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Abstract. In this paper, we study spherical Hecke algebras of SL2 over two dimensional local fields.
In order to define the convolution product, we make explicit use of coset decompositions. We
also consider spherical Hecke algebras of the torus of SL2 and construct the Satake isomorphism
between two spherical Hecke algebras. In order to define the Satake isomorphism, we use the
invariant measure on two-dimensional local fields with values in R((X)) constructed by I. Fesenko.

Introduction. The Satake isomorphism (or Satake parameters) play an im-
portant role in the Langlands program. Especially, the local L-functions of spher-
ical representations are defined using Satake parameters. More precisely, let G be
a connected split reductive algebraic group defined over a local field F. Then the
Satake isomorphism gives one-to-one correspondence between the set of equiv-
alence classes of spherical representations of G(F) and the set of semi-simple
conjugacy classes in the L-group Ĝ(C) (see, for example [Ca]). Let π be a spher-
ical representation of G(F) with the semi-simple conjugacy class tπ in Ĝ(C), and
let r : Ĝ(C) −→ GLN(C) be a finite-dimensional representation. Then the local
L-function is defined by

L(s,π, r) = det (I − r(tπ)q−s)−1,

where q is the cardinality of the residue field of F.
The study of spherical representations is exactly the study of the spherical

Hecke algebras, the set of C-valued compactly-supported functions which are
bi-invariant under the action of the maximal compact subgroup. On the other
hand, there is another important algebra, namely, the Iwahori Hecke algebra; the
one attached to the Iwahori subgroup. It is well known by Bernstein’s theorem
that spherical Hecke algebras are the center of Iwahori Hecke algebras. This fact
plays an important role in the representation theory of p-adic groups.

This paper arose in an attempt to define local L-functions for affine Kac-
Moody groups over a local field, which are attached to extended Dynkin diagrams.
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Kac-Moody groups are infinite dimensional groups which are not locally compact.
Hence there are no Haar measures. Affine Kac-Moody groups over a local field
are closely related to split simple algebraic groups over a 2-dimensional local
field. The class of such fields includes finite extensions of the fields Qp((t)),
Fp((t1))((t2)) and Qp{{t}} (for the definition see [LF]). Kapranov [Ka] studied
an analogue of Iwahori Hecke algebras for certain central extensions of split
simple algebraic groups over 2-dimensional local fields. He used an analytic
continuation technique and the residue construction of the Cherednik algebra
which does not use generators and relations. He proved that indeed the algebra
of Hecke operators associated with double cosets is isomorphic to the Cherednik
algebra. By analogy with Bernstein’s theorem, we could consider the center of
the Cherednik algebra. The problem is that the center contains an infinite sum
and so we run into a convergence problem.

In this paper, we study spherical Hecke algebras of SL2(F) with respect to
the “maximal compact subgroup” SL2(O), where F is a 2-dimensional local field
and O is the ring of integers with respect to the 2-dimensional valuation. There
are several difficulties we need to overcome. First, since the group is not locally
compact, we need to find an analogous notion of “functions with compact support”
in the classical case. We will consider functions which are zero outside certain
union of double cosets, introducing the concept of weight (See (3.6)). Similarly,
we define spherical functions on the torus T . Second, since there is no Haar
measure, we need to define the convolution product in a combinatorial way. This
will be done by using an explicit coset decomposition of a double coset into right
cosets. Because a double coset of K = SL2(O) is an uncountable union of right
cosets of K, we need to make the convolution product to be zero outside certain
union of double cosets (See (3.9)). Third, when we want to define the “Satake
isomorphism”, imitating the classical construction by using the integral on the
unipotent radical U(F), we need measure on U(F). We use the invariant measure
constructed by I. Fesenko. However, since it is R((X))-valued, we have to define
the integral to be zero outside certain double cosets to make the resulting function
to be C-valued (See (5.5)). We show that the spherical Hecke algebra H(G, K) is
a commutative algebra, “generated” by three elements. (Here “generated” means
that we must allow certain infinite sums.)

We explain briefly the contents of this paper. In Section 1, we briefly review
the theory of an invariant R((X))-valued measure on F constructed by I. Fes-
enko. We note that the additive group of a 2-dimensional local field is not locally
compact with respect to its topology and therefore by Weil’s theorem, there is
no nontrivial Haar measure on it. In Section 2, we generalize the Cartan Decom-
position to the case of groups over 2-dimensional local fields. In Section 3, we
define the spherical Hecke algebra of SL2(F) with respect to the subgroup SL2(O),
and its convolution product. Since we have not yet constructed an invariant mea-
sure on SL2(F), we need to define the convolution product in a combinatorial
way. However, we hope to construct an invariant measure so that we may define
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the convolution product as an integral. In fact, our definition of the convolution
product was motivated by such a formula (See Remark 5.13). In Section 4, we
construct the spherical Hecke algebra of the torus of SL2(F). The final section is
devoted to the construction of the “Satake isomorphism” between two spherical
Hecke algebras in Sections 3 and 4. In the definition of this algebra isomorphism,
we use Fesenko’s measure and integration theory in Section 1.

