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We show that standard machine-learning algorithms may be
trained to predict certain invariants of algebraic number fields to
high accuracy. A random-forest classifier that is trained on finitely
many Dedekind zeta coefficients is able to distinguish between real
quadratic fields with class number 1 and 2, to 0.96 precision. Fur-
thermore, the classifier is able to extrapolate to fields with discrim-
inant outside the range of the training data. When trained on the
coefficients of defining polynomials for Galois extensions of degrees
2, 6, and 8, a logistic regression classifier can distinguish between
Galois groups and predict the ranks of unit groups with precision
> 0.97.

1. Introduction & summary

Algebraic number fields are characterized by various invariants. One such in-
variant is the class number, which encodes how far the ring of integers in the
number field is from being a unique factorisation domain. To this day, there
remain central open questions regarding class numbers of algebraic number
fields. For example, whilst there is a well-known list of imaginary quadratic
number fields with class number 1, it is not known whether or not there are
infinitely many real quadratic fields with class number 1. Actually, Gauss
conjectured in his famous Disquisitiones Arithmeticae of 1801 that there
are infinitely many. Furthermore, it is conjectured that there are infinitely
many real quadratic fields of the form Q(

√
p), for a prime p ≡ 1 mod 4,

with class number 1. In fact, experimental evidence, and the Cohen–Lenstra
heuristics, predict that around 76% of such fields have class number 1 [6].
In this paper, we show that a machine-learning algorithm may be trained
to predict certain invariants, including the class number of real quadratic
fields.
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For a broad introduction to machine-learning, see [7, 8]. The machine-
learning of mathematical structures is a relatively recent enterprise. Inter-
esting early neural-network experiments exploring the non-trivial zeros of
the Riemann zeta function were documented in [22] (a more recent work is
[17]). Building on work in superstring theory, more precisely the computa-
tion of topological invariants for Calabi–Yau compactifications [10, 16, 21, 4]
(q.v., [11] for a summary), a programme developing the applications of
machine-learning to abstract mathematics was proposed in [9, 10]. Since
then, machine-learning has been applied to various branches within the dis-
cipline with the intention of pattern-recognition and conjecture-raising. To
name a few: representation theory [13], graph theory [15], metric geometry
[2], dessins d’enfants [12], and quiver mutations [3].

Recently, the present authors demonstrated that techniques from ma-
chine-learning could be used to resolve a classification problem in arithmetic
geometry [14]. To be precise, we showed that a Bayesian classifier can dis-
tinguish between Sato–Tate groups given a small number of Euler factors
for the L-function with over 99% accuracy. Given the efficient nature of the
machine-learning approach, [Loc. cit.] suggested a machine can be trained
to learn the Sato–Tate distributions and may be able to classify curves much
more efficiently than the methods available in the literature.

This paper is a continuation of our observation that machine-learning
can be used in number theory. In particular, we will apply logistic regression
and random forest classifiers—these are reviewed in [8, Sections 4.4 & 15].
Our experiments are concerned with predicting the following invariants: de-
gree, signature, Galois group, and class number. We utilise three training
data sets associated to algebraic number fields: (1) coefficients of their defin-
ing polynomials, (2) finitely many coefficients of their Dedekind zeta func-
tions, and (3) binary vectors encoding finitely many completely-split ratio-
nal primes. Each training dataset has its own strengths and weaknesses. We
review the utility of datasets (1), (2) and (3) below.

1. Using both defining polynomial and zeta coefficient training, we ob-
serve high-accuracy predictions for number field signatures and Galois
groups. The signature of a number field determines the rank of its
unit group, which is equal to the vanishing order of the associated
Dedekind zeta function at s = 0. Elsewhere it has been demonstrated
that a machine cannot be efficiently trained to predict the ranks of
elliptic curves from their minimal Weierstrass equation [1], which is in
contrast to our observations for number fields.

2. The Dedekind zeta function of an algebraic number field has a simple
pole at s = 1 with residue given by the analytic class number formula.
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We train a random forest classifier through 1000 zeta coefficients of
real quadratic fields with class number 1 or 2 with discriminant less
than one million which are available at [18, Number Fields], and the
resulting classifier can distinguish between class numbers 1 and 2 with
accuracy 0.96. When we apply the same classifier to real quadratic
fields with discriminants between 1 million and 3 million, we find that
it distinguish between class numbers 1 and 2 with accuracy 0.92.

