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We apply some of the latest techniques from machine-learning to 
the arithmetic of hyperelliptic curves. More precisely we show that, 
with impressive accuracy and confidence (between 99 and 100
percent precision), and in very short time (matter of seconds on 
an ordinary laptop), a Bayesian classifier can distinguish between 
Sato–Tate groups given a small number of Euler factors for the 
L-function. Our observations are in keeping with the Sato-Tate 
conjecture for curves of low genus. For elliptic curves, this amounts 
to distinguishing generic curves (with Sato–Tate group SU(2)) 
from those with complex multiplication. In genus 2, a principal 
component analysis is observed to separate the generic Sato–Tate 
group USp(4) from the non-generic groups. Furthermore in this 
case, for which there are many more non-generic possibilities 
than in the case of elliptic curves, we demonstrate an accurate 
characterisation of several Sato–Tate groups with the same identity 
component. Throughout, our observations are verified using known 
results from the literature and the data available in the LMFDB. 
The results in this paper suggest that a machine can be trained to 
learn the Sato–Tate distributions and may be able to classify curves 
efficiently.
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1. Introduction & summary

There is a strong tradition of machine aided computation in number theory, which has been used 
to formulate and verify a wide range of arithmetic conjectures. In this paper, we pursue a data-driven 
approach to a classification problem in arithmetic geometry. In particular, we study the utility of 
machine-learning strategies for determining the Sato–Tate groups of genus 1 and genus 2 curves.

The original Sato–Tate conjecture is concerned with the distribution of Euler factors associated to 
elliptic curves over number fields. In recent years, there has been remarkable progress made towards 
this conjecture, which would be a corollary to establishing certain analytic properties of symmetric 
power L-functions. The necessary analytic behaviour would be a consequence of Langlands functori-
ality. In fact, it is sufficient to prove potential automorphy (automorphy after base change to a field 
extension). This idea has been used to establish the Sato–Tate conjecture for elliptic curves over var-
ious fields (Taylor, 2008; Harris et al., 2010; Allen et al., 2018). There is also a body of literature for 
more general Hilbert modular forms.

A precise analogue of the Sato–Tate conjecture for genus 2 curves over number fields was for-
mulated in Kedlaya and Sutherland (2019); Fité et al. (2012). In this context, there are 52 possible 
distributions corresponding to various endomorphism types of the Jacobian. For genus 2 curves de-
fined over Q, the number of possibilities is reduced to 34. Each distribution can be described by 
the Haar measure of a compact Lie group known as the Sato–Tate group. The generalized Sato–Tate 
conjecture asserts that the distribution of the Euler factors converges to the distribution of the char-
acteristic polynomials of random matrices in the Sato–Tate group.

As with elliptic curves, the Sato–Tate conjecture for genus 2 curves would follow from the Lang-
lands functoriality conjectures (Fité et al., 2012, Section 1.7). The Sato–Tate conjecture for non-generic 
genus 2 curves over Q has been established by F. Fité and A. Sutherland (2014), C. Johansson (2017)
and N. Taylor (2020). Conditional on the Sato–Tate conjecture, one may compute the Sato–Tate group 
of a genus 2 curve by evaluating moments of the coefficients appearing in normalized Euler factors 
and comparing to the corresponding statistics for characteristic polynomials of random matrices. This 
approach was adopted in Kedlaya and Sutherland (2019). The Sato–Tate groups on the LMFDB were 
confirmed by an unconditional approach in Costa et al. (2019) to compute the real endomorphism 
algebra. See Booker et al. (2016, Section 4.4) for more explanation.

In parallel to the above developments, a recent programme of machine-learning mathematical 
structures was initiated in He (2017a,b). Whilst this was originally motivated by computing topologi-
cal invariants of Calabi–Yau compactifications in superstring theory (He, 2017b; Krefl and Seong, 2017; 
Ruehle, 2017; Carifio et al., 2017) (q.v., He, 2018 for a summary), the idea of using machine-learning 
for pattern-recognition and conjecture-raising has been applied to various branches of mathematics, 
such as representation theory (He and Kim, 2019), graph theory (He and Yau, 2020), metric geometry 
(Ashmore et al., 2019), knot invariants (Jejjala et al., 2019), quiver mutations (Bao et al., 2020), etc. 
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The reader is also pointed to interesting early (Shanker, 2012) and recent (Kampe and Vysogorets, 
2018) experiments in neural-network explorations of the famous zeros of the Riemann zeta function. 
Machine learning techniques were applied to databases of elliptic curves in Alessandretti et al. (2019). 
In that work, the data consisted of the Weierstraß coefficients for each curve. These coefficients vary 
in size dramatically, which partially accounted for the difficulty in mining the data. Very recently, the 
present authors implemented machine-learning strategies for a range of arithmetic structures (He et 
al., 2020a,b).