There are many questions to be answered such as determining the structure of
spherical Hecke algebras, the study of spherical representations of G(F), and an
analogue of the semi-simple conjugacy classes. We hope to generalize our results
such as spherical Hecke algebras and the Satake isomorphisms to any split semi-
simple algebraic groups over 2-dimensional local fields in the near future.

Acknowledgments We would like to thank Professor Fesenko for many
useful remarks and explanation of his measure. Thanks are due to Dr. J. Gordon
and Professor M. Kapranov for their help. Thanks are also due to the referee for
many comments.

1. Invariant measure on 2-dimensional local fields. In this section, we
briefly review the theory of the invariant measure on 2-dimensional local fields
defined by I. Fesenko [Fe]. We refer the reader to [LF] for the definition and
properties of a 2-dimensional local field.

Let F( = F2) be a two dimensional local field with the first residue field F1

and the last residue field F0( = Fq) of q elements. We denote by v21 the discrete
valuation of rank one of F and by v1 the discrete valuation of F1. Also fix a
discrete valuation v : F× → Z2 of rank two. Recall that Z2 is endowed with the
lexicographic ordering from the right. Let t1, t2 be local parameters with respect
to the valuation v. With respect to the 2-dimensional valuation v, we have the
ring of integers O of F, its maximal ideal M and the group of units U. These do
not depend on the choice of v. Similarly, for the field F1, we use the notations
O1, M1 and U1, respectively. Also, we denote by O21 the ring of integers of F
with respect to the discrete valuation v21 of rank one, so t2 generates the maximal
ideal M21 of O21. There are natural projections

p : O→ O/M = F0, p21 : O21 → O21/M21 = F1 and

p1 : O1 → O1/M1 = F0.

Example 1.1. Assume that F = Qp((t)) with local parameters t1 = p and
t2 = t. Then

F1 = Qp, F0 = Fp, O = Zp + tQp[[t]], M = pZp + tQp[[t]],

U = Z×p + tQp[[t]], O21 = Qp[[t]], M21 = tQp[[t]], O1 = Zp,

M1 = pZp, U1 = Z×p .
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In the following definition, we specify a family of measurable sets.

Definition 1.2. A subset of F is called distinguished if the set is of the form

α + t i
1t j

2O, α ∈ F, i, j ∈ Z.

We denote by A the minimal ring containing all distinguished subsets of F.

Alternatively, distinguished sets are shifts of fractional principal O-ideals of
F, and A is the minimal ring which contains sets α + t j

2p−1
21 (S), j ∈ Z, where S is

a compact open subset in F1.
A sequence {∑i s(m)

i Xi}m∈N in C((X)) converges to 0 if s(m)
i → 0 for each i

and there is i0 such that s(m)
i = 0 for all i < i0 and for all m. We define a linear

map resi : C((X)) → C by
∑

ajXj �→ ai. A series
∑

cn, cn ∈ C((X)), is called
absolutely convergent if it converges and

∑ |resi(cn)| converges for every i.

LEMMA 1.3. [Fe] There is a unique measureµ on F with values inR((X)) which
is shift invariant and finitely additive on A such that µ(∅) = 0 and

µ(t i
1t j

2O) = q−iXj for i, j ∈ Z.

If S is a compact open subset in F1, and µ1 is the normalized Haar measure
on F1 such that µ1(O1) = 1, we get µ(t j

2p−1
21 (S)) = Xjµ1(S). We define a two

dimensional module | · | on F by

|0| = 0, |t i
1t j

2u| = q−iXj for u ∈ U.

Then we see that µ(αA) = |α|µ(A) for A ∈ A and α ∈ F×.
Let RF be the vector space generated by functions f =

∑
cn charAn , with

countably many disjoint distinguished sets An, and cn ∈ C such that
∑

cnµ(An)
converges absolutely, and by functions g which are zero outside finitely many
points. Then we define the integrals

∫
f dµ =

∑
cnµ(An) and

∫
g dµ = 0.

See [Fe] for the well-definedness.

Remark 1.4. The measure µ is countably additive in the following sense.
Assume that A ∈ A is a disjoint union of Ai ∈ A (i = 1, 2, . . .). Then we have
µ(A) =

∑
µ(Ai), whenever

∑
µ(Ai) is absolutely convergent in R((X)). For more

properties of the measure µ on F, we refer the reader to [Fe], where one can
also find the definition and discussion of local zeta integrals on topological K2-
groups of F. A generalization of the measure and harmonic analysis to higher
dimensional local fields has been developed in [Fe1].
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2. Cartan decomposition of G. We prove the Cartan Decomposition with
respect to the 2-dimensional local field structure for a connected split semi-simple
algebraic group.

Let G be a connected split semi-simple algebraic group defined over Z. We
fix a maximal torus T and a Borel subgroup B such that T ⊂ B ⊂ G, and then
we have U = [B, B], the unipotent radical of B and W0 = NG(T)/T, the Weyl
group of G. We consider the groups

G = G(F), K = G(O), K21 = G(O21) and T = T(F).

Let

N = NG(T), I = {x ∈ K : p(x) ∈ B(F0)} and W = N/T(O).

