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ON THE CONVERGENCE OF KAC–MOODY EISENSTEIN SERIES

By LISA CARBONE, HOWARD GARLAND, KYU-HWAN LEE, DONGWEN LIU,
and STEPHEN D. MILLER

Abstract. Let G be a representation-theoretic Kac–Moody group associated to a nonsingular sym-
metrizable generalized Cartan matrix. We first consider Kac–Moody analogs of Borel Eisenstein se-
ries (induced from quasicharacters on the Borel), and prove they converge almost everywhere inside
the Tits cone for arbitrary spectral parameters in the Godement range. We then use this result to show
the full absolute convergence everywhere inside the Tits cone (again for spectral parameters in the
Godement range) for a class of Kac–Moody groups satisfying a certain combinatorial property, in
particular for rank-2 hyperbolic groups.

1. Introduction. The fundamental theory of Eisenstein series on reductive
groups has played pivotal roles in the formulation of Langlands’ functoriality con-
jecture [La1, La2], and in the study of L-functions by means of the Langlands–
Shahidi method (e.g., [KimSh, Kim]).

The extension of the theory of Eisenstein series to Kac–Moody groups is of
great interest, due to its conjectural roles in some of the central problems in number
theory, such as establishing important analytic properties of L-functions [BFH, Sh].
Recently, Eisenstein series on exceptional Lie groups have been shown to occur
explicitly as coefficients of correction terms in certain maximally supersymmet-
ric string theories [GRV, GMRV, GMV]. Conjectural Eisenstein series on Kac–
Moody groups appear in recent developments in string theory [FK, FKP]. All of
these potential applications require a proof of convergence (and in some cases,
analytic continuation) of Kac–Moody Eisenstein series.

In his papers [G04, G06, GMS1, GMS2, GMS3, GMS4], Garland extended
the classical theory of Eisenstein series to arithmetic quotients GZ\GR/K of affine
Kac–Moody groups G. In particular, he established absolute convergence for spec-
tral parameters in a Godement range, and then proved a meromorphic continuation
beyond it. Absolute convergence has been generalized to affine Kac–Moody groups
over number fields by Liu [Li]. Garland, Miller, and Patnaik [GMP] showed that
affine Eisenstein series induced from cusp forms over Q are entire functions of the
spectral parameter. It should be mentioned that earlier results were established in
the function field setting by [BK]; related results also appear in [Ka, LL, P].

Manuscript received January 28, 2021.
Research of the first author supported in part by NSF grant DMS–1101282; research of the third author

supported in part by a grant from the Simons Foundation (#318706); research of the fourth author supported in
part by the Fundamental Research Funds for the Central Universities 2016QNA2002; research of the fifth author
supported by NSF grant DMS-1801417.

American Journal of Mathematics 146 (2024), 1253–1274. © 2024 by Johns Hopkins University Press.

1253

[1
32

.1
74

.2
50

.2
20

]  
 P

ro
je

ct
 M

U
S

E
 (

20
24

-1
2-

27
 1

9:
17

 G
M

T
) 

 th
e 

U
ni

ve
rs

ity
 o

f C
on

ne
ct

ic
ut



1254 L. CARBONE, H. GARLAND, K.-H. LEE, D. LIU, AND S. D. MILLER

Beyond the affine case, Carbone, Lee, and Liu [CLL] studied Eisenstein series
on the rank 2 hyperbolic Kac–Moody groups with symmetric generalized Cartan
matrices, and established almost-everywhere convergence of the series. However,
they could not obtain everywhere convergence as the method in the affine case does
not generalize directly to the hyperbolic case.

Borel Eisenstein series. In this paper we consider the problem of establishing
the absolute convergence of Eisenstein series on arbitrary Kac–Moody groups, for
spectral parameters λ in the traditionally-studied Godement range (i.e., Re(λ−ρ)

is strictly dominant). We indeed establish their almost-everywhere convergence in
this generality, and additionally show the absolute convergence for a wide class of
groups.

More precisely, let G be a representation-theoretic Kac–Moody group, and
let g be the corresponding real Kac–Moody algebra with a fixed Cartan subalge-
bra h. We assume that g is infinite-dimensional and non-affine, since the finite-
dimensional and affine cases have been well studied. Let r = dim(h) denote the
rank of G, I the index set {1, . . . , r}, and Φ+ (resp., Φ−) the positive (resp., nega-
tive) roots of gC. Then GR has the Iwasawa decomposition GR = UA+K, where
U is a maximal pro-unipotent subgroup, A+ is the connected component of a max-
imal torus, and K is a subgroup of G playing the role of the maximal compact
subgroup from the finite-dimensional theory. (See Section 2 for more details.)

We formally define the Borel Kac–Moody Eisenstein series Eλ(g) for g ∈GR
and λ ∈ h∗C by

(1.1) Eλ(g) =
∑

γ∈(Γ∩B)\Γ

a(γg)λ+ρ,

where a(g) is the A+–component of the Iwasawa decomposition of g, ρ is the Weyl
vector, Γ = GZ is the arithmetic subgroup defined at the end of Section 2, and
B ⊃ UA+ is a Borel subgroup. The goal of this paper is to study the convergence
and analyticity of this formal sum. Our main result can be stated as follows:

THEOREM 1.1. Assume that λ ∈ h∗C satisfies Re(⟨λ,α∨
i ⟩)> 1 for each simple

coroot α∨
i , i ∈ I , and that Property 4.2 holds. Then the Kac–Moody Eisenstein

series Eλ(g) converges absolutely for g ∈ ΓUACK, where AC ⊂ A+ is the image
of the Tits cone C under the exponential map exp : h→A+.

The condition on λ is precisely the Godement range, and appears in the classi-
cal theory [La2]. Property 4.2 and hence the conclusions of Theorem 1.1 hold for
all G of rank 2 (Proposition 4.4), as well when the Cartan matrix is symmetric and
has sufficiently large entries (Proposition 4.3). However, Property 4.2 is not true for
all Kac–Moody root systems—it even fails in the finite-dimensional Example 4.5.

Though a Godement condition is very natural on the spectral parameter, it is
not clear what the full range of absolute convergence of Eλ(g) is in the variable g.
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Theorem 1.1 adopts a Tits cone constraint, one which naturally occurs in the liter-
ature when studying simpler sums, e.g., in the Lemma of Looijenga [Lo] (see also
[K, Section 10.6]) quoted in Lemma 3.2, which corresponds to g in the set UACK.
The extension to the domain ΓUACK—which Proposition 4.10 shows is in fact
larger—comes from the Γ-invariance in (1.1).