In this paper, we study the (conditional) computation of Sato–Tate groups via machine-learning 
techniques. Naturally, this approach requires a large amount of data to train the algorithm. Much data 
can be sourced from the LMFDB, which enables a classifier to efficiently distinguish certain pairs of 
genus 2 Sato–Tate groups (The LMFDB Collaboration, 2020). There are not enough examples of curves 
for the other Sato–Tate groups for a full classification, and so we turn to random matrices to generate 
our training data. Using this, we are able to establish a finer classification which, for example, can 
distinguish curves from 5 Sato–Tate groups with the same identity component. The most successful 
algorithm is the naive Bayes classifier. Applying the same method, we can train a classifier with data 
coming from random matrices of the 34 Sato–Tate groups for genus 2 curves over Q. Nevertheless, 
for the present, we are unable to verify the accuracy of a full 34-way classification due to a lack of 
available data.

The organization of this paper is as follows. In Section 2, the generalized Sato–Tate conjecture for 
arithmetic curves will be reviewed as the main mathematical background for this paper. In Section 3, 
machine-learning techniques will be applied to certain binary classifications of curves. In Section 4, 
we go beyond the binary classification and consider a multi-way classification of genus 2 curves 
corresponding to Sato–Tate groups with a common identity component. Throughout, we compare the 
machine learning method with other approaches to computation of the Sato–Tate groups, and observe 
that machine-learning is efficient for the task.

Acknowledgements

We thank Álvaro Lozano-Robledo, Andrew Sutherland and Chris Wuthrich for helpful discussions 
and useful comments. YHH is indebted to STFC UK, for grant ST/J00037X/1, KHL is partially supported 
by a grant from the Simons Foundation (#712100), and TO acknowledges support from the EPSRC 
through research grant EP/S032460/1.

2. Background

In this section we review the essential mathematical theory which constitutes the main theme of 
this paper.

2.1. CM elliptic curves

Let E be an elliptic curve over Q. With minor modifications, it is possible to replace Q with any 
number field. Recall that the (Hasse–Weil) L-function depends only on the isogeny class of E and 
captures many of its deep arithmetic properties. This function is given by an Euler product:

L(s,E) =
∏
p|N

(1 − ap p−s)−1
∏
p�N

(1 − ap p−s + p−2s)−1 , (2.1)

where N is the conductor, which controls primes of good and bad reduction.
The elliptic curve E is said to have CM if its ring of endomorphisms is strictly larger than the 

ring of integers. In terms of the Sato–Tate conjecture, a CM elliptic curve has the distribution of 
normalized Euler factors converging to that of characteristic polynomials of random matrices in the 
normalizer N(U(1)) of U(1) in SU(2), while a non-CM curve has the distribution of normalized Euler 
factors converging to that of characteristic polynomials of SU(2). In a rigorous sense explained in the 
next subsection, non-CM curves are generic, while CM curves are exceptional.
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An elliptic curve E has CM, or equivalently, its Sato–Tate group is N(U(1)) if its j-invariant is 
one of 13 integers listed1 in Silverman (1994, Appendix A, Section 3). This criterion for CM curves is 
based on the result of Heegner–Baker–Stark. The j-invariant is an elementary function in terms of the 
Weierstraß coefficients. On the other hand, the Dirichlet coefficients {ap} encode CM in other ways. 
If E over Q has CM by the integers in an imaginary quadratic number field K , then there is a Hecke 
character ψ on A×

K such that L(s, E) = L(s, ψ) (Silverman, 1994, Theorem 10.5(b)). It follows from 
the Chebotarev density theorem that the following set has density 1/2 in the set of primes:

π(E) = {p prime : ap = 0}.
On the other hand, if E does not have CM then π(E) has density 0 in the primes (Serre, 1981) 
though π(E) is still infinite as demonstrated by Elkies (1987). We note that it is in fact possible to 
distinguish CM from non-CM, or, equivalently, to determine whether the Sato–Tate group is N(U(1))

or SU(2), given only finitely many ap . There is a large body of literature concerned with questions of 
this nature, building on Lagarias and Odlyzko (1975). Our approach in this paper is to use machine-
learning techniques.