We call I double Iwahori subgroup of G and W double affine Weyl group of G.
We define the characters and cocharacters of T by

X∗ = X∗(T) = Hom(T,Gm) and X∗ = X∗(T) = Hom(Gm, T).

We denote the set of roots of G by Φ ⊂ X∗, the set of positive roots by Φ+

and the set of simple roots by ∆ ⊂ Φ+. The positive Weyl chamber P+ in X∗ is
defined to be

P+ = {λ ∈ X∗ : 〈λ,α〉 ≥ 0 for all α ∈ ∆}.

Recall that there is a partial ordering on X∗: λ ≥ µ if λ− µ can be written as a
nonnegative linear combination of simple coroots. We denote by ρ the half sum
of positive roots. We put X∗ = X∗⊕X∗ and let P+ be the set of all (λ1,λ2) ∈ X∗
such that λ2 ∈ P+ and 〈λ1,α〉 ≥ 0 whenever 〈λ2,α〉 = 0 for α ∈ ∆. We define a
partial ordering on X∗ to be the lexicographic ordering from the right, i.e.

(λ1,λ2) ≥ (µ1,µ2) ⇔ λ2 > µ2, or λ2 = µ2 and λ1 ≥ µ1.(2.1)

LEMMA 2.2. The set P+ is a fundamental domain for W0-action on X∗, where
the action is given by w(λ1,λ2) = (wλ1, wλ2) for w ∈ W0 and (λ1,λ2) ∈ X∗.

Proof. Given (λ1,λ2) ∈ X∗, we can find w0 ∈ W0 such that w0λ2 ∈ P+.
Assume that 〈w0λ2,α〉 = 0 for some α ∈ ∆. If 〈w0λ1,α〉 ≥ 0, then we put
w1 = w0. Otherwise, let σα be the simple reflection corresponding to α. In this
case, we put w1 = σαw0, and then

〈w1λ2,α〉 = 〈σα(w0λ2),α〉 = 〈w0λ2,α〉 = 0,
and 〈w1λ1,α〉 = 〈σα(w0λ1),α〉 = −〈w0λ1,α〉 > 0.
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Continuing this process, we can find an element w of W0 such that (wλ1, wλ2) ∈
P+.

Now assume that (λ1,λ2), (µ1,µ2) ∈ P+ and (wλ1, wλ2) = (µ1,µ2) for some
w ∈ W0. Since λ2,µ2 ∈ P+ and wλ2 = µ2, we see that λ2 = µ2 and w is a product
of simple reflections fixing λ2, say w = σα1 · · ·σαs . Then ∆I := {α1, . . . ,αs}
forms a root system with the Weyl group WI generated by the simple reflections
σα1 , . . . ,σαs . Furthermore, 〈λ1,αi〉 ≥ 0 and 〈µ1,αi〉 ≥ 0 for all 1 ≤ i ≤ s. Now
a standard argument tells us that wλ1 = µ1 actually implies λ1 = µ1. See, for
example, [Hu].

Given (λ1,λ2) ∈ X∗, there is a w ∈ W0 such that (wλ1, wλ2) ∈ P+ by
Lemma 2.2, and we define

D(λ1,λ2) = {µ ∈ X∗ : (wµ, wλ2) ∈ P
+ and wµ ≤ wλ1}.

PROPOSITION 2.3. The group G has the following decompositions.

(1) (Bruhat Decomposition) [Ka]

G =
∐

w∈W

IwI,

and the resulting identification I\G/I → W is independent of the choice of repre-
sentatives of elements of W.

(2) (Cartan Decomposition I)

G =
∐
λ∈P+

K21λ(t2)K21.

(3) (Cartan Decomposition II)

G =
∐

(λ1,λ2)∈P+

Kλ1(t1)λ2(t2)K.

Especially, we will use the fact that

K21λ2(t2)K21 =
∐
λ1

(λ1,λ2)∈P+

Kλ1(t1)λ2(t2)K

Proof. For the proof of part (1), see [Ka]. The part (2) is a classical result.
We can choose representatives of W0 to be elements of K, and see that

W � W0 � (T/T(O)). Thus, given w ∈ W, we can write

w = w′λ1(t1)λ2(t2)
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with (λ1,λ2) ∈ X∗ making a suitable choice of a representative of w′ ∈ W0

such that w′ ∈ K. By Lemma 2.2, each (λ1,λ2) ∈ X∗ has one and only one
W0-conjugate in P+ . Combining these results with part (1), we obtain part (3).

Remark 2.4. The Cartan Decomposition II is proved by A. N. Parshin in [Pa]
for G = SLn. He also proved Bruhat and Iwasawa decompositions for PGL2.

3. Spherical Hecke algebras of SL2. We define spherical Hecke algebras
of SL2 and its convolution product after investigating the decomposition of a
double coset into right cosets.

