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1. Introduction

The connection between random matrices and number theory was first conjectured by 
H. L. Montgomery [41] in 1973 from the observation made by himself and F. J. Dyson 
that the two-point correlation function of the zeros of the Riemann zeta function is the 
same as the two-point correlation function of the eigenvalues of random matrices. Since 
then extensive research on correlation functions of L-functions and random matrices has 
been performed. For example, see [6,7,26,33,42,43].

In 2000, Keating and Snaith [34,35] studied averages of characteristic polynomials of 
random matrices motivated in part by this connection to number theory and in part by 
the importance of these averages in quantum chaos [2]. Over the years it has become 
clear that averages of characteristic polynomials are fundamental for random matrix 
models, and many important developments have been made to the theory [3–5,8,22,
23,40]. In particular, the auto-correlation functions of the distributions of characteristic 
polynomials in the compact classical groups were computed by Conrey, Farmer, Keating, 
Rubinstein and Snaith [12,13] in connection with conjectures for integral moments of 
zeta and L-functions, and by Conrey, Farmer and Zirnbauer [14,15] in connection with 
conjectures for ratios of L-functions. Later, Bump and Gamburd [10] obtained different 
derivations of such formulae applying the symmetric function theory and (analogues of) 
the dual Cauchy identity along with classical results due to Weyl and Littlewood. Their 
results show that the auto-correlation functions are actually combinations of characters 
of classical groups.

More precisely, Conrey, Farmer, Keating, Rubinstein and Snaith [12] computed Sel-
berg’s integrals to obtain the following formula (and many other formulae):

∫
USp(2g)

⎛⎝ m∏
j=1

det(I + xjγ)

⎞⎠ dγ =
∑

λ: even

sλ(x1, · · · , xm), (1.1)

where sλ is the Schur function and the sum is over partitions λ = (λ1, . . . , λm) with all 
parts λj even and 2g ≥ λ1 ≥ · · · ≥ λm ≥ 0. The left-hand side of (1.1) is the average of 
the products of characteristic polynomials of random matrices in USp(2g) as dγ is the 
Haar probability measure on USp(2g). Here, since −γ ∈ USp(2g) for γ ∈ USp(2g), we 
may use det(I + xjγ).

In a totally different way, Bump and Gamburd [10] could compute the same integral 
to obtain

∫ ⎛⎝ m∏
j=1

det(I + xjγ)

⎞⎠ dγ = (x1 . . . xm)g χSp(2m)
(gm) (x±1

1 , . . . , x±1
m ), (1.2)
USp(2g)
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where χSp(2m)
(gm) is the irreducible character of Sp(2m)3 associated with the rectangular 

partition (gm). The equality of the right-hand sides of (1.1) and (1.2) can be shown 
directly through branching of the character χSp(2m)

(gm) . In fact, Bump and Gamburd used 
an analogue of the dual Cauchy identity due to Jimbo–Miwa [29] and Howe [28]:

m∏
i=1

g∏
j=1

(xi + x−1
i + tj + t−1

j ) =
∑

λ�(gm)

χ
Sp(2m)
λ (x±1

1 , . . . , x±1
m )χSp(2g)

λ̃
(t±1

1 , . . . , t±1
g ), (1.3)

where λ̃ = (m − λ′
g, . . . , m − λ′

1) with λ′ = (λ′
1, . . . , λ

′
g) the transpose of λ. This identity 

can be considered as a reflection of Howe duality. A strictly combinatorial bijective proof 
is given by Hamel and King [24].

While most of the connections of number theory to random matrices are still con-
jectural, the celebrated Sato–Tate conjecture for elliptic curves is directly related to 
random matrices in nature and has been proved (under some conditions) by the works 
of R. Taylor, jointly with L. Clozel, M. Harris, and N. Shepherd-Barron [16,25,46]. The 
conjecture concerns the distribution of Euler factors of an elliptic curve over a number 
field. It specifically predicts that this distribution always takes one of the three forms, 
one occurring whenever the elliptic curve fails to have complex multiplication, which is 
the generic case, and two exceptional cases arising for curves with complex multiplica-
tion, and furthermore says that all three distributions are the same as the distributions 
of eigenvalues of random matrices in the compact groups SU(2), U(1) and N(U(1)), 
respectively, where N(U(1)) is the normalizer of U(1) in SU(2).

This amazing structural randomness in arithmetic data is not expected to be restricted 
to the case of elliptic curves. Indeed, J.-P. Serre, N. Katz and P. Sarnak proposed a gen-
eralized Sato–Tate conjecture for curves of higher genera [33,44]. Pursuing this direction, 
K. S. Kedlaya and A. V. Sutherland [36] and later together with F. Fité and V. Rotger 
[18] made a list of 55 compact subgroups of USp(4) called Sato–Tate groups that would 
classify all the distributions of Euler factors for abelian surfaces and showed that at 
most 52 of them can actually arise from abelian surfaces.4 All these Sato–Tate groups 
and their properties are thoroughly documented at [39]. Specifically, the URL is below:

https://www.lmfdb.org/SatoTateGroup/?degree=4

For example, the hyperelliptic curve y2 = x5 −x +1 over Q falls into the generic case 
and has the distribution given by the group USp(4), while the curve y2 = x6 + 2 over 
Q(

√
−3) has the distribution given by the subgroup 〈U(1), ζζζ12〉 of USp(4), where ζζζ12 is 

a primitive 12th root of unity (embedded into USp(4)). Thus USp(4) and 〈U(1), ζζζ12〉 are 
examples of the Sato–Tate groups for genus 2 curves.

3 By this notation we mean Sp(2m, C) or USp(2m) according to the context. We keep this ambiguity for 
notational convenience.
4 In [20], an additional Sato–Tate axiom is included for abelian varieties of dimension ≤ 3, and it eliminates 

those 3 groups which do not arise for abelian surfaces.

https://www.lmfdb.org/SatoTateGroup/?degree=4
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Through enormous amount of computer computation [18], they found abelian surfaces 
whose Euler factors have the same distributions as the distributions of characteristic 
polynomials of the 52 Sato–Tate groups. Since then, the Sato–Tate conjecture for abelian 
surfaces defined over Q, which covers 34 Sato–Tate groups, has been established by F. 
Fité, A. Sutherland, C. Johansson and N. Taylor [21,30,45] except for the generic case 
USp(4). Actually, those three groups, which do not arise for abelian surfaces, and two 
other subgroups of USp(4) appear when certain motives of weight 3 are considered in 
[19]. Thus all the 57 groups are interesting in number theory and arithmetic geometry, 
and we will call all of them Sato–Tate groups in what follows.

In this paper, we describe the distributions of characteristic polynomials of random 
matrices in Sato–Tate groups H ≤ USp(4) by computing the auto-correlation functions

∫
H

m∏
j=1

det(I + xjγ)dγ, m ∈ Z≥1, (1.4)

as sums of irreducible characters of Sp(2m). We consider all the 57 Sato–Tate groups 
H ≤ USp(4), and obtain the following result.

Theorem 1.1. Let H ≤ USp(4) be a Sato–Tate group. Then, for any m ∈ Z≥1, we have

∫
H

m∏
j=1

det(I + xjγ)dγ = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
m(b+2z,b)χ

Sp(2m)
(2m−b−2z,12z),

where the coefficients m(b+2z,b) are the multiplicities of the trivial representation in the 

restrictions χSp(4)
(b+2z,b)

∣∣
H

and are explicitly given in Table 5.1.

As the statement of the theorem manifests, this result can also be interpreted as a 
result on branching rules in representation theory. Indeed, our approach starts with the 
identity (1.3) and converts the problem to the branching rules of irreducible characters 
of USp(4) restricted to Sato–Tate groups H. Though a few of the Sato–Tate groups 
invoke classical branching rules, almost all of them call for a new study because they are 
disconnected and involve twists by automorphisms.

In classical situations, branching rules invoke many interesting combinatorial questions 
(e.g. [37,38]). With Sato–Tate groups, we also meet various combinatorial problems, and 
adopt crystals as our main combinatorial tools for the problems. One can find details 
about crystals, for example, in [11,27,31]. However, in some cases, we need more concrete 
realizations of representations of USp(4).