In order to prove Theorem 1.1 we consider the constant term E♯
λ(g) of the

series Eλ(g), which is computed by the Gindikin–Karpelevich formula, and estab-
lish its absolute convergence in Theorem 3.3. This is achieved by using Looijenga’s
Lemma and the observation that M ℓ(w)c(λ,w) is bounded for any fixed M > 0, as
w varies over the Weyl group W . Here the function c(λ,w) is the product of ratios
of the Riemann ζ-function defined in (3.2). Unlike Theorem 1.1, which assumes
Property 4.2, Theorem 3.3 and its almost-everywhere convergence Corollary 3.4
hold for all symmetrizable G.

In Section 4 we show that the Kac–Moody Eisenstein series Eλ(g) is domi-
nated by a sum over the Weyl group W , which is a close variant of the constant
term E♯

λ(g). Having proved the convergence of E♯
λ(g) in Theorem 3.3, we use some

consequences of Property 4.2 to establish Theorem 1.1.

Remark. Though Theorem 1.1 is stated only for Borel Eisenstein series, its
conclusions (with modifications just as in the classical finite-dimensional set-
ting) hold for cuspidally induced Eisenstein series as well, at least for parabolics
with finite-dimensional Levi components. This is because cusp forms on finite-
dimensional semisimple groups are bounded, hence bounded above by certain
Borel Eisenstein series on the Levi component. A parabolic Eisenstein series
for G induced from such an Eisenstein series is itself a Borel Eisenstein series
for G, hence Theorem 1.1 implies a corresponding convergence statement for
Eisenstein series induced from cusp forms. See [Bo, Proposition 12.6], [MW,
Proposition II.1.5], and [G11, Section 3], where this argument is carried out
in more detail in simpler settings. For the same reason, the weaker statements
Theorem 3.3 and Corollary 3.4 also transfer to results for almost-everywhere
convergence for cuspidally-induced Eisenstein series.

We expect Kac–Moody Eisenstein series to provide interesting applications.
In analogy with SL2(Z), the group E10(Z) is conjectured to be the discrete in-
variance group for certain functions that arise in 11-dimensional supersymmetric
string theory [DKN, Ga]. Automorphic forms on E10 and E11 are conjectured to
encode higher derivative corrections in string theory and M-theory [DN, DHH+,
FGKP, W].

Eisenstein series on Kac–Moody groups GR are invariant under translations by
GZ and hence have Fourier expansions. In [CLL], the authors defined and calcu-
lated the degenerate Fourier coefficients for Eisenstein series on rank 2 hyperbolic
Kac–Moody groups over R. Fleig [Fl] gave the Fourier integrals needed to ob-
tain the constant term and higher order Fourier modes for Eisenstein series on E9,
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E10, and E11, and showed how the string scattering amplitude “collapse mecha-
nism” of [FK] extends to the higher order Fourier modes. He also gave explicit
expressions for the constant terms and Fourier modes of some Kac–Moody Eisen-
stein series. However, these calculations tacitly assume absolute convergence (and
in some cases, meromorphic continuation) of the Kac–Moody Eisenstein series,
which has yet to be accomplished for E10 and E11; Theorem 1.1 does not cover
these cases because of its restrictive assumption of Property 4.2.

Acknowledgments. It is a pleasure to thank our colleagues Alexander Braver-
man, Daniel Bump, Solomon Friedberg, Michael B. Green, Henrik Gustafsson,
Jeffrey Hoffstein, David Kazhdan, Henry Kim, Axel Kleinschmidt, Manish Pat-
naik, Daniel Persson, Peter Sarnak, Freydoon Shahidi, and Pierre Vanhove for their
helpful conversations.

2. Kac–Moody groups. Let I = {1,2, . . . , r}, A = (aij)i,j∈I be an r× r

symmetrizable generalized Cartan matrix, and (h,∆,∆∨) be a realization of A,
where ∆ = {α1, . . . ,αr} ⊂ h∗ and ∆∨ = {α∨

1 , . . . ,α
∨
r } ⊂ h are the set of simple

roots and set of simple coroots, respectively (see [K, Section 1] for definitions).
Throughout this paper we shall make the simplifying assumption that A is

nonsingular, which means that h and h∗ are spanned by the simple roots αi and
simple coroots α∨

i , respectively. In particular we intentionally exclude the affine
case, which has been studied extensively in Garland’s works and in [GMP] (and
which has a somewhat different flavor anyhow).

Recall that ⟨αj ,α
∨
i ⟩= aij for i, j ∈ I , where ⟨·, ·⟩ is the natural pairing between

h∗ and h. Denote the fundamental weights by ϖi ∈ h∗, i ∈ I , which form the basis
of h∗ dual to the α∨

i . Their integral span is the weight lattice P .
Let gC = gC(A) be the Kac–Moody algebra associated to (h,∆,∆∨). We de-

note by Φ the set of roots of gC and have Φ = Φ+ ⊔Φ−, where Φ+ (resp. Φ−)
is the set of positive (resp. negative) roots corresponding to the choice of ∆. Let
wi := wαi denote the simple Weyl reflection associated to the simple root αi; the
wi for i ∈ I generate the Weyl group W of gC. A root α ∈ Φ is called a real root
if there exists w ∈W such that wα is a simple root. A root α which is not real is
called imaginary. For each real root α written as wαi for some w ∈W and i ∈ I ,
its associated coroot is well defined by the formula α∨ = wα∨

i [Ku, 1.3.8].
For i ∈ I let ei and fi be the Chevalley generators of gC; we denote by g the

real Lie subalgebra they generate, so that gC = g⊗R C. Let UC be the universal
enveloping algebra of gC. Let Λ⊆ h∗ be the integral linear span of the simple roots
αi, i ∈ I , and let Λ∨ ⊆ h be the integral span of the simple coroots α∨

i , i ∈ I . Let
UZ ⊆ UC be the Z–subalgebra generated by

emi
m!

,
fm
i

m!
, and

(
h
m

)
=

h(h−1) · · ·(h−m+1)
m!

for i ∈ I , h ∈ Λ∨, and m≥ 0 (see [CG, Section 4]).
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We will now review the representation theoretic Kac–Moody groups GF as-
sociated to g and a field F . The paper [CG] provides an explicit construction for
arbitrary fields F , and we shall presently review the construction for the fields Q,
R, and Qp. Keeping this in mind, we assume F ⊃Q.

