
What is Machine Learning?

Machine Learning (ML): branch of artificial intelligence (AI)

with goals to extract structures from large data sets

Applications: identifying patterns and making decisions,

image recognition, fraud detection,

extracting meaning from text, ...

Specifically, Face ID, Google Translate, self-driving cars,

cancer diagnosis, product recommendations,

ChatGPT, ...
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Recently, Large Language Models and Artificial General

Intelligence have become hot issues.

Clearly, AI and Machine Learning are making revolutions in many

areas.

Machine Learning brings together ideas from

Computer Science, Statistics, and Mathematics.

In this course, we will discuss some of the essential mathematical

ideas in Machine Learning and practice computational techniques

using Python.
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Types of Machine Learning

Regression:

predict numerical values

example: the value of a house

Classification:

predict categorical labels

example: hand-written digits

Kyu-Hwan Lee (UConn) 3 / 233



Types of Machine Learning

Supervised learning:

train a machine with known classification labels

Unsupervised learning:

recognize patterns or clusters from an unlabelled dataset

Reinforcement learning:

enable an agent to learn in an environment by trial and error
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Typical ML problems

Estimate the value of a house

F : (# of bedrooms, square footage, year built, location, ...)

−→ (the value of a house)
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Typical ML problems

Recognizing hand-written digits

C : { pictures } −→ {0,1, . . . ,9}
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Typical ML problems

Clustering the data points of hand-written digits
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Linear Regression – part (1)

Input: x ∈ R Output: t ∈ R
Observations: (x1, t1), (x2, t2), . . . , (xN , tN)

Use these observations as training examples.

Task: Given a new input x̃ , predict the output t̃ .

If t is a continuous variable, this task is called regression.

It is an example of supervised learning.
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For example, x ∈ [0,1), N = 10

x t

0.884644066199 −0.864791215635069

0.793349886821 −1.32738612014193

0.735440841558 −1.18222466237236

0.421871764847 0.304255805886633

0.0118832729931 0.101594120287724

0.226770188973 1.13377458999431

0.978530671629 −0.147028527196347

0.0431076970157 0.247622971933151

0.890003286931 −0.605625802202937

0.888362799625 −0.649537521948140
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Fit the data using a polynomial

y(x ,w) = w0 + w1x + w2x2 + · · ·+ wK xK ,

where w = [w0,w1, . . . ,wK ]>.

How to obatain the best approximation?

Want: Minimize the distance between

(t1, t2, . . . , tN) and (y1, y2, . . . , yN),

where yn = y(xn,w).

Kyu-Hwan Lee (UConn) 11 / 233



Minimize the error function

E(w) =
N∑

n=1

{y(xn,w)− tn}2

=
N∑

n=1

{w0 + w1xn + w2x2
n + · · ·+ wK xK

n − tn}2.
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Introduce the following matrices

X =



1 x1 · · · xK
1

1 x2 · · · xK
2

1 x3 · · · xK
3

...
...

...

1 xN · · · xK
N


, w =


w0

w1
...

wK

 , and t =


t1
t2
...

tN

 .

Then

E(w) = ‖Xw − t‖2.

The matrix X can be considered as a data matrix.
Tidy Convention:

Each row is an observation.

Each column is a feature.
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How can we find a minimum of a function?

We take the “derivative”.

E(w) is a multi-variable function.
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K features, and let M = K + 1.

Let f : RM → R be a differentiable function. The gradient of f at

x ∈ RM is defined by

∇f (x) =


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xM

(x)

 .

Lemma
Assume that A is an N ×M matrix and x ∈ RM , b ∈ RN . Then we have

∇‖Ax + b‖2 = 2A>(Ax + b).
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Proof. A = [aij ],x = [xj ]j=1,...,M ,b = [bi ]i=1,...,N

‖Ax + b‖2 = ‖[
∑

j

aijxj + bi ]i=1,...,N‖2 =
∑

i

(
∑

j

aijxj + bi)
2

[
∂‖Ax + b‖2

∂xk

]
k=1,...,N

=

∑
i

2(
∑

j

aijxj + bi)aik


k=1,...,N

2A>(Ax + b) = 2[aij ]
>[
∑

j

aijxj + bi ]i=1,...,N

= 2[
∑

i

aik (
∑

j

aijxj + bi)]k=1,...,N

�
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Theorem (Fermat’s Theorem)

Let f : RM → R be differentiable. If f has a local extremum at x , then

∇f (x) = 0.

Is the converse of Fermat’s Theorem true?

No, in general.
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A set X ∈ RM is said to be convex if for any x ,y ∈ X ,

{αx + (1− α)y : 0 ≤ α ≤ 1} ⊆ X .

Let X be a convex set. A function f : X → R is said to be convex if

for all x ,y ∈ X and α ∈ [0,1],

f (αx + (1− α)y) ≤ αf (x) + (1− α)f (y).
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Theorem
Assume X is convex. Then a differentiable function f : X → R is

convex if and only if for all x ,y ∈ X ,

f (y)− f (x) ≥ ∇f (x) · (y − x) = ∇f (x)>(y − x).

Corollary
Assume X is convex. Then a convex differentiable function f : X → R
has a global minimum at x if and only if ∇f (x) = 0.

Proof.
(⇒) Fermat’s Theorem

(⇐) Theorem in the above �
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X : N ×M data matrix t ∈ RN

Proposition

The function E(w) = ‖Xw − t‖2 is convex and differentiable.

Proof.
‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)

x2 is convex.

Now we have

E(αw + (1− α)v) = ‖X (αw + (1− α)v)− t‖2

= ‖α(Xw − t) + (1− α)(Xv − t)‖2

≤ (α‖Xw − t‖+ (1− α)‖Xv − t‖)2

≤ αE(w) + (1− α)E(v).

�
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Since ∇E(w) = 2X>(Xw − t), the convex function E(w) has a

global minimum if and only if

X>Xw = X>t.

When S := X>X is invertible, there is a unique solution

w = S−1X>t .

Kyu-Hwan Lee (UConn) 21 / 233



S is not invertible if and only if det S = 0.

When det S ≈ 0, the formula for w is unstable.

If det S = 0, what can we say about the features?
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Back to the example, x ∈ [0,1), N = 10

x t

0.884644066199 −0.864791215635069

0.793349886821 −1.32738612014193

0.735440841558 −1.18222466237236

0.421871764847 0.304255805886633

0.0118832729931 0.101594120287724

0.226770188973 1.13377458999431

0.978530671629 −0.147028527196347

0.0431076970157 0.247622971933151

0.890003286931 −0.605625802202937

0.888362799625 −0.649537521948140
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Using the formula, we obtain the following.

w K = 1 K = 3 K = 6 K = 9

w0 0.53 −0.10 0.03 −1.61

w1 −1.41 12.21 4.49 200.18

w2 −37.18 34.15 −5191.34

w3 25.37 −211.33 41628.04

w4 339.78 −141666.70

w5 −210.56 210688.85

w6 43.45 −61808.88

w7 −189181.01

w8 214844.27

w9 −69519.92
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K = 1
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K = 3
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K = 6
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K = 9

Kyu-Hwan Lee (UConn) 29 / 233



If we choose K = 6 as our model, then we get

y(x) = 0.03 + 4.49x + 34.15x2 − 211.33x3

+ 339.78x4 − 201.78x5 + 43.45x6.

For a new input x = 0.741234, the prediction is

y(0.741234) = −1.28212.

This is how machine learning works in this example.
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The case K = 9 is over-fitting.

It is a perfect fit. However, it is useless in machine learning.

In order to avoid over-fitting, we can use regularization.

Observe that when K = 9 the coordinates of w tend to be large.

Ridge regression

Ẽ(w) =
N∑

n=1

{y(xn,w)− tn}2 + λ‖w‖2.

This can be considered as a result of Bayesian Learning.

Lasso regression

Ê(w) =
N∑

n=1

{y(xn,w)− tn}2 + λ

K∑
n=0

|wn|.
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For other situations, we can take different basis functions φn(x)

instead of power functions xn, and consider

y(x ,w) = w0 + w1φ1(x) + w2φ2(x) + · · ·+ wkφK (x).

For example,

φn(x) = exp
(
− (x−µn)2

2σ2

)
.

Minimize the error function

E(w) =
N∑

n=1

{y(xn,w)− tn}2.
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We have

X =



1 φ1(x1) · · · φK (x1)

1 φ1(x2) · · · φK (x2)

1 φ1(x3) · · · φK (x3)
...

...
...

1 φ1(xN) · · · φK (xN)


.

We obtain the solution

w = S−1X>t ,

where S = X>X .
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Linear Regression – part (2)

Input: (x1, x2 . . . , xK ) ∈ RK Output: t ∈ R
Observations: (x11, x12, . . . , x1K ; t1), . . . , (xN1, xN2, . . . , xNK ; tN)

Use these observations as training examples.

Task: Given a new input (x̃1, x̃2, . . . , x̃K ), predict the output t̃ .
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Fit the data using a linear function

y(x ,w) = w0 + w1x1 + w2x2 + · · ·+ wK xK ,

where w = [w0,w1, . . . ,wK ]>.

w0 is called a bias.
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Want: Minimize the distance between

(t1, t2, . . . , tN) and (y1, y2, . . . , yN),

where yn = y(xn,w), n = 1,2, . . . ,N.

Minimize the error function

E(w) =
N∑

n=1

{yn − tn}2 =
N∑

n=1

{y(xn,w)− tn}2

=
N∑

n=1

{w0 + w1xn1 + w2xn2 + · · ·+ wK xnK − tn}2.
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Introduce the following matrices

X =



1 x11 · · · x1K

1 x21 · · · x2K

1 x31 · · · x3K
...

...
...

1 xN1 · · · xNK


, w =


w0

w1
...

wK

 , and t =


t1
t2
...

tN

 .

Then

E(w) = ‖Xw − t‖2.

The matrix X is the data matrix.
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Since ∇E(w) = 2X>(Xw − t), the convex function E(w) has a

global minimum if and only if

X>Xw = X>t.

When S := X>X is invertible, there is a unique solution

w = S−1X>t .

When (x̃1, . . . , x̃K ) is a new input, the prediction is given by

t̃ = w0 + w1x̃1 + · · ·+ wK x̃K = [1, x̃1, . . . , x̃K ]w .
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Geometry of Linear Regression

t̃ := Xw is the best approximation (or the closest point) to t ∈ RN .

t̃ is in the column space of X .

t̃− t is orthogonal to the column space of X .