Moreover, since most of the Sato–Tate groups are disconnected, we can decompose 
the integral (1.4) according to coset decompositions, and find that the characteristic 
polynomials over some cosets are independent of the elements of the cosets. Combining 
this observation with the computations of branching rules, we obtain families of non-
trivial identities of irreducible characters of Sp(m) for all m ∈ Z≥1 as follows.
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Theorem 1.2. Let κ1 = −2, κ2 = 2, κ3 = 1, κ4 = 0, and κ6 = −1. Then, for any m ∈ Z≥1
and n = 1, 2, 3, 4, 6, we have

m∏
i=1

(x2
i + κn + x−2

i ) =
m∑
b=0

�m−b
2 �∑

z=0
ψn(z, b)χSp(2m)

(2m−b−2z,12z), (1)

where ψn(z, b) ∈ Z are respectively defined in (5.8) and (5.9) and in Table 5.3;

m∑
k=0

(
m− k

�(m− k)/2	

) ∑
1≤i1<···<ik≤m

k∏
j=1

(x2
ij + x−2

ij
)=

�m
2 �∑

�=0

�m
2 �−�∑
z=0

(−1)zχSp(2m)
(2m−2�−2z,12z), (2)

where the summation over i1 < · · · < ik is set to be equal to 1 when k = 0;

m∏
i=1

(xi + x−1
i )

�m
2 �∑

j=0
χ

Sp(2m)
(1m−2j) =

m∑
b=0

�m−b
2 �∑

z=0
ξ2(z, b)χSp(2m)

(2m−b−2z,12z), (3)

where ξ2(z, b) ∈ Z is defined in Table 5.4.

Notice that the irreducible characters χSp(2m)
λ are symmetric functions with the num-

ber of terms growing very fast as m increases, but that the coefficients (e.g. ψn(z, b)) are 
independent of m. These identities seem intriguing from the viewpoint of representation 
theory and algebraic combinatorics. Without the motivation coming from the Sato–Tate 
distributions which led to the computations in this paper, it might have been difficult 
for us to expect that such identities exist.

1.1. Organization of the paper

In Section 2, we present backgrounds for Sato–Tate groups. In Section 3, the dual 
Cauchy identity for symplectic groups will be used to convert computation of auto-
correlation functions into that of branching rules of USp(4). Section 4 is devoted to the 
genus one case. This case will demonstrate basic ideas which apply to the genus two 
case. In Section 5, the main theorems are stated and proved by considering each of the 
Sato–Tate groups using the results of Section 6, where we study branching rules for 
Sato–Tate groups through crystals and other methods.

Convention 1.3. Throughout this paper, we keep the following conventions.

(i) For a statement P , δ(P ) is equal to 1 or 0 according to whether P is true or not. 
As a special case, we use the notation δi,j := δ(i = j) (Kronecker’s delta).

(ii) For a partition λ, we denote by λ′ = (λ′
1 ≥ . . . ≥ λ′

g ≥ 0) the transpose of λ.
(iii) The term for k = 0 in a summation over 1 ≤ i1 < · · · < ik ≤ m is set to be equal 

to 1.
(iv) For m, m′ ∈ Z, we write m ≡k m′ if k divides m −m′, and m �≡k m′ otherwise.
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2. Sato–Tate groups

In this section, we briefly overview backgrounds of Sato–Tate groups and their auto-
correlation functions of characteristic polynomials. More details can be found in [18,36].

Let C be a smooth, projective, geometrically irreducible algebraic curve of genus g
defined over Q. For each prime p where C has good reduction, we define the zeta function 
Z(C/Fp; T ) by

Z(C/Fp;T ) = exp
( ∞∑

k=1

NkT
k/k

)
,

where Nk is the number of the points on C over Fpk . It is well-known [1] that Z(C/Fp; T )
is a rational function of the form

Z(C/Fp;T ) = Lp(T )
(1 − T )(1 − pT ) ,

where Lp ∈ Z[T ] is a polynomial of degree 2g with constant term 1. For example, when 
C is an elliptic curve, i.e. when g = 1, we have Lp(T ) = 1 − apT + pT 2 and Lp(1) is 
equal to the number of points on C over Fp.

Set L̄p(T ) := Lp(p−1/2T ) and write

L̄p(T ) = T 2g + a1,pT
2g−1 + a2,pT

2g−2 + · · · + a2,pT
2 + a1,pT + 1.

Let PC(N) be the set of primes p ≤ N for which the curve C has good reduction.

Definition 2.1. For 1 ≤ k ≤ g and m ≥ 0, define ak(m; g) to be the average value of amk,p
over p ∈ PC(N) as N → ∞.

The values ak(m; g), m ≥ 0, are the mth moments of the distribution of ak,p, and we 
are interested in how to describe ak(m; g). The generalized Sato–Tate conjecture expects 
that curves of fixed genus g are classified into certain families and that ak(m; g) are all 
the same for curves in each family. In particular, there is a generic family of curves for 
each genus g.

Let 
 be a prime and T�(C) be the Tate module, i.e., the inverse limit of the 
n-torsion 
subgroups (n ∈ Z≥1) of the Jacobian J(C) of C. Then we obtain the representation
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ρ� : Gal(Q/Q) → Aut(T�(C)) ∼= GL(2g,Z�).

We say that the curve C has large Galois image if the image of ρ� is Zariski dense in 
GSp(2g, Z�) ⊂ GL(2g, Z�) for any 
. The curves with large Galois image form the generic 
family of curves with a fixed genus g.

Example 2.2. The following curves are from the generic families ([18,36]).

• g = 1, C: y2 = x3 + x + 1

a1(m; 1) : 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132, . . . (Catalan numbers)

• g = 2, C: y2 = x5 − x + 1

a1(m; 2) : 1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, 0, 4719, . . .

a2(m; 2) : 1, 1, 2, 4, 10, 27, 82, 268, 940, . . .

• g = 3, C: y2 = x7 − x + 1

a1(m; 3) : 1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, 0, 9449, . . .

a2(m; 3) : 1, 1, 2, 5, 16, 62, 282, 1459, 8375, . . .

a3(m; 3) : 1, 0, 2, 0, 23, 0, 684, 0, 34760, . . .

The generalized Sato–Tate conjecture predicts that these distributions are actually 
the same as the distributions of eigenvalues of random matrices. To be precise, let us 
consider the group USp(2g) with the Haar probability measure. Let

det(I − xγ) = x2g + c1x
2g−1 + c2x

2g−2 + · · · + c2x
2 + c1x + 1

be the characteristic polynomial of a random matrix γ of USp(2g).

Definition 2.3. For each k = 1, 2, . . . , g, let Xk be the random variable corresponding to 
the coefficient ck and define ck(m; g) to be the mth moment E[Xm

k ], m ∈ Z≥0, of the 
random variable Xk.

The following is the generalized Sato–Tate conjecture for the case that C is in the 
generic family.

Conjecture 2.4 ([33]). Let C be a smooth projective curve of genus g. Assume that C is 
in the generic family. Then, for each k = 1, 2, . . . , g and m ≥ 0, we have

ak(m; g) = ck(m; g).
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Therefore it is important to compute the distribution of the characteristic polynomials 
of random matrices in USp(2g). Ultimately, the auto-correlation functions

∫
USp(2g)

⎛⎝ m∏
j=1

det(I + xjγ)

⎞⎠ dγ (2.1)

for m ∈ Z≥0 will describe the distribution completely. The number ck(m; g) will appear 
as the coefficient of (x1 · · ·xm)k in (2.1).

As mentioned in the previous section, Conrey–Farmer–Keating–Rubinstein–Snaith 
[12] and Bump–Gamburd [10] obtained

∫
USp(2g)

⎛⎝ m∏
j=1

det(I + xjγ)

⎞⎠ dγ = (x1 . . . xm)g χSp(2m)
(gm) (x±1

1 , . . . , x±1
m ), (2.2)

where χSp(2m)
(gm) is the irreducible character of Sp(2m) associated with the rectangular 

partition (gm). By computing the coefficients of (x1 · · ·xm)k in the right-hand side of 
(2.2), which are nothing but weight multiplicities, one can check

ak(m; g) = ck(m; g)

for the sequences ak(m; g) in Example 2.2. Thus we see validity of the generalized Sato–
Tate conjecture for the curves in the example.