3. It is well-known that the set of split primes uniquely characterizes
a Galois extension over Q, cf. [20, VII, §13]. Motivated by this, we
train classifiers using binary data recording split primes and apply the
classifiers to various invariants of number fields. However, the classifiers
perform poorly except for detecting degrees of the extensions.

An outline of the contents of this paper is as follows. In Section 2, we
recall basic terminology and establish the notation used in the sequel. In Sec-
tion 3, we define our three forms of training data, and explain the experimen-
tal set-up. In Section 4, it is shown that, when trained on zeta coefficients,
a random forest classifier is able to distinguish between extension degrees
and signatures. Furthermore, we apply logistic regression to the defining
polynomial dataset. In Section 5, we outline our experiments with Galois
groups of order 8. In this case, zeta coefficients and defining polynomial co-
efficients perform equally well. In Section 6, it is observed that, when trained
on zeta coefficients, a random forest classifier is able to distinguish between
real quadratic fields of class number 1 and class number 2. The classifier is
trained using quadratic fields with discriminant less than one million, but is
able to extrapolate to ranges far beyond the training data.

2. Nomenclature

We will use the following notation throughout:

Algebraic number field denoted by F . We will assume that the extension
F/Q is Galois;

Extension degree of F over Q is denoted [F : Q];
Signature of F is the pair (r1, r2), in which r1 (resp. r2) denotes the number

of real embeddings (resp. conjugate pairs of complex embeddings) of F .
If (r1, r2) is the signature of F , then [F : Q] = r1 + 2r2. If r2 = 0
(resp. r1 = 0) then we refer to F as totally real (resp. imaginary);

Ring of integers denoted by OF ;
Rank of the unit group O×

F is equal to r := r1 + r2 − 1 by Dirichlet’s unit
theorem;
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Discriminant of F denoted by ΔF ; it is known that sgn(ΔF ) = (−1)r2 ;
Ramification A rational prime p ramifies in F if and only if p divides ΔF ;

an unramified prime p splits completely in F if pOF is a product of
[F : Q]-many distinct prime ideals in OF , and p is inert in F if pOF

is itself a prime ideal;
Class number of F denoted by hF . That is, the size of the ideal class group

(the quotient group of the fractional ideals by the principal ideals);
Norm of an ideal I in OF is denoted by N(I);
Prime ideal denoted by p. A prime ideal ideal in OF lies above a rational

prime p if p divides the ideal generated by p; we denote this situation
by p|p;

Quadratic number field has the form Q(
√
d) with d a square-free integer.

If d < 0 (resp. d > 0) then we call the field imaginary quadratic
(resp. real quadratic). The discriminant of F = Q(

√
d) is d (resp. 4d)

if d ≡ 1 mod 4 (resp. d ≡ 2, 3 mod 4). In particular, a real quadratic
number field has positive discriminant;

Galois group associated to the Galois extension F/Q is denoted by
Gal(F/Q);

Cyclic group of order n denoted by Cn;
Dihedral group of order 2n denoted by Dn.

Remark 1. The invariants that we have sought to machine-learn in this ar-
ticle are discrete, whereas the machine-learning algorithms used may involve
modelling functions of continuous variables. For the classifiers that will ap-
pear below, the resolution is rather concrete: the logistic regression classifier
simply rounds a fitted logistic sigmoid model to the nearest integer, and the
random forest classifier models a function that is locally constant on high-
dimensional Euclidean space away from the model’s decision boundaries.
More philosophically, we note that the discrete invariants under discussion
all appear in the class number formula for the Dedekind zeta function, which
is a meromorphic function of a complex variable.

3. Establishing the datasets

In this section, we explain our training datasets, and outline the basic ex-
perimental strategy.

3.1. Defining polynomials

Recall from Section 2 that we assume the extension F/Q to be Galois.
A defining polynomial for F is an irreducible polynomial P (x) ∈ Q[x] such
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that F = Q(α) for a root α of P (x). We choose P (x) as in [18, Normaliza-
tion of defining polynomials for number fields]. In particular, P (x) is monic
with integer coefficients, and, if α1, . . . , αn are the complex roots of P (x),
then the sum

∑n
i=1 |αi|2 is minimized. We write:

(1) P (x) = xn + cn−1x
n−1 + · · ·+ c1x+ c0, ci ∈ Z, n = [F : Q].

