a process may not stop in finitely many steps, and it is clear that we

need more and more linear factors to eliminate the poles of Z as we carry out this
procedure. However, since any s ∈ h with Re(s) ∈ X0 is contained in a union
of a finite number of W -translates of Λi’s, we need at most finitely many steps to
continue Z to s, therefore at most finitely many linear factors in such a continuation.

The functional equation Z(w ◦ s;m, wΨ) = G(w, s)Z(s;m,Ψ) for each w ∈ W
can be proved using (1.2), (5.5) and induction, along with the continuation. The
possible polar hyperplanes are clear from our continuation and the poles of Kubota’s
series. We are done with the proof. �

Example 5.9. Let us consider the hyperbolic Kac-Moody root system associated

with the generalized Cartan matrix A =

(
2 −3
−3 2

)
. Then the Weyl group W is

the free group generated by the simple reflections σ1 and σ2. As in the proof of
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Theorem 5.7, we let Λi be the convex hull of Λ0 ∪ (σi ◦ Λ0) for i = 1, 2. Then the
projections on the real plane of the regions Λ1 and Λ2 are given by

Λ1 : 3x+ y > 5, 3x+ 2y > 10, y > 2,

and

Λ2 : x+ 3y > 5, 2x+ 3y > 10, x > 2,

where x = Re(s1) and y = Re(s2). The shifted Tits cone X is given by

X : (3 +
√
5)x+ 2y > 5 +

√
5, (3−

√
5)x+ 2y > 5−

√
5.

On the other hand, the boundary of the convex hull X0 is the piecewise linear curve
connecting the points in each column of the following:

(2, 2) (2, 2)
(0, 5) = σ1 ◦ (2, 2) (5, 0) = σ2 ◦ (2, 2)
(−3, 12) = σ1σ2 ◦ (2, 2) (12,−3) = σ2σ1 ◦ (2, 2)
(−10, 30) = σ1σ2σ1 ◦ (2, 2) (30,−10) = σ2σ1σ2 ◦ (2, 2)

...
...

In particular, (3/2, 3/2) ∈ X \ X0.

Remark 5.10. One method to investigate the moment problem of Dirichlet L-
functions L(s, χd) with quadratic characters over Q in d-aspect is to consider the
multiple Dirichlet series of the form∑

d

L(s1, χd)L(s2, χd) · · ·L(sr, χd)

|d|sr+1
.

Sufficient meromorphic continuation of this series will produce asymptotic formulas
for the r-th moment. However, only in the cases r = 1, 2, 3 has necessary contin-
uation been obtained. Actually, in those cases the series can be continued to the
whole Cr. If r > 3, the group of functional equations becomes infinite, and we
are not able to continue the series sufficiently at the present. For more details, see
Bump’s survey paper [9].

Remarkably, in a recent paper [8], Bucur and Diaconu considered quadratic
Dirichlet L-functions over rational function fields in the case r = 4 and managed
to continue the corresponding multiple Dirichlet series sufficiently. This is the first
such result where the group of functional equations is infinite.

More specifically, they consider two multiple Dirichlet series, one from the mo-
ment problem and the other from the corresponding Weyl group action. Since the
latter can be sufficiently continued, by proving a uniqueness theorem (up to a single
variable power series), they prove sufficient continuation of the multiple Dirichlet
series from the moment problem.

Their Weyl group multiple Dirichlet series are constructed in a similar way with

those considered in this paper. In their case, the root system is of affine type D
(1)
4 ,

and by identifying si with αi, they put s = (s1, . . . , sr) and

(5.11) Δ(s) =
∏

α∈Φre
+

(1− qd(α)−α) and D(s) =
∏

α∈Φre
+

(1− qd(α)−α+1).

Here q is the order of the finite field, and we have changed their notation to be
consistent with ours. One can compare (5.11) with (2.13). Moreover, they define a
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matrix-valued rational function M(w, s) that satisfies the same cocycle relation as
j(w,x) in this paper. Then they construct the matrix series

Z(s) =
∑
w∈W

D(ws)

Δ(ws)
M(w, s)

and proved its analytic continuation and functional equations, namely

Z(s) = M(w, s)Z(ws), for any w ∈ W.

In general, over number fields, the multiple Dirichlet series obtained from the
moment problem are expected to be different from their counterparts constructed

from the Weyl group actions. In the affine case D
(1)
4 , they are expected to differ

by a normalizing factor. In the indefinite case, the situation may be much more
complicated.
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