Aside from the generic family of curves whose distribution is (expected to be) given 
by USp(2g), there are exceptional families of curves. For elliptic curves, there are two 
exceptional families (only one over Q) which consist of elliptic curves with complex 
multiplication. The Sato–Tate conjecture, which is proven much earlier for these excep-
tional families of g = 1 [17], tells us that the moment sequences a1(m; 1) are the same 
as those of N(U(1)) and U(1), respectively. Here N(U(1)) is the normalizer of U(1) in 
SU(2) ∼= USp(2).

For genus 2 curves, there are a lot more of exceptional families. Kedlaya and Suther-
land [36] and later with Fité and Rotger [18] made a conjectural, exhaustive list of 55 
compact subgroups of USp(4) that would classify all the distributions of Euler factors for 
abelian surfaces, and called the groups Sato–Tate groups. Later, when they considered 
certain motives of weight 3 [19], two other groups were added to the list of Sato–Tate 
groups that are subgroups of USp(4). They determined the moment sequences ck(m; 2), 
k = 1, 2, for each Sato–Tate group by expressing them as combinations of some se-
quences. (See also formulas in [21].) In the process they investigated a huge number 
of abelian surfaces to see that Euler factors have the same distributions as the Sato–
Tate distributions, supporting their refined, generalized Sato–Tate conjecture for abelian 
surfaces.
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3. Dual Cauchy identity

In this section, we use the dual Cauchy identity for symplectic groups to convert 
computation of auto-correlation functions into that of branching rules.

We recall the dual Cauchy identity for symplectic groups:

Proposition 3.1 ([24,28,29]). For m, g ∈ Z≥1, we have

m∏
i=1

g∏
j=1

(xi + x−1
i + tj + t−1

j ) =
∑

λ�(gm)

χ
Sp(2m)
λ (x±1

1 , . . . , x±1
m )χSp(2g)

λ̃
(t±1

1 , . . . , t±1
g ), (3.1)

where we set

λ̃ := (m− λ′
g, . . . ,m− λ′

1)

with λ′ = (λ′
1, . . . , λ

′
g) the transpose of λ.

Let H be a compact subgroup of USp(2g). For each m ∈ Z≥1, we want to compute 
the auto-correlation of distribution of characteristic polynomials of H:∫

H

m∏
i=1

det(I + xiγ)dγ.

Fix g for the time being. For γ ∈ USp(2g) with eigenvalues t±1
1 , . . . , t±1

g , we have

m∏
i=1

det(I + xiγ) =
m∏
i=1

g∏
j=1

(1 + xitj)(1 + xit
−1
j ).

We also write χSp(2g)
λ̃

(γ) = χ
Sp(2g)
λ̃

(t±1
1 , . . . , t±1

g ) for simplicity of notations.

Definition 3.2. Let mλ̃(H) denote the multiplicity of the trivial representation 1H of H
in the restriction of χSp(2g)

λ̃
to H. That is,

χ
Sp(2g)
λ̃

|H = mλ̃(H) 1H + sum of nontrivial irreducible characters of H.

The following proposition shows that the decomposition multiplicities mλ̃(H) are the 
coefficients of character expansion of auto-correlation functions.

Proposition 3.3. For each m ∈ Z≥1, the auto-correlation function of the distribution of 
characteristic polynomials of H is given by∫ m∏

i=1
det(I + xiγ) dγ = (x1 · · ·xm)g

∑
λ�(gm)

mλ̃(H)χSp(2m)
λ (x±1

1 , . . . , x±1
m ).
H
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Proof. Since we have

(1 + xitj)(1 + xit
−1
j ) = xi(xi + x−1

i + tj + t−1
j ),

it follows from the dual Cauchy identity (3.1) that

(x1 · · ·xm)−g

∫
H

m∏
j=1

det(I + xjγ)dγ = (x1 · · ·xm)−g

∫
H

m∏
i=1

g∏
j=1

(1 + xitj)(1 + xit
−1
j )dγ

=
∫
H

m∏
i=1

g∏
j=1

(xi + x−1
i + tj + t−1

j )dγ =
∫
H

∑
λ�(gm)

χ
Sp(2m)
λ (x±1

1 , . . . , x±1
m )χSp(2g)

λ̃
(γ)dγ

=
∑

λ�(gm)

χ
Sp(2m)
λ (x±1

1 , . . . , x±1
m )
∫
H

χ
Sp(2g)
λ̃

(γ)dγ.

From Schur orthogonality (for example, [9]), the integral 
∫
H
χ

Sp(2g)
λ̃

(γ)dγ is equal to the 

multiplicity of the trivial representation 1H of H in the restriction of χSp(2g)
λ̃

to H, which 
is mλ̃(H) by definition. �

When H is clear from the context, we will simply write mλ̃ for mλ̃(H). For simplicity, 
we also write

χ
Sp(2m)
λ = χ

Sp(2m)
λ (x±1

1 , . . . , x±1
m ).

As a special case, we obtain the identity (1.2) where H is equal to the generic Sato–
Tate group USp(2g).

Corollary 3.4 ([10]). When H = USp(2g), we obtain∫
USp(2g)

m∏
j=1

det(I + xjγ) dγ = (x1 . . . xm)g χSp(2m)
(gm) (x±1

1 , . . . , x±1
m ).

Proof. Since H = USp(2g), we have mλ̃(H) = 0 unless χSp(2g)
λ̃

itself is trivial. If χSp(2g)
λ̃

is trivial, we get λ̃ = ∅, mλ̃(H) = 1 and λ = (gm). �
4. Prototype: case g = 1

In this section, we compute mλ̃(H) for non-generic Sato–Tate groups H � USp(2)
when g = 1. The computations will demonstrate our approach which extends to the case 
g = 2 in Sections 5 and 6.

Let U(1) = {u ∈ C× : |u| = 1} be the circle group. We embed U(1) into USp(2) by

u �−→ diag(u, u−1).
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Thus U(1) is a (maximal) torus of USp(2). Under this embedding the non-generic Sato–
Tate groups are U(1) and its normalizer N(U(1)).

The auto-correlation functions for g = 1 are explicitly given in the following theorem.

Theorem 4.1. For each m ∈ Z≥1, we have

∫
H

m∏
j=1

det(I + xjγ)dγ = (x1 · · ·xm)
�m

2 �∑
j=0

m(2j)χ
Sp(2m)
(1m−2j), (4.1)

where
H m(2j)

USp(2) δ(j = 0)
U(1) 1
N(U(1)) δ(j ≡2 0)

Proof. If λ � (1m), we can write

λ = (1k) and λ̃ = (m− k) for 0 ≤ k ≤ m.

First, assume that H = U(1). Let v1 = (1, 0) and v2 = (0, 1) be the standard unit 
vectors of V := C2, and consider the standard representation of Sp(2, C) on V . Consider 
the irreducible representation Symm−k(V ) of Sp(2, C) with the character χSp(2)

(m−k) of de-
gree m −k+1. Then the trivial U(1)-module is generated by vj1v

j
2 only when m −k = 2j. 

Thus the restriction χSp(2)
(m−k)|U(1) has the trivial character with multiplicity 1 if and only 

if m − k is even. That is,

m(m−k) =
{

1 if m− k is even,
0 otherwise.

Thus it follows from Proposition 3.3 that

∫
U(1)

m∏
j=1

det(I + xjγ)dγ = (x1 · · ·xm)
m∑

k=0

m(m−k)χ
Sp(2m)
(1k) = (x1 · · ·xm)

�m
2 �∑

j=0
χ

Sp(2m)
(1m−2j),

(4.2)

where we change the indices by m − k = 2j. This proves (4.1) for H = U(1).
Next, assume that H = N(U(1)). Let J =

( 0 1
−1 0

)
∈ USp(2). Then

N(U(1)) = U(1)�J U(1),

and Jv1 = −v2 and Jv2 = v1 on the standard representation of Sp(2, C) on V . Consider 
again the irreducible representation Symm−k(V ) of Sp(2, C). As noted above, the trivial 
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U(1)-module is generated by vj1v
j
2 when m − k = 2j, and J acts trivially on vj1v

j
2 if and 

only if j is even. Consequently, the restriction χSp(2)
(m−k)|N(U(1)) has

m(m−k) = δ(m− k ≡4 0).

