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We implement and interpret various supervised learning experiments involving real
quadratic fields with class numbers 1, 2 and 3. We quantify the relative difficulties in
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separating class numbers of matching/different parity from a data-scientific perspective,
apply the methodology of feature analysis and principal component analysis, and use
symbolic classification to develop machine-learned formulas for class numbers 1, 2 and

3 that apply to our dataset.
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1. Introduction

The class number of a real quadratic field, or of a more general number field,
measures how far its ring of integers is from being a unique factorization domain
(UFD). In particular, if the class number is 1, then the ring of integers is a UFD.
The Gauss class number problem for real quadratic fields concerns whether or not
there are infinitely many real quadratic fields with class number 1. This fundamental
question remains one of the central open questions in number theory to this day.

In a recent paper [4], it was observed that certain supervised learning classi-
fiers could be used to distinguish real quadratic fields of class number 1 from those
of class number 2. That paper was the second in a series, featuring also [3, 5], in
which the unifying theme was the application of machine learning algorithms to
arithmetic objects presented by finite lists of coefficients in certain Dirichlet series
called ζ-functions (or L-functions). Subsequently, this series of papers has been
enhanced by [6], which documents a first glimpse of unexpected aggregate phenom-
ena amongst the coefficients. In all of these papers, the methodology is motivated
by the general philosophy that arithmetic objects may be classified through these
functions; in particular, various interesting arithmetic invariants appear in their
Laurent expansions.

In this paper, we seek to formalize, generalize, and interpret the aforementioned
supervised learning experiment for real quadratic fields. In particular, we will train
classifiers on data connected to real quadratic fields with class numbers 1, 2 and 3.
We will implement different classifiers to those in [4], and once again observe that
a machine can learn to distinguish between class numbers 1 and 2 when trained
on finitely many ζ-coefficients (i.e. Dirichlet coefficients of ζ-functions). On the
other hand, in order to accurately distinguish between class numbers 1 and 3,
we incorporate some, but not necessarily all, additional features inspired by the
analytic class number formula for real quadratic fields, that is

lim
s→1

(s − 1)ζd(s) =
2Rdhd√

D
, (1.1)

where ζd(s) is the Dedekind zeta function of Q(
√

d), D is the discriminant, Rd

is the regulator, and hd is the class number. Inspired by experimental observa-
tions, we investigate structures in ζ-coefficients that may account for the machine’s
success, or lack thereof. This investigation incorporates viewpoints that are, at
times purely arithmetic, at times purely data scientific, and ultimately, a mix-
ture of the two. The basic arithmetic concept is the genus field, which explain
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some features present in the data and allow one to develop human strategies for
distinguishing between class numbers 1 and 2 based on ζ-coefficients alone (see
Sec. 2.2). In particular, in the constrained settings of our experiments, observing
occurrences of the value 1 is often a useful technique for distinguishing class num-
bers. In Sec. 4.2, we will see that symbolic classification produces a formula which
recovers the same insights that we derived from genus theory. Strategies devel-
oped from genus theory break down when considering class numbers 1 and 3. In
Sec. 3.3, we will introduce a cost function, the magnitude of which corresponds to
the relative difficulty in separating two class numbers. Using a search algorithm, we
heuristically compute the minimum of the cost function and so quantify a sense in
which it is harder to separate class numbers 1 and 3 than it is to separate 1 and 2
(see Sec. 3.5).

In the rest of this introduction, we overview the subsequent sections. We begin by
reviewing some mathematical theory, including the genus field. In Sec. 2, we review
Dedekind ζ-functions and establish various results in genus theory that explain
several statistical observations about the class numbers of real quadratic fields. In
Sec. 3, we explore the pairwise separation of real quadratic fields with different
class numbers using finitely many coefficients of their Dedekind ζ-functions. More
precisely, we introduce a cost function which quantifies the separability, and may
be heuristically computed and optimized using the so-called bubble algorithm. The
cost function is built from certain counting functions, which enumerate square-
free d such that Q(

√
d) has specified ramification properties. Section 3 is com-

plemented by Appendix A.1, in which we explore separation of ζ-coefficient data
using principal component analysis (PCA). In Sec. 4, we investigate the binary
classification of real quadratic fields with class numbers 1 and 2 using gradient
boosting tree based learning algorithms (specifically, LightGBM and CatBoost) and
genetic programming (specifically, symbolic classification). In particular, we under-
take a supervised learning experiment in the style of [4], that is, using finite lists
of ζ-coefficients as features, but place greater emphasis on alternative methodolo-
gies and feature analysis. Furthermore, rediscover some results from genus theory,
first stated in Sec. 2, concerning the parity of class numbers. Section 4 is comple-
mented by Appendix A.2, in which we record additional plots and metrics for the
experiments.

In Sec. 5, we investigate the binary classification of class numbers 1 and 3, using
LightGBM. Having previously observed that ζ-coefficients are not sufficient for high
accuracy classifiers in this case, we also incorporate various combinations of features
consisting connected to Eq. (1.1). In particular, we will involve the ramified primes,
and some partial sums related to the Dedekind zeta function and the Dirichlet L-
function. Applying the symbolic classifier, we are lead to two approximate formulas
for the class number, the first of which is essentially Eq. (1.1), and the second of
which looks somewhat different but nevertheless suggests that hd is proportional
(respectively, inversely proportional) to

√
D (respectively, Rd).
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2. Genus Theory

In [4], we saw that a random forest classifier trained with a dataset of coefficients
for the Dedekind zeta function was able to distinguish between real quadratic fields
of class numbers 1 and 2 to high accuracy. In order to explain mathematically what
a machine learns from the dataset, we review the genus field of a real quadratic
field and establish various constraints on its class number in terms of the number
of ramified primes. In Sec. 3, we will quantify one way in which the analogous
learning task for real quadratic fields with class numbers 1 and 3 is more challenging.
In Sec. 4, we will use the results in this section to inform the feature analysis
undertaken.

2.1. Dedekind zeta functions

Let K be a number field with ring of integers OK . The Dedekind zeta function of
K is defined to be

ζK(s) =
∑

I≤OK

N(I)−s =
∏

p≤OK

(1 − N(p)−s)−1, Re(s) > 1, (2.1)

where N denotes the norm map and the sum (respectively, product) is over the
non-zero (respectively, prime) ideals of OK .