In the rest of this paper, we assume that G = SL2. We make the identification
X∗ = Z ⊕ Z and the partial ordering on X∗ corresponds to the lexicographic
ordering from the right on Z ⊕ Z. We will denote by the same notation ≤ the
corresponding ordering on Z⊕ Z. Then we have the identification

P
+ = {(i, j) ∈ Z⊕ Z : (i, j) ≥ (0, 0)}

and we have

D(i, j) =

{
{k ∈ Z : k ≤ i, (k, j) ≥ (0, 0)} if (i, j) ≥ (0, 0),
{k ∈ Z : k ≥ i, (k, j) ≤ (0, 0)} if (i, j) < (0, 0).

In the following lemma, we present an explicit formula of the Cartan De-
composition II for SL2(F).

LEMMA 3.1. Assume that

(
a b
c d

)
∈ G and let (−k,−l) = min{v(a), v(b), v(c),

v(d)}. Then

(
a b
c d

)
∈ K

(
t k
1 t l

2 0
0 t−k

1 t−l
2

)
K, (k, l) ≥ (0, 0). Namely,

SL2(F) =
∐

(k,l)≥(0,0)

K

(
t k
1 t l

2 0
0 t−k

1 t−l
2

)
K.

Proof. We can check the assertion of the Lemma using column operations
and row operations of matrices, and we omit the detail.

LEMMA 3.2. For (i, j) ≥ (0, 0), we have

K

(
t i
1t j

2 0
0 t−i

1 t−j
2

)
K =

∐
g

Kg,

where the disjoint union is over g in the following list.
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(i)

(
t−i
1 t−j

2 0
0 t i

1t j
2

)
, (ii)

(
t i
1t j

2 0
0 t−i

1 t−j
2

)
,

(iii)

(
t−i
1 t−j

2 t k
1 t l

2u
0 t i

1t j
2

)
for ( − i,−j) ≤ (k, l) < (i, j), where u ∈ U are units

belonging to a fixed set of representatives of O/t i−k
1 t j−l

2 O,

(iv)

(
t k
1 t l

2 t−i
1 t−j

2 u
0 t−k

1 t−l
2

)
for ( − i,−j) < (k, l) < (i, j), where u ∈ U are units

belonging to a fixed set of representatives of O/t i−k
1 t j−l

2 O.

Proof. Consider elements g, g′ ∈
(

t i
1t j

2 0
0 t−i

1 t−j
2

)
K and write

g =

(
t i
1t j

2 0
0 t−i

1 t−j
2

)(
a b
c d

)
, g′ =

(
t i
1t j

2 0
0 t−i

1 t−j
2

)(
a′ b′

c′ d′

)
,

where

(
a b
c d

)
,

(
a′ b′

c′ d′

)
∈ K. We see that the condition Kg = Kg′ is equivalent

to

c′d − d′c ∈ t 2i
1 t 2j

2 O.(3.3)

We write (c, d) ∼ (c′, d′) if c′d − d′c ∈ t 2i
1 t 2j

2 O. Note that if

(
a b
c d

)
∈ K then

either c or d is a unit. Let C be the set of pairs (c, d) ∈ O2 such that either c
or d is a unit. Then it is easy to check that ∼ is an equivalence relation on C.
Thus in order to determine different cosets, we need only to determine a set of
representatives of the equivalence relations ∼.

Assume that (c, d) ∈ C. If c is a unit then (c, d) ∼ (1, d/c). We write d/c =
t i+k
1 t j+l

2 u for some (k, l) ≥ ( − i,−j) and u ∈ U ∪ {0}. If (k, l) ≥ (i, j), then
(c, d) ∼ (1, t i+k

1 t j+l
2 u) ∼ (1, 0). Assume that ( − i,−j) ≤ (k, l) < (i, j). If (k′, l′) �=

(k, l) and ( − i,−j) ≤ (k′, l′) < (i, j), then (1, t i+k
1 t j+l

2 u) �∼ (1, t i+k′
1 t j+l′

2 u′) for any

u′ ∈ U ∪ {0}. If (k′, l′) = (k, l), then (1, t i+k
1 t j+l

2 u) ∼ (1, t i+k′
1 t j+l′

2 u′) if and only if
u− u′ ∈ t i−k

1 t j−l
2 O. Thus if c is a unit, a set of representatives of the equivalence

relation is given by

(1, 0) and (1, t i+k
1 t j+l

2 u),

where (−i,−j) ≤ (k, l) < (i, j) and u are units belonging to a fixed set of represen-
tatives of O/t i−k

1 t j−l
2 O. The representative (1, 0) corresponds to the matrix of the
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part (i). We consider the other representatives. Through elementary operations,

K

(
t i
1t j

2 0
0 t−i

1 t−j
2

)(
0 −1
1 t i+k

1 t j+l
2 u

)
= K

(
0 −t i

1t j
2

t−i
1 t−j

2 t k
1 t l

2u

)
= K

(
t−i
1 t−j

2 t k
1 t l

2u
0 t i

1t j
2

)
.