2.2. Generalized Sato–Tate conjecture

In this section, we briefly overview the generalized Sato–Tate conjecture, in particular, for genus 2 
curves over Q. More details can be found in Kedlaya and Sutherland (2019); Fité et al. (2012).

Let C be a smooth, projective, geometrically irreducible algebraic curve of genus g defined over 
Q. (The elliptic curves over Q lay in the subclass of g = 1.) For each prime p where C has good 
reduction, we define the zeta function by

Z(C/Fp; T ) = exp

( ∞∑
k=1

Nk T k/k

)
, (2.2)

where Nk is the number of the points on C over Fpk . It is well-known that the zeta function can be 
written in the form

Z(C/Fp; T ) = Lp(T )

(1 − T )(1 − pT )
, (2.3)

where Lp ∈ Z[T ] is a polynomial of degree 2g with constant term 1. In particular, when g = 1, we 
have Lp(T ) = 1 − ap T + pT 2 where ap appears in the Euler factor of the L-function in (2.1). If we set 
L̄ p(T ) := Lp(p−1/2T ), then we obtain

L̄ p(T ) = T 2g + a1,p T 2g−1 + a2,p T 2g−2 + · · · + a2,p T 2 + a1,p T + 1 . (2.4)

We see that this normalization renders the L-function palindromic.
Let PC(N) be the set of primes p ≤ N for which the curve C has good reduction. For 1 ≤ k ≤ g

and m ≥ 0, define

ak(m; g) := lim
N→∞

1

|PC(N)|
∑

p∈PC(N)

(ak,p)m. (2.5)

Thus the values ak(m; g), m ≥ 0, are the mth moments of the distribution of ak,p .

1 Namely:

0, 24 33 53, −215 3 53, 26 33, 23 33 113, −33 53, 33 53 173, 26 53,

−215, −215 33, −218 33 53, −215 33 53 113, −218 33 53 233 293 .
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The generalized Sato–Tate conjecture predicts that curves of fixed genus g are classified into cer-
tain families and that ak(m; g) are all the same for curves in each family. In particular, there is a 
generic family of curves for each genus g , which is characterized by the property that the Jacobians 
of its members have the trivial endomorphism ring Z. When g = 1, the generic family exactly consists 
of non-CM elliptic curves.

The generalized Sato–Tate conjecture predicts that the distributions of L̄ p(T ) are actually the same 
as the distributions of the characteristic polynomials of random matrices. To be precise, let us consider 
the group USp(2g) with the Haar probability measure. Let

det(I − xγ ) = x2g + c1x2g−1 + c2x2g−2 + · · · + c2x2 + c1x + 1 (2.6)

be the characteristic polynomial of a random matrix γ of USp(2g). For each k = 1, 2, . . . , g , let Xk be 
the random variable corresponding to the coefficient ck and define ck(m; g) to be the mth moment 
E[Xm

k ], m ∈Z≥0, of the random variable Xk .
The following is the generalized Sato–Tate conjecture for the generic families.

Conjecture 1 (Katz and Sarnak 1999). Let C be a smooth projective curve of genus g. Assume that C is in the 
generic family. Then, for each k = 1, 2, . . . , g and m ≥ 0, we have

ak(m; g) = ck(m; g).

In the case that g = 2, a precise formula for ck(m; 2) is given in Fité et al. (2012, Tables 9 & 10). 
Given a genus 2 curve, one may compute Euler factors for primes less than, say, N . The finite sum 

1
|PC(N)|

∑
p∈PC(N)

(ak,p)m provides an approximation to ak(m; 2). Conditional on the Sato–Tate conjecture, 

we can check whether a curve is generic by comparison with the formula for ck(m; 2). This identifica-
tion is accurate up to a certain probability (discussed in Section 5). We refer to this as the “heuristic” 
computation of the Sato–Tate group.