( ∵ ∇E(w) = 2X>(Xw − t) = 0 if and only if X>(̃t− t) = 0

if and only if cn · (̃t− t) = 0 for all n = 0,1, . . . ,K ,

where cn are the column vectors of X .)

t̃ is the orthogonal projection of t on to the column space of X .

colunm space = feature space
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Proposition
The matrix S := X>X is not invertible if and only if the columns of X

are linearly dependent.

Proof.

⇒) There exists w 6= 0 such that Sw = X>Xw = 0. Then Xw is

orthogonal to the column space of X . However, Xw is actually in

the column space of X . Therefore Xw = 0, and the columns of X

are linearly dependent.

⇐) There exists w 6= 0 such that Xw = 0. Then

Sw = X>Xw = 0, implying that S is not invertible.
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Binary Classification

Given a dataset D, we like to construct a function

f : D → {0,1},

where 0 = (category 0) and 1 = (category 1).

Examples
1 D = {SAT scores}, 0 = rejection, 1 = admission
2 D = {emails}, 0 = non-spam, 1 = spam
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More precisely, we will construct a function

f : D → [0,1]

so that f (d), d ∈ D, represents the probability

that d belongs to (category 1).

In the SAT scores example,

f (1350) = 0.732

will mean “A student with SAT score 1350 is accepted with

probability 0.732.”
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Q: How can we construct such a function? Logistic Regression

In linear regression, we use a linear model and minimize the mean

square error (MSE).

In logistic regression, our strategy will be similar to that of linear

regression, and the method is called maximum likelihood

estimation (MLE).
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A dataset D is given with known classification.

Step 1: Using a probabilistic model, write a function out of T with

unknown parameters or weights.

Step 2: Determine the parameters so that the known classification

may have the maximum likelihood.

It is customary to take the negative log of the likelihood function, and

the resulting function is called the cross-entropy. Then we need to

minimize the cross-entropy.

Learning ⇐⇒ Maximizing Certainty

⇐⇒ Minimizing Randomness (Entropy)
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D = {x1, . . . ,xN} with known classification {t1, . . . , tN}
yn = f (xn,w): probability that xn belongs to class 1

Then 1− yn is the probability that xn belongs to class 0.

Apply this to {t1, . . . , tN} to compute the total probability.

For example,
tn 1 0 1 1 0

pn y1 1− y2 y3 y4 1− y5

Assuming that data points are independent, we obtain

likelihood = y1(1− y2)y3y4(1− y5).
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We can write

likelihood =
N∏

n=1

y tn
n (1− yn)1−tn ,

where yn = f (xn,w).

Want: Determine w that maximizes the likelihood.

Equivalently, minimize the cross-entropy

E(w) := − log(likelihood).
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In logistic regression, we take

yn = f (xn,w) = σ(w0 + w1xn1 + w2xn2 + · · ·+ wK xnK ),

where xn = (xn1, . . . , xnK ), w = (w0,w1, . . . ,wK ) and

σ(x) :=
1

1 + e−x .

The function σ(x) is called the sigmoid function.
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The cross-entropy function is given by

E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)},

where

yn = σ(w0 + w1xn1 + w2xn2 + · · ·+ wK xnK )

and

σ(x) =
1

1 + e−x .

Goal: Determine w = (w0,w1,w2, . . . ,wK ) which minimizes E(w).
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Compute the gradient ∇E(w).

Crucial identity:

σ′(x) = σ(x)(1− σ(x))

Thus it is a solution to

y ′ = y(1− y),

which is called a logistic equation.

(ln y)′ =
1
y

y ′ = 1− y .

(ln(1− y))′ =
1

1− y
(−y ′) = −y .
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E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)},

yn = σ(w0 + w1xn1 + w2xn2 + · · ·+ wK xnK ).

Write xn = w0 + w1xn1 + w2xn2 + · · ·+ wK xnK and yn = σ(xn).

∂E
∂wj

= −
∑ ∂

∂wj
{tn ln yn + (1− tn) ln(1− yn)}

= −
∑
{tn

∂

∂xn
ln yn ·

∂xn

∂wj
+ (1− tn)

∂

∂xn
ln(1− yn) · ∂xn

∂wj
}

= −
∑
{tn(1− yn)xnj + (1− tn)(−yn)xnj}

=
∑

(yn − tn)xnj

∂E
∂wj

=
N∑

n=1

(yn − tn)xnj .

Kyu-Hwan Lee (UConn) 50 / 233



We have

∇E(w) =

[
N∑

n=1

(yn − tn)xnj

]
= X>(y − t),

where

X =


1 x11 · · · x1K

1 x21 · · · x2K
...

...
...

1 xN1 · · · xNK

 , y =


y1

y2
...

yN

 , and t =


t1
t2
...

tN

 .
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∇E(w) = X>(y − t)

Assume ∇E = 0.

Can we determine w explicitly?

When j = 0, we have xn,0 = 1 for all n, and thus

N∑
n=1

yn =
N∑

n=1

tn.
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Therefore, we have

N∑
n=1

yn =
N∑

n=1

1
1 + exp(−(w0 + w1xn1 + w2xn2 + · · ·+ wK xnK ))

=
N∑

n=1

tn.

We have more complicated equations for j 6= 0. Clearly, it is not

feasible to write w0,w1, . . . ,wK explicitly.

Kyu-Hwan Lee (UConn) 53 / 233



The cross-entropy E(w) is not linear, and it is not possible to

calculate a closed-form formula for w∗ which minimizes E(w).

On the other hand, it can be shown that E(w) is convex, and a

global minimum exists.

We will find an approximate value for w∗ using gradient descent

and Newton’s method.

The method of gradient descent is widely used in many other

parts of machine learning.
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Gradient Descent

Consider a function E : RM → R, w = (w1,w2, . . . ,wM) 7→ E(w). The

gradient ∇E of E is defined by

∇E :=

(
∂E
∂w1

,
∂E
∂w2

, . . . ,
∂E
∂wM

)
.

Proposition
E(w): differentiable in a nbhd of w

The function E(w) decreases fastest in the direction of −∇E(w).
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Proof: For a unit vector u, the directional derivative DuE is given by

DuE = lim
t→0

E(w0 + tu)− E(w0)

t
= g′(0),

where g(t) = E(w0 + tu). Let w = w0 + tu. Using the chain rule,

g′(0) =
m∑

i=1

∂E
∂wi
· dwi

dt
=

m∑
i=1

∂E
∂wi
· dui

dt
= ∇E · u.

Furthermore,

DuE = ∇E · u = |∇E | |u| cos θ = |∇E | cos θ,

where θ is the angle between ∇E and u. The minimum value of DuE

occurs when cos θ is −1. �
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Choose an initial point w0.

Set

wk+1 = wk − ηk∇E(wk )

where ηk is the step size or learning rate.

Usually, for some η > 0, we set ηk = η for all k .

From Proposition, we have

E(wk ) ≥ E(wk+1).
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Under some moderate conditions,

E(wk )→ local minimum as k →∞.

In particular, this is true when E is convex.

E is convex ⇐⇒
for all 0 ≤ α ≤ 1 and all x1, x2 ∈ Rn, we have

E(αx1 + (1− α)x2) ≤ αE(x1) + (1− α)E(x2).

w∗ = limk→∞wk

We use wk for a sufficiently large k as an approximation of w∗.

This method is called gradient descent.

Caveat: Making a right choice of η is crucial.
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Example

Consider E(w) = E(w1,w2) = w4
1 + w4

2 − 16w1w2.

Then ∇E(w) = [4w3
1 − 16w2,4w3

2 − 16w1].

Choose w0 = (1,1) and η = 0.01.

w30 = (1.99995558586289,1.99995558586289)

E(w30) = −31.9999999368777

We see that wk → (2,2) and E(2,2) = −32.

Indeed, when w = (2,2), a local minimum of E(w) is −32.
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Back to Binary Classification

E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)},

yn = σ(w0 + w1xn1 + w2xn2 + · · ·+ wK xnK ).

∇E(w) = X>(y − t)

We will perfom gradient descent using this.
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Newton’s Method

Second-order approximation

Much faster in convergence, more expensive (and more subtle)

f (x): single-variable, convex, differentiable function

Find a local minimum

⇐⇒ Find x∗ such that f ′(x∗) = 0

Choose an intial point x0 and set x = x0 + h.
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Using Taylor’s expansion,

f (x) = f (x0 + h) ≈ f (x0) + f ′(x0)h + 1
2 f ′′(x0)h2

f ′(x) ≈ d
dh

(
f (x0) + f ′(x0)h + 1

2 f ′′(x0)h2
) dh

dx
= f ′(x0) + f ′′(x0)h

From f ′(x) = 0, we approximately obtain

0 = f ′(x0) + f ′′(x0)h, h = −f ′(x0)/f ′′(x0).
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We have shown that

x1 = x0 − f ′(x0)/f ′′(x0)

is an approximation of x∗.

Repeat the process to obtain

xk+1 = xk − f ′(xk )/f ′′(xk ) ,

and xk → x∗ as k →∞.

This is Newton’s method for a single-variable function, and we

generalize it to a multi-variable function.
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F (x): multi-variable, convex, differentiable function

The Hessian matrix is defined by

HF =



∂2F
∂x2

1

∂2F
∂x1∂x2

· · · ∂2F
∂x1∂xM

∂2F
∂x2∂x1

∂2F
∂x2

2
· · · ∂2F

∂x2∂xM

...
...

. . .
...

∂2F
∂xM∂x1

∂2F
∂xM∂x2

· · · ∂2F
∂x2

M

 .

In short, HF = [ ∂2F
∂xi∂xj

].
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Recall

xk+1 = xk − f ′(xk )/f ′′(xk ).

Generalizing the single-variable case,

xk+1 = xk − HF (xk )−1∇F (xk ) .
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Proof: Using Taylor’s expansion, we have for h ∈ Rm,

F (x) = F (x0 + h) ≈ F (x0) + h>∇F (x0) + 1
2h>HF (x0)h .

Write HF (x0) = [Hk`], and

h>∇F (x0) =
∑

k

∂F
∂xk

hk ,

h>HF (x0)h =
∑
k ,`

Hk`hkh`.

We obtain

∂F
∂xi

(x) ≈ ∂

∂hi

(
F (x0) + h>∇F (x0) + 1

2h>HF (x0)h
)

=
∂F
∂xi

+
M∑

k=1

Hikhk .
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Thus

∇F (x) ≈ ∇F (x0) + HF (x0)h.

From ∇F (x) = 0, we approximately obtain

h = −HF (x0)−1∇F (x0).

�
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Using a step size ηk , the formula may be modified to be

xk+1 = xk − ηkHF (xk )−1∇F (xk ) .