Now it follows from Proposition 3.3 that

∫
N(U(1))

m∏
j=1

det(I + xjγ)dγ = (x1 · · ·xm)
m∑

k=0

m(m−k)χ
Sp(2m)
(1k) = (x1 · · ·xm)

�m
4 �∑

�=0

χ
Sp(2m)
(1m−4�),

(4.3)

where we change the indices by m − k = 4
. This proves (5.7) for H = N(U(1)).
Together with Corollary 3.4, we have completed a proof. �
As corollaries, we obtain the following identities which are interesting in their own 

rights.

Proposition 4.2. For each m ∈ Z≥1, we have the following identities:

�m/2�∑
�=0

(
2




) ∑
1≤i1<···<im−2�≤m

m−2�∏
j=1

(xij + x−1
ij

) =
�m

2 �∑
j=0

χ
Sp(2m)
(1m−2j), (4.4)

m∏
i=1

(xi + x−1
i ) =

�m
2 �∑

j=0
(−1)jχSp(2m)

(1m−2j). (4.5)

Proof. Since 
∫
U(1) u

kdu = δ(k = 0) for k ∈ Z, we have

∫
U(1)

m∏
i=1

(xi + x−1
i + (u + u−1))du

=
∫

U(1)

m∑
k=0

∑
1≤i1<···<ik≤m

k∏
j=1

(xij + x−1
ij

)(u + u−1)m−kdu

=
m∑

k=0

∑
1≤i1<···<ik≤m

k∏
j=1

(xij + x−1
ij

)δ(m ≡2 k)
(

m− k

(m− k)/2

)

=
�m/2�∑
�=0

(
2




) ∑
1≤i1<···<im−2�≤m

m−2�∏
j=1

(xij + x−1
ij

), (4.6)

where we put m − k = 2
 for the last equality. Since det(I + xγ) = 1 + (u + u−1)x + x2

for γ =
(
u 0
0 u−1

)
, the identity (4.4) follows from Theorem 4.1.
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For any γ ∈ J U(1), we compute to see that

det(I + xγ) = 1 + x2.

Thus we have∫
N(U(1))

m∏
i=1

det(I + xiγ) dγ = 1
2

∫
U(1)

m∏
i=1

det(I + xiγ1) dγ1 + 1
2

∫
U(1)

m∏
i=1

det(I + xiJγ1) dγ1,

= 1
2

∫
U(1)

m∏
i=1

det(I + xiγ) dγ1 + 1
2

m∏
i=1

(1 + x2
i )

= 1
2(x1 · · ·xm)

�m
2 �∑

j=0
χ

Sp(2m)
(1m−2j) + 1

2

m∏
i=1

(1 + x2
i ),

where dγ1 is the probability Haar measure on U(1) and we use (4.2) for the last equality. 
By comparing with (4.3), we obtain

m∏
i=1

(1 + x2
i ) = (x1 · · ·xm)

�m
2 �∑

j=0
(−1)jχSp(2m)

(1m−2j).

Diving both sides by x1 · · ·xm, we obtain the desired identity (4.5). �
5. Main results: case g = 2

After fixing notations for Sato–Tate groups, we present the first main theorem of 
this paper and go over its proof. Much of the computations of branching rules involving 
crystals will be performed in Section 6 though we use the results of the branching rules 
in this section. In the process we will decompose Sato–Tate groups into cosets and prove 
various identities of irreducible characters of Sp(2m) for all m ≥ 1, which form another 
set of main results in this paper.

We will adopt the same notations for the Sato–Tate groups as in [18]. To make this 
paper more self-contained, we recall the definitions of these groups. We take the group 

USp(4) to fix the symplectic form 
(

0 I2
−I2 0

)
, where I2 is the 2 ×2 identity matrix. Let 

Eij be the 4 × 4 elementary matrix which has (i, j)-entry equal to 1 and other entries 
equal to 0. We fix a basis for the Lie algebra sp4(C):

e1 = E12 − E43, f1 = E21 − E34, h1 = E11 − E22 −E33 + E44,

e2 = E24, f2 = E42, h2 = E22 − E44.

Set
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ê1 = E13, f̂1 = E31, ĥ1 = E11 −E33,

ê2 = e2 = E24, f̂2 = f2 = E42, ĥ2 = h2 = E22 −E44.

Define weights εi, i = 1, 2, by εi(ĥj) = δij . Then the simple roots of sp4(C) are

α1 = ε1 − ε2, α2 = 2ε2,

and the fundamental weights are

�1 = ε1, �2 = ε1 + ε2.

A pair of non-negative integers (a, b) with a ≥ b, or a partition (a, b) of length ≤ 2 will 
be considered as a weight corresponding to aε1 + bε2.

We embed U(1) into USp(4) by

u �−→ diag(u, u, u−1, u−1),

and SU(2) and U(2) into USp(4) by

A �−→
(
A 0
0 A

)
, (5.1)

where A consists of the complex conjugates of the entries of A.
We fix an embedding

SU(2) × SU(2) ↪→ USp(4) (5.2)

in such a way that the induced Lie algebra embedding sl2(C) × sl2(C) → sp4(C) gives

(h, 0) �−→ ĥ1 and (0, h) �−→ ĥ2,

where h :=
(1 0

0 −1
)
. This restricts to an embedding

U(1) × SU(2) ↪→ USp(4).

Identify SU(2) with the group of unit quaternions via the isomorphism

a + b i + c j + dk �→
(

a + bi c + di
−c + di a− bi

)
, a, b, c, d ∈ R,

and also identify them with the corresponding elements in USp(4) through the em-
bedding SU(2) ↪→ USp(4) in (5.1). For example, with this identification, we have 

j =
( 0 1 0 0

−1 0 0 0
0 0 0 1

)
.

0 0 −1 0
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Let J =
(0 0 0 1

0 0 −1 0
0 −1 0 0
1 0 0 0

)
. We write ζζζ2n =

(
eπi/n 0

0 e−πi/n

)
∈ SU(2), and its embed-

ded image in USp(4) will also be written as ζζζ2n. Set

Q1 = {±1,±i,±j,±k, 1
2 (±1 ± i ± j ± k}), (5.3)

Q2 =
{

1√
2(±1 ± i), 1√

2(±1 ± j), 1√
2(±1 ± k), 1√

2(±i ± j), 1√
2(±i ± k), 1√

2(±j ± k)
}
.

(5.4)

We have an embedding5 U(1) × U(1) into USp(4) by

(u1, u2) �→ diag(u1, u2, u
−1
1 , u−1

2 ). (5.5)

Let

a =
( 0 0 1 0

0 1 0 0
−1 0 0 0
0 0 0 1

)
, b =

(1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

)
, c =

( 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)
. (5.6)

Definition 5.1 (Sato–Tate groups). (1) For n = 1, 2, 3, 4, 6, define

Cn := 〈U(1), ζζζ2n〉.

For n = 2, 3, 4, 6, define

Dn := 〈Cn, j〉.

With Q1 and Q2 in (5.3) and (5.4), respectively, define

T := 〈U(1), Q1〉 and O := 〈T,Q2〉.

(2) Define the groups

J(Cn) := 〈Cn, J〉 (n = 1, 2, 3, 4, 6), J(Dn) := 〈Dn, J〉 (n = 2, 3, 4, 6),

J(T ) := 〈T, J〉, J(O) := 〈O, J〉.

(3) For n = 2, 4, 6, define

Cn,1 := 〈U(1), Jζζζ2n〉 and Dn,1 := 〈U(1), Jζζζ2n, j〉.

For n = 3, 4, 6, define

Dn,2 := 〈U(1), ζζζ2n, Jj〉,

5 In [18], the symplectic form of USp(4) is changed for U(1) ×U(1) and for the groups that contain it. In 
this paper, we do not change the symplectic form. There is no difference except for switching some indices.
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and define

O1 := 〈T, JQ2〉

with Q2 in (5.4).
(4) For n = 1, 2, 3, 4, 6, define

En := 〈SU(2), eπi/n〉 and J(En) := 〈SU(2), eπi/n, J〉,

where eπi/n is identified with

diag(eπi/n, eπi/n, e−πi/n, e−πi/n).