Example 1. The following genus 2 curve (LMFDB label: 11109.a.766521.1) is from the generic family:

C : y2 + (x2 + x)y = x5 − x4 + x3 − 3x2 + 2x − 1.

Conditional on the Sato–Tate conjecture the sequences {ak(m; 2)} are as follows:

a1(m;2) : 1,0,1,0,3,0,14,0,84,0,594,0,4719, . . .

a2(m;2) : 1,1,2,4,10,27,82,268,940, . . .

Aside from the generic family of curves whose distribution is (expected to be) given by USp(2g), 
there are exceptional families of curves. As mentioned in the previous subsection, the CM curves form 
the exceptional family when g = 1, and the distribution is given by the normalizer N(U(1)) of U(1)

in SU(2) ∼= USp(2).
For genus 2 curves, there are a lot more of exceptional families. Kedlaya and Sutherland (2019) and 

later with Fité et al. (2012) made a conjectural, exhaustive list of 34 compact subgroups of USp(4)

that would classify all the distributions of Euler factors for genus 2 curves over Q, and called the 
groups Sato–Tate groups. They determined the moment sequences ck(m; 2), k = 1, 2, for each Sato–
Tate group. In the process they investigated a huge number of genus 2 curves to heuristically observe 
that Euler factors have the same distributions as the Sato–Tate distributions, supporting their refined, 
generalized Sato–Tate conjecture. As with generic curves, one may heuristically compute the Sato–Tate 
group of any genus 2 curve by first computing an approximation to the moments and then comparing 
to the tables given in Fité et al. (2012, Tables 9 & 10).

Since (Fité et al., 2012) appeared, the Sato–Tate conjecture for genus 2 curves over Q has been 
established by C. Johansson (2017) and N. Taylor (2020) except for the generic case USp(4). In par-
ticular, this means that the heuristic computation in these cases is no longer conditional (though it 
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is still only valid up to a certain probability). The auto-correlation functions of the Sato–Tate distri-
butions are computed in Lee and Oh (2020) using irreducible characters of symplectic groups, which 
provides an alternative way of characterizing the Sato–Tate distributions.

Example 2. In Section 2.1, we saw that non-generic elliptic curves were characterized by the density 
of vanishing coefficients. This can be predicted by computation of characteristic polynomials of cosets 
of the identity components as in Lee and Oh (2020). For example, when g = 1, the Sato–Tate group 
N(U(1)) for CM curves has the coset decomposition

N(U(1)) = U(1) � J2 U(1),

where J2 :=
(

0 1
−1 0

)
, and the characteristic polynomial of the matrices from the coset J2 U(1) is 

always 1 + x2. This shows that ap = 0 with density 1/2 for CM-curves. A similar analysis can be done 
for genus 2 curves by considering coset decompositions.

In what follows, we define the Sato–Tate groups for genus 2 curves over Q. We will adopt 
the same notations as in Fité et al. (2012). We take the group USp(4) to fix the symplectic form (

0 I2
−I2 0

)
, where I2 is the 2 × 2 identity matrix. Let Eij be the 4 × 4 elementary matrix which has 

(i, j)-entry equal to 1 and other entries equal to 0. Set

ĥ1 = E11 − E33, ĥ2 = E22 − E44.

We embed U(1) into USp(4) by

u 	−→ diag(u, u, u−1, u−1).

For example, eπ i/n is identified with

diag(eπ i/n, eπ i/n, e−π i/n, e−π i/n).

Embed SU(2) and U(2) into USp(4) by

A 	−→
(

A 0
0 A

)
, (2.7)

where A consists of the complex conjugates of the entries of A.
We fix an embedding

SU(2) × SU(2) ↪→ USp(4) (2.8)

in such a way that the induced Lie algebra embedding sl2(C) × sl2(C) → sp4(C) gives

(h,0) 	−→ ĥ1 and (0,h) 	−→ ĥ2,

where h =
(

1 0
0 −1

)
∈ sl2(C). From this, we also obtain the embeddings

U(1) × SU(2) ↪→ USp(4), U(1) × U(1) ↪→ USp(4).