Using the coefficients of P (x), we define the vector:

(2) vP (F ) = (c0, . . . , cn−1) ∈ Zn.

Let F denote a finite set of number fields, and, for all F ∈ F , let c(F ) be an
invariant of interest. For example, F could be the set of all real quadratic
fields with discriminant less than one million and, for F ∈ F , the invariant
c(F ) could be the class number of F . We introduce the following labeled
dataset:

(3) DP = {vP (F ) → c(F ) : F ∈ F}.

Example 1. In Section 5.1, we will take F to contain certain degree 8
number fields with Galois group isomorphic to either C8 or D4. For F ∈ F
we will let c(F ) be 0 (resp. 1) corresponding to Gal(F/Q) ∼= C8 (resp.
Gal(F/Q) ∼= D4). A large database of such fields can be downloaded from
[18, Number Fields], including around 6200 such that c(F ) = 0. The set F
consists of these fields, and a random sample of around 6200 (out of around
28000) fields such that c(F ) = 1. An instance of vP (F ) such that c(F ) = 0
is

(4096,−512, 320, 136,−46, 17, 5,−1).

The vP (F ) with the largest c0 such that c(F ) = 0 is

(153220409851123184, 812631532526484, 13364221512257,

− 78983668469,−234643970,−7256689, 11478,−1).

3.2. Dedekind zeta functions

The Dedekind zeta function of a number field F is given by the following
formulas:

ζF (s) =
∏
p

(
1−N(p)−s

)−1
=

∑
I≤OF

N(I)−s =

∞∑
n=1

ann
−s,
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where p varies over prime ideals in OF , I varies over the non-zero ideals in
OF , and, for a positive integer n,

(4) an = #{N(I) = n : I ≤ OF }, n ∈ Z≥1.

Since we assume that F is Galois over Q, the zeta function ζF (s) uniquely
determines F . However, we caution that in general a number field is not
determined by its Dedekind zeta function.1 Using SageMath [23], we may
compute a large amount of an quickly. We introduce the vector:

(5) vZ(F ) = (a1, . . . , a1000) ∈ Z1000.

Example 2. For the dataset of 6206 number fields with Galois group C8

mentioned in Example 1, the largest absolute value in the 1000×6206 vZ(F )-
entries ai is 109824.

Given a finite set F of number fields F and an invariant c(F ) for each
F ∈ F , we associate the following labeled dataset:

(6) DZ = {vZ(F ) → c(F ) : F ∈ F}.

We may write ζF (s) as a product indexed by rational primes:

(7) ζF (s) =
∏
p

Ep(s)
−1, Ep(s) :=

∏
p|p

(1−N(p)−s).

If p|p then N(p) has the form pa for a ∈ Z>0. Thus the product Ep(s) is a
polynomial in p−s.

Example 3. Assume that F is a quadratic extension of Q. For a rational
prime p, we have

Ep(s) =

⎧⎪⎨
⎪⎩
1− 2p−2 + p−2s, if p is split,

1− p−2s, if p is inert,

1− p−s, if p is ramified.

The splitting property of an unramified prime p in F is determined by the
Legendre symbol and the quadratic reciprocity law. See [20, I, §8] for more
details.

1In fact, a given Dedekind zeta function only determines the product of the class
number and the regulator.
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3.3. Split primes

For a number field F that is Galois over Q, write Spl(F ) for the set of
rational primes that split completely in F . The Chebotarev density theorem
implies that the set Spl(F ) has density 1/[F : Q], and it can be shown that

F ⊂ K ⇐⇒ Spl(F ) ⊃ Spl(K)

for finite Galois extensions F and K over Q [20, VII, §13]. This shows that
the set Spl(F ) characterizes a Galois extension completely.

For i ∈ Z≥1, let pi denote the ith rational prime. Given a number field
F , we write

(8) δi =

{
1, if pi ∈ Spl(F ),

0, otherwise.

Except for finitely many primes, in order to calculate δi it suffices to re-
duce the defining polynomial P (x) modulo pi. If the reduction splits into a
product of distinct linear factors then δi = 1; otherwise, we have δi = 0. Us-
ing SageMath [23], it is possible to calculate a large number of δi quickly.
Associated to F , we introduce the following binary vector:

(9) vB(F ) = (δ1, . . . , δ500) ∈ {0, 1}500.