Let (π,V ) denote the unique irreducible highest weight module for g corre-
sponding to a choice of some dominant integral weight, and let v ∈ V be a nonzero
highest weight vector. We set

VZ = UZ ·v.
Then VZ is a UZ–module contained in VF = F ⊗ZVZ. Since V is integrable, ei and
fi are locally nilpotent on V and VZ. It follows that they are locally nilpotent on
VF and hence elements of End(VF ). Thus for s, t ∈ F and i ∈ I , their exponentials

uαi(s) = exp(π(sei)) and u−αi(t) = exp(π(tfi))

are actually locally finite sums (meaning their action on any fixed vector is given
by a finite sum), and thus define elements of Aut(VF ).

For t ∈ F× and i ∈ I we set

wαi(t) = uαi(t)u−αi(−t−1)uαi(t)

and define
hαi(t) = wαi(t)wαi(1)

−1.

Each simple root αj defines a character on {hαi(t)|t ∈ F×} by

(2.1) hαi(t)
αj = t⟨αj ,α

∨
i ⟩.

The subgroup ⟨wαi(1) : i ∈ I⟩ of Aut(VF ) contains a full set of Weyl group repre-
sentatives. For a real root α we let uα(s), s ∈ F , denote a choice of corresponding
one-parameter subgroup, chosen so that

(2.2) uα(s) = wuαi(±s)w−1 ∈ Aut(VF ) (s ∈ F )

for w=wβ1(1) · · ·wβℓ
(1) and α=wβ1 · · ·wβℓ

αi, for some i∈ I , where β1, . . . ,βℓ ∈
∆.

We let

G0
F = ⟨uαi(s),u−αi(t) : s, t ∈ F, i ∈ I⟩ ⊂ Aut(VF ).

Choose a coherently ordered basis (see [CG, Section 5]) Ψ = {v1,v2, . . .} of VZ,
and denote by B0

F the subgroup of G0
F consisting of elements which act upper-

triangularly with respect to Ψ. For t ∈ Z>0, we let Ut be the span of the vs ∈Ψ for
s≤ t. Then B0

FUt ⊆ Ut for each t. Let Bt be the image of B0
F in Aut(Ut). We then

have surjective homomorphisms

πtt′ : Bt′ −→Bt, t′ ≥ t,
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which we use to define BF as the projective limit of the projective family {Bt,πtt′}.
When the field F is unspecified, B is to be interpreted as BR.

We define a topology on G0
F by decreeing that a base of open neighborhoods

of the identity is given by the sets

Vt = {g ∈G0
F : gvi = vi, i= 1,2, . . . , t}.

Let GF be the completion of G0
F with respect to this topology. (See [CLL] for

more details.) If R ⊃ Z is a subring of F , the subgroup GR ⊂ GF is defined as
the stabilizer of VZ ⊗Z R in GF . For future reference, we define the following
subgroups of GF which play an important role in the rest of the paper:

• AF = ⟨hαi(s) : s ∈ F×, i ∈ I⟩; and
• UF ⊂ BF is defined exactly as BF , but with the additional stipulation that

elements act unipotently upper triangularly with respect to Ψ. It contains all sub-
groups parameterized by the uα(·), where α ∈ Φ+ is a real root. Then BF =

UFAF =AFUF . When no subscript is given, U is to be interpreted as UR.
Additionally, the following subgroups are specific to the situation F = R:

• K is the subgroup of GR generated by all exp(t(ei− fi)), t ∈ R and i ∈ I

[KP]; and
• A+ = ⟨hαi(s) : s ∈ R>0, i ∈ I⟩. In fact, (R>0)

r can be identified with A+

via the isomorphism (x1, . . . ,xr) 7→ hα1(x1) · · ·hαr(xr), under which A+ has the
Haar measure da corresponding to

∏r
i=1

dxi
xi

.

THEOREM 2.1 ([DGH]). We have the Iwasawa decomposition

(2.3) GR = UA+K,

with uniqueness of expression.

We let u(g), a(g), and k(g) denote the projections from GR onto each of the
respective factors in (2.3). We define the discrete group Γ=GZ as GR∩Aut(VZ) =

{γ ∈ GR : γ ·VZ = VZ}. As in [G04], it can be shown that (Γ∩U)\U is the pro-
jective limit of a projective family of finite-dimensional compact nil-manifolds and
thus admits a projective limit measure du, a right U -invariant probability measure.

3. Convergence of the constant term. Using the identification of A+ with
(R>0)

r, each element of h∗ gives rise to a quasicharacter of A+ by (2.1) and lin-
earity. Let λ ∈ h∗ and let ρ ∈ h∗ be the Weyl vector, which is characterized by
⟨ρ,α∨

i ⟩= 1, i ∈ I . We set

Φλ : GR → C×

Φλ : g 7→ a(g)λ+ρ,
(3.1)

which is well defined by the uniqueness of the Iwasawa decomposition. Clearly,
Φλ is left U -invariant and right K-invariant.
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Let B and Γ be as defined in Section 2. Define the Eisenstein series on GR to
be the infinite formal sum

Eλ(g) =
∑

γ∈(Γ∩B)\Γ

Φλ(γg).

Assume first that λ is a real linear combination of the αi, i ∈ I , so that Φλ > 0.
Then we may interpret the infinite sum Eλ(g) as a function taking values in (0,∞].
Moreover, the function Eλ may be regarded as a function on

(Γ∩U)\GR/K ∼= (Γ∩U)\U ×A+

by the Iwasawa decomposition (2.3). We define for all g ∈GR the so-called “upper
triangular” constant term

E♯
λ(g) =

∫
(Γ∩U)\U

Eλ(ug)du,

which is left U -invariant and right K-invariant. (This is to be distinguished from
the proposal in [BK] to consider constant terms in uncompleted, or so-called “lower
triangular”, parabolics.) In particular E♯

λ(g) is determined by the A+-component
a(g) of g in the Iwasawa decomposition. Applying the Gindikin–Karpelevich for-
mula, a formal calculation as in [G04] yields that

(3.2) E♯
λ(g) =

∑
w∈W

a(g)wλ+ρc(λ,w) with c(λ,w) =
∏

α∈Φw

ξ(⟨λ,α∨⟩)
ξ(1+ ⟨λ,α∨⟩)

,

where

(3.3) Φw =Φ+∩w−1Φ−, w ∈W,

and ξ(s) is the completed Riemann ζ-function

ξ(s) = ΓR(s)ζ(s),

where ΓR(s) = π−s/2Γ(s/2). We shall often make use of the following explicit
parametrization of Φw, where w is written as a reduced word (i.e., minimal length)
w = wi1wi2 · · ·wiℓ in the generators {wi : i ∈ I} of W :

(3.4) Φw = {αiℓ , wiℓαiℓ−1 , wiℓwiℓ−1αiℓ−2 , . . . ,wiℓ · · ·wi2αi1}

(see [Ku, Lemma 1.3.14]).
Returning to (3.2), we now state an elementary estimate on the Riemann ζ-

function from analytic number theory.
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LEMMA 3.1. One has

lim
σ→∞

max
t∈R

∣∣∣∣ ξ(σ+ it)

ξ(σ+1+ it)

∣∣∣∣= 0.