Identify SU(2) with the group of unit quaternions via the isomorphism

a + b iii + c jjj + dkkk 	→
(

a + bi c + di
−c + di a − bi

)
, a,b, c,d ∈ R,

and also identify them with the corresponding elements in USp(4) through the embedding SU(2) ↪→

USp(4) in (2.7). For example, with this identification, we have j =
⎛⎝ 0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎠. Set Q 1 =

{±1, ±i, ±j, ±k, 12 (±1 ± i ± j ± k}) and
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Q 2 =
{

1√
2
(±1 ± i), 1√

2
(±1 ± j), 1√

2
(±1 ± k), 1√

2
(±i ± j), 1√

2
(±i ± k), 1√

2
(±j ± k)

}
.

We write ζζζ 2n =
(

eπ i/n 0
0 e−π i/n

)
∈ SU(2), and its embedded image in USp(4) will also be written as 

ζζζ 2n . Let

J =
⎛⎝0 0 0 1

0 0 −1 0
0 −1 0 0
1 0 0 0

⎞⎠, a=
⎛⎝ 0 0 1 0

0 1 0 0
−1 0 0 0
0 0 0 1

⎞⎠,

b=
⎛⎝1 0 0 0

0 0 0 1
0 0 1 0
0 −1 0 0

⎞⎠, c=
⎛⎝ 0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

⎞⎠.

Definition 1 (Sato–Tate groups). With the notations above, the following table gives the definitions of 
the 34 Sato–Tate groups of genus 2 curves over Q:

J (Cn) := 〈U(1),ζζζ 2n, J 〉, n = 2,4,6 J (Dn) := 〈 J (Cn), j〉, n = 2,3,4,6

J (T ) := 〈U(1), Q 1, J 〉 J (O ) := 〈 J (T ), Q 2〉
Cn,1 := 〈U(1), Jζζζ 2n〉, n = 2,6 Dn,1 := 〈U(1), Jζζζ 2n, j〉, n = 2,4,6

Dn,2 := 〈U(1),ζζζ 2n, J j〉, n = 3,4,6 O 1 := 〈T , J Q 2〉
En := 〈SU(2), eπ i/n〉, n = 1,2,3,4,6 J (En) := 〈En, J 〉, n = 1,2,3,4,6

Fa,b := 〈U(1) × U(1),a,b〉 Fac := 〈U(1) × U(1),ac〉
N(G1,3) := 〈U(1) × SU(2),a〉 G3,3 := SU(2) × SU(2)

N(G3,3) := 〈G3,3, J 〉 USp(4)

Remark. We emphasize again that all the groups in the above table are subgroups of USp(4). We will 
refer to the full USp(4) as the generic Sato-Tate group and the proper subgroups as the non-generic.

3. Distinguishing generic curves using the LMFDB

In this section we describe a rudimentary binary classification using machine-learning techniques.

3.1. Generic elliptic curves

The latest LMFDB database has 3,064,705 elliptic curves over the rationals, which organize into 
2,164,260 isogeny classes (The LMFDB Collaboration, 2020, Elliptic curves over Q). These curves are 
labelled by data of the form:

{N, i, x} (3.1)

where N is the conductor, i is a letter or double-letter designating the isogeny class, and x is a number 
indexing the particular elliptic curve within the class (a typical entry, for instance, is ‘11a.1’). For an 
elliptic curve, both its L-function (up to Euler factors at bad primes) and whether it has complex 
multiplication depend only on the isogeny class. Thus, for our present purpose, we will neglect the 
last numerical label x and sometimes refer to the “isogeny class of a curve” simply as “curve”. Of the 
some 2 million isogeny classes of elliptic curves in the database, only 2670 have CM: thus one can 
see that indeed this property is rather rare.