Newton’s method is much faster than gradient descent.

However, it may be expensive to compute HF (xk )−1.

Sometimes, HF (xk ) is close to a singular matrix.
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Example

Consider E(w) = E(w1,w2) = w4
1 + w4

2 − 16w1w2.

Then ∇E(w) = [4w3
1 − 16w2,4w3

2 − 16w1]>.

HE(w) =

[
12w2

1 −16

−16 12w2
2

]

HE(w)−1 =
1

9w2
1 w2

2 − 16

[
3
4w2

2 1

1 3
4w2

1

]

HE−1∇E =
1

9w2
1 w2

2 − 16

[
3w3

1 w2
2 − 8w3

2 − 16w1

3w2
1 w3

2 − 8w3
1 − 16w2

]
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Choose w0 = (1,1) and η = 1.

Then w1 = (2,2) and E(w1) = −32.

Choose w0 = (1.2,1.2) and η = 1.

Then w9 = (2.00000004189571,2.00000004189571),

E(w9) = −31.9999999999999.
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Apply Newton’s method to our main example:

E(w) = −
N∑

n=1

{tn ln yn + (1− tn) ln(1− yn)},

where yn = σ(w0 + w1xn1 + w2xn2 + · · ·+ wK xnK ).

Recall that σ′(x) = σ(x)(1− σ(x)).
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We have

∇E(w) =

[
N∑

n=1

(yn − tn)xnj

]
= X>(y − t),

where

X =


1 x11 · · · x1K

1 x21 · · · x2K
...

...
...

1 xN1 · · · xNK

 , y =


y1

y2
...

yN

 , and t =


t1
t2
...

tN

 .

Calculate
∂2E

∂wi∂wj
.
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Recall
∂E
∂wj

=
N∑

n=1

(yn − tn)xnj .

Here yn = σ(w0 + w1xn1 + w2xn2 + · · ·+ wK xnK ).

Write xn = w0 + w1xn1 + w2xn2 + · · ·+ wK xnK and yn = σ(xn).

∂2E
∂wi∂wj

=
∂

∂wi

N∑
n=1

(yn − tn)xnj =
N∑

n=1

∂(yn − tn)xnj

∂xn

∂xn

∂wi

=
N∑

n=1

yn(1− yn)xnjxni

Thus we have

∂2E
∂wi∂wj

=
N∑

n=1

yn(1− yn)xnixnj .
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∂2E
∂wi∂wj

=
N∑

n=1

yn(1− yn)xnixnj

We get

HE =

[
N∑

n=1

yn(1− yn)xnixnj

]
= X>RX ,

where R = diag(yn(1− yn)).

Then we have

wk+1 = wk − (X>RX )−1X>(y − t) ,

where R and y are determined by wk in each step.
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Stochastic Gradient Descent (SGD)

Typically in Machine Learning, we minimize a function E(w) given

by a sum of the form

E(w) =
1
N

N∑
n=1

En(w),

where N is the number of elements in the training set.

When N is large, computation of the gradient ∇E may be

expensive.
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The SGD selects a sample from the training set in each iteration

step instead of using the whole batch of the training set, and use

1
L

L∑
i=1

∇Eni (w),

where L is the size of the sample and

{n1,n2, . . . ,nL} ⊂ {1,2, . . . ,N}.

The SGD is commonly used in implementations of many Machine

Learning algorithms.
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Probability

Suppose that we are performing an experiment.

S: set of all outcomes, called the sample space

An event is a subset of S.

Example: Roll a die. Then the sample space is given by

S = {1,2,3,4,5,6}.

The subset A = {1,3,5} is an event, which corresponds to the

statement “The outcome is an odd number”.
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Assume that S is a sample space.

A probability is a function P : {events} → [0,1] satisfying
1 P(S) = 1;
2 if E1,E2, . . . are events such that Ei ∩ Ej = ∅ for i 6= j , then

P

(⋃
i

Ei

)
=
∑

i

P(Ei ).
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Example: Roll a die. Then we have the usual probabilty defined by

P({1}) = P({2}) = P({3}) = P({4}) = P({5}) = P({6}) =
1
6
.

We obtain

P({1,3,5}) = P({1} ∪ {3} ∪ {5}) =
1
6

+
1
6

+
1
6

=
3
6

=
1
2
.
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Example: Let S = R. Define a function f : S → R by

f (x) =
1√
2π

e−
x2
2 .

The graph of f is
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For an event A = [a,b] ⊂ S = R, define

P(A) =

∫
A

f (x)dx =

∫ b

a
f (x)dx .

Then P is a probability.
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Proof: We have

P(S) =

∫
S

f (x)dx =

∫ ∞
−∞

f (x)dx .

P(S)2 =

∫ ∞
−∞

f (x)dx
∫ ∞
−∞

f (y)dy =
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−(x2+y2)/2dxdy

=
1

2π

∫ 2π

0

∫ ∞
0

e−r2/2 r dr dθ =

∫ ∞
0

e−udu = 1

Thus P(S) = 1. The second condition is satisfied by the properties of

an integral. �
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Conditional Probability

The conditional probability of B given that A has occurred is defined to

be

P(B|A) =
P(A ∩ B)

P(A)
.

Example: Roll a die.

A = odd number, B = prime number

P(B|A) =
P(A ∩ B)

P(A)
=

2/6
3/6

=
2
3
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From the definition P(B|A) =
P(A∩B)

P(A) , we obtain

P(A ∩ B) = P(A)P(B|A) .

Two events A and B are said to be independent if

P(A ∩ B) = P(A)P(B).

In this case, P(B|A) = P(A∩B)
P(A) = P(A)P(B)

P(A) = P(B), and similarly,

P(A|B) = P(A).
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Exmaples:

1 Draw a card from a deck of 52.

A = the card is an ace, B = the card is a spade

P(A) =
1
13
, P(B) =

1
4
, P(A ∩ B) =

1
52

= P(A)P(B)

2 Draw two cards from a deck of 52.

A = the first card is a spade, B = the second card is a spade

P(A) =
1
4
, P(B) =

1
4
, P(A ∩ B) =

13
52
× 12

51
6= P(A)P(B)
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Bayes’ Theorem

P(H|E) =
P(E ∩ H)

P(E)
=

P(E |H)P(H)

P(E)

P(H|E) =
P(E |H)

P(E)
P(H)

P(H): prior degree of belief in hypothesis H

P(H|E): posterior degree of belief after evidence E

P(E |H)
P(E) : support that E provides for H
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Previously,

Learning ⇐⇒ Maximizing Certainty

⇐⇒ Minimizing Randomness (Entropy)

The Bayesian viewpoint is

Learning ⇐⇒ Updating Belief through Evidences
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Since P(E) = P(E |H)P(H) + P(E |Hc)P(Hc), we have

P(H|E) =
P(E |H)P(H)

P(E)

=
P(E |H)P(H)

P(E |H)P(H) + P(E |Hc)P(Hc)
.

Example: A new test for cancer is developed. When a person has

cancer, this test is positive with probability 0.9. When a person does

not have cancer, it is positive with probability 0.1. It is known that a

person has cancer with probability 0.01. Bob receives the test and the

result is positive. What is the probability that Bob has cancer?
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P(C|+) =
P(C ∩+)

P(+)
=

0.01× 0.9
0.01× 0.9 + 0.99× 0.1

≈ 0.083

P(NC|+) = 1− P(C|+) ≈ 0.917

P(C|−) =
P(C ∩ −)

P(−)
=

0.01× 0.1
0.01× 0.1 + 0.99× 0.9

≈ 0.001

P(NC|−) = 1− P(C|−) ≈ 0.999

Bayesian interpretation

P(C|+) =
P(+|C)

P(+)
P(C)

prior P(C) = 0.01, posterior P(C|+) ≈ 0.083

update P(+|C)
P(+) ≈ 8.3
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Random Variables

Let S be a sample space with probability P.

A function X : S → R is said to be a random variable.

Examples:

1 Roll a die, X = the number that appears

2 Roll two dice, X = the sum of two numbers that appear

3 Drive from Storrs to Boston, X = the driving time in minutes
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When the values of X is discrete, the probability mass function (pmf) of

X is defined by

p(x) := P(X = x) = P({ω ∈ S : X (ω) = x}).
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Example: Consider an experiment whose outcome is a success or a

failure.

Let Y =

1 if a success,

0 if a failure.

This random variable Y is called a Bernoulli random variable.

Such an experiment is called a Bernoulli trial.

If we set p(1) = P(Y = 1) = p, then p(0) = P(Y = 0) = 1− p,

and it defines a pmf.
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Example: Repeat a Bernoulli trial n times, and assume each trial is

independent.

Let X = number of successes out of n trials.

This random variable X is called a binomial random variable with

parameters (n,p).

The pmf is given by

p(k) = P(X = k) =

(
n
k

)
pk (1− p)n−k , k = 0,1, . . . ,n,

where
(n

k

)
:= n!

k!(n−k)! is “n choose k ”.
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When the values of X is continuous, the probability density function

(pdf) of X is defined to be a function f (x) ≥ 0 such that

P(a ≤ X ≤ b) =

∫ b

a
f (x)dx (a ≤ b).

Then we have

f (x) =
d
dx

P(−∞ ≤ X ≤ x).
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Examples:

1 The random variable X with density function

f (x) =
1√
2π

e−
x2
2

is called the standard normal random variable.

2 For α, λ > 0, the ramdom variable X with density function

f (x) =
λ

Γ(α)
e−λx (λx)α−1 (x ≥ 0)

is called a gamma random variable, where Γ(α) =
∫∞

0 e−xxα−1dx

is the gamma function. We have

Γ(n) =

∫ ∞
0

e−xxn−1dx = (n − 1)!, n = 1,2,3, . . . .
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X : random variable

The expected value or mean of X is defined to be

E(X ) =
∑

x p(x) or
∫

x f (x)dx .

The variance of X is defined by

Var(X ) = E [(X − E(X ))2] = E(X 2)− E(X )2.

The standard deviation of X is defined by

σ(X ) =
√

Var(X ).
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E(aX + b) = aE(X ) + b

Var(aX + b) = a2 Var(X )
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Example: Roll a die, X = the number that appears

p(x) = P(X = x) =
1
6

for x = 1,2,3,4,5,6

E(X ) =
∑

x p(x) = 1× 1
6

+ 2× 1
6

+ · · ·+ 6× 1
6

=
1 + 2 + · · ·+ 6

6
=

21
6

=
7
2

Var(X ) =
∑

(x − E(X ))2p(x) =
∑

x2p(x)− E(X )2

=
91
6
−
(

7
2

)2
=

35
12
≈ 2.9167

σ(X ) =
√

Var(X ) =

√
35
12
≈ 1.708
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Example: X = binom(n,p)

E(X ) = np and Var(X ) = np(1− p)
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Example

X : standard normal, f (x) = 1√
2π

e−
x2
2

Since xf (x) is odd, we have

E(X ) =

∫ ∞
−∞

xf (x)dx = 0.