For a square-free integer d, let Kd = Q(
√

d). We say that Kd is real (respectively,
imaginary) if d > 0 (respectively, d < 0). The discriminant D of Kd is given by

D =

{
d if d ≡ 1 (mod 4),

4d if d ≡ 2, 3 (mod 4).
(2.2)

When K = Kd, we will write ζK(s) = ζd(s). We note that

ζd(s) = ζ(s)L(s, χD), (2.3)

where χD := (D
· ) is the Kronecker symbol attached to Kd, L(s, χD) is the associated

Dirichlet L-function, and ζ(s) is the Riemann zeta function. By hd, we denote the
class number of Kd.

We may write

ζd(s) =
∞∑

n=1

ann−s,

where an denotes the nth Dirichlet coefficient of ζd(s). We will refer to the sequence
(an)∞n=1 as the ζ-coefficients of Kd. Using Eq. (2.3), we deduce that

an =
∑
m|n

χD(m), (2.4)

where the sum is over m dividing n. In particular, if n = p is prime, then Eq. (2.4)
simplifies to

ap = 1 + χD(p). (2.5)
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Since χD is a real quadratic character, we have χD(p) ∈ {−1, 0, 1}. Thus, for p

prime, Eq. (2.5) implies that ap ∈ {0, 1, 2}. By construction, we have χD(p) = 0 if
and only if p divides D. Subsequently, it follows from Eq. (2.5) that

ap = 1 ⇔ p divides D ⇔ p is ramified in Kd. (2.6)

2.2. Genus fields

By definition, the genus field Ed of Kd is the maximal unramified extension of Kd

which is abelian over Q, and the extended genus field E+
d of Kd is the maximal

extension of Kd which is unramified at all finite primes and abelian over Q. Recall
that a prime discriminant is a discriminant divisible by a single prime. Write D =
d1 · · · dt as a product of prime discriminants di with t = ω(D), the number of
distinct primes dividing D.

We will use the following results on genus fields (see, e.g. [7, 10]):

Proposition 2.1. We have

E+
d = Q(

√
d1, . . . ,

√
dt), Ed = E+

d ∩ R, (2.7)

Gal(E+
d /Kd) ∼= C+

d /2C+
d

∼= (Z/2Z)t−1, Gal(Ed/Kd) ∼= Cd/2Cd
∼= (Z/2Z)s,

(2.8)

where C+
d denotes the narrow class group of Kd and Cd the class group of Kd and

s = t − 1 if d is a sum of two squares and s = t − 2 otherwise.

Let nd denote the number of rational primes ramified in Kd. Since the ramified
primes in Kd are precisely those which divide D, we have nd = t = ω(D). The above
proposition implies a general result given below on the parity of class numbers hd.

Corollary 2.2. The class number hd is odd if and only if either nd = 1 or D = d1d2

with prime discriminants d1, d2 < 0.

In Sec. 4.1, we will investigate datasets in which hd ≤ 2. In such sets, we deduce
from Corollary 2.2 that, if nd = 1 then hd = 1. Such implications do not hold more
generally, for example, if d = 229, then nd = 1 and hd = 3.

Proof. Assume that hd is odd. Then s = 0 in (2.8) and so t = 1 or t = 2. If
t = nd = 1 then we are done. If t = 2 then d cannot be a sum of two squares. Then
d = p1, d = 2p1 or d = p1p2 with primes p1, p2 ≡ 3(mod 4). In all three cases, D is
a product of two negative prime discriminants. Conversely, if nd = t = 1 then s = 0
and hd is odd from (2.8), and if D = d1d2 with d1, d2 < 0, then t = 2, s = t− 2 = 0
and hd is odd.

Lemma 2.3. If hd = 1 and ap = 1 for some prime p ≡ 1 mod 4, then d = p.

We cannot allow primes p ≡ 3 mod 4 in Lemma 2.3. For example, h14 = 1 and
a7 = 1 for K14.
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Proof. Since hd = 1, we have Ed = E+
d ∩ R = Kd. Since ap = 1, we know that p

divides D and p is a prime discriminant. It follows from (2.7) that
√

p ∈ E+
d ∩ R =

Kd. Then we have Q(
√

p) = Kd.

Now we establish a series of lemmas which will be utilized primarily in Secs. 3.1
and 4.2. In the former, we will rigorously evaluate certain counting functions
attached to sets of real quadratic fields. In the latter, we will compare the con-
sequences of our lemmas to the output of symbolic classification.

Lemma 2.4. If hp = 1 for a prime p ≡ 1 mod 4 then hmp ≥ 2 for square-free
integers m ∈ Z>1 not divisible by p.

We cannot allow primes p ≡ 3 mod 4 in Lemma 2.4. For example, h7 = h14 = 1.

Proof. Given square-free m ∈ Z>1 and p ≡ 1 mod 4, the field Kmp satisfies ap = 1.
Since mp 
= p, Lemma 2.3 already implies that hmp 
= 1.

Remark 2.5. For m ≥ 1, the field Kmp satisfies ap = 1 by (2.6). If p ≡ 1 mod 4
and hp = 1, then Lemma 2.4 implies the existence of infinitely many real quadratic
fields with class number ≥ 2 such that ap = 1. This will be relevant in Example 3.2.

Lemma 2.6. If nd ≥ 3, then hd ≥ 2. In particular, if nd ≥ 3 and hd ≤ 2, then
hd = 2. Similarly, if nd ≥ 4, then hd ≥ 4.

Note that it is possible that Kd satisfies nd = 2 and hd = 1. This occurs, for
example, if d = 7, in which case hd = 1 and Kd is ramified at the primes 2 and 7.

Proof. The assertions follow from (2.8).

Lemma 2.7. Assume that nd = 2 and hd ∈ {1, 2}. Let p1 be the smallest ramified
prime in Kd. If p1 ≡ 1 mod 4 (respectively, p1 ≡ 3 mod 4), then hd = 2 (respectively,
hd = 1).

Proof. Write D = d1d2 with di prime discriminants. If p1 = d1 ≡ 1 mod 4 then d2

is also a prime ≡ 1 mod 4. Further, if hd = 1, then Lemma 2.3 yields a contradiction.
Thus, hd = 2.

If p1 = −d1 ≡ 3 mod 4 then d2 = −p2 for a prime p2 ≡ 3 mod 4. We obtain
from (2.7) that E+

d = Q(
√−p1,

√−p2) and Ed = Q(
√

p1p2) = Kd. By (2.8), we
have hd = 1.

3. Separability of ζ-Coefficients

In this section, we explore the relative difficulty in distinguishing between different
pairs of class numbers using only the associated ζ-coefficients. This is in keeping
with the strategy implemented in [4]. In Secs. 4 and 5, we will go beyond [4] and



February 2, 2024 15:29 WSPC/2810-9392 335-IJDSMS 2350001

Machine learning class numbers of real quadratic fields 113

incorporate other features inspired by the analytic class number formula into our
dataset.