(5) The image of U(2) under the embedding (5.1) is denoted by the same notation 
and its normalizer by N(U(2)).

(6) Define F to be the image of U(1) × U(1) under the embedding (5.5), and define

Fa = 〈F, a〉, Fc = 〈F, c〉, Fab = 〈F, ab〉, Fac = 〈F, ac〉,
Fa,b = 〈F, a, b〉, Fab,c = 〈F, ab, c〉, Fa,b,c = 〈F, a, b, c〉,

where a, b, c are defined in (5.6).
(7) Define G1,3 and G3,3 to be the images of U(1) ×SU(2) and SU(2) ×SU(2) respec-

tively under the embedding (5.2), and N(G1,3) and N(G3,3) to be their normalizers in 
USp(4).

Remark 5.2. As mentioned in the introduction, more information about the Sato–Tate 
groups in Definition 5.1 can be found at LMFDB:

https://www .lmfdb .org /SatoTateGroup /?degree =4

The following is one of the main theorems in this paper.

Theorem 5.3 (Theorem 1.1). For each m ∈ Z≥1, we have

∫
H

m∏
j=1

det(I + xjγ)dγ = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
m(b+2z,b)χ

Sp(2m)
(2m−b−2z,12z), (5.7)

where m(b+2z,b) is the multiplicity of the trivial representation in the restriction 

χ
Sp(4)
(b+2z,b)

∣∣
H

for each Sato–Tate group H ≤ USp(4) and is explicitly given in Table 5.1.

Here we define

η1(z, b) := (b + 1)(z2 + zb + 2z + b/2 + 1),

https://www.lmfdb.org/SatoTateGroup/?degree=4
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Table 5.1
Coefficients m(b+2z,b).

H m(b+2z,b) H m(b+2z,b)

C1 η1 D3,2
1
6η1 + 1

3η3 + 1
2ψ2

C2
1
2η1 + 1

2η2 D4,2
1
8η1 + 1

8η2 + 1
4η4 + 1

2ψ2

C3
1
3η1 + 2

3η3 D6,2
1
12η1 + 1

12η2 + 1
6η3 + 1

6η6 + 1
2ψ2

C4
1
4η1 + 1

4η2 + 1
2η4 O1

1
24η1 + 1

8η2 + 1
3η3 + 1

4ψ2 + 1
4ψ4

C6
1
6η1 + 1

6η2 + 1
3η3 + 1

3η6 E1 b + 1
D2

1
4η1 + 3

4η2 E2 (b + 1) δ(b ≡2 0)
D3

1
6η1 + 1

2η2 + 1
3η3 E3 �b/3� + 1 − δ(b ≡3 1)

D4
1
8η1 + 5

8η2 + 1
4η4 E4 (2�b/4� + 1) δ(b ≡2 0)

D6
1
12η1 + 7

12η2 + 1
6η3 + 1

6η6 E6 (2�b/6� + 1) δ(b ≡2 0)
T 1

12η1 + 1
4η2 + 2

3η3 J(E1) 1
2 (b + 1) + 1

2 (−1)z δ(b ≡2 0)
O 1

24η1 + 3
8η2 + 1

3η3 + 1
4η4 J(E2) (b/2 + δ(z ≡2 0)) δ(b ≡2 0)

J(C1) θ1 J(E3) 1
2 (�b/3� + 1 − δ(b ≡3 1)) + 1

2 (−1)z δ(b ≡2 0)
J(C2) 1

2 θ1 + 1
2 θ2 J(E4) (�b/4� + δ(z ≡2 0)) δ(b ≡2 0)

J(C3) 1
3 θ1 + 2

3 θ3 J(E6) (�b/6� + δ(z ≡2 0)) δ(b ≡2 0)
J(C4) 1

4 θ1 + 1
4 θ2 + 1

2 θ4 U(2) δ(b ≡2 0)
J(C6) 1

6 θ1 + 1
6 θ2 + 1

3 θ3 + 1
3 θ6 N(U(2)) δ(b ≡2 0) δ(z ≡2 0)

J(D2) 1
4 θ1 + 3

4 θ2 F ξ1

J(D3) 1
6 θ1 + 1

2 θ2 + 1
3 θ3 Fa

1
2 ξ1 + 1

2 ξ2

J(D4) 1
8 θ1 + 5

8 θ2 + 1
4 θ4 Fc

1
2 ξ1 + 1

2η2

J(D6) 1
12 θ1 + 7

12θ2 + 1
6 θ3 + 1

6 θ6 Fab
1
2 ξ1 + 1

2ψ2

J(T ) 1
12 θ1 + 1

4 θ2 + 2
3 θ3 Fac

1
4 ξ1 + 1

4ψ2 + 1
2ψ4

J(O) 1
24 θ1 + 3

8 θ2 + 1
3 θ3 + 1

4 θ4 Fa,b
1
4 ξ1 + 1

4ψ2 + 1
2 ξ2

C2,1
1
2η1 + 1

2ψ2 Fab,c
1
4 ξ1 + 1

4ψ2 + 1
2η2

C4,1
1
4η1 + 1

4η2 + 1
2ψ4 Fa,b,c

1
8 ξ1 + 1

4 ξ2 + 1
8ψ2 + 1

4ψ4 + 1
4η2

C6,1
1
6η1 + 1

3η3 + 1
6ψ2 + 1

3ψ6 G1,3 1
D2,1

1
4η1 + 1

4η2 + 1
2ψ2 N(G1,3) δ(z ≡2 0)

D4,1
1
8η1 + 3

8η2 + 1
4ψ2 + 1

4ψ4 G3,3 δ(z = 0)
D6,1

1
12η1 + 1

4η2 + 1
6η3 + 1

3ψ2 + 1
6ψ6 N(G3,3) δ(b ≡2 0) δ(z = 0)

USp(4) δ(b = 0) δ(z = 0)

Table 5.2
Functions ηi(z, b), i = 3, 4, 6.

z\b 0 1 2
0 1 0 0
1 1 −1 0
2 0 −1 0

z\b 0 1 2 3
0 1 1 0 0
1 2 1 −1 0
2 1 −1 −2 0
3 0 −1 −1 0

z\b 0 1 2 3 4 5
0 1 2 2 1 0 0
1 3 5 4 1 −1 0
2 4 5 2 −2 −3 0
3 3 2 −2 −5 −4 0
4 1 −1 −4 −5 −3 0
5 0 −1 −2 −2 −1 0

η2(z, b) :=
{
− b+1

2 if b is odd,
b
2 + δ(z is even) if b is even,

and the functions ηi(z, b), i = 3, 4, 6 on the congruence classes of z and b modulo i as in 
Table 5.2; define

ψ1(z, b) := (−1)b(b + 1)(z + b/2 + 1), (5.8)
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Table 5.3
Functions ψi(z, b), i = 3, 4, 6.

z\b 0 1 2 3 4 5
0 1 0 0 −1 0 0
1 −1 1 0 1 −1 0
2 0 −1 0 0 1 0

z\b 0 1 2 3
0 1 −1 0 0
1 0 1 −1 0
2 −1 1 0 0
3 0 −1 1 0

z\b 0 1 2 3 4 5
0 1 −2 2 −1 0 0
1 1 −1 0 1 −1 0
2 0 1 −2 2 −1 0
3 −1 2 −2 1 0 0
4 −1 1 0 −1 1 0
5 0 −1 2 −2 1 0

Table 5.4
Function ξ2(z, b).
z\b 0 1 2 3
0 1 1 0 0
1 0 −1 −1 0

ψ2(z, b) :=
{

(−1)z b+1
2 if b is odd,

(−1)z(z + b/2 + 1) if b is even,
(5.9)

and the functions ψi(z, b), i = 3, 4, 6 on the congruence classes of z and b as in Table 5.3; 
define

ξ1(z, b) := z(b + 1) + �b/2	 + 1,

and ξ2(z, b) on the congruence classes of z and b as in Table 5.4; finally define

θi(z, b) := 1
2ηi(z, b) + 1

2ψi(z, b), i = 1, 2, 3, 4, 6. (5.10)

More explicitly,

θ1(z, b) :=
{

1
2z(b + 1)(z + b + 1) if b is odd,
1
2 (z + 1)(b + 1)(z + b + 2) if b is even,

θ2(z, b) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−1

2 (b + 1) if b is odd and z is odd,
0 if b is odd and z is even,
−1

2 (z + 1) if b is even and z is odd,
1
2b + 1

2z + 1 if b is even and z is even,

and θi(z, b), i = 3, 4, 6, are determined by the congruence classes of z and b as in Table 5.5.