E(X 2) =

∫ ∞
−∞

x2 1√
2π

e−
x2
2 dx =

∫ ∞
0

2√
2π

x2e−
x2
2 dx

=
2√
2π

(−xe−
x2
2 )
∣∣∣∞
0

+

∫ ∞
0

2√
2π

e−
x2
2 dx = 1

Var(X ) = E(X 2)− E(X )2 = 1
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Let Z be the standard normal random variable.

E(Z ) = 0 and Var(Z ) = 1

Define X = σZ + µ. Then X is a normal random variable.

E(X ) = E(σZ + µ) = σE(Z ) + µ = µ

Var(X ) = Var(σZ + µ) = σ2 Var(Z ) = σ2

E(X ) = µ and Var(X ) = σ2

The density function of f is given by

N (x |µ, σ) := f (x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )
2

.
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Conversely, we can standardize a noraml random variable by

Z =
X − µ
σ

.
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Multivariate Distributions

Consider two random variables X and Y at the same time.

When X and Y are discrete, the joint mass function is defined by

p(x , y) = P(X = x ,Y = y).

Set pX (x) =
∑

y p(x , y) and pY (y) =
∑

x p(x , y). They are pmfs of

X and Y , respectively, and are called the marginal mass functions.
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When X and Y are continuous, the joint density function of X and

Y is defined to be a function f (x , y) ≥ 0 such that, for any A ⊆ R2,

P((X ,Y ) ∈ A) =

∫∫
A

f (x , y)dxdy .

Define fX (x) =
∫

f (x , y)dy and fY (y) =
∫

f (x , y)dx . They are pdfs

of X and Y , repectively, and are called the marginal density

functions.

In particular, we have ∫∫
R2

f (x , y)dxdy = 1.
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Example

X , Y : two standard normal variables

Define

f (x , y) =
1

2π
e−

x2+y2

2 .

Then f (x , y) is a joint density function.

P(X 2 + Y 2 ≤ 1) =??

P(X 2 + Y 2 ≤ 1) =

∫∫
x2+y2≤1

f (x , y)dxdy =

∫ 2π

0

∫ 1

0

1
2π

e−
r2
2 r drdθ

=

∫ 1

0
e−

r2
2 r dr = −e−u

∣∣∣1
0

= 1− e−1 ≈ 0.6321
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Two random variables X and Y are said to be independent if

P(X ≤ a,Y ≤ b) = P(X ≤ a)P(Y ≤ b) for all a and b.

discrete case: X and Y are independent

⇐⇒ P(X = a,Y = b) = P(X = a)P(Y = b) for all a and b.

continuous case: X and Y are independent

⇐⇒ f (x , y) = fX (x)fY (y).
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X ,Y : random variables

Then we have

E(X + Y ) = E(X ) + E(Y ).

In general, for random variables X1,X1, . . . ,Xn, we have

E
(∑

Xi

)
=
∑

E(Xi).

Kyu-Hwan Lee (UConn) 109 / 233



X ,Y : independent random variables

Then we have

E(XY ) = E(X )E(Y ).

The covariance of X and Y is defined by

Cov(X ,Y ) = E [(X − E(X ))(Y − E(Y ))].

We have

Cov(X ,Y ) = E(XY )− E(X )E(Y ).

If X and Y are independent, we have

Cov(X ,Y ) = 0.
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We have

Var(X + Y ) = V (X ) + V (Y ) + 2 Cov(X ,Y ).

In general,

Var
(∑

Xi

)
=
∑

Var(Xi) + 2
∑
i<j

Cov(Xi ,Xj).

If X1,X2, . . . ,Xn are independent, then

Var
(∑

Xi

)
=
∑

Var(Xi).
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Maximum Likelihood Estimate (MLE)

A student practices three-point shots in basketball. He tried 100 shots

and made 67 shots successful. What is the prbability of success for

the next shot?

Choose your model and compute the likelihood.

L(p) =

(
100
67

)
p67(1− p)33

Determine the parameter p so that the likelihood function L(p) is

maximized.
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It is more convenient to consider log L(p).

log L(p) = 67 log p + 33 log(1− p) + C

(log L(p))′ =
67
p
− 33

1− p
=

67(1− p)− 33p
p(1− p)

=
67− 100p
p(1− p)

When p = 67
100 , the likelihood L(p) is maximized.

Prediction: the next shot will be successful with probability 67
100 .

This method is called the maximum likelihood estimate (MLE).
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Linear Regression as MLE

Input: x = (x1, x2 . . . , xK ) ∈ RK Output: t ∈ R
Observations: (x11, x12, . . . , x1K ; t1), . . . , (xN1, xN2, . . . , xNK ; tN)

Use these observations as training examples.

Task: Given a new input (x̃1, x̃2, . . . , x̃K ), predict the output t̃ .
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Choose a model:

Given x ,
:::
the

::::::::::::::
corresponding

::::::
value

:::
of

:
t
::::
has

::
a
:::::::::::::::::::
normal distribution

with mean

y(x ,w) = w0 + w1x1 + w2x2 + · · ·+ wK xK ,

where w = [w0,w1, . . . ,wK ]>.

Then we have

t = y(x ,w) + ε,

where ε is the Gaussian noise with mean 0.
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The density function is given by

p(t |x ,w , β) = N (t |y(x ,w), β−1),

where β is a parameter corresponding to the inverse variance,

called the precision.
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Assume that each observation is independent,

and that the variance β−1 is all the same.

Then the likelihood density is

L(w) = p(t|X ,w , β)

=
N∏

n=1

N (tn|yn(xn,w), β−1)

=

(√
β

2π

)N

exp

[
−β

2

∑
(tn − yn)2

]
.

This is our probabilistic model.
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Taking log, we obtain

log L(w) = −β
2

∑
(tn − yn)2 + (constant)

= −β
2
‖t− Xw‖2 + (constant).

Thus MLE is equivalent to minimizing the error function

E(w) =
∑

(tn − yn)2 = ‖t− Xw‖2.

Maximum likelihood

⇐⇒ Minimizing ‖y − Xw‖2

⇐⇒ Linear regression
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Bayesian Linear Regression

Bayesian linear regression avoids the over-fitting problem of

maximum likelihood.

1 Consider w as a random variable.

2 Choose prior information on w in the form of probability

distribution.

3 Given observations {(xn, tn)}, update w using Bayes’ formula to

obtain the posterior distribution of w .

4 Determine w so that
::::
the

:::::::::
posterior

::::::::::
probability

::
is
:::::::::::
maximized; that is,

take the mode of the posterior.
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M-dimensional Gaussian distribution:

N (w |µµµ,Σ) :=
1

(2π)M/2
1
|Σ|1/2 exp

{
−1

2
(w −µµµ)>Σ−1(w −µµµ)

}
,

where the M-dimensional vector µµµ is the mean, the M ×M matrix

Σ is the covariance, and |Σ| is the determinant of Σ.

Choose a prior distribution for w :

p(w |α) = N (w |0, α−1I).

We have

− ln p(w |α) =
α

2
w>w + (constant) =

α

2
‖w‖2 + (constant).
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Bayes’ Theorem gives the posterior

p(w |X , t, α, β) ∝ p(t|X ,w , β) p(w |α).

Recall P(A|B) = P(B|A)P(A)
P(B)

.

Task: Determine w so that the posterior is maximized.

This process is called a maximum a posteriori (MAP) estimation.

Kyu-Hwan Lee (UConn) 121 / 233



Take the negative logarithm of the posterior

− log p(w |X , t, α, β) = − log [p(t|X ,w , β) p(w |α)] + (constant)

=
β

2
‖t− Xw‖2 +

α

2
‖w‖2 + (constant)

The maximum of the posterior is given by the minimum of

Ẽ(w) =
β

2
‖t− Xw‖2 +

α

2
‖w‖2 .

Thus, maximizing the posterior distribution is equivalent to

minimizing the regularized sum-of-square error function,

i.e., ridge regression.
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We can compute w explicitly:

Ẽ(w) =
β

2
‖Xw − t‖2 +

α

2
‖w‖2,

and

∇Ẽ(w) = βX>(Xw − t) + αw = 0.

Thus

w = βSX>t with S−1 = αI + βX>X .
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N = 9, α = 0.01 and β = 1000
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Recall the maximum likelihood gave us
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The posterior can be computed explicitly, since the prior and the

likelihood are all Gaussian.

Indeed, we obtain

p(w |X , t, α, β) = N (w |m,S) ,

where

m = βSX>t with S−1 = αI + βX>X .
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Naive Bayes Classifier

Consider the binary classification

{sentences} −→ {positive,negative}.

For example, take a dataset of sentences from Amazon reivews on

products.

Task: Given a new sentence, determine whether it is positive or

negative.
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Question: How can we convert a setence into a vector?

Fix a vocabulary of K words.

Make an ordered list w1,w2, . . . ,wK of the words in the vocabulary.

Replace a sentece with a binary vector:

sentence −→ (x1, x2, . . . , xK ),

where xi = 1 if wi occurs and xi = 0 otherwise.

For simplicity, we don’t record how many times a word occurs.

Similarly, we ignore the order in which different words appear.
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Analize a dataset of 1000 sentences.

Denote by G an occurrence of “great” in a sentence and by Gc no

occurrence of “great”.

+ − total

G 92 5 97

Gc 408 495 903

total 500 500 1000

For the classification, we are interested in P(+|G).

How can we compute P(+|G)??
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Conditional probability

P(+|G) =
P(+ ∩G)

P(G)
=

92/1000
97/1000

=
92
97
≈ 0.9485

Bayes’ Theorem

P(+|G) =
P(G|+)

P(G)
P(+) =

92/500
97/1000

0.5 ≈ 0.9485

We have

P(−|G) = 1− 0.9485 = 0.0515,

P(+|Gc) =
P(+ ∩Gc)

P(Gc)
=

408
903

= 0.4518,

P(−|Gc) = 1− 0.4518 = 0.5482.
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Denote by W an occurrence of “waste” in a sentence and by W c no

occurrence of “waste”.