The separability of ζ-coefficients will be quantified in terms of a cost function,
which will be introduced in Sec. 3.3. The cost function is constructed in terms of
certain counting functions explored in Sec. 3.1. The counting functions and the cost
function may be heuristically computed and optimized using the so-called bubble
algorithm introduced in Sec. 3.4. In Sec. 3.5, we will use the bubble algorithm
to establish that the problem of distinguishing between class numbers 1 and 3 is
more challenging than between class numbers 1 and 2. In Sec. 3.2, we will explore
the role played by ζ-coefficients with non-prime indices in the separation of ζ-
coefficients. In Appendix A.1, we document alternative approaches to the separation
of ζ-coefficients using PCA.

3.1. Counting functions

In this section, we introduce various functions connected to counting real quadratic
fields with prescribed class number and splitting behavior at given primes. Roughly
speaking, the idea is that when it is known that the class number can take one of
two values, if the count is zero for one class number, and non-zero for the other, then
observing the splitting behavior determines the class number. We will be interested
in the effectiveness of implementing this strategy in Sec. 3.3.

Definition 3.1. For a positive real number X , a positive integer h ∈ Z>0, a
vector of non-negative integers v ∈ Z3

≥0, and positive integers �, m, n ∈ Z>0, let
fv

h(�, m, n) be the number of square-free positive integers d < X such that hd = h

and (a�, am, an) = v, where a� (respectively, am, an) is the �th (respectively, mth,
nth) coefficient of ζd(s).

In symbols, we have

fv
h : Z3

>0 → Z≥0, fv
h(�, m, n) = #{d < X : hd = h and (a�, am, an) = v}.

(3.1)

The function fv
h depends on X , though this fact is suppressed from the notation.

For rational primes p, q, r, if fv
h(p, q, r) > 0 then there exists a real quadratic field

with class number h and certain splitting behavior at p, q, r prescribed by the vector
v. Indeed, we have already mentioned in Sec. 2.1 that we have ap, aq, ar ∈ {0, 1, 2}
and a prime p ramifies in Kd if and only if the corresponding coefficient ap of
ζd(s) is 1. Furthermore, we know that a prime is split (respectively, inert) if the
corresponding coefficient is 2 (respectively, 0) (cf. [9, Eq. (4.7)]).

We will refer to the inputs of fv
h as triples, and use the notation [�, m, n] so as

to distinguish the inputs from the indexing vectors v.

Example 3.2. Let h = 1 and [�, m, n] = [3, 5, 7]. Then, for v = (0, 1, 0) and
X > 5, we have fv

1 (3, 5, 7) = 1. For all the other v = (a, 1, c) for a, c ∈ {0, 1, 2} and
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(a, c) 
= (0, 0), we have fv
1 (3, 5, 7) = 0. Indeed, if a5 = 1, then Kd is ramified at 5,

and so d = 5m for square-free m not divisible by 5. Since h5 = 1 and 5 ≡ 1 mod
4, Lemma 2.4 implies that h5m ≥ 2 for m > 1. When d = 5, we have a3 = a7 = 0,
proving the claim.

Definition 3.3. For h ∈ Z>0 and a triple [�, m, n], let gh(�, m, n) be the number
of v = (v1, v2, v3) ∈ Z3

≥0 such that fv
h(�, m, n) > 0, where fv

h is as in Eq. (3.1). In
symbols, we have

gh : Z3
>0 → Z≥0, gh(�, m, n) = #{v = (v1, v2, v3) ∈ Z3

≥0 : fv
h(�, m, n) > 0}.

(3.2)

In order to gain some familiarity with these functions, we consider first the
case that �, m, n are all primes (composites will appear in the sequel). Then, since
ap, aq, ar ∈ {0, 1, 2} for primes p, q, r, a trivial bound is given by the number of all
possible vectors v, i.e.

gh(p, q, r) ≤ 33 = 27, (h ∈ Z>0). (3.3)

Example 3.4. For h ∈ {1, 2, 3} and [�, m, n] = [3, 5, 7], we will calculate gh(3, 5, 7).
In Table 1, we list the smallest d such that Kd has class number given by row and
(a3, a5, a7) given by column. An entry × indicates that the vector does not occur,
which may be verified using the statements in Sec. 2.2. Indeed, if a5 = 1 then
it follows from Corollary 2.2 that hd is odd only when d = 5. This accounts for
17 occurrences of × in Table 1. In all the remaining three occurrences, we have
a3 = a7 = 1. Again by Corollary 2.2, we have hd is odd only when d = 21, which
explains exactly the three occurrences of ×.

Table 1. Smallest d such that Kd has class number given by row and (a3, a5, a7) given by column.
An entry × indicates that the vector does not occur.

hd (0, 0, 0) (0, 0, 1) (0, 0, 2) (0, 1, 0) (0, 1, 1) (0, 1, 2) (0, 2, 0) (0, 2, 1) (0, 2, 2)

1 17 77 19 5 × × 41 14 11
2 122 182 218 185 35 65 26 119 74
3 257 2177 473 × × × 761 2429 254

hd (1, 0, 0) (1, 0, 1) (1, 0, 2) (1, 1, 0) (1, 1, 1) (1, 1, 2) (1, 2, 0) (1, 2, 1) (1, 2, 2)

1 3 × 57 × × × 6 21 141
2 87 42 78 285 105 15 66 609 39

3 993 × 1257 × × × 321 × 1101

hd (2, 0, 0) (2, 0, 1) (2, 0, 2) (2, 1, 0) (2, 1, 1) (2, 1, 2) (2, 2, 0) (2, 2, 1) (2, 2, 2)

1 13 7 22 × × × 19 301 46
2 178 238 58 10 70 85 34 91 106
3 733 7273 142 × × × 229 469 316
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Using Table 1, we deduce

gh(3, 5, 7) =

⎧⎪⎨
⎪⎩

18, h = 1, X > 301,

27, h = 2, X > 609,

16, h = 3, X > 7273.

(3.4)

In particular, we see that there exists a real quadratic field of class number 2 for
every possible combination of ramification at 3, 5, 7.