Proof. It follows from the Euler product ζ(s) =
∏

p
1

1−p−s that

logζ(s) =−
∑
p

log(1−p−s) =
∑
n≥2

cnn
−s,

where

cn =

{
1/k if n= pk for prime p,

0 otherwise.

In particular |cn| ≤ 1, hence

| logζ(σ+ it)| ≤
∑
n≥2

|cn|n−σ ≤
∑
n≥2

n−σ −→ 0, as σ → ∞,

e.g., by dominated convergence. Therefore lim
σ→∞

ζ(σ+ it) = 1 uniformly in t ∈ R.
On the other hand, it is easy to see from standard properties of Γ-functions (or
applying dominated convergence to the integral formula (4.2)) that

lim
σ→∞

ΓR(σ+ it)

ΓR(σ+ it+1)
= 0,

again uniformly in t ∈ R. Thus the Lemma follows by multiplying these two esti-
mates. □

Let C ⊂ h be the open fundamental chamber

C = {x ∈ h : ⟨αi,x⟩> 0, i ∈ I}.

Let C denote the interior of the Tits cone
⋃

w∈W wC corresponding to C [K, Sec-
tion 3.12]. Using the exponential map exp : h → A+, set AC = expC and AC =

expC. Let

(3.5) C∗ = {λ ∈ h∗ : ⟨λ,α∨
i ⟩> 0, i ∈ I}.

Let K be a compact subset of C and µ ∈ P ∩C∗. We define AK,µ(N) to be the
number of µ′ in the Weyl orbit W · {µ} whose maximum on K is ≥−N . We now
recall a lemma due to Looijenga [Lo] (which is contained in Lemma 3.2 and the
beginning of the proof of Proposition 3.4 there—see also [K, Section 10.6]).

LEMMA 3.2. We have AK,µ(N) =O(N r) as N →∞. Furthermore, for λ∈ h∗C
with Re(λ)∈ C∗,

∑
w∈W awλ converges absolutely and uniformly for a in any fixed

compact subset of AC.

We apply Lemmas 3.1 and 3.2 to show the following convergence result.
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THEOREM 3.3. If λ ∈ h∗C satisfies Re(λ−ρ) ∈ C∗, then E♯
λ(g) given in (3.2)

converges absolutely for g ∈ UACK, and in fact uniformly for a(g) lying in any
fixed compact subset of AC.

Proof. By applying absolute values, we may assume without loss of generality
that λ is real. Let S ≥ 1 be a constant such that | ξ(s)

ξ(s+1) | ≤ 1 when Re(s)>S, which
exists by Lemma 3.1. Since ⟨λ,α∨

i ⟩ > 1 for all i ∈ I , we see that ⟨λ,α∨⟩ > S for
all but finitely many positive roots α. Therefore c(λ,w) is bounded in w ∈W , and
the convergence follows from that of

∑
w∈W awλ in Lemma 3.2. □

By applying Tonelli’s theorem as in [G04, Section 9], we obtain the following
result for arbitrary Kac–Moody groups.

COROLLARY 3.4. For λ ∈ h∗C with Re(λ−ρ) ∈ C∗ and any compact subset S
of AC, there exists a measure zero subset S0 of (Γ∩U)\US such that the series
Eλ(g) converges absolutely for g ∈ USK off the set S0K.

For later use, we further strengthen Lemma 3.2 and prove that

THEOREM 3.5. Assume that λ ∈ h∗C with Re(λ) ∈ C∗. Then for any M > 0,∑
w∈W

M ℓ(w)awλ

converges absolutely and uniformly for a in any fixed compact subset of AC.

Proof. We take advantage of the fact that the constraints on both λ and a are
preserved under small perturbations. Let s > 0 be sufficiently small so that λ′ :=
λ−sρ ∈ C∗. Then

M ℓ(w)awλ =M ℓ(w)awsρ+wλ′ ≤ 1
2
(
M2ℓ(w)a2wsρ+a2wλ′)

.

Since the convergence of
∑

w∈W a2wλ′
is handled by Lemma 3.2, it suffices to

prove the absolute and uniform convergence of∑
w∈W

M2ℓ(w)a2wsρ =
∑
w∈W

T ℓ(w)a2wsρ, T =M2,

for a in any fixed compact subset of AC, for any T,s > 0.
Using the fact that

(3.6) ρ−wρ=
∑

α∈Φw−1

α
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is a sum of ℓ(w) positive roots (see (3.4) and [Ku, 1.3.22 (3)]), we may write

T ℓ(w)a2wsρ = a2sρ
∏

α∈Φw−1

Ta−2sα = a2sρ
∏

α∈Φw−1

(Ta−sα)a−sα.

We shall prove that asα > T for all but finitely many positive roots α (in partic-
ular, those in Φw−1). Assuming this momentarily, the parenthetical term Ta−sα is
bounded, and can only be greater than 1 for finitely many positive roots α. Hence
there exists a constant D > 0 depending continuously on a,s and T such that

T ℓ(w)a2wsρ ≤Da2sρ
∏

α∈Φw−1

a−sα =Da2sρas(wρ−ρ) =Das(wρ+ρ).

Hence ∑
w∈W

T ℓ(w)a2wsρ ≤Dasρ
∑
w∈W

aw(sρ),

and the Theorem follows from a second application of Lemma 3.2.
Finally, we return to the claim that asα > T for all but finitely many positive

roots α. Let Hρ denote the unique element of h such that ⟨αi,Hρ⟩ = ⟨ρ,α∨
i ⟩ = 1

for all i ∈ I (it exists by the assumed nondegeneracy of the Cartan matrix). Since
a is assumed to lie in the open set AC, there exists some ε > 0 such that a= a1a2,
with a1 also an element of AC and a2 = eεHρ . Then

(3.7) asα = asα1 asα2 = asα1 eεs⟨α,Hρ⟩.

Since a1 ∈ AC, the values of aα1 are at least 1 for all but finitely many α [K,
Prop. 3.12(c)]. At the same time, ⟨α,Hρ⟩ is the sum of the (nonnegative) coeffi-
cients of α when expanded as a linear combination of simple roots, and thus tends
to infinity as α varies. The claim now follows from (3.7). □

4. Everywhere convergence of Eisenstein series. In the previous section
we demonstrated the almost-everywhere absolute convergence of Eisenstein series.
In this section we will prove the absolute convergence of the Eisenstein series on
ΓUACK under Godement’s criterion on the spectral parameter λ, subject to a con-
dition (Property 4.2) on the root system of the Kac–Moody group. The key idea is
that the Eisenstein series can be nearly bounded by its constant term.