+ − total

W 0 14 14

W c 500 486 986

total 500 500 1000

We have

P(+|W ) =
P(+ ∩W )

P(W )
= 0, P(−|W ) = 1,

P(+|W c) =
P(+ ∩W c)

P(W c)
=

500
986

= 0.5071,

P(−|W c) = 1− 0.5071 = 0.4929.
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We need to consider many different words all together.

Assumption: Given a collection of words, their presence and absence

in a (postive or negative) review are independent.

Then we have

P(G,W |±) = P(G|±)P(W |±), P(G,W c |±) = P(G|±)P(W c |±),

P(Gc ,W |±) = P(Gc |±)P(W |±), P(Gc ,W c |±) = P(Gc |±)P(W c |±).

The above ssumption is naive, but it enables us to compute relavant

probabilities.
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Consider a sentence with G and W c .

Is this sentence positive or negative?

To be precise, we compare P(+|G,W c) with P(−|G,W c).
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Using Bayes’ Theorem, we have

P(+|G,W c) =
P(G,W c |+)P(+)

P(G,W c)
=

P(G|+)P(W c |+)P(+)

P(G,W c)
,

P(−|G,W c) =
P(G,W c |−)P(−)

P(G,W c)
=

P(G|−)P(W c |−)P(−)

P(G,W c)
.

Since the denominators are the same, it is enough to consider the

numberators for comparison.

L(+|G,W c) := P(G|+)P(W c |+)P(+) =
92

500
500
500

1
2

= 0.092

L(−|G,W c) := P(G|−)P(W c |−)P(−) =
5

500
486
500

1
2

= 0.00486
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Assume that we have extracted key words w1,w2, . . . ,wK from the

dataset.

Replace a sentece with a binary vector:

sentence −→ (x1, x2, . . . , xK ),

where xi = 1 if wi occurs and xi = 0 otherwise.

By Assumption, xi ’s correspond to independent Bernoulli random

variables.

If there are N sentences in the dataset, we obtain a data matrix X

of size N × K .
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Let t = [t1, t2, . . . , tN ]> be the column vector,

where tn = 1 if the nth review is positive and tn = 0 otherwise.

The number of positive reviews is equal to N+ := t>t,

and the number of negative reviews is equal to N− := N − N+.

Notice that

t>X = [#(+ ∩ w1), #(+ ∩ w2), . . . , #(+ ∩ wK )],

where #(+ ∩ wi) is the number of positive reviews that contain wi .

We have

P+ :=
1

N+
t>X = [P(w1|+), P(w2|+), . . . , P(wK |+)].
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Let 1 be the matrix with all entries equal to 1, whose size is to be

determined by the context.

We have

(1− t)>X = [#(− ∩ w1), #(− ∩ w2), . . . , #(− ∩ wK )].

It follows that

P− :=
1

N−
(1− t)>X = [P(w1|−), P(w2|−), . . . , P(wK |−)].
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Let x = (x1, x2, . . . , xK ) be a data vector.

For example, x = (1,1,0,0,1). Then

P(x |+) = P(w1|+)P(w2|+)(1− P(w3|+))(1− P(w4|+))P(w5|+).

We see that

P(x |±) =
∏

i

P(wi |±)xi (1− P(wi |±))(1−xi ).

Taking log of both sides, we get

log P(x |±) =
∑

i

xi log P(wi |±) + (1− xi) log(1− P(wi |±)).
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Bayes’ Theorem

P(±|x) =
P(x |±)P(±)

P(x)

By taking log, we have

log P(±|x) = log P(x |±) + log P(±)− log P(x),

where

P(±) =
N±
N
.
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A review is positive if log P(+|x) > log P(−|x) and negative

otherwise.

It follows from

log P(±|x) = log P(x |±) + log P(±)− log P(x)

that a review is positive if

log P(x |+) + log P(+) > log P(x |−) + log P(−)

and negative otherwise.

Kyu-Hwan Lee (UConn) 140 / 233



In a previous example, we had P(+|W ) = 0.

Then log P(+|W ) is not defined!

Introduce a “fake sentence” into both classes in which every

vocabulary word appears.

This guarantees that no relevant probability is zero.
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Recall

log P(x |±) =
∑

i

xi log P(wi |±) + (1− xi) log(1− P(wi |±)).

Let X be the data matrix with each row x corresponding to a

sentence.

Define log P(X |±) to be the column vector consising of log P(x |±).

We have

log P(X |±) = X (log P±)> + (1− X ) log(1− P±)> .
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Multi-class Logistic Regression

Assume that there are s different classes.

Data set: {(xn,1, . . . , xn,K ; tn)}, tn = 1,2, . . . , s, n = 1, . . . ,N

How to generalize logistic regression?

tn = 1⇔ [1,0, . . . ,0], tn = 2⇔ [0,1,0 . . . ,0], . . . ,

tn = s ⇔ [0, . . . ,0,1]

Obtain an N × s matrix t = [tn,m] such that

tn,m =

1 if tn = m,

0 if tn 6= m.
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Define σ : Rs → (0,1)s by

σ(a) =

(
ea1∑s
i=1 eai

, . . . ,
eas∑s
i=1 eai

)
,

where a = (a1,a2, . . . ,as).

The function σ is called the softmax function.

When s = 2, we have

σ(a) =

(
ea1

ea1 + ea2
,

ea2

ea1 + ea2

)
=

(
1

1 + ea2−a1
,

ea2−a1

1 + ea2−a1

)
.

The softmax function is a generalization of the sigmoid function.
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Define y = [y1, . . . , ys] = σ(a).

For m, j = 1, . . . , s,

∂ym

∂aj
= ym(δj,m − yj) ,

where δj,m is the Kronecker’s delta, i.e.

δj,m =

1 if j = m,

0 otherwise.
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Proof: Recall ym =
eam∑

i eai
. Then we have

∂ym

∂aj
=
δj,meam (

∑
eai )− eameaj

(
∑

eai )2

=
eam (δj,m

∑
eai − eaj )

(
∑

eai )2

=
eam∑

eai

δj,m
∑

eai − eaj∑
eai

= ym(δj,m − yj).

�
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Consider a (K + 1)× s matrix w = [wp,q].

Define y = σ(Xw) = [yn,m],

where X is as before and σ is applied to the rows of Xw .

Each row of y consists of probabilities for classes 1 through s.

The likelihood function is given by

L(w) =
N∏

n=1

s∏
m=1

y tn,m
n,m .

The cross-entropy is

E(w) = −
N∑

n=1

s∑
m=1

tn,m ln yn,m.
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We have

∇E(w) =

[
∂E
∂wp,q

]
=

[
N∑

n=1

(yn,q − tn,q)xn,p

]
= X>(y − t).

Proof: Notice

s∑
m=1

tn,m(δq,m − yn,q) =
s∑

m=1

(tn,mδq,m − tn,myn,q) = tn,q − yn,q.

Write Xw = [an,j ] and an = (an,1, . . . ,an,s). Then an,j =
∑

k xn,kwk ,j

and yn = σ(an) = (yn,1, . . . , yn,s). We have

∂yn,m

∂an,j
= yn,m(δj,m − yn,j).

Kyu-Hwan Lee (UConn) 148 / 233



E(w) = −
N∑

n=1

s∑
m=1

tn,m ln yn,m

∂E
∂wp,q

= −
∑

n

∑
m

tn,m
1

yn,m

∂yn,m

∂wp,q

= −
∑

n

∑
m

tn,m
1

yn,m

∑
j

∂yn,m

∂an,j

∂an,j

∂wp,q

= −
∑

n

∑
m

tn,m
1

yn,m

∑
j

yn,m(δj,m − yn,j)δj,qxn,p

= −
∑

n

∑
m

tn,m(δq,m − yn,q)xn,p =
∑

n

(yn,q − tn,q)xn,p

�
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Gradient Descent

wi+1 = wi − ηX>(y − t) .

Let wi → w∗ as i →∞.

Given x = [1, x1, . . . , xK ], the coordinates of the vector

y = σ(xw∗)

represent the probabilities for the classes.

The (multi-class) logistic regression is the simplest neural

network.
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Dimensionality Reduction

Typically, our data points live in a high dimensional space.

In a high dimensional space,

- the data set becomes very sparse;

- our geometric intuitions can fail.

Severe difficulties that can arise in spaces of high dimensions are

usually called the curse of dimensionality (Bellman, 1961).
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Frequently, dimensionality reduction is very helpful and

Principal Component Analysis (PCA) is a commond method.

PCA is an unsupervised learning method.

Other methods for dimensionality reduction:

Linear Discriminatn Analysis (LDA),

t-distributed Stochastic Neighbor Embedding (t-SNE),

Uniform Manifold Approximation and Projection (UMAP)
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Principal Component Analysis (PCA)

{xn ∈ RK}: dataset, n = 1, . . . ,N

For example, when K = 2,

Which direction represents the dataset best?
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Goal: Project the dataset onto a subspace of dimension D < K

such that the
::::::::
variance

:::
is

:::::::::::
maximized.

Typically, we take D = 2 or D = 3.

It is called the Principal Component Analysis (PCA).
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Consider xn as a row vector.

Write x = 1
N
∑N

n=1 xn.

Let u be a column vector with ‖u‖ = 1.

The mean of the u-coordinates is

1
N

N∑
n=1

xnu = xu.
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The variance of the u-coordinates is

1
N

N∑
n=1

{xnu − xu}2 =
1
N

N∑
n=1

u>(xn − x)>(xn − x)u

= u>S u ,

where S is a K × K symmetric matrix given by

S =
1
N

N∑
n=1

(xn − x)>(xn − x) .
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Write x = (x1, . . . , xK ) and xn = (xn1, . . . , xnK ).

Let Sij be the (i , j)-entry of S. Then we have

Sij =
1
N

N∑
n=1

(xni − x i)(xnj − x j).

This is the covariance of the i-th feature and the j-th feature. In

particular, the diagonal entry Sii is the variance of the i-th feature.

The symmetric matrix S is called the covariance matrix.
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Write X0 be the matrix whose rows are xn − x , n = 1,2, . . . ,N.

Then we have

S =
1
N

X>0 X0 .

The covariance Sij measures the dependency between the

i-feature and the j-th feature.

However, Sij may be big simply because xni and xnj are big.
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Define the correlation of X and Y by

Corr(X ,Y ) =
Cov(X ,Y )

σ(X )σ(Y )
.

We have −1 ≤ Corr(X ,Y ) ≤ 1. In particular, Corr(X ,X ) = 1.

In our case, the correlation matrix C = [Cij ] is given by

Cij =
Sij√
SiiSjj

.
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Task: Maximize the variance u>S u for u such that

‖u‖2 = u>u = 1.