So we obtain the matrices in the part (iii).
If c is not a unit, then d is a unit. In this case, a set of representatives of the

equivalence relation is given by

(0, 1) and (t i+k
1 t j+l

2 , u)

where ( − i,−j) < (k, l) < (i, j) and u are units belonging to a fixed set of
representatives of O/t i−k

1 t j−l
2 O. The representative (0, 1) corresponds to the matrix

of the part (ii). For the other representatives, through elementary operations, we
obtain

K

(
t i
1t j

2 0
0 t−i

1 t−j
2

)(
u−1 0

t i+k
1 t j+l

2 u

)
= K

(
t i
1t j

2u−1 0
t k
1 t l

2 t−i
1 t−j

2 u

)
= K

(
t k
1 t l

2 t−i
1 t−j

2 u
0 t−k

1 t−l
2

)
.

So we get the matrices in the part (iv).

Remark 3.4. If j �= l, then the cardinality of O/t i−k
1 t j−l

2 O is uncountable.

Hence in general, the double coset K

(
t i
1t j

2 0
0 t−i

1 t−j
2

)
K is an uncountable union

of right cosets of K. This is very different from the classical p-adic case of
SL2(Qp) where any double coset of SL2(Zp) is a finite union of right cosets of
SL2(Zp).

Now we begin our construction of Hecke algebras.

Definition 3.5. A C-valued function f on G is called spherical if f satisfies
the following properties:

(1) f (k1xk2) = f (x) for k1, k2 ∈ K and x ∈ G,

(2) there exists (i, j) ∈ P+ such that

f (x) = 0 if x /∈
∐

m∈D(i,j)

K

(
t m
1 t j

2 0
0 t−m

1 t−j
2

)
K.(3.6)

If f is spherical, then we can always find the minimal (i, j) ∈ P+ satisfying
(3.6) with respect to the ordering (2.1) on X∗. The minimal (i, j) will be called
the weight of f .
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For each (i, j) ≥ (0, 0), we let χi,j be the characteristic function of the double
coset

K

(
t i
1t j

2 0
0 t−i

1 t−j
2

)
K.

Then a spherical function of weight (i, j) can be written as

∑
k≤i

akχk,j for some (i, j) ≥ (0, 0) and ak ∈ C.(3.7)

Definition 3.8. We define the convolution product of two characteristic func-
tions by

(χi,j∗χk,l)(x) =



∑

z

χi,j(τ (x)z−1) if x ∈
∐

m∈D(i+k,j+l)

K

(
t m
1 t j+l

2 0
0 t−m

1 t−j−l
2

)
K,

0 otherwise,
(3.9)

where τ (x) =

(
t m
1 t j+l

2 0
0 t−m

1 t−j−l
2

)
for x ∈ K

(
t m
1 t j+l

2 0
0 t−m

1 t−j−l
2

)
K, and the sum

is over the representatives z of the decomposition

K

(
t k
1 t l

2 0
0 t−k

1 t−l
2

)
K =

∐
z

Kz.

Even though a double coset of K is generally an uncountable union of right
cosets of K, we show in the following lemma that given x, there are only finitely
many nonzero terms in (3.9). Hence the convolution product is well-defined. Now
we prove:

PROPOSITION 3.10. The convolution product χi,j ∗ χk,l is a spherical function.
Moreover, we have the following explicit formulas:

(1) If i > 0, then

χi,0 ∗ χi,0 = χ2i,0 + (1− 1
q

)
∑

0<r<2i

qrχ2i−r,0 + q2i
(

1 +
1
q

)
χ0,0.

(2) If (i, 0) < (k, l), then

χi,0 ∗ χk,l = χk,l ∗ χi,0 = χi+k,l +
(

1− 1
q

) ∑
0<r<2i

qrχi+k−r,l + q2iχ−i+k,l.
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(3) If j > 0 and l > 0, then

χi,j ∗ χk,l = χi+k,j+l +
(

1− 1
q

)∑
r>0

qrχi+k−r,j+l.

Proof. We may let

x = τ (x) =

(
t m
1 t j+l

2 0
0 t−m

1 t−j−l
2

)
, m ∈ D(i + k, j + l).

We consider

K

(
t k
1 t l

2 0
0 t−k

1 t−l
2

)
K =

∐
z

Kz,

where the disjoint union is over z in the list (i)-(iv) of Lemma 3.2. We need to
determine the conditions under which χi,j(xz−1) = 1.

Since the other cases are similar, we prove only the part (3) of the lemma.
So we assume that j > 0 and l > 0. In this case, m ∈ D(i + k, j + l) if and only if
m ≤ i + k.

(i) If z =

(
t−k
1 t−l

2 0
0 t k

1 t l
2

)
then we have

χi,j(xz−1) = χi,j

(
t m+k
1 t j+2l

2 0
0 t−m−k

1 t−j−2l
2

)
= 0

for all m ≤ i + k.

(ii) If z =

(
t k
1 t l

2 0
0 t−k

1 t−l
2

)
then we have

χi,j(xz−1) = χi,j

(
t m−k
1 t j

2 0
0 t−m+k

1 t−j
2

)
= 1 ⇔ m = i + k.