Given a finite set F of number fields and an invariant c(F ) for each F ∈ F ,
we associate the following dataset:

(10) DB = {vB(F ) → c(F ) : F ∈ F}.

Remark 2. We emphasize that the ith component in equation (9) corre-
sponds to the ith prime, whereas the ith component in equation (5) cor-
responds to the ith positive integer. The latter may be much smaller, for
instance the 500th prime is 3571. The binary vectors in equation (9) have
smaller dimension than the zeta-coefficient vectors in (5), but nevertheless
incorporate some information about the behaviour of larger primes in the
underlying number field. The zeta coefficient vectors in equation (5) are of
higher dimension, but only pertain to primes < 1000. Before the experi-
ments below were undertaken, it was unclear whether basic knowledge of
larger primes would be more important than more detailed knowledge of
smaller integers, or vice versa. In what follows, we will see various examples
where classifiers trained on zeta-coefficient data outperform those trained on
binary vector data. Of course, the costs and benefits of this trade-off could
be analyzed by varying the choices of dimensions made.
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3.4. Experimental strategy

1. Let F be a finite set of number fields. The choice of F depends on
the experiment. For example, F could be a random sample of degree
8 extensions with discriminant less than some bound.

2. For a number field F ∈ F , let c(F ) denote a certain invariant of inter-
est. For example, c(F ) could be a binary digit (category) corresponding
to whether or not Gal(F/Q) is abelian.

3. Generate datasets of the form D = {v(F ) → c(F ) : F ∈ F}, where D
is as in (3), (6), or (10).

4. Decompose D as a disjoint union T � V, where T is a training set
and V is a validation set. We use various ratios for splits of T and V
such as 80-20, 70-30 or 20-80 percentage-wise. As there is no signifi-
cant difference in the results, we will not specify ratios for individual
experiments.

5. Train a classifier on the set T . In this paper, we will use random forests
and logistic regression, which we implement using Mathematica [24].

6. For all unseen number fields F ∈ V, ask the classifier to determine
c(F ). We record the precision and confidence. Here, precision is de-
fined to be the percentage agreement of the actual value with the one
predicted by the classifier. As an extra check to minimize false pos-
itives and false negatives, the confidence in the form of Matthews’
correlation coefficient [19] is computed. Both precision and confidence
are desired to be close to 1.

4. Degree, signature, and rank

We recall that the extension degree [F : Q] is equal to n = r1 + 2r2, and
that the rank of the unit group O×

F is r = r1 + r2 − 1. The Dedekind zeta
function vanishes to order r at s = 0. To perform the experiments in this
section, we downloaded datasets from [18, Number fields]. The completeness
of this data is documented at [18, Completeness of number field data].

4.1. Experiment I: Extension degree

Whilst the defining polynomial of a Galois extension clearly encodes the
extension degree (as the degree of the polynomial), the same is not obviously
true for zeta coefficients or split prime data. Datasets consisting of Galois
extensions of Q with Galois group C4, C6 and C8 are obtained from [18,
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Number Fields] and thus a 3-category label can be established in the form
of (10):

(11) DB = {(δ1, . . . , δ500) → c},

where δi ∈ {0, 1} and c = 0, 1, 2, say, according to which of the 3 Galois
groups the number field F corresponds. As with all cases below, in order to
balance the data, we sample around 6200 in each category. We find that,
when trained on split prime data, a logistic regression classifier is able to
perform this 3-way classification with precision 0.976 and confidence 0.968.
Even better, when trained on zeta coefficient data, a random forest classifier
performs the same classification with precision 0.999 and confidence 0.998.

4.2. Experiment II: Rank of unit group

Recall that the signature (r1, r2) determines the rank r of O×
F through r =

r1 + r2 − 1, and sgn(ΔF ) = (−1)r2 .

Example 4. If [F : Q] = 2, then the unit group O×
F has rank 1 (resp. 0) if

F is totally real (resp. imaginary), that is, that the signature of F is (2, 0)
(resp. (0, 1)). The number field F has rank 1 (resp. 0) if and only if ΔF > 0
(resp. ΔF < 0). More generally, if [F : Q] has even degree, then the unit
group has odd (resp. even) rank if and only if ΔF > 0 (resp. ΔF < 0). We
note that if [F : Q] = 6 (resp. 8), then the rank of O×

F is an integer in the
set {2, 3, 4, 5} (resp. {3, 4, 5, 6, 7}).