Definition 3.5. For distinct positive integers i, j ∈ Z>0, let gi,j count the number
of v so that both fv

i and fv
j are positive. That is, we define

gi,j(�, m, n) = #{v ∈ Z3
≥0 : fv

i (�, m, n) > 0 and fv
j (�, m, n) > 0}. (3.5)

Clearly, we have gi,j ≤ min{gi, gj}.
Example 3.6. Using Table 1, we obtain

g1,j(3, 5, 7) =

{
18, j = 2, X > 609,

27, j = 3, X > 7273.
(3.6)

3.2. Composite indices

In our initial investigation of the counting functions introduced in Sec. 3.1, we con-
sidered only prime indices. With composite indices, the coefficients an can take
many more values than their prime counterparts. Indeed, each character value
appearing in Eq. (2.4) is in {−1, 0, 1}, and so we see that an is an integer bounded
by 1 ± Ω(n), where Ω(n) denotes the number of prime factors dividing n (counted
with multiplicity). On the other hand, the coefficient an counts the number of ide-
als of norm n, which is a non-negative integer. Combining these observations, we
deduce

an ∈ {0, 1, . . . , Ω(n) − 1, Ω(n), Ω(n) + 1}. (3.7)

The number of values actually achieved by an depends on the multiplicity in the
prime factorization of n.

Example 3.7. If n = p2 for some prime p, then, Eq. (2.3) implies that

ap2 = 1 + χD(p) + χD(p)2 ∈ {1, 3}. (3.8)

In Eq. (3.8), we have ap2 = 3 (respectively, ap2 = 1) if and only if p is ramified
(respectively, unramified). On the other hand, if n = pq is a product of two distinct
primes, then Eq. (2.3) implies that

apq = 1 + χD(p) + χD(q) + χD(p)χD(q) ∈ {0, 1, 2, 4}. (3.9)

In Eq. (3.9), we have apq = 0 if and only if p or q is inert, apq = 1 if and only if p

and q are ramified, apq = 2 if and only if Kd is ramified at one of p and q and splits
at the other, and apq = 4 if and only if p and q split.
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Using Eq. (3.7), we deduce the following analogue of Eq. (3.3) for non-prime
indices:

gh(�, m, n) ≤ (Ω(�) + 2)(Ω(m) + 2)(Ω(n) + 2). (3.10)

3.3. Cost function

In order to measure separability of class numbers 1, 2, 3 in our datasets of ζ-
coefficients, we will introduce a cost function which may be heuristically calculated
using the searching algorithm described in Sec. 3.4.

The cost function is constructed so as to account for two key considerations.
On one hand, the cost function favors triples which minimize gi,j ; that is, we are
interested in argmin(gi,j) ⊂ Z3

>0. This is natural, since gi,j is a coarse measure of
the extent to which the sets {Kd : hd = i} and {Kd : hd = j} may be separated by
the associated ζ-coefficients. Indeed, if gi,j were to hypothetically take the value 0
at some triple [�, m, n], then each v ∈ Z3

≥0 would correspond to at most one class
number.

On the other hand, the minimization of gi,j needs to be taken in a relative way.
Namely, if the union {v : fv

i (�, m, n) > 0} ∪ {v : fv
j (�, m, n) > 0} is small, the size

gi,j of intersection would also tend to be small. Consequently, we define our cost
function Ci,j to be the ratio of the intersection over the symmetric difference:

Ci,j(�, m, n) :=
gi,j(�, m, n)

gi(�, m, n) + gj(�, m, n) − 2gi,j(�, m, n)
(3.11)

for any pair of class numbers {i, j} and any triple [�, m, n] ∈ Z3
>0. Then we are

searching for

argmin(Ci,j). (3.12)

We will find heuristic solutions to Eq. (3.12) using a searching algorithm described
in the next section.

Remark 3.8. In our heuristic calculations of the counting functions and cost func-
tion, we will count only d whose discriminant D appears in the LMFDB. Though
the LMFDB is complete for D < 2 × 106, it includes some larger d and for the
purposes of this section, we note that the largest d such that hd = 1 (respectively,
hd = 2, respectively, hd = 3) is 34, 554, 953 (respectively, 43, 723, 857, respectively,
35, 598, 713). The number of real quadratic fields in our dataset for each class num-
ber is given in Table 2.

Table 2. Number of real quadratic
fields in our dataset of real quadratic
fields extracted from the LMFDB.

#{hd = 1} #{hd = 2} #{hd = 3}
177159 183436 25201
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Example 3.9. From the dataset available in the LMFDB, we find

g1,2(3, 5, 7) = g1,2(665, 740, 940) = g1,2(520, 783, 991) = 18. (3.13)

The value 18 is much lower than the tentative upper bound which comes from
Eq. (3.10). Indeed, we have Ω(3) = Ω(5) = Ω(7) = 1, Ω(665) = Ω(740) =
Ω(940)=3, Ω(520) = 5, Ω(783) = 4, Ω(991) = 1, and so Eq. (3.10) implies that

gh(3, 5, 7) ≤ 27, gh(665, 740, 940) ≤ 125, gh(520, 783, 991) ≤ 126 (3.14)

for any positive integer h. The discrepancy between the value given in Eq. (3.13)
and the hypothetical upper bound in Eq. (3.14) means that there could potentially
be many triples [�, m, n] ∈ Z3

≥0 that make gi(�, m, n)−gi,j(�, m, n) and gj(�, m, n)−
gi,j(�, m, n) large and Ci,j(�, m, n) small.

3.4. The bubble algorithm for hd ∈ {1, 2}
In order to find a solution to Eq. (3.12), we utilize a searching algorithm referred
to as the bubble algorithm. More generally, the bubble algorithm may be used to
evaluate all counting functions introduced so far. In this section, we will focus on
{i, j} = {1, 2}. The generalization to other pairs of class numbers is straightforward.

The terminology “bubble” is motivated by certain visualizations (bubble charts)
of the value distributions of ζ-coefficients, such as Fig. 1. In Fig. 1 left (respectively,
right), we see a cube with axes given by coefficient triples v = (a3, a5, a7) (respec-
tively, v = (a2, a3, a5)). At each integer vector v, we see a colored bubble whose size
is determined by fv

1 (�, m, n) + fv
2 (�, m, n). The presence of the color red (respec-

tively, green) at v indicates that fv
1 (�, m, n) > 0 (respectively, fv

2 (�, m, n) > 0), and
the size of the red (respectively, green) contribution is proportional to the value

Fig. 1. (Color online) Value distribution for the triples (a3, a5, a7) (left) and (a2, a3, a5) (right)
where red (respectively, green) bubbles correspond to class number 1 (respectively, 2) real
quadratic fields.
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of fv
1 (�, m, n) (respectively, fv

2 (�, m, n)). Summarizing Sec. 3.3 in visual language,
we are interested in minimizing the number of mixed bubbles, and maximizing the
number of pure bubbles.