(iii) If z =

(
t−k
1 t−l

2 t k′
1 t l′

2 u
0 t k

1 t l
2

)
for ( − k,−l) ≤ (k′, l′) < (k, l) and u ∈ U

belonging to a fixed set of representatives of O/t k−k′
1 t l−l′

2 O, then we get

χi,j(xz−1) = χi,j

(
t m+k
1 t j+2l

2 −t m+k′
1 t j+l+l′

2 u
0 t−m−k

1 t−j−2l
2

)
= 0

for all m ≤ i + k.
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(iv) z =

(
t k′
1 t l′

2 t−k
1 t−l

2 u
0 t−k′

1 t−l′
2

)
for ( − k,−l) < (k′, l′) < (k, l) and u ∈ U

belonging to a fixed set of representatives of O/t k−k′
1 t l−l′

2 O, then

χi,j(xz−1) = χi,j

(
t m−k′
1 t j+l−l′

2 −t m−k
1 t j

2u

0 t−m+k′
1 t−j−l+l′

2

)
= 1

⇔ l = l′, m = i + k′ and k′ < k.

Note that for each k′ < k the number of different u’s is (1− 1
q )qk−k′ .

Since there is only finite number of z’s for which χi,j(xz−1) �= 0, we have

(χi,j ∗ χk,l)(x) =
∑

z

χi,j(xz−1) =




1 if m = i + k,
(1− 1

q )qk−k′ if m = i + k′ for each k′ < k,
0 otherwise.

Therefore,

χi,j ∗ χk,l = χi+k,j+l +
(

1− 1
q

)∑
k′<k

qk−k′χi+k′,j+l

= χi+k,j+l +
(

1− 1
q

)∑
r>0

qrχi+k−r,j+l.

For example, we have the following identities:

χ1,0 ∗ χ1,0 = χ2,0 + (q− 1)χ1,0 + (q2 + q)χ0,0,
χ1,0 ∗ χ0,1 = χ1,1 + (q− 1)χ0,1 + q2χ−1,1,
χ0,1 ∗ χ0,1 = χ0,2 + (1− 1

q )
∑

k>0 qkχ−k,2.
(3.11)

Assume that f =
∑

p≤i apχp,j and g =
∑

q≤k bqχq,l are spherical functions. We
define the convolution product f ∗ g by

f ∗ g =


∑

p≤i

apχp,j


 ∗


∑

q≤k

bqχq,l


 =

∑
p≤i, q≤k

apbqχp,j ∗ χq,l.(3.12)

It follows from Proposition 3.10 that we can write

f ∗ g =
∑

r≤i+k

crχr,j+l,

and note that χr,j+l appears in the expansion of χp,j ∗χq,l only if p + q ≥ r. Since
the number of such pairs (p, q) is finite, the coefficient cr is well defined for each
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r ≤ i + k. Therefore the convolution product f ∗ g is a well defined spherical
function of weight (i + k, j + l).

THEOREM 3.13. The convolution product is commutative. Namely, f ∗ g = g ∗ f
for spherical functions f and g on G.

Proof. Note that we have χi,j ∗ χk,l = χk,l ∗ χi,j in the part (3) of Proposi-
tion 3.10. With this observation, the proposition follows from Proposition 3.10
and definitions.

Now we are ready to introduce the main object of this paper.

Definition 3.14. We define the spherical Hecke algebra H(G, K) of G (rela-
tive to K) to be the C-algebra whose elements are finite linear combinations of
spherical functions on G with the multiplication given by the convolution product
(3.9) and (3.12).

PROPOSITION 3.15. (a) The elements χi,0, i > 0 and χi,1, i ∈ Z are con-
tained in the subalgebra generated by χ1,0, χ0,1 and χ−1,1.

(b) The element χi,j for each (i, j), j > 1 is given by the formula

χi,j =

(
χi,j−1 − (q− 1)

∑
r>0

χi−r,j−1

)
∗ χ0,1.

Proof. Using Proposition 3.10, one can check the assertions and we omit the
detail.

Remark 3.16. If we allow infinite sums of the form (3.7), an induction argu-
ment using the above proposition shows that the algebra H(G, K) is “generated”
by three elements χ1,0, χ0,1 and χ−1,1.

4. Spherical Hecke algebra of T . In this section, we construct the spherical
Hecke algebra of T relative to T(O) for G = SL2(F).

Definition 4.1. A C-valued functions f on T is called spherical if f satisfies
the following conditions:

(1) f (xz) = f (x) for z ∈ T(O) and x ∈ T ,

(2) there exist (i, j) ∈ X∗ such that

f (x) = 0 if x /∈
∐

m∈D(i,j)

(
t m
1 t j

2 0
0 t−m

1 t−j
2

)
T(O).(4.2)

We can find (i, j) ∈ X∗ satisfying (4.2), which is minimal in the sense that if
another (k, j) satisfies the condition then i ∈ D(k, j). A minimal (i, j) is uniquely
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determined, and will be called the weight of f . For each (i, j) ∈ Z⊕Z, we define
ci,j to be the characteristic function of the (double) coset

(
t i
1t j

2 0
0 t−i

1 t−j
2

)
T(O).

Then a spherical function on T can be written as one of the following:

∑
k≤i

akck,j,
∑
k≤i

akc−k,−j,
∑

0≤k≤i

akck,0,
∑

0≤k≤i

akc−k,0 (ak ∈ C, j > 0).