Let us establish a dataset as follows. Take all primes up to 10,000 (there are 1229) and compute, 
using (The Sage Development Team, 2020), all coefficients ap . Here we also include bad primes as 
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their statistical impacts seem limited. We then normalize the coefficients by ãp := ap/
√

p. Now, take 
all 2670 curves with CM, and select with probability 0.001 from those without CM (which is therefore 
around 2300). This gives a labelled dataset D of around 5000 points:

D :=
{(

ãp
)

p<10000 −→ yes/no
}

(3.2)

where yes/no refers to the simple binary category of having or not having CM.
Now, we can follow the standard steps of machine-learning (ML), which is to split D into the dis-

joint union of a training set T (taken a random sample) and a validation set V (as the complement), 
and we take a 20-80 percent split:

D = T � V , |T | = 20%|D| . (3.3)

The size of V is large enough to check the validity of our results thoroughly. We tried a few archi-
tectures such as support vector machines and simple neural network classifiers, but found the best 
performance was achieved by a Naive Bayes classifier.2 We have also tried other standard classifiers, 
such as decision trees and nearest neighbours. The Naive Bayes classifier performed best, and was 
able to achieve complete classification as we shall see shortly. The reader is referred to (Hastie, 2001, 
Section 6.6.3) for detailed discussions and implementations of the algorithm.

We find that having seen 20% of the ãp -coefficients as lists of vectors, each of length 1229, and 
labelled accordingly as yes/no, the classifier, when validated on the remaining 80%, achieves 100% 
accuracy. This is really the optimal situation. Ordinarily, a good classifier performs with precision (% 
agreement) and confidence3 in the 90’s. But here, we consistently obtain 100% accuracy with different 
random sampling of T . This suggests the ML algorithm has truly learned an underlying formula. 
Moreover, the algorithm is performed using (Wolfram Research, Inc., 2020) on an ordinary laptop, in 
a matter of seconds.

To get an idea of the learning, let us ask how the accuracies improve with increasing number of 
coefficients ap being presented to the training. This is shown in Fig. 1. In other words, let us repeat 
the above Bayes classifier for truncated input data: instead of using all primes up to 10,000, we use 
up to the first 200 primes, in increments. While in the beginning the precision and phi are both low 
and sporadic, by the time we are training on primes up to 200 (i.e., only around 40 ap coefficients), 
we have stabilized to > 0.99 accuracies.

3.2. Generic genus 2 curves

Emboldened by the success with genus 1 curves, let us move on to the much more subtle case of 
genus 2. The generic Sato–Tate group for a genus 2 curve over Q is USp(4), which occurs in the case 
of trivial endomorphism ring. The dominance of the generic case is reflected in the LMFDB, in which 
63107 out of 66158 genus 2 curves over Q have this Sato–Tate group (The LMFDB Collaboration, 
2020, Genus 2 curves over Q). Again, the good Euler factors depend only on the isogeny class. Unlike 
with elliptic curves, there is no option to ask the LMFDB for one curve per isogeny class. On the other 
hand, the database has 65534 classes and so over 99% have a unique representative. With this in 
mind, we simply accept the redundancy. Using the LMFDB data, we perform the binary classification: 
Is the Sato–Tate group USp(4) or not?

Looking at Eqs. (2.3)–(2.4), we see that the zeta-function for genus 2 curves is governed by an 
L-function numerator which is a degree 4 palindromic polynomial. Hence, there are two non-trivial 
(normalized) coefficients, (a1,p, a2,p) of the Euler factors. Using SAGE (The Sage Development Team, 
2020), we calculate the zeta function of a curve for all first 200 primes p excluding 2 (i.e., p < 1230) 
which is always bad.

2 Interestingly, this is the same in the situation of machine recognition of cluster mutation (Bao et al., 2020).
3 Matthew’s phi-coefficient (Matthews, 1975), which essentially the square root of the chi-squared; the closer it is to 1, the 

better the fit, the closer it is to 0, the more random and ineffective the classification is. We need to check this in addition to 
the naive precision in order to avoid false positives and false negatives.
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Fig. 1. The precision and confidence of the Naive Bayes classifier for the precision and confidence (Matthew’s phi-coefficient) 
against the number of ap coefficients, for p up to the value on the X-axis, for the elliptic curve seen. (For interpretation of the 
colours in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. (a) A principal component analysis (PCA) by projecting the labelled data pairs of coefficients in R400 corresponding 
to generic vs. non-generic Sato-Tate to 2-dimension. (b) The precision and confidence (Matthew’s phi-coefficient) of the Naive 
Bayes classifier, for the problem distinguishing the generic Sato-Tate group USp(4), against the number of (a1,p, a2,p) coefficients 
of the genus 2 hyperelliptic curve supplied to the training.