We start with some calculations for the group SL(2,R). It follows from direct
computation that

(4.1) a

((
0 −1
1 u

))α

=

(
1√

1+u2 0
0

√
1+u2

)α

=
1

1+u2 ,
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where α is the positive simple root of the diagonal Cartan. Define

c∞(s) :=
∫
R
a

((
0 −1
1 u

))(s+1)α/2

du

=

∫
R
(1+u2)−

s+1
2 du =

ΓR(s)

ΓR(s+1)
, Re(s)> 0.

(4.2)

Returning to the setting of a general Kac–Moody group GR, we shall now assume
that λ ∈ h∗C is actually real, i.e., λ ∈ h∗, since this entails no loss of generality in
considering absolute convergence. Recall the notation uα(x) from (2.2).

LEMMA 4.1. Assume that α is a positive simple root such that ⟨λ,α∨⟩ > 0
(equivalently, ⟨λ+ ρ,α∨⟩ > 1). For any x ∈ R and g = uak ∈ GR, with u ∈ U ,
a ∈A+, and k ∈K, we have∑

m∈Z
a(wαuα(x+m)g)λ+ρ ≤ awα(λ+ρ)

(
2+aαc∞(⟨λ,α∨⟩)

)
.

In particular, for any ϵ > 0 there exists a constant M =Mϵ > 2 such that

(4.3)
∑
m∈Z

a(wαuα(x+m)g)λ+ρ ≤Mawα(λ+ρ)(1+aα)

whenever ⟨λ,α∨⟩ ≥ ϵ, uniformly over x ∈ R.

Proof. Factor u= uα(y)u
(α), where y ∈R and u(α) lies in the unipotent radical

U (α) of the parabolic subgroup whose Levi component is generated by A and the
one parameter subgroups u±α(·). Then since wαuα(x+m+y) lies inside this Levi,
it normalizes U (α). Hence we may write

a(wαuα(x+m)g) = a(wαuα(x+m+y)u(α)ak)

= a(wαuα(x+m+y)a),

since U (α) ⊂ U . As x is arbitrary and plays no role in the asserted upper bounds,
we may replace x by x−y so that we are instead considering the sum

(4.4)
∑
m∈Z

a(wαuα(x+m)a)λ+ρ = awα(λ+ρ)
∑
m∈Z

a(wαuα(a
−α(x+m)))λ+ρ.

Recalling (4.1), the sum (4.4) becomes

awα(λ+ρ)
∑
m∈Z

(1+a−2α(x+m)2)−
1
2 ⟨λ+ρ,α∨⟩.
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Since ⟨λ+ ρ,α∨⟩ = ⟨λ,α∨⟩+ 1, comparing the sum to its corresponding integral
gives the estimate

∑
m∈Z

(1+a−2α(x+m)2)−
s+1

2 ≤ 2+
∫
R
(1+a−2αx2)−

s+1
2 dx

= 2+aα c∞(s),

for s = ⟨λ,α∨⟩ > 0. The second statement (4.3) for M = max(2, c∞(ϵ)) now fol-
lows from the bound of c∞(⟨λ,α∨⟩)≤ c∞(ϵ). □

We wish to generalize (4.3) to arbitrary w ∈W by induction on ℓ(w), which is
the most complicated part of the argument. For technical reasons we need to intro-
duce the following property. Recall the notation Φw = Φ+ ∩w−1Φ− from (3.3)–
(3.4).

PROPERTY 4.2. Every nontrivial w ∈ W can be written as w = vwβ , where
β is a positive simple root, ℓ(v) < ℓ(w), and α− β is never a real root for any
α ∈ Φv.

It is not hard to see (e.g., see [T, Section 3.2]) that Property 4.2 is unchanged
if the word “real” is omitted. This is because if α−β = α+wββ is a (necessar-
ily, positive) root, then v(α−β) = vα+wβ is a negative root (cf. (3.4)), and all
elements of Φv are real roots (again appealing to (3.4)).

Although Property 4.2 does not hold for arbitrary Kac–Moody root systems
(see Example 4.5 for counterexamples), we shall nevertheless demonstrate that it
holds in infinitely many examples.

PROPOSITION 4.3. Property 4.2 holds if the Cartan matrix A = (aij) of g is
symmetric and |aij | ≥ 2 for all i, j ∈ I .

Proof. First we claim that if wi1 · · ·wik is a reduced word and the (positive, by
(3.4)) root wik · · ·wi2αi1 is expanded as

∑
j∈Imjαj , then mik > mj for j ̸= ik.

Indeed, this can be seen as follows by induction, the case k = 2 being a conse-
quence of our assumption. Assume that the claim is true for k. Then we write
wik+1wik · · ·wi2αi1 =

∑
j∈Im

′
jαj and obtain

∑
j∈I

m′
jαj = wik+1

∑
j∈I

mjαj

=mik(αik −aik+1ikαik+1)−mik+1αik+1

+
∑

j ̸=ik,ik+1

mj(αj −aik+1jαik+1).
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We have m′
j =mj <mik =m′

ik
for j ̸= ik, ik+1 and

m′
ik+1

=−mikaik+1ik −mik+1 −
∑

j ̸=ik,ik+1

mjaik+1j >mik =m′
ik
,

since −(1+aik+1ik)mik −mik+1 ≥mik −mik+1 > 0. This proves the claim.
We now claim that for any reduced word w = wi1 · · ·wiℓ , one has ⟨α,α∨

iℓ
⟩< 0

for each α∈Φv, where v=wi1 · · ·wiℓ−1 . By (3.4) the elements of Φv can be written
as wiℓ−1 · · ·wik+1αik , k = 1, . . . , ℓ− 1. By the above claim, if wiℓ−1 · · ·wik+1αik =∑

j∈Imjαj , then miℓ−1 > mj for j ̸= iℓ−1. In particular, miℓ−1 > miℓ since iℓ ̸=
iℓ−1 for a reduced word. Therefore

⟨wiℓ−1 · · ·wik+1αik ,α
∨
iℓ
⟩=

〈∑
j∈I

mjαj ,α
∨
iℓ

〉
=
∑
j ̸=iℓ

mjaiℓj +2miℓ

≤miℓ−1aiℓiℓ−1 +2miℓ < 0
(4.5)

after dropping all but the j = iℓ−1 term from the sum.
Let (·|·) denote the symmetric bilinear form on h∗ defined in [K, Section 2.3],

which in general involves a choice of scaling by a positive constant; since A is
symmetric it can be written as (αi|αj) = aij = ⟨αj ,α

∨
i ⟩. The bilinear form (·|·) is

Weyl invariant [K, Prop. 3.9], and so one has (β|β) = (αi|αi) for any root of the
form β = wαi, for some w ∈ W and i ∈ I . On the other hand, [K, Prop. 5.2(c)]
shows that (β|β) ≤ 0 for any imaginary root (that is, a root which is not a Weyl
translate of a simple root). Thus in any event one has

(4.6) (β|β)≤ max
i∈I

(αi|αi)

for any root β. For later reference we remark that even though A here is assumed
to be symmetric, the conclusion (4.6) nevertheless holds even if A is merely sym-
metrizable (with (·|·) as defined in [K, Section 2.3], or any positive scalar multiple
of it).