It is an optimization problem with contraints:

maximize f (x) for x subject to g(x) = c?

We can use Lagrange Multiplier.
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Theorem (Lagrange Multiplier)
Assume that g(x) = c and ∇g 6= 0. If x∗ is a maximum or a minimum

of f (x), then

∇f (x∗) = λ∇g(x∗)

for some λ ∈ R.

Let f (u) = u>S u and g(u) = u>u.

Then ∇f (u) = 2Su and ∇g(u) = 2u.

From Lagrange multiplier, we obtain

Su = λu .

u is an eigenvector with eigenvalue λ.
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In this case, the variance is

u> Su = λu>u = λ,

and it is maximized when λ is the largest eigenvalue of S.

The corresponding eigenvector is the first principal direction.

Actually, we can always find K prinipal directions, or K linearly

independent eigenvectors.

Recall that S is symmetric.
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Theorem (Spectral Theorem)
Let A be a K × K symmetric matrix. Then the following is true.

1 The matrix A has K real eigenvalues, counting multiplicities.

2 The eigenvectors corresponding to different eigenvalues are

orthogonal.

3 The matrix A is orthogonally diagonalizable.

In particular, the covariance matrix S is diagonalizable with real

eigenvalues.

Kyu-Hwan Lee (UConn) 163 / 233



Let

λ1 ≥ · · · ≥ λK

be the eigenvalues of S, and u1, . . . ,uK are corresponding

eigenvectors with ‖ui‖ = 1.

The variance in the ui direction is

u>i Sui = λi for i = 1, . . . ,K .

For D ≤ K , the D-dimensional projection onto the subspace

spanned by u1, . . . ,uD produces the desired dimensionality

redution. (Typically, D = 2 or 3.)
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How to compute the projection:

In order to obtain a centered picture, use X0 instead of X .

The ui -coordinate of xn − x is simply

(xn − x)ui .

Let U be the K × D matrix whose columns are u1, . . . ,uD. Then

the coordinates of the projection is given by the N × D matrix

X0U = X0[u1 · · ·uD].
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Question: Can we see the original features in the projection?

Consider

e1 = (1,0, . . . ,0),e2 = (0,1,0, . . . ,0), . . . ,eK = (0, . . . ,0,1).

Then ei is supported only by the i-th feature.

The projection eiU is nothing but the i-th row of U.

The i-th row vector of U is the direction of the i-th feature, and

it is called the loading of the i-th feature.
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PCA Approximation

We may use PCA for approximation.

Let {u1, . . . ,uK} be an orthonormal basis consiting of

eigenvectors with λ1 ≥ · · · ≥ λK .

Then a PCA approximation x̃n to a data vector xn is given by

x̃n = x +
D∑

i=1

(xn − x)ui u>i .
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Example: Hand-written digits

Original Data: K = 28× 28 = 784

Taking N = 10 and D = 1, we obtain the following:

Original PCA approximation with D = 1
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Singular Value Decomposition (SVD)

PCA can be understood as SVD.

SVD also generalizes the notion of eigenvectors from square

matrices to matrices of arbitrary sizes.

Recall that a matrix A is orthogonal if the columns form an

orthonormal set, or equivalently,

A>A = I.
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Theorem
Any (real) N × K matrix X can be decomposed as follows:

X = UΛV> ,

where U is an N × N orthogonal matrix, V is a K × K orthogonal

matrix, and Λ is an N × K matrix containing r := min(N,K ) vaules,

called singular values, on the main diagonal with 0’s elsewhere.

Write Λ = diag(σ1, . . . , σr ). The pseudoinverse X † is defined by

X † = V Λ†U> ,

where Λ† = diag(1/σ1, . . . ,1/σr ).
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Example

Let X =

[
1 2 3
4 5 6

]
. Then the SVD gives

U ≈
[
−0.3863 −0.9224
−0.9224 0.3863

]
, Λ ≈

[
9.508 0.0 0.0
0.0 0.7729 0.0

]
,

V ≈

−0.4287 0.806 0.4082
−0.5663 0.1124 −0.8165
−0.7039 −0.5812 0.4082

.
The pseudoinverse is given by

X † = V Λ†U> =

−17/18 4/9
−1/9 1/9
13/18 −2/9

, where Λ† ≈

1/9.508 0.0
0.0 1/0.7729
0.0 0.0

.
We have XX † = I, but X †X 6= I.
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Let X =

3 1
2 7
1 5

. Then the SVD gives

U ≈

−0.2068 0.9702 0.1261
−0.803 −0.0947 −0.5885
−0.559 −0.2229 0.7986

, Λ ≈

9.0613 0.0
0.0 2.6255
0.0 0.0

,
V ≈

[
−0.3074 0.9516
−0.9516 −0.3074

]
.
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Eigenvalues and Eigenvectors

Suppose that X = UΛV> is a SVD.

Then

X>X = V Λ>U>UΛV> = V (Λ>Λ)V>,

where Λ>Λ is a diagonal matrix.

Hence

(X>X )V = V (Λ>Λ).

eigenvectors of X>X = columns of V

eigenvalues of X>X = diagonal entries of Λ>Λ

Recall that we used an eigenvector of X>X in the PCA example.
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Similarly,

XX> = UΛV>V Λ>U> = U(ΛΛ>)U>

(XX>)U = U(ΛΛ>)

eigenvectors of XX> = columns of U

eigenvalues of XX> = diagonal entries of ΛΛ>

Kyu-Hwan Lee (UConn) 174 / 233



Example

Let X =

3 1
2 7
1 5

. Then X>X =

[
14 22
22 75

]
.

Recall that Λ ≈

9.0613 0.0
0.0 2.6255
0.0 0.0

.

The eigenvalues are given by Λ>Λ ≈
[

82.1065 0.0
0.0 6.8935

]
;

the eigenvectors are given by V ≈
[
−0.3074 0.9516
−0.9516 −0.3074

]
.
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Linear Discriminant Analysis

Multi-class classification

x = (x1, . . . , xk ) // P(t |x), t = 1,2, . . . , s

We studied logistic regression.

The Linear Discriminant Analysis (LDA) is based on Bayesian

inference.

LDA can be used for both supervised and unsupervised learning.
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Recall the density function f of the normal distribution is given by

f (x) =
1

σ
√

2π
e−

1
2 ( x−µ

σ )
2

.

K -dimensional Gaussian distribution:

N (x |µµµ,Σ) =
1

(2π)K/2
1
|Σ|1/2 exp

{
−1

2
(x −µµµ)Σ−1(x −µµµ)>

}
where the K -dimensional vector µµµ is the mean, the K × K matrix

Σ is the covariance, and |Σ| is the determinant of Σ.

Kyu-Hwan Lee (UConn) 177 / 233



πt := P(t) prior probability that an observation belongs to class t

ft (x) := P(x |t) likelihood

Bayes’ Theorem:

P(t |x) ∝ P(t)P(x |t) = πt ft (x)

LDA assumes

(1) ft (x) is normal, i.e., ft (x) = N (x |µµµt ,Σt )

(2) all the covariances are the same,

i.e., Σ := Σ1 = · · · = Σs.
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Recall

N (x |µµµt ,Σ) =
1

(2π)K/2
1
|Σ|1/2 exp

{
−1

2
(x −µµµt )Σ−1(x −µµµt )

>
}
.

We have

ln P(t |x) = lnπt + ln ft (x) + (terms without t)

= lnπt −
1
2

(x −µµµt )Σ−1(x −µµµt )
> + (terms without t)

= lnπt −
1
2
µµµt Σ

−1µµµ>t + xΣ−1µµµ>t + (terms without t).

(Note that xΣ−1µµµ>t is scalar and xΣ−1µµµ>t = (xΣ−1µµµ>t )> = µµµt Σ
−1x>.)

The part (terms without t) does not contribute when we compare

ln P(t |x) for t = 1, . . . , s.
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Define the discriminant function by

δt (x) := lnπt −
1
2
µµµt Σ

−1µµµ>t + xΣ−1µµµ>t

for t = 1, . . . , s.

Given x , if δt∗(x) is the largest,

observation x belongs to class t∗ with largest probability.
// Classification

In LDA, we use the training data to approximate δt (x).
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Given D = D1 t D2 t · · · t Ds (disjoint union),

set

Nt := #(Dt ), t = 1,2, . . . , s, N := N1 + · · ·+ Ns.

We make the following estimates:

π̂t = Nt/N,

µ̂µµt =
1
Nt

∑
x∈Dt

x ,

Σ̂ =
1

N − s

s∑
t=1

∑
x∈Dt

(x − µ̂µµt )
>(x − µ̂µµt ).

The use of N − s in Σ̂ is called Bessel’s correction.
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Let X̂0 be the N × K matrix whose rows are x − µ̂µµt .

Then we have

Σ̂ =
1

N − s
X̂>0 X̂0 .
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An approximation of the discriminant function is given by

δ̂t (x) := ln π̂t −
1
2
µ̂µµt Σ̂

−1µ̂µµ>t + xΣ̂−1µ̂µµ>t .

When π1 = π2 = · · · = πs, the decision boundaries are given by

−1
2
µ̂µµi Σ̂

−1µ̂µµ>i + xΣ̂−1µ̂µµ>i = −1
2
µ̂µµj Σ̂

−1µ̂µµ>j + xΣ̂−1µ̂µµ>j

for i 6= j .
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Dimensionality Reduction through LDA

We studied dimensionality reduction through PCA.

LDA can be used for dimensionality reduction.

It can be considered as a “supervised PCA”.

Given D = D1 t D2 t · · · t Ds (disjoint union),

set

Nt := #(Dt ), t = 1,2, . . . , s, N := N1 + · · ·+ Ns.
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Main Idea: Shrink class Dt into a single point µµµt and do PCA.
// Principal directions for classes.

Set

µµµt =
1
Nt

∑
x∈Dt

x and µµµ =
1
N

∑
x∈D

x .

However, the point µµµt must have multiplicity Nt .

Find a vector a which maximizes

a>
(

s∑
t=1

Nt (µµµt −µµµ)>(µµµt −µµµ)

)
a.
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Constraint: Overlap between classes needs to be controlled to

achieve better class separation.

[Hastie, Tibshirani and Friedman, The elements of statistical learning]

Although the line joining the centroids defines the direction of

greatest centroid spread, there is considerable overlap between

the projected classes.
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A vector a may capture more variability from one class than from

the other classes.

To control this, we fix the (weighted) sum of variances. That is,

s∑
t=1

a>

∑
x∈Dt

(x −µµµt )
>(x −µµµt )

a = 1.