(4.3)

Definition 4.4. We define the convolution product ci,j ∗ ck,l by

ci,j ∗ ck,l =

{
ci+k,j+l if jl ≥ 0,
0 otherwise.

(4.5)

Assume that f =
∑

p≤i apcp,j and g =
∑

q≤k bqcq,l are spherical functions of
T of weights (i, j), (k, l), resp. where j, l > 0. We define the convolution product
f ∗ g by

f ∗ g =


∑

p≤i

apcp,j


 ∗


∑

q≤k

bqcq,l


 =

∑
p≤i, q≤k

apbqcp,j ∗ cq,l.(4.6)

Then

f ∗ g =
∑

p≤i, q≤k

apbqcp+q,j+l =
∑

r≤i+k


 ∑

p≤i,q≤k
r=p+q

apbq


 cr,j+l.

Hence f ∗ g is a well-defined spherical function of weight (i + k, j + l). If f , g are
of the forms

∑
k≤i akc−k,−j,

∑
0≤k≤i akck,0, or

∑
0≤k≤i akc−k,0, then f ∗ g is

defined in a similar way. Note that if f , g have weights (i, j), (k, l) resp. where
jl < 0, then by (4.5) the convolution product f ∗ g is identically zero.

Definition 4.7. We define the spherical Hecke algebra H(T , T(O)) of T to be
the C-algebra whose elements are finite linear combinations of spherical functions
on T with the multiplication given by the convolution product (4.5) and (4.6).

We need the notion of W0-invariant subalgebra of H(T , T(O)); the algebra
H(T , T(O))W0 is defined to be the subalgebra of H(T , T(O)) consisting of the
elements f satisfying the condition

f (wxw−1) = f (x) for w ∈ W0.



SPHERICAL HECKE ALGEBRAS OF SL2 1395

Remark 4.8. If we allow infinite sums of the forms in (4.3), the W0-invariant
subalgebra H(T , T(O))W0 is “generated” by three elements c1,0 +c−1,0, c0,1 +c0,−1

and c−1,1 + c1,−1.

5. Satake isomorphism. In this section, we define the “Satake isomor-
phism” for SL2, namely, the isomorphism between H(G, K) and H(T , T(O))W0 .
For the classical p-adic groups, I. Satake [Sa] constructed such isomorphism. We
follow his construction, using the measure and integration in Section 1. We hope
to generalize our results to arbitrary split semi-simple algebraic groups.

Definition 5.1. A group homomorphism δ : T → R((X))× is defined to be

δ(x) = q−2iX2j for x ∈
(

t i
1t j

2 0
0 t−i

1 t−j
2

)
T(O).(5.2)

We identify F with U(F) through

u : F → U(F), u(a) =

(
1 a
0 1

)
.(5.3)

Let dµ(a) be the invariant measure on U(F), given by the invariant measure on
F as in section 1 and the isomorphism u.

Definition 5.4. We define a map S : H(G, K)→ H(T , T(O)) by

S( f )(x) =



δ(x)

1
2 Xj ∫

F f (xu(a))dµ(a), if x ∈
∐
k∈Z

(
t k
1 t±j

2 0
0 t−k

1 t∓j
2

)
T(O),

0 otherwise,
(5.5)
for f whose weight is (i, j) ∈ P+, and by extending it to the whole H(G, K)
through linearity.

It is clear that S( f ) is T(O)-invariant. However, it is not clear a priori that
S( f ) is a C-valued function since the measure takes value in R((X)). We show
in the next two propositions that S( f ) is a C-valued function and the map S is
a well-defined map.

PROPOSITION 5.6.

S(χi,j) = qi

{
ci,j + c−i,−j + (1− 1

q )
∑
k<i

(ck,j + c−k,−j)

}
for (i, j) > (0, 0),

and S(χi,0) = qi


ci,0 + c−i,0 + (1− 1

q )
∑
−i<k<i

ck,0


 for i > 0.

(5.7)
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Proof. From the definition, we need only to consider

x ∈
∐
k∈Z

(
t k
1 t j

2 0
0 t−k

1 t−j
2

)
T(O) ∪

(
t k
1 t−j

2 0
0 t−k

1 t j
2

)
T(O).

Since S( f ) is T(O)-invariant, it is enough to consider x =

(
t k
1 t l

2 0
0 t−k

1 t−l
2

)
,

k ∈ Z and l = ±j. From the definition, we get δ(x)
1
2 = q−kXl. If u(a) =

(
1 a
0 1

)
∈

U(F), then xu(a) =

(
t k
1 t l

2 at k
1 t l

2

0 t−k
1 t−l

2

)
.

We first consider the case (k, l) ≥ (0, 0), i.e., l = j. If v(a) ≥ ( − 2k,−2j),

then it follows from Lemma 3.1 that xu(a) ∈ K

(
t k
1 t j

2 0
0 t−k

1 t−j
2

)
K; otherwise,

xu(a) ∈ K

(
a−1t−k

1 t−j
2 0

0 at k
1 t j

2

)
K. We obtain

S(χi,j)(x) = q−kX2j
∫

F
χi,j(xu(a))dµ(a)

= q−kX2j
∫

v(a)≥(−2k,−2j)
χi,j

(
t k
1 t j

2 0
0 t−k

1 t−j
2

)
dµ(a)

+ q−kX2j
∫

v(a)<(−2k,−2j)
χi,j

(
a−1t−k

1 t−j
2 0

0 at k
1 t j

2

)
dµ(a).