Let α= wiℓ−1 · · ·wik+1αik be an element of Φv, where 1 ≤ k ≤ ℓ−1. Since

(4.7) Φw = wiℓΦv ∪{αiℓ}

by (3.4), α cannot equal αiℓ , for if it did then −αiℓ = wiℓα ∈ Φw would be a
positive root. We compute

(α−αiℓ |α−αiℓ) = (αik |αik)+(αiℓ |αiℓ)−2(α|αiℓ)

= 4−2⟨α,α∨
iℓ
⟩> 4

using the second claim above. Thus α−αiℓ is not a root for α ∈ Φv. □
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Unfortunately Proposition 4.3’s restrictive assumption on |aij | rules out many
cases of interest. In fact, only one hyperbolic Kac–Moody algebra of rank ≥ 3 sat-

isfies its hypotheses, namely the one having A=
( 2 −2 −2
−2 2 −2
−2 −2 2

)
. In contrast, however,

the assumptions of Proposition 4.3 hold for many rank 2 hyperbolic root systems,
even ones with non-symmetric Cartan matrices:

PROPOSITION 4.4. Let A =
( 2 −b
−a 2

)
, a,b ≥ 2 and ab ≥ 5. Then Property 4.2

holds for the Kac–Moody root system associated to A.

Proof. The Weyl group of the root system is the infinite dihedral group gener-
ated by the simple reflections w1 and w2. In terms of the basis {α1,α2} of h∗, w1

acts by the matrix
(−1 b

0 1

)
and w2 acts by the matrix

(
1 0
a −1

)
. Since w1 and w2 play

symmetric roles, it suffices to establish Property 4.2 in the case that β = α2. Thus
w= vwβ is represented by a reduced word ending in w2, and hence v is represented
by a reduced word ending in w1. In particular, v must have the form (w2w1)

m or
w1(w2w1)

m for some m≥ 0. The roots α ∈ Φv either have the form

(w1w2)
nα1 or (w1w2)

nw1α2,

for some n≥ 0 by (3.4). To establish Property 4.2, we show that none of

(4.8) (w1w2)
nα1 −α2 or (w1w2)

nw1α2 −α2, n≥ 0,

are roots. Following the strategy in the proof of Proposition 4.3, we will use the
symmetric bilinear form (·|·) on h∗ associated to the symmetrized matrix

(
a 0
0 b

)
A=( 2a −ab

−ab 2b

)
, and appeal to condition (4.6), which on our context states that

(4.9) (β|β)≤ max{2a,2b}

for any root β.
Let µ=

√
ab+

√
ab−4

2 > 1 and hn = 1
µ−µ−1 (µ

n−µ−n), which is a monotonically
increasing function of n satisfying

hn+2 = hn+µn+1 +µ−n−1.

Since
√
ab > 2 we have for any n≥ 1 that

√
abhn+2 −2hn+1 =

√
ab(µn+1 +µ−n−1)−2(µn+µ−n)+

√
abhn−2hn−1

>
√
abhn−2hn−1.

Repeating, we obtain
√
abh2n+2 −2h2n+1 ≥

√
abh2 −2h1 = ab−2,

√
abh2n+1 −2h2n ≥

√
abh1 −2h0 =

√
ab > 2

(4.10)

for any n≥ 0.
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It follows from the formulas for the Weyl action that

(w1w2)
nα1 = h2n+1α1 +

√
a√
b
h2nα2,

(w1w2)
nw1α2 =

√
b√
a
h2n+2α1 +h2n+1α2

(the case n = 0 is obvious, and both sides satisfy the same recurrence relations
in n). Since (·|·) is W -invariant and

√
ab > 2, we compute(

(w1w2)
nα1 −α2|(w1w2)

nα1 −α2
)

= (α1|α1)+(α2|α2)−2
(
(w1w2)

nα1|α2
)

= 2a+2b−2
(
h2n+1α1 +

√
a√
b
h2nα2|α2

)
= 2a+2b+2abh2n+1 −4

√
abh2n

= 2a+2b+2
√
ab(

√
abh2n+1 −2h2n)

> 2a+2b > max{2a,2b},

so that (w1w2)
nα1 −α2 cannot be a root according to (4.9).

Similarly, (
(w1w2)

nw1α2 −α2|(w1w2)
nw1α2 −α2

)
= 2(α2|α2)−2

(
(w1w2)

nw1α2|α2
)

= 4b−2
(√

b√
a
h2n+2α1 +h2n+1α2|α2

)
= 4b+2

√
b√
a
abh2n+2 −4bh2n+1

= 4b+2b(
√
abh2n+2 −2h2n+1)

≥ 4b+2b(ab−2) = 2ab2 > max{2a,2b},

where we have used the assumption a,b≥ 2. Thus (w1w2)
nw1α2−α2 is not a root

either. □

Example 4.5. (1) Let Φ be the root system for the (non-symmetric generalized)
Cartan matrix A =

( 2 −1
−a 2

)
, a ≥ 5 (so that detA < 0). Consider w = wα2wα1wα2 ,

which is the unique reduced for w of minimal length. Letting v = wα2wα1 and
β = α2, we see wα1α2 ∈ Φv and wα1α2 −α2 = α1, hence Property 4.2 does not
hold for this Kac–Moody root system.

(2) Let Φ be the A2 root system and consider w = wα2wα1wα2 = wα1wα2wα1 .
Then Property 4.2 does not hold for w, regardless of how it is written as a reduced
word.

In the rest of this section we will establish our main result on convergence
(which assumes Property 4.2).
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Definition 4.6. Assume that Property 4.2 holds. Then by recursion any non-
trivial w ∈W can be expressed as a reduced word w = wβ1 · · ·wβℓ

such that

α−βi+1 is never a root for any α ∈ Φvi , i= 1,2, . . . , ℓ−1,

where vi = wβ1 · · ·wβi
. Such a reduced word will be called an admissible word

for w.