In order to compute the counting functions of Sec. 3.1, and hence the cost func-
tion of Sec. 3.3, we define a large matrix whose rows are indexed by real quadratic
fields Kd. The first column contains d, the second column contains its class number
hd, and the remaining columns contain the values taken by the coefficients ai of
ζd(s). If the matrix contains c rows in which (a�, am, an) = (x, y, z), then we say
that the triple [�, m, n] provides c collisions for the vector (x, y, z).

Example 3.10. A very small section of this matrix is shown in Table 3. Looking
at Table 3, we see that the triple [1, 2, 4] provides three collisions for the vector
(1, 0, 1) and two collisions for the vector (1, 2, 3). On the other hand, the triple
[2, 4, 7], yields no collisions at any vector.

For each triple [�, m, n], we search the entire LMFDB to generate an output of
the form

(g1(�, m, n), g1,2(�, m, n), g2(�, m, n), C1,2(�, m, n)).

Example 3.11. Consider the triple [�, m, n] = [665, 740, 985]. In this case, the
output of the bubble algorithm reads as (18, 18, 57, 0.461538). In other words,
(a665, a740, a985) takes 18 different values for class number one fields, 18 common
values for both class numbers, 57 different values for class number two fields, and
has a cost of 0.461538. In particular, there is no value for (a665, a740, a985) taken by
a class number 1 field which is not also taken by a class number 2 field.

Note that there may exist many pure bubbles of one color and very few or zero
pure bubbles of the other. More precisely, the number of pure red (class number 1)
bubbles is given by g1(�, m, n)− g1,2(�, m, n) and that of pure green (class number
2) ones by g2(�, m, n)− g1,2(�, m, n). Thus, in Example 3.11, there are no pure red
bubbles and 57− 18 = 39 pure green bubbles for [�, m, n] = [665, 740, 985].

Actually, in the entire dataset available at LMFDB, there exist triples [�, m, n]
yielding 109 pure green bubbles with no pure red bubbles. In Table 4, we list the
maximal number of pure green bubbles conditional on the constraint that there is
a fixed small number of pure red bubbles.

Table 3. Sample of the matrix used to minimize C1,2.

d Class number a1 a2 a3 a4 a5 a7

5 1 1 0 0 1 1 0
33 1 1 2 1 3 0 0
61 1 1 0 2 1 2 0
10 2 1 1 2 1 1 0
15 2 1 1 1 1 1 2
65 2 1 2 0 3 1 2
1309 2 1 0 2 1 2 1
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Table 4. Maximum number of pure green bubbles (class
number 2), conditional on a prescribed small number of
pure red bubbles (class number 1).

# of pure red bubbles 0 1 2 3 4

max # of pure green bubbles 109 80 60 48 33

Table 5. Triples [�, m, n] whose value dis-
tribution yields 1 pure red bubble and
80 pure green bubbles. In all cases, note
that g1(�, m, n) − g1,2(�, m, n) = 1 and
g2(�, m, n) − g1,2(�, m, n) = 80.

� m n g1 g1,2 g2 C1,2

589 637 720 48 47 127 0.580247
637 720 989 48 47 127 0.580247
585 620 931 64 63 143 0.777778
372 931 975 83 82 162 1.012346
804 931 975 83 82 162 1.012346
775 819 987 84 83 163 1.024691

Given 3 pure red bubbles, there is a unique triple achieving the maximum of
48 pure green bubbles. Specifically, the triple is [691, 693, 850]. In general, a triple
achieving the maximum need not be unique. For example, given 1 pure red bubble,
there are 6 triples achieving the maximum of 80 pure green bubbles, as listed in
Table 5.

3.5. Challenges in the case hd ∈ {1, 3}
The bubble algorithm naturally generalizes to other binary classification problems
for class numbers in which the features are given by ζ-coefficients. When applied
to the dataset of hd ∈ {1, 3}, the best performing triples [�, m, n] computed by
the bubble algorithm are summarized in Table 6. Note that the minimal value of
achieved by the cost function (which is 5/3) is much larger than the value previ-
ously seen for hd ∈ {1, 2} in Example 3.11. This quantifies one way in which the
classification of hd ∈ {1, 3} is a fundamentally more challenging problem using only
ζ-coefficients. Furthermore, when hd ∈ {1, 2}, we saw that the value distribution for
the triple [3, 5, 7], which consists of prime numbers, yields some pure green bubbles
(cf. Fig. 1). On the other hand, in the case that hd ∈ {1, 3}, the bubble algorithm
does not yield a single such triple of prime numbers. Instead, the optimal values
of the function C1,3 listed in Table 6 are taken by triples of composite numbers.
In Sec. 5, we will circumvent these challenges by introducing training sets with
additional features.
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Table 6. Triples [�, m, n] minimizing the cost function in
the case that {i, j} = {1, 3}. In all cases, we have
C1,3(�, m, n) = 5/3.

� m n g1(�, m, n) g1,3(�, m, n) g3(�, m, n)

62 904 1120 14 10 12
65 1166 1868 18 15 21
65 1300 1604 19 15 20
65 1316 1820 18 15 21
258 1456 1784 19 15 20
258 1580 1784 17 15 22
262 1324 1616 12 10 14
262 1280 1844 14 10 12
269 1436 1844 21 15 18
274 1316 1820 12 10 14

274 1324 1576 12 10 14
289 1436 1576 19 15 20
1364 1568 1913 26 20 26
1374 1444 1664 20 15 19
1468 1802 1984 20 15 19

4. Class Numbers 1 and 2

In this section, we investigate the binary classification of real quadratic fields with
class numbers 1 and 2 using gradient-boosting tree-based learning algorithms and
genetic programming. In Sec. 4.1, we apply the LightGBM and CatBoost machine
learning algorithms to finite lists of ζ-coefficients. We report all metric scores in the
form of tables and figures, including the list of most important features used for
the predictions in each model. In Sec. 4.2, we use a genetic programming algorithm
called symbolic classification to the ramified primes to obtain an optimal approxi-
mation for the class number formula, and subsequently recover some results about
the parity of the class number first presented in Sec. 2. We maintain the notation
from Sec. 2.