In the rest of this section, we prove Theorem 5.3. The cases J(Cn), J(En) and Fa will 
lead to Theorems 5.6, 5.10 and 5.11, which are also main results of this paper. We denote 
by V Sp(4)

˜ the irreducible representation of Sp(4) with character χSp(4)
˜ .
λ λ
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Table 5.5
Functions θi(z, b), i = 3, 4, 6.

z\b 0 1 2 3 4 5
0 1 0 0 0 0 0
1 0 0 0 1 −1 0
2 0 −1 0 0 0 0

z\b 0 1 2 3
0 1 0 0 0
1 1 1 −1 0
2 0 0 −1 0
3 0 −1 0 0

z\b 0 1 2 3 4 5
0 1 0 2 0 0 0
1 2 2 2 1 −1 0
2 2 3 0 0 −2 0
3 1 2 −2 −2 −2 0
4 0 0 −2 −3 −1 0
5 0 −1 0 −2 0 0

From Proposition 3.3, we have

∫
H

m∏
i=1

det(I + xiγ) dγ = (x1 · · ·xm)2
∑

λ�(2m)

mλ̃(H)χSp(2m)
λ .

In particular, λ̃ = (m − λ′
2, m − λ′

1) with λ′ = (λ′
1, λ

′
2) the transpose of λ. For λ̃ =

(a, b) � (m2), we define z := (a − b)/2. Then λ̃ = (b + 2z, b) and λ = (2m−b−2z, 12z) for 
0 ≤ b ≤ m and 0 ≤ z ≤ m−b

2 .
For each Sato–Tate group H, the number m(a,b)(H) is equal to the number of inde-

pendent weight vectors vμ with weight μ in V Sp(4)
(a,b) which are fixed by H. Since each H

contains either

diag(u, u, u−1, u−1) or diag(u, u−1, u−1, u), u ∈ U(1),

one necessary condition for μ is that

μ(ĥ1 + ĥ2) ≡ 0 (mod 2).

If a − b is odd then this condition cannot be satisfied. Thus, for each of the Sato–Tate 
groups,

m(a,b) = m(b+2z,b) = 0 unless a− b is even, or equivalently, unless z is an integer.
(5.11)

This justifies having only integer values for z in (5.7).

5.1. Groups Cn

For each n = 1, 2, 3, 4, 6, the group Cn ≤ USp(4) consists of the matrices of the form(
A 0
0 A

)
with A =

(
e2πir+sπi/n 0

0 e2πir−sπi/n

)
, r ∈ [0, 1), s = 0, 1, . . . , 2n− 1.

By definition the number mλ̃(Cn) is equal to the multiplicity of the trivial representation 
in χSp(4)

˜ |Cn
.

λ
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Let vμ be a vector of weight μ in V Sp(4)
λ̃

. Then we obtain

(
A 0
0 A

)
vμ = (e2πir)μ(ĥ1+ĥ2)(esπi/n)μ(ĥ1−ĥ2) vμ,

where ĥ1 = E11 −E33 and ĥ2 = E22 −E44 as before. Thus the number mλ̃(Cn) is equal 
to the number of independent vectors with weight μ in the representation V Sp(4)

λ̃
such 

that

μ(ĥ1 + ĥ2) = 0 and μ(ĥ1 − ĥ2) ≡ 0 (mod 2n), n = 1, 2, 3, 4, 6. (5.12)

The numbers mλ̃(Cn) are all calculated in Section 6.2 (Propositions 6.4–6.9) and they 
match with the formulae in Table 5.1. This proves Theorem 5.3 for the groups Cn.

For convenience in notation, define

η̃1 := η1, η̃2 := 1
2η1 + 1

2η2, η̃3 := 1
3η1 + 2

3η3,

η̃4 := 1
4η1 + 1

4η2 + 1
2η4, η̃6 := 1

6η1 + 1
6η2 + 1

3η3 + 1
3η6.

Then we have

∫
Cn

m∏
i=1

det(I + xiγ)dγCn
= (x1 · · ·xm)2

m∑
b=0

�m−b
2 �∑

z=0
η̃n(z, b)χSp(2m)

(2m−b−2z,12z) (5.13)

for n = 1, 2, 3, 4, 6, where dγCn
is the probability Haar measure on Cn.

5.2. Cosets of Cn

We need to study the cosets of C1 in Cn to understand other groups. Consider

γ = diag(ueπi/n, ue−πi/n, u−1e−πi/n, u−1eπi/n) ∈ ζζζ2nC1, u ∈ U(1).

Then we have

det(I + xγ) = (1 + xueπi/n)(1 + xue−πi/n)(1 + xu−1e−πi/n)(1 + xu−1eπi/n)

= (1 + ωnxu + x2u2)(1 + ωnxu
−1 + x2u−2), (5.14)

where we set ωn = −2, 0, 1, 
√

2, 
√

3 for n = 1, 2, 3, 4, 6, respectively.

Proposition 5.4. For n = 1, 2, 3, 4, 6, we have

∫ m∏
i=1

det(I + xiζζζ2nγ)dγC1 =
∫ m∏

i=1
(1 + ωnxiu + x2

iu
2)(1 + ωnxiu

−1 + x2
iu

−2)du

C1 U(1)
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= (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
ηn(z, b)χSp(2m)

(2m−b−2z,12z). (5.15)

Proof. The case n = 1 is already checked as a part of Theorem 5.3, and we have only to 
consider n = 2, 3, 4, 6. To begin with, note that we have the coset decompositions

C2 = C1 � ζζζ4C1, C3 = C1 � ζζζ6C1 � ζζζ2
6C1, C4 = C1 � ζζζ8C1 � ζζζ4C1 � ζζζ3

8C1,

(5.16)

C6 = C1 � ζζζ12C1 � ζζζ6C1 � ζζζ4C1 � ζζζ2
6C1 � ζζζ11

12C1. (5.17)

Let dγCn
and du be the probability Haar measures on Cn and U(1), respectively. Note 

that C1 ∼= U(1). Recall (5.13):

∫
Cn

m∏
i=1

det(I + xiγ)dγCn
= (x1 · · ·xm)2

m∑
b=0

�m−b
2 �∑

z=0
η̃n(z, b)χSp(2m)

(2m−b−2z,12z).

In what follows we write

Δ(ζζζγ) :=
m∏
i=1

det(I + xiζζζγ)dγ (5.18)

to ease the notation, where dγ is the probability Haar measure on the group the integral 
is over.

When n = 2, we obtain from (5.14) and (5.16),∫
C2

Δ(γ) = 1
2

∫
C1

Δ(γ) + 1
2

∫
C1

Δ(ζζζ4γ)

= 1
2(x1 · · ·xm)2

m∑
b=0

�m−b
2 �∑

z=0
η1(z, b)χSp(2m)

(2m−b−2z ,12z) + 1
2

∫
U(1)

m∏
i=1

(1 + x2
iu

2)(1 + x2
iu

−2)du.

Since η̃2 = 1
2η1 + 1

2η2, we obtain (5.15) for n = 2.
For n = 3, since −u ∈ U(1) for u ∈ U(1), a similar computation to (5.14) yields∫

C1

Δ(ζζζ6γ) =
∫
C1

Δ(ζζζ2
6γ).

Thus we obtain from (5.14) and (5.16),∫
Δ(γ) = 1

3

∫
Δ(γ) + 2

3

∫
Δ(ζζζ6γ)
C3 C1 C1
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= 1
3(x1 · · ·xm)2

m∑
b=0

�m−b
2 �∑

z=0
η1(z, b)χSp(2m)

(2m−b−2z,12z)

+ 2
3

∫
U(1)

m∏
i=1

(1 + xiu + x2
iu

2)(1 + xiu
−1 + x2

iu
−2)du.