LEMMA 4.7. Assume Property 4.2 and that λ ∈ C∗. Let w = wβ1 · · ·wβℓ
be an

admissible word for w ∈W and again set vi = wβ1 · · ·wβi
. Then

(4.11)
〈
v−1
i (λ+ρ)+

∑
α∈Si

α,β∨
i+1

〉
> 1, i= 1,2, . . . , ℓ−1,

for any subset Si of Φvi .

Proof. For α ∈ Φvi , consider the root string α+mβi+1, m ∈ Z. Since α and
βi are real roots and α− βi+1 is not a root by Property 4.2, we have by [K,
Prop. 5.1(c)] that

⟨α,β∨
i+1⟩=−max{m : α+mβi+1 is a root} ≤ 0.

Note that (4.11) is equivalent to

⟨v−1
i λ−

∑
α∈Φvi

\Si

α,β∨
i+1⟩> 0

by (3.6). Since λ ∈ C∗ and the fact that viβ∨
i+1 is a positive root (cf. (3.4)), we have〈

v−1
i λ−

∑
α∈Φvi

\Si

α,β∨
i+1

〉
≥ ⟨v−1

i λ,β∨
i+1⟩= ⟨λ,viβ∨

i+1⟩> 0,

and the claim follows. □

Let Uw ⊂U be the subgroup generated by the one-parameter subgroups for the
roots in Φw.

LEMMA 4.8. Assume Property 4.2 and let w = wβ1 · · ·wβℓ
be an admissible

word for an element w ∈W (see Definition 4.6). Suppose that

u= uν1(x1) · · ·uνℓ(xℓ) ∈ Uw and γ = uν1(m1) · · ·uνℓ(mℓ) ∈ Γ∩Uw

for x1, . . . ,xℓ ∈R and m1, . . . ,mℓ ∈Z, where νi=wβℓ
· · ·wβi+1βi ∈Φw, i= 1, . . . , ℓ

(cf. (3.4)). Then

wuγ = wβ1uβ1(ϵ1(x1 +m1)) · · ·wβℓ
uβℓ

(ϵℓ(xℓ+mℓ))
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for some signs ϵ1, . . . , ϵℓ ∈ {−1,1} depending only on β1, . . . ,βℓ and the choice of
Weyl group representatives in Aut(VF ).

Proof. We will show that the sum of the positive real roots νi and νj is not
a root, which implies that their root spaces and hence one-parameter subgroups
uνi(·) and uνj (·) commute. The Lemma then follows immediately from this com-
mutativity, since

uγ = uν1(x1 +m1) · · ·uνℓ(xℓ+mℓ)

and one can apply (2.2).
After multiplying on the left by wβj

· · ·wβℓ
, the claim that νi+νj is not a root

is equivalent to the statement that

wβj−1 · · ·wβi+1βi−βj , 1 ≤ i < j ≤ ℓ,

is never a root. This follows from Definition 4.6 since

wβj−1 · · ·wβi+1βi ∈ Φvj−1 ,

where vj−1 = wβ1 · · ·wβj−1 satisfies

vj−1wβj−1 · · ·wβi+1βi = wβ1 · · ·wβi−1(wβi
βi) =−wβ1 · · ·wβi−1βi

and we have used (3.4). □

We can now prove the convergence of Eisenstein series on Kac–Moody groups
satisfying Property 4.2, after establishing one more lemma.

LEMMA 4.9. Assume that λ ∈ C∗ and Property 4.2. Then there exists a con-
stant M > 0 depending continuously on λ such that, for an admissible word w =

wβ1 . . .wβℓ
,∑

m1,...,mℓ∈Z
a(wβ1uβ1(x1 +m1) · · ·wβℓ

uβℓ
(xℓ+mℓ)g)

λ+ρ

≤M ℓaw
−1(λ+ρ)

∏
α∈Φw

(1+aα),

uniformly for x1, . . . ,xℓ ∈ R, g ∈GR, and a= a(g).

Proof. Since λ is in the open chamber C∗, there exists a positive constant ϵ > 0
such that λ− ϵρ ∈ C∗. In particular, ⟨λ,α∨⟩ ≥ ϵ for any positive root α. We will
prove the lemma with the value M = max(2, c∞(ϵ)) from the proof of Lemma 4.1,
using an induction on ℓ= ℓ(w). Indeed, the case ℓ= 1 is precisely (4.3).

Assume the Lemma is known for v = wβ1 · · ·wβℓ−1 . Recall from (3.4) that

Φv =Φ+∩v−1Φ− = {βℓ−1,wβℓ−1βℓ−2, . . . ,wβℓ−1 · · ·wβ2β1}.
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and Φw = wβℓ
Φv ∪{βℓ} (cf. (4.7)). By induction we have

(4.12)
∑

m1,...,mℓ∈Z
a(wβ1uβ1(x1 +m1) · · ·wβℓ

uβℓ
(xℓ+mℓ)g)

λ+ρ

≤M ℓ−1
∑
mℓ∈Z

a(wβℓ
uβℓ

(xℓ+mℓ)g)
v−1(λ+ρ)

∏
α∈Φv

(
1+a(wβℓ

uβℓ
(xℓ+mℓ)g)

α
)

=M ℓ−1
∑
S⊂Φv

∑
mℓ∈Z

a(wβℓ
uβℓ

(xℓ+mℓ)g)
v−1(λ+ρ)+

∑
α∈S α.

The i= ℓ−1 case of Lemma 4.7 applied to λ− ϵρ gives that

1 <
〈
v−1(λ− ϵρ+ρ)+

∑
α∈S

α,β∨
ℓ

〉
=
〈
v−1(λ+ρ)+

∑
α∈S

α,β∨
ℓ

〉
− ϵ⟨ρ,vβ∨

ℓ ⟩

for any S ⊂ Φv. As vβℓ is a positive root by (3.4), ⟨ρ,vβ∨
ℓ ⟩ at least 1 and hence

⟨v−1(λ+ρ)+
∑

α∈S α,β
∨
ℓ ⟩ must be at least 1+ϵ. This shows that the assumptions

of Lemma 4.1 (with α = βℓ) apply to the mℓ-sum, therefore showing (4.12) is
bounded by

M ℓ
∑
S⊂Φv

awβℓ
v−1(λ+ρ)+wβℓ

∑
α∈S α(1+aβℓ) =M ℓaw

−1(λ+ρ)
∏

α∈Φw

(1+aα). □

Proof of Theorem 1.1. We must show that the series Eλ(g) converges abso-
lutely for g ∈ ΓUACK, whenever λ ∈ h∗C satisfies Re(λ)−ρ ∈ C∗ and Property 4.2
holds. It is equivalent to show the same assertion for g ∈ UACK and λ ∈ h∗, since
the sums defining Eλ(γg) and Eλ(g) contain the same terms and are term-by-term
bounded by ERe(λ)(g).