4.1. Learning hd ∈ {1, 2} from the prime index

coefficients of ζd(s)

To each square-free d ∈ Z>0, we attach the vector

v(d) = (ap)p prime
p≤1000

∈ Z168, (4.1)

where ap is the pth Dirichlet coefficient of ζd(s). The dimension 168 is the number
of primes ≤ 1000. Using Eq. (2.5), we observe that v(d) ∈ {0, 1, 2}168. Using the
vectors in Eq. (4.1), we introduce the labeled dataset

D1,2 = {v(d) → hd}, (4.2)

where d varies over square-free positive integers such that hd ∈ {1, 2} and d appears
in the LMFDB [11]. As was noted in Remark 3.8, the dataset is complete for d such
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Fig. 2. Correlation matrix of the first ten coefficients of the Dedekind zeta functions ζd(s) of real
quadratic fields with hd ∈ {1, 2}.

that D < 2 × 106, and contains some larger d (the largest d such that hd ∈ {1, 2}
being 43, 723, 857).

The labeled dataset in (4.2) is different to that in [4, Sec. 6.1], which also incor-
porated the ζ-coefficients with composite indices. Our choice to include only prime
indices seems intuitively reasonable, since all coefficients can be recovered from
those of prime index via (2.1). Whilst it was observed in Sec. 3.2 (in particular,
Example 3.9) that ζ-coefficients with composite indices yield greater separation
between real quadratic fields of different class numbers, prime indices are never-
theless sufficient for the high accuracy classifiers in the context of this section. We
furthermore note that the exclusion of composite indices can also be motivated
by the correlation matrix in Fig. 2, which shows that composite indices sharing
similar prime decomposition are highly correlated. Excluding the composite indices
therefore allows for faster training, better generalization, and more reliable (per-
mutation) feature importance.

To build our LightGBM and CatBoost supervised learning models, we will
use the automated machine learning library AutoMLjar [12]. Our choice to use
LightGBM and CatBoost was motivated in large part by Fig. 3, which shows
that LightGBM and CatBoost are, in addition to being fast to train, among
the best performing models that can be built using AutoMLjar for our experi-
ment. Furthermore, they often represent state-of-the-art models on tabular data.
We will consider a training/testing split of 70/30 for D1,2, together with a 10-
fold cross validation performed on the training set, since other splits including
30/70 produce similar results. All the folders generated by AutoMLjar, includ-
ing codes, datasets and figures for all experiments presented in this paper can
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Fig. 3. Comparison of the LightGBM and CatBoost learning models against other AutoMLjar
models on a 70/30 split for the binary classification task hd = 1 versus hd = 2.

Table 7. Performance metrics over the training set of the Light-
GBM and CatBoost model for the binary classification task
hd = 1 versus hd = 2 with split 70/30. As is standard, AUC
is the “area under the receiver operating characteristic curve”,
F1 is the F1-score and MCC, the Matthews correlation coeffi-
cient. All these quantities need to be close to 1 for a good model.
LogLoss is the log of the loss function and needs to be close to 0.

Model Logloss AUC F1 Accuracy MCC

LightGBM 0.0687 0.99776 0.9902 0.9902 0.9804
CatBoost 0.0323 0.9992 0.9952 0.9951 0.9903

be found in the GitHub repository [1]. Tables 7 summarizes various performance
scores for the LightGBM and CatBoost models, and Fig. 4 summarizes the
KS statistics.

Figure 5 summarizes the permutation feature importance. Looking at Fig. 5, we
observe that the small prime index coefficients are the most important features for
the prediction of the class number. In particular, the triple (a2, a3, a5) is the most
important for all models. Table 8 gives the value distribution of this triple, from
which we can clearly see an unequal distribution depending on whether hd = 1 or
hd = 2. This unequal distribution of the data is much more pronounced in the case
where a2 = a3 = a5 = 1 and it is visualized in Fig. 1.

This points towards the distribution of ones in the sequences of prime coeffi-
cients, namely, towards the number nd of primes that ramify in Kd and that can
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Fig. 4. KS statistic plot over the training set of the LightGBM (right) and CatBoost model (left)
for the binary classification task hd = 1 versus hd = 2 with split 70/30.

Fig. 5. Permutation feature importance for the LightGBM (left) and Catboost (right) model for
the binary classification task hd = 1 versus hd = 2 on a 70/30 split.

Table 8. Number of real quadratic fields with class number hd ∈ {1, 2} in dataset D1,2 for
specified values of the ζ-coefficients a2, a3, a5.

hd a2 = 0 a3 = 0 a5 = 0 a2 = 1 a3 = 1 a5 = 1 a2 = 2 a3 = 2 a5 = 2

1 74868 76965 88786 27804 23650 1 74487 76544 88372
2 60392 69501 75225 62773 44673 33013 60271 69262 75198

Table 9. Number of real quadratic fields with class num-
ber hd ∈ {1, 2} in dataset D1,2 for specified number nd of
ramified primes.

hd nd = 1 nd = 2 nd = 3

1 64522 112637 0
2 0 52451 130985
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Table 10. Detected ramified primes in the first 1000 coefficients of
the function ζd(s) for fields Kd with class number hd = 1, 2 from

dataset D1,2.

hd # of detected ramified primes # of fields with this property

1 0 65468
1 108527
2 3164

2 0 806
1 49595
2 101978
3 31057

be captured in the first 1000 coefficients of the function ζd(s). This is in line with
the lemmas in Sec. 2. Table 9 shows the distribution of ramified primes against the
class number and Table 10 represents the distribution of ramified primes appearing
in the first 1000 coefficients of the function ζd(s).

4.2. Learning hd ∈ {1, 2} with symbolic classification

In this section, we will construct a learning model obtained from an genetic pro-
gramming algorithm called symbolic classification [8]. We will explore how symbolic
classification can be used to produce an explicit predictor for the class number of real
quadratic fields in our dataset, using the software HeuristicLab [14]. Such a predic-
tor will provide an approximation to the class number formula for our dataset. This
approach has been used in theoretical physics, e.g. [13], to develop good approx-
imations for certain physical quantities based on a given set of learning features.
In our setting, we will see that reasonable approximations to the class number for-
mula (1.1) can be discovered using simpler learning features. Such approximations,
as we will see, are able to shed light on interesting properties of real quadratic fields.
In particular, they will allow us to recover some results in Sec. 2 on the parity of
the class number.

Using the real quadratic fields of Sec. 4.1, we create a labeled dataset DSC
1,2 by

considering as learning features the number nd of ramified primes in Kd and the
ramified primes themselves. Since hd ∈ {1, 2}, we have nd ≤ 3 by Lemma 2.6
and write the ramified primes as p1, p2, p3. By convention, if there is no second
(respectively, third) ramified prime, we will set p2 = 0 (respectively, p3 = 0). Our
dataset DSC

1,2 can be summarized as follows:

DSC
1,2 = {(nd, p1, p2, p3) → hd}.