Since η̃3 = 1
3η1 + 2

3η3, we obtain (5.15) for n = 3.
When n = 4, we get ∫

C1

Δ(ζζζ8γ) =
∫
C1

Δ(ζζζ3
8γ).

Thus we obtain from (5.14) and (5.16),∫
C4

Δ(γ) = 1
4

∫
C1

Δ(γ) + 1
4

∫
C1

Δ(ζζζ4γ) + 1
2

∫
C1

Δ(ζζζ8γ)

= 1
4(x1 · · ·xm)2

m∑
b=0

�m−b
2 �∑

z=0
(η1 + η2)(z, b)χSp(2m)

(2m−b−2z,12z)

+ 1
2

∫
U(1)

m∏
i=1

(1 +
√

2xiu + x2
iu

2)(1 +
√

2xiu
−1 + x2

iu
−2)du.

Since η̃4 = 1
4η1 + 1

4η2 + 1
2η4, we obtain (5.15) for n = 4.

The case n = 6 is similar to the previous cases, and we obtain∫
C6

Δ(γ) = 1
6

∫
C1

Δ(γ) + 1
6

∫
C1

Δ(ζζζ4γ) + 1
3

∫
C1

Δ(ζζζ6γ) + 1
3

∫
C1

Δ(ζζζ12γ).

Since η̃6 = 1
6η1 + 1

6η2 + 1
3η3 + 1

3η6, we obtain (5.15) for n = 6. �
Corollary 5.5. For any m ∈ Z≥1, we have

m∑
b=0

�m−b
2 �∑

z=0
η2(z, b)χSp(2m)

(2m−b−2z,12z) =
�m/2�∑
�=0

(
2




) ∑
1≤i1<···<im−2�≤m

m−2�∏
j=1

(x2
ij + x−2

ij
)

=
�m

2 �∑
j=0

χ
Sp(2m)
(1m−2j)(x

±2
1 , . . . , x±2

m ).

Proof. The first equality comes from (5.15) and (4.6), and the second equality comes 
from (4.4). �
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5.3. Groups Dn

We have the coset decomposition Dn = Cn � jCn with j =
( 0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

)
for 

n = 2, 3, 4, 6. Consider

γ =

⎛⎜⎜⎝
0 ue−πi/n

−ueπi/n 0
0 u−1eπi/n

−u−1e−πi/n 0

⎞⎟⎟⎠ ∈ jCn, u ∈ U(1).

We see that

det(I + xγ) = (1 + x2u2)(1 + x2u−2)

for any n = 2, 3, 4, 6. Then we have∫
Dn

Δ(γ) = 1
2

∫
Cn

Δ(γ) + 1
2

∫
Cn

Δ(jγ)

= 1
2

∫
Cn

Δ(γ) + 1
2

∫
U(1)

m∏
i=1

(1 + x2
iu

2)(1 + x2
iu

−2)du.

By (5.15), we obtain

∫
Cn

Δ(jγ) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
η2(z, b)χSp(2m)

(2m−b−2z,12z), (5.19)

and it follows from (5.13) that mλ̃(Dn) are given by

1
2 η̃n + 1

2η2 for n = 2, 3, 4, 6. (5.20)

These coincide with the formulae in Table 5.1 and prove Theorem 5.3 for the groups Dn.

5.4. Group T

There are 24 cosets of C1 in T , whose representatives are given by

{
±1,±i,±j,±k, 1

2 (±1 ± i ± j ± k)
}
.

From computations of the characteristic polynomials for the elements of each coset, we 
see the following.
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(i) There are 2 cosets whose characteristic polynomials are

(1 − 2xu + x2u2)(1 − 2xu−1 + x2u−2) (u ∈ U(1)).

By (5.14), these are the same as those of C1.
(ii) There are 6 cosets whose characteristic polynomials are

(1 + x2u2)(1 + x2u−2) (u ∈ U(1)),

which are the same as those of ζζζ4C1 by (5.14).
(iii) The characteristic polynomials of the remaining 16 cosets are

(1 + xu + x2u2)(1 + xu−1 + x2u−2) (u ∈ U(1)).

These are the same as those of ζζζ6C1 by (5.14).

Thus we obtain∫
T

Δ(γ) = 2
24

∫
C1

Δ(γ) + 6
24

∫
C1

Δ(ζζζ4γ) + 16
24

∫
C1

Δ(ζζζ6γ)

and it follows from (5.15) that

mλ̃(T ) = 1
12η1 + 1

4η2 + 2
3η3. (5.21)

This proves Theorem 5.3 for the group T .

5.5. Group O

There are 48 cosets of C1 as one can see from (5.4). We compute the characteristic 
polynomial for the elements of each coset. Comparing with (5.14), we obtain 2 cosets 
with C1 polynomials, 18 cosets with ζζζ4C1 polynomials, 16 cosets with ζζζ6C1 polynomials 
and 12 cosets with ζζζ8C1 polynomials.

Thus we obtain∫
O

Δ(γ) = 2
48

∫
C1

Δ(γ) + 18
48

∫
C1

Δ(ζζζ4γ) + 16
48

∫
C1

Δ(ζζζ6γ) + 12
48

∫
C1

Δ(ζζζ8γ),

and it follows from (5.15) that

mλ̃(O) = 1
24η1 + 3

8η2 + 1
3η3 + 1

4η4. (5.22)

This proves Theorem 5.3 for the group O.
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5.6. Groups J(Cn)

Recall J =
(0 0 0 1

0 0 −1 0
0 −1 0 0
1 0 0 0

)
. The group J(Cn) is defined to be the group obtained by 

adjoining J to Cn for n = 1, 2, 3, 4, 6, and we have the decomposition

J(Cn) = Cn � JCn.

The number mλ̃(J(Cn)) is equal to the number of independent J-fixed vectors with 
weight μ in the representation V Sp(4)

λ̃
satisfying the conditions in (5.12). The numbers 

mλ̃(J(Cn)) are all calculated in Propositions 6.12 and 6.13, and they coincide with the 
formulae in Table 5.1. This proves Theorem 5.3 for the groups J(Cn).

Define

θ̃1 := θ1, θ̃2 := 1
2θ1 + 1

2θ2, θ̃3 := 1
3θ1 + 2

3θ3,

θ̃4 := 1
4θ1 + 1

4θ2 + 1
2θ4, θ̃6 := 1

6θ1 + 1
6θ2 + 1

3θ3 + 1
3θ6.

(5.23)

Then the result for J(Cn) can be written as

∫
J(Cn)

m∏
i=1

det(I + xiγ)dγ = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
θ̃n(z, b)χSp(2m)

(2m−b−2z,12z). (5.24)

Using the above result, we now prove another main theorem of this paper.

Theorem 5.6 (Theorem 1.2 (1)). Let κ1 = −2, κ2 = 2, κ3 = 1, κ4 = 0, and κ6 = −1. 
Then, for any m ∈ Z≥1 and n = 1, 2, 3, 4, 6, we have the following identities:

∫
C1

m∏
i=1

det(I + xiJζζζ2nγ)dγC1 =
m∏
i=1

(x2
i + κn + x−2

i ) =
m∑
b=0

�m−b
2 �∑

z=0
ψn(z, b)χSp(2m)

(2m−b−2z,12z),

(5.25)

where ψn(z, b) are defined in (5.8), (5.9) and Table 5.3.

Proof. We have Jζζζ2n =

⎛⎝ 0 0 0 eπi/n

0 0 −e−πi/n 0
0 −e−πi/n 0 0

eπi/n 0 0 0

⎞⎠. For γ ∈ C1 and n =

1, 2, 3, 4, 6, direct computation shows

det(I + xJζζζ2nγ) = 1 − (e2πi/n + e−2πi/n)x2 + x4 = 1 + κnx
2 + x4. (5.26)

This proves the first equality in (5.25).
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We continue to use the notational convention in (5.18). We have

∫
J(Cn)

Δ(γ) = 1
2

∫
Cn

Δ(γn) + 1
2

∫
Cn

Δ(Jγn).