In short, our goal is to maximize the between-class variance

relative to the within-class variance.
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Define

B =
s∑

t=1

Nt (µµµt −µµµ)>(µµµt −µµµ)

W =
s∑

t=1

∑
x∈Dt

(x −µµµt )
>(x −µµµt ).

Let X0 be the N × K matrix whose rows are x −µµµt .

Then we have

W = X>0 X0 .
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Task: Maximize a>Ba, subject to a>Wa = 1.

Lagrange Multiplier

f (a) = a>Ba, g(a) = a>Wa

We obtain ∇f = 2Ba, ∇g = 2Wa, and

Ba = λWa for some λ ⇐⇒ W−1Ba = λa .

Critical points are eigenvectors of W−1B.

Note that W−1B is symmetric.

Thus the Spectral Theorem applies.
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If a is an eigenvector of W−1B such that a>Wa = 1, then

a>Ba = a>WW−1Ba = λa>Wa = λ.

Recall that we are maximizing a>Ba.

Thus an eigenvector of the largest eigenvalue is the first principal

direction.

Take D-many principal directions for D < K .

Project data points onto the subspace of the principal directions.
// Dimensionality Reduction
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Support Vector Machines

Assume that there are two sets A+ and A− of datapoints.

Suppose that A+ and A− can be separated by a hyperplane.

That is, there is a hyperplane H given by

f (x) = f (x1, . . . , xK ) = 0,

where f (x) = w0 + w1x1 + · · ·+ wK xK = w0 + xw and

w = [w1, . . . ,wK ]>,

such that the points x in A+ satisfy f (x) > 0 and

those x in A− satisfy f (x) < 0.
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The vector w is orthogonal (or normal) to the hyperplane H.

Proof. Assume f (a) = f (b) = 0. Then

(a − b)w = (w0 + aw)− (w0 + bw) = f (a)− f (b) = 0.
�

For x ∈ RK , the distance from x to H is

|f (x)|
‖w‖ .

Proof. Assume a ∈ H. The distance between x and H is the

length of x − a in the w -direction, i.e.∣∣∣∣(x − a)
w
‖w‖

∣∣∣∣ =
|w0 + xw − (w0 + aw)|

‖w‖ =
|f (x)|
‖w‖ . �
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We have w0 + pw > 0 > w0 + qw for p ∈ A+ and q ∈ A−.

Thus (p − q)w > 0 for p ∈ A+ and q ∈ A−.

Find a ∈ A+ such that aw ≤ pw for all p ∈ A+.

Define w+
0 = −aw and fw ,+(x) = w+

0 + xw .

Similarly, find b ∈ A− such that bw ≥ qw for all q ∈ A−.

Define w−0 = −bw and fw ,−(x) = w−0 + xw .

We have

(p − q)w ≥ (a − b)w = w−0 − w+
0 > 0

for p ∈ A+ and q ∈ A−.
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Hw ,+: hyperplane defined by fw ,+(x) := w+
0 + xw = 0

We have fw ,+(x) ≥ 0 for x ∈ A+ and ∃ x ∈ A+ ∩ Hw ,+.

Hw ,−: hyperplane defined by fw ,−(x) := w−0 + xw = 0

We have fw ,−(x) ≤ 0 for x ∈ A− and ∃ x ∈ A− ∩ Hw ,−.
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Definition
Let A ⊂ RK . A hyperplane H defined by f (x) = 0 is called a supporting

hyperplane of A if f (x) ≥ 0 for all x ∈ A or f (x) ≤ 0 for all x ∈ A and ∃
x ∈ A ∩ H.

By this definition, Hw ,+ and Hw ,− are supporting hyperplanes of

A+ and A−, respectively.
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Define d(w) to be the distance between Hw ,+ and Hw ,−. Then we

have

d(w) =
|w+

0 − w−0 |
‖w‖ .

Proof. Assume q ∈ Hw ,−. Then d(w) is equal to the distance

between q and Hw ,+. Thus we have

d(w) =
|fw ,+(q)|
‖w‖ =

|w+
0 + qw |
‖w‖ =

|w−0 + qw + (w+
0 − w−0 )|

‖w‖

=
|w+

0 − w−0 |
‖w‖ .

�
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The hyperplane Hw defined by

w+
0 + w−0

2
+ xw = 0

is at the same distance from Hw ,+ and Hw ,−.

Proof. Assume p ∈ Hw .

|w+
0 + pw |
‖w‖ =

∣∣∣∣w+
0 +w−0

2 +
w+

0 −w−0
2 + pw

∣∣∣∣
‖w‖ =

∣∣∣∣w+
0 −w−0

2

∣∣∣∣
‖w‖

|w−0 + pw |
‖w‖ =

∣∣∣∣w+
0 +w−0

2 +
w−0 −w+

0
2 + pw

∣∣∣∣
‖w‖ =

∣∣∣∣w−0 −w+
0

2

∣∣∣∣
‖w‖ �
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Now let w vary.

What is the best w for separating A+ from A−?

Define the optimal margin d(A+,A−) by

d(A+,A−) := max
w

d(w).

When d(w∗) = d(A+,A−), the hyperplane H∗ defined by

H∗ :
w+

0 + w−0
2

+ xw∗ = 0

is called the classifying hyperplane.

The hyperplane H∗ is at the same distance from Hw∗,+ and Hw∗,−.
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Question: How to find the classifying hyperplane?

::::::
Naive

::::
Idea: Find a ∈ A+ and b ∈ A− be such that

‖a − b‖ ≤ ‖p − q‖ for all p ∈ A+,q ∈ A−.

Set w = (a − b)> and use w to construct the classifying hyperplane.

This idea works if we consider the line!
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Recall a set X ⊂ RK is said to be convex if for any x ,y ∈ X ,

{λx + (1− λ)y : 0 ≤ λ ≤ 1} ⊆ X ,

or equivalently,

{λ1x + λ2y : λ1 + λ2 = 1, λi ∈ R≥0} ⊆ X .

Let A ⊂ RK . The convex hull C(A) of A is defined to be the

smallest convex set that contains A.

When A = {x1, . . . ,xN}, the convex hull C(A) is given by

C(A) =

{
N∑

i=1

λixi :
N∑

i=1

λi = 1, λi ∈ R≥0

}
.

Proof. Exercise �
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Lemma
Let A ⊂ RK be a finite set. Then a hyperplane H is a supporting

hyperplane of A if and only if it is a supporting hyperplane of C(A).

Proof. Let A = {x1, . . . ,xN}.
⇒) Assume H is a supporting hyperplane of A defined by

f (x) = w0 + xw = 0. WLOG, suppose f (x) ≥ 0 for x ∈ A.

Let
∑
λixi ∈ C(A) with

∑
λi = 1 and λi ≥ 0. Then

f
(∑

λixi

)
= w0 +

∑
λixiw =

∑
λi(w0 +

∑
xiw) ≥ 0.

There exists x ∈ A ∩ H ⊂ C(A) ∩ H. Thus H is a supporting

hyperplane of C(A).
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⇐) Assume H is a supporting hyperplane of C(A) defined by

f (x) = w0 + xw = 0. WLOG, suppose f (x) ≥ 0 for x ∈ C(A).

Then f (x) ≥ 0 for x ∈ A ⊂ C(A). Suppose f (
∑
λixi) = 0 with∑

λi = 1 and λi ≥ 0. Then

f
(∑

λixi

)
=
∑

λi(w0 + xiw) = 0.

We must have λi∗ > 0 for some i∗, and w0 + xi∗w = 0. Thus H is a

supporting hyperplane of A. �
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Proposition
Let p ∈ C(A+) and q ∈ C(A−). Then

‖p − q‖ ≥ d(A+,A−).

Proof. For any w , we have

‖p − q‖ ‖w‖ ≥ |(p − q)w | ≥ |w+
0 − w−0 |

(the proof the second inequality is almost the same as the one for A+

and A− since C(A+) and C(A−) are compact) and hence

‖p − q‖ ≥ |w
+
0 −w−0 |
‖w‖ = d(w).

In particular, ‖p − q‖ ≥ d(A+,A−). �
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Theorem
Let a ∈ C(A+) and b ∈ C(A−) be such that

‖a − b‖ ≤ ‖p − q‖ for all p ∈ C(A+),q ∈ C(A−).

Set w = (a − b)>, w+
0 = −aw and w−0 = −bw . Then the supporting

hyperplanes Hw ,+ and Hw ,− of A+ and A− are respectively defined by

w+
0 + xw = 0 and w−0 + xw = 0,

and the optimal margin is equal to

d(A+,A−) = ‖a − b‖ =
|w+

0 − w−0 |
‖w‖ .
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Proof. For the first part, we need to show aw ≤ pw for all p ∈ C(A+)

and bw ≥ qw for all q ∈ C(A−). Then, from the previous discussion,

the hyperplanes Hw ,+ and Hw ,− are the supporting hyperplanes of A+

and A−, respectively. Suppose ∃p ∈ C(A+) such that aw > pw .

Consider (1− λ)a + λp ∈ C(A+) for 0 ≤ λ ≤ 1. Define

g(λ) = ‖(1− λ)a + λp − b‖2 = ‖λ(p − a) + a − b‖2.

Then

g′(0) = 2(p − a)(a − b)> = 2(p − a)w < 0.

This is a contradiction because g(λ) has a minimum when λ = 0. Thus

aw ≤ pw for all p ∈ C(A+). Similarly, bw ≥ qw for all q ∈ C(A−).
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For the second part, it follows from Proposition that

d(A+,A−) ≥ |w
+
0 − w−0 |
‖w‖ =

|(a − b)w |
‖w‖

=
‖w‖2
‖w‖ = ‖w‖ = ‖a − b‖ ≥ d(A+,A−).

�
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Task: Find a ∈ C(A+) and b ∈ C(A−) such that

‖a − b‖ ≤ ‖p − q‖ for all p ∈ C(A+),q ∈ C(A−).

There is an algorithm for this task called Sequential Minimal

Optimization invented by John Platt in 1998.

We will use the implementation in scikit-learn which in turn uses

the LIBSVM library.
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Inseparable sets

Frequently, two sets A+ and A− are not separable by a hyperplane.

Option 1: Shrink the convex hulls by cosidering points
∑
λixi

where
∑

i λi = 1 and 0 ≤ λi ≤ α for some α < 1. This excludes

outliers.

Option 2: Use a nonlinear kernel. That is, use nonlinear

hypersurfaces.
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Multi-class classification

Question: How can we generalize SVM to multi-class cases?

Assume that there are s classes.

One-versus-One: Compute all
(s

2

)
pairwise classifiers. For each

test point, the predicted class is the one that wins the most

pairwise contests.