In the second integral, note that v(a−1t−k
1 t−j

2 ) > (k, j). So if (i, j) = (k, j), then
the second integral is zero. Also {a ∈ F| v(a) ≥ ( − 2k,−2j)} = t−2k

1 t−2j
2 O in

the notation of Definition 1.2. Hence
∫

v(a)≥(−2k,−2j) dµ(a) = q2kX−2j. Therefore
if (i, j) = (k, j),

S(χi,j)(x) = q−kX2jq2kX−2j = qi.

If (i, j) > (k, j), i.e., k < i, then the first integral is zero. The second integral is
nonzero only when v(a) = (− i− k,−2j). Here {a ∈ F| v(a) = (− i− k,−2j)} =
t−i−k
1 t−2j

2 U and the measure of U is 1− 1
q . Hence

∫
v(a)=(−i−k,−2j) dµ(a) = qi+kX−2j

(1− 1
q ). Therefore, if (i, j) > (k, j),

S(χi,j)(x) = q−kX2jqi+kX−2j
(

1− 1
q

)
= qi

(
1− 1

q

)
.
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Next we consider the case (k, l) < (0, 0). A similar calculation as in the above
gives us

S(χi,j)(x) =

{
qi if (i, j) = (− k,−l),
qi(1− 1

q ) if (i, j) > (− k,−l).

Combining these results we obtain the equalities in (5.7).

PROPOSITION 5.8. For each (i, j) ≥ (0, 0),

S(
∑
k≤i

akχk,j) =
∑
k≤i

akS(χk,j).

Proof. It is enough to prove that the right hand side is well defined. From
(5.7), we only need to check the well definedness of the double sum

∑
k≤i

akqk
∑
l<k

(cl,j + c−l,−j).

It is equal to

∑
l≤i

(cl,j + c−l,−j)
i∑

k=l

akqk.

Here
∑i

k=l akqk is a finite sum and well defined.

Hence, by Proposition 5.6 and Proposition 5.8, the map S is well defined and
the image of the map S is contained in the W0-invariant subalgebraH(T , T(O))W0 .

LEMMA 5.9. We have

S(χi,j ∗ χk,l) = S(χi,j) ∗ S(χk,l)

for (i, j) ≥ (0, 0) and (k, l) ≥ (0, 0).

Proof. Using Proposition 3.10, Proposition 5.6 and Proposition 5.8, one can
straightforwardly check the identity and we omit the detail.

THEOREM 5.10. Assume that G = SL2. Then the map S : H(G, K) →
H(T , T(O))W0 is an algebra isomorphism.

Proof. In the formula (5.7) we see that the maximal weight of the terms in
the right-hand side is the same as the weight of χi,j. Thus S is weight-preserving
and so injective. Since an element of H(T , T(O))W0 is a finite linear combination
of the elements of the form

g =
∑
k≤i

ak(ck,j + c−k,−j), ak ∈ C, (i, j) ≥ 0,(5.11)
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we need only to find an element f of H(G, K) such that S( f ) = g. If j = 0, then
(5.11) is a finite sum and it is easy to find such an f using (5.7). So we assume
that j > 0. By Proposition 5.8 and (5.7), we obtain

S
(
χi,j − (q− 1)

∑
r>0

χi−r,j

)
= qi(ci,j + c−i,−j).

Thus we put

f =
∑
k≤i

q−kak

(
χk,j − (q− 1)

∑
r>0

χk−r,j

)
.(5.12)

If we rewrite (5.12) as f =
∑

k≤i bkχk,j, then each bk ∈ C, k ≤ i, is well defined.
Now Proposition 5.8 enables us to have S( f ) = g. Hence, S is surjective. It
follows from Proposition 5.8 and Lemma 5.9 that S is an algebra homomorphism.
Therefore, S is an algebra isomorphism.

Remark 5.13. We expect in the near future (See [K-L]) to construct an in-
variant R((X))-valued measure dγ on G(F) for G a connected split semi-simple
algebraic group. (We follow [Go], namely, we define an additive invariant mea-
sure on the product space Fn and obtain the transformation rule. Then using the
big cell decomposition, we can extend it to an invariant measure on G(F).) Then
we can define the convolution product of two spherical functions f and g on G(F)
by

( f ∗ g)(x) =



∫

G f (xy−1)g(y)dγ(y) if x ∈
∐

µ∈D(λ1+µ1,λ2+µ2)

Kµ(t1)(λ2 + µ2)(t2)K,

0 otherwise.

The definition of the convolution product (3.9) was motivated by this formula. We
need to define the convolution product in this way so that given x, the function
y �−→ f (xy−1)g(y) is a finite linear combination of characteristic functions of right
cosets of K. Then f ∗ g becomes a C-valued function, even though the measure
dγ takes values in R((X)).
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