We obtain, from [18, Number Fields], the datasets consisting of Galois
extensions of Q with cyclic Galois group and signatures: (2, 0) and (0, 1)
for C2, (6, 0) and (0, 3) for C6, (8, 0) and (0, 4) for C8. These signatures
correspond to ranks 1, 0, 5, 2, 7, 3 respectively. Furthermore, we downloaded
those with Galois group D4 and signatures (8, 0) and (0, 4). This establishes
datasets in the form of (3) and (6), for each choice of the 4 Galois groups,
as

DP = {(c0, . . . , cn−1) → r},
DZ = {(a1, . . . , a1000) → r}.

(12)

Here, ci ∈ Z are the coefficients of the (monic) defining polynomial and ai
are the first 1000 coefficients of the Dedekind zeta function. The rank r,
conveniently, takes values with the binary categories for each Galois group,
as indicated in Table 1.
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Table 1: Random forest classifier results on distinguishing ranks of the unit
group for field extensions F over Q with fixed Galois groups

Galois group signature(F ) rank(O×
F ) DP precision DP confidence

C2
(2,0)
(0,1)

1
0

> 0.99 > 0.99

C6
(6,0)
(0,3)

5
2

0.97 0.93

C8
(8,0)
(0,4)

7
3

> 0.99 > 0.99

D4
(8,0)
(0,4)

7
3

0.98 0.95

When trained on zeta coefficients using DZ we found that all the stan-
dard classifiers, including neural-classifiers with convolutional networks, per-
formed quite poorly. In all the cases of Galois groups, the precision was
around 0.6 or less. It is interesting that this particular case requires so much
effort without success whilst in the majority of experiments zeta coefficient
training is superior. On the other hand, when trained on the defining poly-
nomial coefficients using DP , the random forest classifier consistently per-
formed the best and the precisions were > 0.99, 0.97, > 0.99 and 0.98 for the
Galois groups as summarized in Table 1 with the corresponding confidences.

In fact, we can do more. Note that for our data, in each Galois group,
the rank takes one of 2 possible values, which we can take to be 0 or 1 by
appropriate labeling. This naturally makes one think of the logistic sigmoid
function:

(13) σ(z) =
1

1 + exp(−z)

which has range [0, 1] as shown in the graph above.

When trained on defining polynomial coefficients, we found that logistic
regression performed well in predicting the rank of O×

F , giving us an explicit
and interpretable model. As with all regression, we are interested in finding
a best fit to a function, here a sigmoid of the form:

(14) σ(c0w0 + · · ·+ cn−1wn−1 + wn), (w0, . . . , wn) ∈ Rn+1,
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where ci, we recall, are the coefficients of defining minimal polynomials for
F as in equation (1). The parameters wi are to be optimized (fitted) by min-
imizing squared-mean-error. By rounding the above to the nearest integer,
the function in equation (14) gives the value 0 or 1 corresponding to the two
possibilities for the rank.

Example 5. In the case that Gal(F/Q) = C6, regression by the logistic
function yields around 94% precision with best fit:

c0w0+· · ·+c5w5+w6 = −0.000169037c0−0.0000689721c1−0.000120625c2

− 0.00196535c3 − 0.058735c4 + 0.917924c5.

The accuracy of this model varies with ranks and ΔF . More precisely, the
model predicts rank 2 with accuracy > 0.91 for almost all ranges of |ΔF |
occurring in the dataset with overall precision 0.987. On the other hand,
the model above performs poorly for rank 5 fields with |ΔF | < 1.80 × 109

(around 77% accuracy) and |ΔF | > 2.55× 1014 (around 60% accuracy); the
overall precision for the classification of rank 5 fields is 0.892.

We point out that what we did above should, strictly speaking, be called
“non-linear regression by the integer round of the logistic function”. The ter-
minology logistic regression, though similar, is different in the probabilistic
nature of the interpretation. Ordinarily, for discrete classification models
such as our binary category problem, we fit the probability p of the output
being 0 or 1 to the logistic function.

5. Galois groups of order 8

Traditional algorithms for computing Galois groups are presented in [5, Sec-
tion 6.3]. In this section, we will see that a classifier can distinguish between
various Galois groups of order 8, in a very efficient way. There are five pos-
sibilities for such groups, namely: C8, C4 × C2, C2 × C2 × C2, D4, and Q8

(the quaternion group). The last of these (Q8) has about 1100 occurrences
on the LMFDB, so we do not use it for experimentation; the others range
from around 6200 to 28000 cases. All of these can be obtained from [18,
Number Fields].