One-versus-All: Each class is compared to all the others in s

two-class comparisons. For each test point, compute the value of

the separating hyperplane function f (x) for each of the s

classifiers. The predicted class is the one with the largest value.
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Neural Networks

Neural Networks: mimicking the operation of neurons in the brain.

...

...
...

x1

x2

x3

xk

h1

hm

y1

ys

Input
layer

Hidden
layer

Output
layer
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Form a graph with input nodes and output nodes,

and with hidden layers of extra nodes between them.

The output of each layer is the input to the next layer.

The forwarded input goes through an activation at each hidden

layer.

Each node is meant to play the role of a neuron in the brain.

The neural network is also called the multi-layer perceptron or

MLP, in short.
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In each layer of a typical neural network, the process is similar to a

logistic regression.

Neural networks ≈ multiple layers of logistic regressions

Activation functions are given

by a sigmoid or a rectified linear unit (relu).

r(x) = max(x ,0), r ′(x) = u0(x) =

1 if x > 0,

0 if x < 0.
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Set-up

Multi-class Classification:

D = {(x1, . . . , xk ; t)}, t ∈ {1,2, . . . , s}

Build a network with k input nodes and s output nodes.

Put one hidden layer with m nodes.

Each output node will produce probability for the input to be in the

corresponding class.

(Multi-class logistic regression = one-layer neural network)
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For simplicity, we take N = 1 in what follows.

input: x = [1, x1, . . . , xk ]

hidden layer: xw (1) = [z1, . . . , zm]

with w (1) of size (k + 1)×m

activation: σ(zi) (σ : sigmoid)

h = [1,h1, · · · ,hm]

= [1, σ(z1), . . . , σ(zm)]

output: y = [y1, . . . , ys] = σ(hw (2)) (σ : softmax)

with w (2) of size (m + 1)× s

As in logistic regression, we want to learn

the best values of w (`) ( ` = 1,2) using the training data.
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We have

x  h y .

This process is considered as forward propagation.

We can develop more general neural networks by considering

more complex directed graphs with many layers and by adopting

activation functions different from σ.

However, there should be no oriented cycles in the directed graph

to ensure that the outputs are deterministic functions of the inputs.

In other words, a network must be feed-forward.
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The likelihood function is given by

L(w (1),w (2)) =
s∏

i=1

y ti
i ,

where t is identified with a binary vector t = [t1, . . . , tn].

Cross-entropy

E(w (1),w (2)) = −
s∑

i=1

ti ln yi

We will use gradient descent and need to take derivatives.

In particular, we need to use the chain rule inductively.

∇w (2)E  ∇w (1)E

This process is called backpropagation.
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Recall that the softmax σ : Rs → (0,1)s is defined by

σ(a) =

(
ea1∑s
i=1 eai

, . . . ,
eas∑s
i=1 eai

)
,

where a = (a1,a2, . . . ,as).

Write y = [y1, . . . , ys] = σ(a), and

for i , j = 1, . . . , s,
∂yj

∂ai
= yj(δi,j − yi) .
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Write xw (1) = [z(1)
1 , . . . , z(1)

m ] and hw (2) = [z(2)
1 , . . . , z(2)

s ].

In particular,

z(2)
i =

∑
r

hr w
(2)
r ,i .

As in multi-class logistic regression,

∂E

∂z(2)
i

= −
s∑

j=1

tj
1
yj

∂yj

∂z(2)
i

= −
s∑

j=1

tj(δi,j − yi) = yi − ti ,

∂E

∂w (2)
p,q

=
s∑

i=1

∂E

∂z(2)
i

∂z(2)
i

∂w (2)
p,q

= hp(yq − tq),

and

∇w (2)E = h>(y − t).

Kyu-Hwan Lee (UConn) 218 / 233



Next we have

∂E

∂z(1)
i

=
s∑

j=1

∂E

∂z(2)
j

∂z(2)
j

∂z(1)
i

=
s∑

j=1

(yj − tj)
m∑
`=1

∂z(2)
j

∂h`
∂h`
∂z(1)

i

=
s∑

j=1

(yj − tj)
m∑
`=1

w (2)
`j δi,`hi(1− hi) = hi(1− hi)

s∑
j=1

(yj − tj)w
(2)
ij ,

∂E

∂w (1)
p,q

=
m∑

i=1

∂E

∂z(1)
i

∂z(1)
i

∂w (1)
p,q

= xphq(1− hq)
s∑

j=1

(yj − tj)w
(2)
qj ,

(Note that z(1)
i =

∑
r

xr w
(1)
r ,i . )

and

∇Ew (1) = xT

hq(1− hq)
s∑

j=1

(yj − tj)w
(2)
qj


q=1,...,m

.
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Write

δ
(a)
i =

∂E

∂z(a)
i

for a = 1,2.

Then

δ
(2)
i =

∂E

∂z(2)
i

= yi − ti ,

δ
(1)
i =

∂E

∂z(1)
i

= hi(1− hi)
s∑

j=1

(yj − tj)w
(2)
ij .

Notice that hi = σ(z(1)
i ) and hi(1− hi) = σ′(z(1)

i ). The formula

δ
(1)
i = σ′(z(1)

i )
s∑

j=1

δ
(2)
j w (2)

ij

is called the backpropagation formula.
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∇Ew (1) and ∇Ew (2)
// Gradient Decent

Caveats:

The error function E is non-convex (and non-concave).

Initialization – don’t take the zero matrix for w (1)

More susceptible to over-fitting – a lot more of parameters
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Remarks

Complex neural networks with multiple layers are usually called

deep neural networks.

Most deep learning models are based on convolutional neural

networks.

TensorFlow is an open-source software library for machine

learning with a particular focus on deep neural networks, and

Keras provides a Python interface for the TensorFlow library.

PyToch is an open-source machine learning library designed to

provide flexibility and speed for deep neural network

implementation.
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Convolution Neural Networks (CNN)

Introduced by Yann LeCun in 1989

Convolution

(f ∗ g)(x) =

∫ ∞
−∞

f (x − t)g(t) dt

(f ∗ g)(x) =
∞∑

t=−∞
f (x − t)g(t)

In Math 3160, when X and Y are independent,

fX+Y = fX ∗ fY .

Convolution is translation-invariant, i.e., when τaf (x) = f (x − a),

τa(f ∗ g) = τa(f ) ∗ g.
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In Machine Learning, the convolution of 2-D arrays is defined by

input: X = [Xi,j ] kernel (or filter): w = [wi,j ]

output: (X ∗w)i,j =
∑
c,d

Xi+c,j+dwc,d

For example,

1 2 0 3
0 2 1 2
1 0 0 2
3 0 2 0

∗ 1 0
1 2

=

5 6 5
1 2 5
4 4 2

Clearly, this operation is translation-invariant.
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Convolution brings about parameter sharing and sparse

connectivity.

...
...

...

x1

x2

xk − 1

xk

h1

hm

y1

ys

Input
layer

Hidden
layer

Output
layer

Kyu-Hwan Lee (UConn) 225 / 233



After convolution, pooling is performed. Two typical methods are

the max pooling and the average pooling.

Pooling is approximately translation-invariant and helps reduce

noise.

For example,

1 2 0
3 1 0
0 0 0

0 0 0
0 1 2
0 3 1

Notice that the maximum or the average does not change.

The result of convolution and pooling will go through activation

and then move forward to the next layer.
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Ideas of CNN

Sparse connectivity

Nearby pixels on an image are more strongly correlated than more

distant pixels. Recognizing local features can enhance the

performance of a classifier.

Parameter sharing

Any useful features that are detected in some portion of the input

may be valid in other parts. The weights are shared across the

layer, and the number of parameters is reduced.

Translation invariance

Features of images are invariant under translation.
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Input Layer

Convolution

Pooling

Activation

Next Layer

Kyu-Hwan Lee (UConn) 228 / 233



Some specifics for code

We use the max pooling and the relu function for activation.

We do not perform padding for simplicity. In general, padding

brings several benefits.

Multiple for-loops make computations very slow.

We need to vectorize our computations.

For a convolution with a 2× 2 kernel, we convert
x00 x01 x02 x03

x10 x11 x12 x13

x20 x21 x22 x23

x30 x31 x32 x33

−→
x00

x01

x10

x11

x01

x02

x11

x13

x02

x03

x12

x13

x10

x11

x20

x21

x11

x12

x21

x22

x12

x13

x22

x23

x20

x21

x30

x31

x21

x22

x31

x32

x22

x23

x32

x33

and use a matrix multiplication once.

We need to record where the maxima occur in the max pooling.
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We may use multiple kernels (or filters).

Different kernels learn different features.

In order to boost speed, we use stochastic gradient descent.
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input: x = [x1, . . . , xk ] (no bias here)

hidden layer: convolution & pooling with filter w (1)

// [z(1)
1 , . . . , z(1)

m ]

activation: σ(z(1)
i ) = r(w (1)

0 + z(1)
i )

r(x) is the relu and w (1)
0 is a bias.

h = [1,h1, · · · ,hm] = [1, σ(z(1)
1 ), . . . , σ(z(1)

m )]

output: y = [y1, . . . , ys] = σ(hw (2)) (σ : softmax)

with w (2) of size (m + 1)× s

and hw (2) = [z(2)
1 , . . . , z(2)

s ]
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For w (2), we have the same formula

∇w (2)E = h>(y − t).

Recall the backpropagation:

δ
(1)
i = σ′(z(1)

i )
s∑

j=1

δ
(2)
j w (2)

ij .

δ
(2)
i =

∂E

∂z(2)
i

= yi − ti ,

δ
(1)
i =

∂E

∂z(1)
i

= u0(w (1)
0 + z(1)

i )
s∑

j=1

(yj − tj)w
(2)
ij .
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Since
∂h`
∂w (1)

0

= u0(w (1)
0 + z(1)

` ) for any `, we see that

∂E

∂w (1)
0

=
s∑

j=1

∂E

∂z(2)
j

∂z(2)
j

∂w (1)
0

=
s∑

j=1

(yj − tj)
m∑
`=1

∂z(2)
j

∂h`
∂h`
∂w (1)

0

=
s∑

j=1

(yj − tj)
m∑
`=1

w (2)
`j u0(z(1)

` + w (1)
0 ) =

m∑
i=1

δ
(1)
i ,

∂E

∂w (1)
p,q

=
m∑

i=1

∂E

∂z(1)
i

∂z(1)
i

∂w (1)
p,q

=
m∑

i=1

δ
(1)
i xi,p,q,

where xi,p,q are determined by pooling.
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