Thus, we can establish the following dataset:

D := {(a1,p, a2,p)2<p<1230 −→ yes/no for USp(4)} (3.4)

As mentioned in the opening paragraph, the vast majority are the generic full USp(4), so we need 
to down-sample in order to not bias a classifier. Thus we randomly select 3000 of the USp(4) cases 
and combine that with the non-USp(4) cases (which, from above, is 66158 − 63107 = 3051; actually, 
2440 of these non-USp(4) cases belong to the Sato–Tate group G3,3 ∼= SU(2) × SU(2)). On this bal-
anced dataset D̃ ⊂D, we again perform cross-validation by taking 20% training, and validating on the 
remaining 80%. Using a Naive Bayes classifier as the genus 1 case, we here find precision 0.990 and 
Matthew’s phi 0.98, which is excellent. Again, we have tried other standard classifiers, and we find 
that nearest neighbours performed similarly, though decision trees were quite a bit worse.

To have an extra confirmation that there is inherent structure in the data. Let us consider each of 
the 200 pairs (a1,p, a2,p) as a point in R400. Using principal component analysis (q.v., Goodfellow et 
al., 2016), by projecting this point cloud of data from R400 to R2, as shown in part (a) of Fig. 2, we 
can see that the USp(4) (marked as 1) and non-USp(4) (marked as 0) very neatly separate.

To get an idea of how effective the training is, we present a gradation of coefficients to the classi-
fier from a single pair (at p = 3) cumulating to more pairs of ap coefficients as we go up in primes. 
This is drawn in part (b) of Fig. 2. We see that in the beginning the performance is poor but by the 
time it has seen around 50 primes, we are already at 0.95 precision.
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Remark 1. In a recent paper (Zywina, 2020), D. Zywina shows that one can determine the identity 
component of the Sato–Tate group of an abelian variety using just two L-polynomials, though his 
algorithm does not specify which polynomials we need. It would be interesting to consider his result 
in the perspective of machine-learning.

4. Distinguishing non-generic curves using random matrices

In this section we go beyond the binary classification of the previous section. The Sato–Tate group 
is a compact Lie group. For genus 2 curves, there are 6 possibilities for its identity component. The 
non-generic cases occur with decreasing probability, and ultimately the number of occurrences are 
too small to train the classifier. Worse still, the complete classification of Sato–Tate groups for genus 
2 curves over Q features 34 distinct cases. There is far too little data available on the LMFDB to 
distinguish these cases by machine learning, for example, only 1 curve on the database has group 
D6,2 (The LMFDB Collaboration, 2020, Genus 2 curve 11664.a.11664.1).

To circumvent this difficulty, we generate random matrices for training the classifier. The point 
is that the distribution of the Euler factor coefficients should converge to the distribution of the 
characteristic polynomial coefficients of random matrices in the Sato–Tate group. This allows us to 
train classifiers for the non-generic Sato–Tate groups. Still, due to the lack of data, we are unable to 
verify the classifier’s accuracy for curves in certain cases of rare Sato–Tate groups. Nevertheless, we 
will see below in several cases where there is sufficient data to verify, the classifier does perform very 
well. We keep the notations for the Sato–Tate groups in Definition 1.

Specifically, we will do the following, in light of Conjecture 1:

• We fix k different Sato–Tate groups, STi=1,2,...,k , say. For each STi , take 200 random elements 
within the group (as 4 × 4 matrices) and for each matrix, compute its characteristic polynomial 
and extract the two non-trivial coefficients (c1, c2) as in (2.6).

• We repeat the above 1000 times. This gives 1000 cases of 200 pairs (c1, c2) for each STi , accord-
ingly labelled.

• We now train a classifier (Naive Bayes, decision tree, nearest neighbour or otherwise) to this 
labelled data. Note that so far, there is no input from number theory or geometry, the classifier 
has only been fed group-theoretic information: the characteristic polynomial of STi matrices.