As the dataset DSC
1,2 is quite large, running symbolic classification becomes compu-

tationally demanding. We thus sample randomly 50,000 data points from DSC
1,2 and

construct a dataset where fields of class number 1 and 2 are chosen evenly. In this
section, we use a training and testing split of 40/60. We will apply our approximate
formulas to the whole LMFDB and test their performances.
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Our symbolic classifier was built using the following parameters of HeuristicLab.
The population size was fixed to 100, the fitness function used was mean squared
error, the crossover method used was subtree swapping crossover, the mutator was
multi symbolic expression tree manipulator and for elitism, we kept one elite at
every generation to favor population exploration and avoid exploitation. For the
alphabet of functions, we used various mix of the available functions.

Among all the formulas we have generated, the simplest one in terms of length
and depth of the model is the following approximation of the class number formula:

h
(1,2)
d = 0.17257 sin(1.5703 p1) + 0.72004 nd, (4.3)

We note that the coefficient 1.5703 of p1 is approximately equal to π/2. Equa-
tion (4.3) yields the following predictor φ(d) for hd, which has accuracy 98% on the
training and testing set, and whose accuracy persists when applied to the entire
dataset DSC

1,2:

φ(d) =

{
1 if h

(1,2)
d < t,

2 if h
(1,2)
d ≥ t,

for t = 1.5115. (4.4)

The value t appearing in (4.4) serves as the threshold for (4.3). The classification
metrics for (4.4) are listed in Fig. 6. Class number 1 fields denote the positive class
and Fig. 6 shows in particular that our formula predicts no false negatives, very
few false positives, and is thus well-suited to study the relationship between p1, nd

and hd from the data.
Looking at Eq. (4.3), we note that only the number nd of ramified primes and

the first ramified prime p1 are selected by the genetic algorithm and sufficient to

Fig. 6. Summary of the classification metrics for (4.3) used in the binary classification task hd = 1
versus hd = 2.
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distinguish class number 1 and 2 real quadratic fields with very high accuracy. It is
natural to ask what kind of information we can extract from h

(1,2)
d .

If nd = 1 (respectively, nd = 3) then it is easy to see that φ(d) = 1 (respectively,
φ(d) = 2) from (4.3), regardless of the value of p1. Thus, we recover the (consequence
written after) Lemmas 2.2 and 2.6 (both under the additional hypothesis that
hd ∈ {1, 2}) and φ distinguishes between class numbers 1 and 2 fields with 100%
accuracy. In the case nd = 2, we have the following conditions imposed on p1:

h
(1,2)
d < t ⇔ 4n − 2.2724 < p1 < 4n + 0.27174, n ∈ Z>0. (4.5)

By analyzing Eq. (4.5), we find that the allowed primes are those p1 congruent to
3 mod 4 and p1 = 2. If, instead, we investigate the h

(1,2)
d ≥ t condition, then we

find the missing primes p1 congruent to 1 mod 4. In other words, we have recov-
ered Lemma 2.7. All together it reflects the general fact about parities given in
Corollary 2.2.

Though a data point in DSC
1,2 contains p1, p2, p3, the formula in (4.3) has only

the first ramified prime p1, which agrees with Lemma 2.7 (in the case nd = 2). It is
interesting to see that our machine learning model has learned this fact from data
alone.

We will see in Sec. 5.1 that such a classification failed in the case of class number
1 and 3 fields. This gives evidence that one cannot expect to distinguish fields with
the same parity using only the simple features nd and the list of ramified primes.

5. Class Numbers 1 and 3

We now turn to the classification of real quadratic fields of class numbers 1 and 3.
We attempt to mimic the structure of Sec. 4, but include new ideas to circumvent
the difficulties we encounter. Based on the minimal values of the cost function in
Sec. 3.5, we may suspect that classifiers trained on ζ-coefficients alone are not as
accurate as they are in the case of class numbers 1 and 2. This is borne out in our
implementation, in which, trained on these features, neither LightGBM nor sym-
bolic classification succeeded in distinguishing real quadratic fields of class number
1 or 3. Subsequently, we incorporate other features, such as the regulator and partial
sums.

5.1. Balancing data and selecting features

There is a large imbalance between the 25,201 real quadratic fields with class num-
ber 3 and the 177,159 with class number 1 included in [11]. To avoid any bias in the
construction of our dataset, we will restrict ourselves to the 11,531 real quadratic
fields of class number 3 with discriminant D ≤ 106. To construct a balanced dataset
including the same number of real quadratic fields with class number 1 evenly dis-
tributed over discriminant ranges, we sample class number 1 fields randomly from
the sets {Kd : i · 105 ≤ D ≤ (i + 1) · 105}, i ∈ {0, . . . , 9}, as many as class number
3 fields in each interval. For example, there are 1261 fields with class number 3 in
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the interval 1 ≤ D ≤ 105 and so in this interval, we pick the same amount of class
number 1 fields.

Our dataset thus consists of 23,062 fields. For each of them, we compute the
vector v(d) as in (4.1), the discriminant D, the regulator Rd, the number nd of
ramified primes, the ramified primes p1, p2 where we set p2 = 0 in the case that
only one prime ramifies, and the partial sums Sζd

and SχD defined by

Sζd
:=

1000∑
n=1

an

n
and SχD :=

1000∑
n=1

χD(n)
n

.

The partial sums Sζd
and SχD are motivated by ζd(s) and L(s, χD), respectively.

Our dataset can thus be summarized as

DSC
1,3 = {(v(d), D, Rd, Sζd

, SχD , nd, p1, p2) → hd}.

5.2. Learning hd ∈ {1, 3} from DSC
1,3

The problem of classifying real quadratic fields of class numbers 1 and 3 is much
more difficult than the problem of classifying those with class numbers 1 and 2.
Section 3.5 discussed this problem from a conceptual perspective. In this section,
we observe the increased difficulty from a practical standpoint.

In Table 11 we summarize the features and testing accuracy for various exper-
iments using the LightGBM classifier. As in Sec. 4, the data segregation is 70/30,
together with a 10-fold cross validation performed on the training set.

There are various observations we can make from Table 11. Row 4 shows that the
regulator and the prime index coefficients are strong predictors for the class number.
When we add the discriminant in row 6, we obtain an almost perfect classification.
Also look at the following rows where high accuracies are attained with Sζd

and

Table 11. Performance of LightGBM on various combi-
nations of learning features for the binary classification
task of hd = 1 versus hd = 3.