5.1. Experiment III: Abelian vs. non-Abelian groups

Let us consider Galois extensions of Q with Galois group C8 (resp. D4).
Note that C8 is Abelian but D4 is not. We establish a dataset of the form
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of (3) as

(15) DP = {(c0, . . . , c7) → a},

where the input is the list of the 8 non-trivial coefficients ci of the minimal
polynomial (the leading coefficient is always 1) and the output a is 0 or 1
according to whether the Galois group is C8 or D4. We find that a random
forest classifier was able to distinguish between these groups with preci-
sion 0.971 and confidence 0.941. Similarly, if we use the zeta coefficients
(a1, . . . , a1000) as input along the lines of (6), the random forest classifier
achieves precision 0.973 and confidence 0.947.

On the other hand, when we use the split primes data DB in (10), the
random forest classifier yields precision 0.736.

5.2. Experiment IV: Distinguishing between Abelian groups

The above experiment showed that a classifier could distinguish between
Abelian versus non-Abelian groups. We now ask: can a similar classifier
perform the more refined distinction between different Abelian groups? Here,
we have 3 abelain Galois groups of order 8: C8, C4 ×C2, and C2 ×C2 ×C2.
Using the zeta coefficient data with the output being one of the 3 categories,
we find that a random forest classifier was able to distinguish between these
groups with precision 0.95472 and confidence 0.932148.

6. Class numbers

The Dedekind zeta function of an algebraic number field has a simple pole
at s = 1. At this pole, the residue is computed by the analytic class number
formula which involves various arithmetic invariants including the class num-
ber.2 Algorithms for computing the class numbers of general number fields
are given in [5, Section 6.5]. For the special case of quadratic extensions, see
[5, Sections 5.2, 5.6].

2Specifically, the class number formula dictates that the Dedekind zeta function
has a simple pole at 1 and

lim
s→1

(s− 1)ζF (s) =
2r1(2π)r2RegFhF

wF

√
|ΔF |

,

where, in addition to the nomenclature in §2, RegF is the regulator, and wF is the
number of roots of unity in F .
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6.1. Experiment V: Real quadratic fields

In the discriminant range 0 < |ΔF | ≤ 106, one finds 83464 real quadratic
number fields with class number 1, and 83324 real quadratic number fields
with class number 2 [18, Number Fields], and the list is complete for this
discriminant range.

Whilst there are many thousands of examples of real quadratic number
fields with larger class number, the sample size varies from case to case. In
order to avoid biases in our datasets, we simply focus on the binary clas-
sification problem of distinguishing real quadratic fields with class number
1 from those with class number 2. Thus, we have datasets, using (3), (6)
and (10),

DP = {(c0, c1) → c}, DZ = {(a1, . . . , a1000) → c},
DB = {(δ1, . . . , δ500) → c},

where ci are the coefficients of the minimal polynomial, ai are the first 1000
zeta coefficients, and δi are 0 or 1 according to whether the ith rational prime
splits completely or not. Here c = 1 or 2 is the class number. Note that we
have a fairly balanced dataset with around 80, 000 each of class number 1
and 2. When trained on zeta coefficient data, the random forest classifier
yielded the best precision of 0.96 with confidence 0.92. This experiment is
summarized in the table below. On the other hand, when trained on defining
polynomial data or split primes data, no standard classifier was able to
distinguish between class numbers 1 and 2 with precision greater than 0.60.

Next, we try something more drastic. Consider the discriminant range
106 < ΔF < 2 × 106, in which we find 75202 real quadratic number fields
with class number 1 and 80217 with class number 2. According to [18, Num-
ber Fields], the list is complete for this discriminant range.