• We can now validate the classifier on actual curve information, viz., for a genus 2 curve from 
LMFDB, obtain 200 pairs of normalized Euler coefficients (a1,p, a2,p) for the first 200 primes p. 
The classifier will then return one of the k labels (categories), which is then compared to the 
actual Sato-Tate group for the curve. The precision and confidence for the k-category classification 
is then computed between the predicted and actual.

We remark that we are not using moments of the probability distributions. Instead, we are using 
sample points from the distributions to train a classifier.

4.1. N(G1,3) and N(G3,3)

We begin with a binary classification between the non-generic genus 2 Sato–Tate groups N(G1,3)

and N(G3,3). These groups have different identity components. After generating 1000 samples of co-
efficient pairs for each group, a Bayes classifier can distinguish the corresponding distributions with 
100% accuracy. There are 303 (resp. 144) curves on the LMFDB with group N(G1,3) (resp. N(G3,3)). 
Given coefficient pairs for the first 200 Euler factors for these curves, the classifier could distinguish 
the groups with 100% accuracy. That is, it has completely correctly sorted the 303 vs. 144 genus 2 
curves with Sato-Tate group N(G1,3) vs. N(G3,3). The running time, again, is less than 1 second on an 
ordinary laptop, using Mathematica (Wolfram Research, Inc., 2020).

To get an idea how many coefficient pairs are needed to efficiently train the classifier, we repeat 
the above experiment starting with only one pair, and going up gradually. This constitutes a learning 
curve where the accuracy and confidence are plotted against the number of pairs seen in the training. 
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Fig. 3. (a) The precision and confidence (Matthew’s phi-coefficient) of the Naive Bayes classifier, for the problem of distinguish-
ing N(G1,3) and N(G3,3), against the number of pairs of coefficients (a1,p, a2,p) of the genus 2 curve for p up to the value on 
the X-axis, supplied to the training. (b) The same plot, but for the 5-way classifier of the Sato-Tate group J (En), n ∈ {1, 2, 3, 4, 6}.

We show this in Part (a) of Fig. 3. We see that given only the first coefficient pair, the classifier is 
useless. At around 10 coefficients its accuracy is already at high 90s, and by 20 or 30 it is all 100%.

4.2. J (En), n ∈ {1, 2, 3, 4, 6}

We finally attempt a 5-way classification between the non-generic genus 2 Sato–Tate groups J (E1), 
J (E2), J (E3), J (E4) and J (E6). These groups all have the same identity component SU(2). As before, 
we generate 1000 random samples of 200 coefficient pairs for each of the five J (En) groups. A Naive 
Bayes classifier is then trained on these. Upon validating on the actual curve data, of which is there a 
paucity from LMFDB, a total of 71 cases, we find that the confusion matrix is

M =

⎛⎜⎜⎜⎝
24. 0. 0. 0. 0.

0. 9. 0. 0. 0.

0. 0. 3. 0. 1.

0. 0. 0. 17. 0.

0. 0. 0. 0. 17.

⎞⎟⎟⎟⎠ ,

which means that only a single case has been mis-classified (the 1 off-diagonal). The accuracy is 
98.59% and confidence 0.9814. This is quite impressive for a 5-way classification, in under 1 second.

Again, to get an idea of a learning curve, we show in Part (b) of Fig. 3, the accuracy and confidence 
attained by showing an increasing number of coefficients in the training process. In the beginning the 
classifier was around 0% accuracy but by 40-50 coefficient pairs it was getting to almost 100%. All 
fluctuations are due to the random sampling in the training data.

5. Conclusion & outlook

We have observed that a Bayes classifier can be trained to distinguish the Sato–Tate groups for 
genus 2 curves and that the resulting classifier performs efficiently with high precision. Whilst a lack 
of data prohibited the verification of our machine-learning approach for rare Sato–Tate groups, its 
determination in the more numerous cases agrees with those predicted by moment sequences.

The results in this paper provide convincing evidence that machine-learning can be used to classify 
curves according to their Sato–Tate groups. Our approach of using Euler factors is in accordance with 
the setup of the Langlands program, and we expect that many important objects in number theory can 
be studied through machine-learning by analyzing data consisting of Euler factors. Indeed, examples 
of this strategy are successfully adopted in He et al. (2020a,b), and we expect more to come in this 
direction.
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