Row number Features Testing accuracy

1 (ap)p≤1000 53.34%
2 (ap)p≤1000 , nd, pi 54.87%
3 (ap)p≤1000, Sζd

52.87%
4 (ap)p≤1000, Rd 91.21%
5 (ap)p≤1000 , D 53.75%
6 (ap)p≤1000, D, Rd 99.38%
7 D, Rd, Sζd

99.84%
8 (ap)p≤1000, SχD 53.45%
9 D, Rd, SχD 99.93%
10 (api )

10
i=1, D, Rd 99.90%

11 (api )
5
i=1, D, Rd 99.54%

12 (api )
3
i=1, D, Rd 99.55%

13 (api )
2
i=1, D, Rd 97.51%

14 ap1 , D, Rd 88.46%
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Table 12. Detected ramified primes in the first 1000 coeffi-
cients of the function ζd(s) for real quadratic fields of class

numbers 1 and 3 in dataset DSC
1,3.

hd # of detected primes # of fields with this property

1 0 4250
1 6904
2 386

3 0 4284
1 6858
2 389

Table 13. Number of ramified primes in fields Kd of
class number hd ∈ {1, 3} from dataset DSC

1,3 in terms of
their class number.

Class number hd nd = 1 nd = 2

1 4258 7282
3 4288 7243

SχD . Of course, this could be expected from the class number formula (1.1), and
we will generate some approximate formulas to hd in Sec. 5.3. As in Sec. 4, rows
10–14 show the importance of the small prime index coefficients.

Row 2 suggests that the values nd and the number of ramified primes detected
in the sequence of prime index ζ-coefficients may be uniformly distributed over our
dataset of class numbers 1 and 3. Indeed, Tables 12 and 13 show this phenomenon.
Consequently, nd cannot be taken as a meaningful feature for classification. This
situation is in stark contrast with the case of class numbers 1 and 2.

5.3. Learning hd ∈ {1, 3} with symbolic classification

Using the same parameters as in Sec. 4.2, we will explore two formulas yielded
by symbolic classification. The classification metrics are listed in Fig. 7. Unlike in
Sec. 4.2, the formulas are not tested on the entire LMFDB but only on our dataset.

The first formula obtained is closely related to the class numbers formula (1.1):

h
(1,3)
d =

1
2

√
D SχD

Rd
. (5.1)

The following predictor attains 100% accuracy on both the training and testing
data:

φ(d) =

{
1 if h

(1,3)
d < t,

3 if h
(1,3)
d ≥ t,

for t = 1.963. (5.2)

This result shows the capability of symbolic classification to discover an effective
formula from a dataset. On the other hand, [2, Proposition 5] implies that SχD may
be well approximated by the sum χD(2)/2 + χD(3)/3 + χD(5)/5. Consequently,
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Fig. 7. Classification metrics of the formulas (5.1) and (5.3).

the analytic class number formula suggests that hd is determined by D, Rd, and
the coefficients a2, a3 and a5. Given these inputs, symbolic classification yields the
following unexpected formula:

h̃
(1,3)
d =

1.8858
√

D

Rd exp(−0.5468a2 − 0.2718a3) cos(sin(−0.2556a3))
× cos(−0.1962a5) cos4(−0.1952a5)

. (5.3)

This is rather unlike anything from the classical theory, and offers limited math-
ematical insight to the problem. Nevertheless, the following predictor based on
Eq. (5.3) attains around 99.8% accuracy both on the training and test set:

φ(d) =

{
1 if h̃

(1,3)
d < t,

3 if h̃
(1,3)
d ≥ t,

for t = 15.97. (5.4)
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Appendix A

A.1. Dimensionality reduction

In Sec. 3, we explored how class number data may be separated using the bubble
algorithm. In this appendix, we visualize how PCA clusters our data with respect
to the axes of maximal variance. To perform this dimensionality reduction, we
compress the features (an)1000n=1 to a 3-dimensional space.

The case of class numbers 1 and 2 real quadratic fields is depicted in Fig. A.1,
where we observe that there are forbidden zones for class number 1 fields. It would
be interesting to study explicitly these constraints. In addition, we can see that the
two classes are not entirely separated or mixed in this 3-dimensional representation
of the data. This shows that our data responds moderately to linear methods and
points towards the fact that nonlinear algorithms, such as LightGBM and CatBoost,
can perform better. Furthermore, looking at Fig. A.2, we see that the prime index
coefficients alone are not separable through PCA. Note that this does not imply
that nonlinear separability is unfeasible as we have successfully distinguished these
two classes in Sec. 4 using nonlinear algorithms.

In the case of class numbers 1 and 3 fields in Figs. A.3–A.5, we see that the
data is much less separable from the point of view of PCA. In contrast to Fig. A.1,
Fig. A.3 shows that the coefficients of class numbers 1 and 3 fields are completely
mixed, which can explain the greater difficulty in classifying such fields, and there
is no noticeable difference between Figs. A.4 and A.2. Figure A.5 shows the result
when the first 10 prime coefficients are combined with other features Rd and D.
Recall that, with all these features combined, we could obtain a high accuracy as
indicated in Table 11.

Fig. A.1. (Color online) Dimensionality reduction using PCA for (an)1000n=1 in the case of real

quadratic fields of class number hd ∈ {1, 2} (1: blue; 2: yellow).
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Fig. A.2. (Color online) Dimensionality reduction using PCA for (ap) p≤1000
p:prime

in the case of real
quadratic fields of class number hd ∈ {1, 2} (1: blue; 2: yellow).

Fig. A.3. (Color online) Dimensionality reduction using PCA for (an)1000n=1 in the case of real
quadratic fields of class number hd ∈ {1, 3} (1: blue; 3: yellow).
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Fig. A.4. (Color online) Dimensionality reduction using PCA for (ap) p≤1000
p:prime

in the case of real
quadratic fields of class number hd ∈ {1, 3} (1: blue; 3: yellow).

Fig. A.5. (Color online) Dimensionality reduction using PCA for D, Rd and the first 10 ap-
coefficients in the case of real quadratic fields of class number hd ∈ {1, 3} (1: blue; 3: yellow).
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Fig. A.6. Calibration curves of the LightGBM model (left) and CatBoost model (right) on a
70/30 split of the dataset for the binary classification task of quadratic fields with class number
hd = 1 versus hd = 2.

Fig. A.7. Confusion matrix of the LightGBM model (left) and CatBoost model (right) on a 70/30
split of the dataset for the binary classification task of quadratic fields with class number hd = 1
versus hd = 2.

A.2. Supplementary material for Sec. 4.1

In Sec. 4.1, we focused largely on the permutation feature importance. In Figs. A.6
and A.7, we record the calibration curves and confusion matrices for 70/30 splits.
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