Can a classifier be trained within |ΔF | of a certain range and extrapolate
to a larger |ΔF | range? If so, this would strengthen even further our notion
that machine-learning has found some underlying pattern. We applied the
classifier trained on the previous datasets, i.e., real quadratic fields with
discriminant less than one million, to this new discriminant range. The result
was precision 0.92 with confidence 0.86. It seems that the classifier is able
to extrapolate from data of smaller discriminant. We tried the same for
discriminants between 2 million and 3 million, again with the same classifier
trained on the data of discriminants smaller than one million. There are
18383 with class number 1, and 19827 with class number 2. The result was
precision 0.91 with confidence 0.84. The results are summarized in Table 2.
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Table 2: A summary of the precision and confidence of the random forest
classifier trained on zeta coefficients of real quadratic fields with discriminant
between one and one million with class number 1 or 2. The number #{F} is
the cardinality of the set containing real quadratic fields with discriminant
and class number as specified

Discriminant range hF #{F} Precision Confidence

[1, 1× 106]
1
2

83464
83324

0.96 0.92

[1× 106, 2× 106]
1
2

75202
80217

0.92 0.86

[2× 106, 3× 106]
1
2

18383
19827

0.91 0.84

Remark 3. It is known that there is a finite set of imaginary quadratic

fields with class number 1, viz., this is the list of Q[
√
d] for the Heegner

numbers d = −1,−2,−3,−7,−11,−19,−43,−67,−163. This set has far too

few examples for a machine to learn. Motivated by [6], we tested to see if any

classifier could distinguish between class numbers divisible by 3 and class

numbers not divisible by 3: The methods of zeta coefficients and polynomial

coefficients gave both precision around 0.51, which is as good as randomly

guessing. As always, divisibility and other patterns in primes seem very

difficult to be machine-learned (cf. [11]).

6.2. Experiment VI: Quartic and sextic fields

We say a degree 4 number field is bi-quadratic if it has Galois group C2×C2.

From [18, Number Fields] we downloaded the dataset of bi-quadratic Galois

extensions of Q with class number 1 and 2. To get a balanced dataset, we

randomly chose 6100 number fields for each class number. When trained

on zeta coefficient data, we found that a logistic regression classifier could

distinguish class number 1 from class number 2 with precision 0.819 with

confidence 0.640. We suspect that the performance could have been better

with a larger set of data.

In degree 6, the generic Galois group is S3. From [18, Number Fields], we

downloaded the dataset consisting of degree 6 Galois extensions of Q with

Galois group S3 and class number in the set {1, 2, 3, 4, 6, 8, 9}. The class

numbers 5 and 7 were excluded on the grounds that there are too few data

points on the LMFDB (less than 400 each), whereas the others have at least

1150 points; precise counts are given in Table 3.
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Table 3: Frequency of S3-extensions F of Q with class number hF

hF 1 2 3 4 6 8 9
#{F} 7436 8680 1917 8165 1158 4230 2700

When trained on zeta coefficient data consisting of randomly chosen
1150 data points from each class number, we found no machine-learning
approach was able to perform the corresponding 7-way classification with
precision more than 0.38. Furthermore, when trained on a dataset consisting
of 7400 data points from each of the class numbers 1, 2, 4, the best precision
given by a random forest classifier was 0.605 with confidence 0.415.

There are several factors that might contribute to the differing levels of
success between distinguishing class numbers of real quadratic fields and S3-
extensions of Q. For example, for n > 2, the n-ary classifications attempted
for S3-extensions are more complicated than the binary classifications con-
sidered for real quadratic fields. Furthermore, from a number-theoretic per-
spective, the zeta coefficients for S3-extensions are somewhat more compli-
cated. This complexity seems to be reflected in the poor performance of the
ternary classification of class numbers 1, 2, 4. It would be interesting to see
whether a larger dataset would bring a better performance.

7. Outlook

We conclude with a brief discussion of future experimental and mathematical
projects.

As mentioned in the introduction, it is unknown whether or not there
are infinitely many real quadratic fields of class number 1. It would be very
interesting to investigate how a machine is able to distinguish such fields. If
the criteria under which the classifier predicts class number 1 are satisfied
infinitely often, then there could be scope for developing a new heuristic for
or a new approach to this open problem. Furthermore, we note that the ma-
chine continues to make accurate predictions for real quadratic fields with
discriminant outside the range of the training data. Perhaps this extrapola-
tion offers a clue towards future progress.

The class number is subject to the analytic class number formula, which
computes the residue of the Dedekind zeta function at its pole. The analytic
class number formula can be compared to the famous BSD conjecture in
the sense that both concern the leading terms of zeta functions at special
points. In a forthcoming paper, we will examine whether or not a machine
can be trained to predict the vanishing orders of elliptic L-functions and
other invariants appearing in their Taylor expansions.
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