Let Γw = Γ∩BwB = Γ∩BwUw. Then Γw is left-invariant under Γ∩B and
right-invariant under Γ∩Uw. Group the terms in the definition of Eisenstein series

Eλ(g) =
∑

γ∈(Γ∩B)\Γ

Φλ(γg) =
∑

γ∈(Γ∩B)\Γ

a(γg)λ+ρ

as

(4.13) Eλ(g) =
∑
w∈W

∑
γ1∈(Γ∩B)\Γw/(Γ∩Uw)

∑
γ2∈Γ∩Uw

a(γ1γ2g)
λ+ρ.

Write γ1 = utwu′, where u ∈ U , t ∈A, u′ ∈ Uw, so that

(4.14) a(γ1γ2g) = a(utwu′γ2g) = t ·a(wu′γ2g).

Writing w = wβ1 · · ·wβℓ
as an admissible word (Definition 4.6) and using Lemma

4.8, we can express wu′γ2 in the form

wβ1uβ1(x1 +m1) · · ·wβℓ
uβℓ

(xℓ+mℓ)
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for some x1, . . . ,xℓ ∈ R (which parameterize u′) and m1, . . . ,mℓ ∈ Z (which pa-
rameterize the sum over γ2).

Lemma 4.9 bounds
∑

γ2∈Γ∩Uw
a(γ1γ2g)

λ+ρ by

(4.15) tλ+ρM ℓ(w)aw
−1(λ+ρ)

∏
α∈Φw

(1+aα),

where M is the constant in Lemma 4.9. In particular, the sum over γ2 converges
absolutely. Since C is contained in the Tits cone

⋃
w∈W wC, we may write a =

w0a0w
−1
0 for some w0 ∈W and a0 such that aα0 ≥ 1 for any α> 0. Since w−1

0 α> 0
for all but finitely many α> 0, we see that aα = a

w−1
0 α

0 ≥ 1 for all but finitely many
α> 0. Hence there exists a constant Ca > 0 which depends continuously on a such
that

(4.16)
∏

α∈Φw

(1+aα)≤ Ca2ℓ(w)
∏

α∈Φw

aα = Ca2ℓ(w)aρ−w−1ρ,

since the product has 2ℓ(w) terms and aα is bounded below by a constant depending
only on a (cf. (3.6)).

The only remaining manifestation of γ1 (aside from w) is t= t(γ1). Recall the
notation Φλ(g) = a(g)λ+ρ and the Gindikin–Karpelevich integral (see (3.2))

(4.17)
∫
(Γ∩Uw)\Uw

∑
γ1∈(Γ∩B)\Γw/(Γ∩Uw)

∑
γ2∈Γ∩Uw

Φλ(γ1γ2n)dn

=
∏

α∈Φw−1

ξ(⟨λ,α∨⟩)
ξ(1+ ⟨λ,α∨⟩)

.

We recall from (4.14) that Φλ(γ1γ2n) = Φλ(utwu
′γ2n) = tλ+ρΦλ(wu

′γ2n), with
t= t(γ1), and formally obtain∫

(Γ∩Uw)\Uw

∑
γ1∈(Γ∩B)\Γw/(Γ∩Uw)

∑
γ2∈Γ∩Uw

Φλ(γ1γ2n)dn

=
∑

γ1∈(Γ∩B)\Γw/(Γ∩Uw)

∫
Uw

t(γ1)
λ+ρΦλ(wu

′n′)dn′

=
∑

γ1∈(Γ∩B)\Γw/(Γ∩Uw)

t(γ1)
λ+ρ

∫
Uw

Φλ(wn
′)dn′.

The last integral is the absolutely-convergent Gindikin–Karpelevich integral∫
Uw

Φλ(wn
′)dn′ =

∏
α>0,w−1α<0

ΓR(⟨λ,α∨⟩)
ΓR(1+ ⟨λ,α∨⟩)
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(cf. (3.2)), and so the unfolding step above is justified by the Fubini Theorem. We
thus obtain ∑

γ1∈(Γ∩B)\Γw/(Γ∩Uw)

t(γ1)
λ+ρ =

∏
α>0,w−1α<0

ζ(⟨λ,α∨⟩)
ζ(1+ ⟨λ,α∨⟩)

,

which is bounded for w ∈W , say, by a constant Cλ. Combining the above results
with (4.15) and (4.16), we find that

Eλ(g)≤ CλCa

∑
w∈W

(2M)ℓ(w)aw
−1λ+ρ,

which converges absolutely by Theorem 3.5. □

We end this paper with the observation that in our situation, ΓUACK is strictly
larger than UACK (see the comments in the second paragraph following Theo-
rem 1.1).

PROPOSITION 4.10. Let A be a generalized Cartan matrix of indefinite type
as in [K, Theorem 4.3(Ind)], and further assume that A is nonsingular, as before.
Let GR be the complete Kac–Moody group associated with A as in Section 2. Then
UACK is not invariant under multiplication by Γ on the left.

Proof. Recall that C is the interior of the Tits cone X :=
⋃

w∈W wC. Since G

is of indefinite type, by [K, Proposition 5.8 (c)] the closure of X is given by

X = {h ∈ h : ⟨α,h⟩ ≥ 0 for all α ∈ Φim
+ },

where Φim
+ is the set of positive imaginary roots. By [K, Theorem 5.6 (c)], there

exists some α ∈ Φim
+ such that ⟨α,α∨

i ⟩< 0 for all i ∈ I . It follows that α∨
i ̸∈X for

any i ∈ I .
Fix a simple coroot α∨

i /∈X . Since 0 ∈X = C, AC contains elements h arbi-
trarily close to the identity. Recall that u−αi(1) ∈ Γ. For h ∈AC, we have that

u−αi(1)h= hu−αi(t), where t= hαi .

The SL(2,R) calculation(
1 0
t 1

)
=

(
1

δ(t)
t

δ(t)

0 δ(t)

)( 1
δ(t) − t

δ(t)

t
δ(t)

1
δ(t)

)
, δ(t) =

√
t2 +1,

shows that the Iwasawa A+-component of u−αi(1)h ∈ ΓAC is equal to h ·
hαi(1/δ(t)). This cannot lie in AC for h near the identity, since δ(t) →

√
2 as

t→ 1 and α∨
i ̸∈X . □
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