When n = 1, we get from (5.13), (5.24) and (5.26)

∫
J(C1)

Δ(γ) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
θ̃1(z, b)χSp(2m)

(2m−b−2z,12z)

= 1
2

∫
C1

Δ(γ1) + 1
2

∫
C1

Δ(Jγ1)

= 1
2(x1 · · ·xm)2

m∑
b=0

�m−b
2 �∑

z=0
η̃1(z, b)χSp(2m)

(2m−b−2z,12z) + 1
2

m∏
i=1

(1 − 2x2
i + x4

i ).

Since θ̃1 = θ1 = 1
2η1 + 1

2ψ1 and η1 = η̃1 by definition, we obtain

m∏
i=1

(x2
i − 2 + x−2

i ) =
m∑
b=0

�m−b
2 �∑

z=0
ψ1(z, b)χSp(2m)

(2m−b−2z,12z),

as desired.
Assume that n = 2. Using (5.16) along with (5.13), (5.24) and (5.26), we obtain

∫
J(C2)

Δ(γ) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
θ̃2(z, b)χSp(2m)

(2m−b−2z,12z)

= 1
2

∫
C2

Δ(γ2) + 1
2

∫
C2

Δ(Jγ2) = 1
2

∫
C2

Δ(γ2) + 1
4

∫
C1

Δ(Jγ1) + 1
4

∫
C1

Δ(Jζζζ4γ1)

= (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0

( 1
2 η̃2 + 1

4ψ1
)
χ

Sp(2m)
(2m−b−2z,12z) + 1

4

m∏
i=1

(1 + 2x2
i + x4

i ).

Since θ̃2 = 1
2θ1 + 1

2θ2 = 1
4η1 + 1

4η2 + 1
4ψ1 + 1

4ψ2 and η̃2 = 1
2η1 + 1

2η2, we obtain

m∏
(x2

i + 2 + x−2
i ) =

m∑ �m−b
2 �∑

ψ2(z, b)χSp(2m)
(2m−b−2z,12z).
i=1 b=0 z=0
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When n = 3, similar computation yields

∫
J(C3)

Δ(γ3) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0

( 1
2 η̃3 + 1

6ψ1
)
χ

Sp(2m)
(2m−b−2z,12z) + 1

3

m∏
i=1

(1 + x2
i + x4

i ).

Since θ̃3 = 1
3θ1 + 2

3θ3 = 1
6η1 + 1

3η3 + 1
6ψ1 + 1

3ψ3 and η̃3 = 1
3η1 + 2

3η3, we obtain

m∏
i=1

(x2
i + 1 + x−2

i ) =
m∑
b=0

�m−b
2 �∑

z=0
ψ3(z, b)χSp(2m)

(2m−b−2z,12z).

When n = 4, it follows from

∫
J(C4)

Δ(γ4) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0

( 1
2 η̃4 + 1

8ψ1 + 1
8ψ2
)
χ

Sp(2m)
(2m−b−2z,12z) + 1

4

m∏
i=1

(1 + x4
i )

that

m∏
i=1

(x2
i + x−2

i ) =
m∑
b=0

�m−b
2 �∑

z=0
ψ4(z, b)χSp(2m)

(2m−b−2z,12z).

Finally, when n = 6, we have

∫
J(C6)

Δ(γ6) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0

( 1
2 η̃6 + 1

12ψ1 + 1
12ψ2 + 1

6ψ3
)
χ

Sp(2m)
(2m−b−2z,12z)

+ 1
6

m∏
i=1

(1 − x2
i + x4

i ),

and obtain

m∏
i=1

(x2
i − 1 + x−2

i ) =
m∑
b=0

�m−b
2 �∑

z=0
ψ6(z, b)χSp(2m)

(2m−b−2z,12z). �

The following identities are obtained from computations in the proof above. These 
identities will be used in the next subsection.

Corollary 5.7. For n = 1, 2, 3, 4, 6, we have

∫ m∏
i=1

det(I + xiJγ)dγ = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
ψ̃n(z, b)χSp(2m)

(2m−b−2z,12z), (5.27)

Cn
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where we define

ψ̃1 := ψ1, ψ̃2 := 1
2ψ1 + 1

2ψ2, ψ̃3 := 1
3ψ1 + 2

3ψ3,

ψ̃4 := 1
4ψ1 + 1

4ψ2 + 1
2ψ4, ψ̃6 := 1

6ψ1 + 1
6ψ2 + 1

3ψ3 + 1
3ψ6.

We also obtain the following identity from (4.5):

Corollary 5.8. For any m ∈ Z≥1, we have

m∏
i=1

(x2
i + x−2

i ) =
m∑
b=0

�m−b
2 �∑

z=0
ψ4(z, b)χSp(2m)

(2m−b−2z ,12z) =
�m

2 �∑
j=0

(−1)jχSp(2m)
(1m−2j)(x

±2
1 , . . . , x±2

m ).

5.7. Groups J(Dn)

We have the decompositions

J(Dn) = Dn � JDn and Dn = Cn � jCn,

where j =
( 0 1 0 0

−1 0 0 0
0 0 0 1
0 0 −1 0

)
. For any γ ∈ Cn, n = 2, 3, 4, 6, direct computation shows

det(I + xJjγ) = 1 + 2x2 + x4.

Using (5.20), (5.25) and (5.27), we compute∫
J(Dn)

Δ(γ) = 1
2

∫
Dn

Δ(γ) + 1
2

∫
Dn

Δ(Jγ) = 1
2

∫
Dn

Δ(γ) + 1
4

∫
Cn

Δ(Jγ) + 1
4

∫
Cn

Δ(Jjγ)

= (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0

(
1
4 η̃n + 1

4η2 + 1
4 ψ̃n + 1

4ψ2

)
χ

Sp(2m)
(2m−b−2z,12z).

Then we have

1
4 η̃n + 1

4η2 + 1
4 ψ̃n + 1

4ψ2 = 1
2 θ̃n + 1

2θ2,

which are the same as the formulae in Table 5.1 for n = 2, 3, 4, 6. This proves Theorem 5.3
for the groups J(Dn).

5.8. Groups J(T ) and J(O)

We have the decompositions

J(T ) = T � JT and J(O) = O � JO.
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As we have noticed in Sections 5.4 and 5.5, elements of each coset S of C1 in T or O
have the same characteristic polynomials of the elements of ζζζ2nC1 for some n. Then the 
coset JS in JT or JO has the same characteristic polynomials as those of Jζζζ2nC1. It 
follows from (5.21), (5.22) and (5.25) that

mλ̃(J(T )) = 1
2 ( 1

12η1 + 1
4η2 + 2

3η3) + 1
2 ( 1

12ψ1 + 1
4ψ2 + 2

3ψ3) = 1
12θ1 + 1

4θ2 + 2
3θ3,

mλ̃(J(O)) = 1
2 ( 1

24η1 + 3
8η2 + 1

3η3 + 1
4η4) + 1

2 ( 1
24ψ1 + 3

8ψ2 + 1
3ψ3 + 1

4ψ4)

= 1
24θ1 + 3

8θ2 + 1
3θ3 + 1

4θ4.

This proves Theorem 5.3 for J(T ) and J(O).

5.9. Groups Cn,1

Recall Cn,1 = 〈U(1), Jζζζ2n〉, n = 2, 4, 6. The group Cn,1 has the subgroup 〈U(1), ζζζn〉
of index 2 which is isomorphic to Cn/2. Thus we have the decomposition

Cn,1 = Cn/2 � Jζζζ2nCn/2.

It follows from (5.16) that

Jζζζ8C2 = Jζζζ8C1 � Jζζζ3
8C1 and Jζζζ12C3 = Jζζζ12C1 � Jζζζ5

12 � Jζζζ4C1.

Since ∫
Cn,1

Δ(γ) = 1
2

∫
Cn/2

Δ(γ) + 1
2

∫
Cn/2

Δ(Jζζζ2nγ),

we use (5.13) and (5.25) to obtain

mλ̃(C2,1) = 1
2 η̃1 + 1

2ψ2,

mλ̃(C4,1) = 1
2 η̃2 + 1

2ψ4,

mλ̃(C6,1) = 1
2 η̃3 + 1

6ψ2 + 1
3ψ6.

Thus we have proved Theorem 5.3 for Cn,1.

5.10. Groups Dn,1

We have the decompositions

Dn,1 = Cn,1 � jCn,1 and jCn,1 = jCn/2 � jJζζζ2nCn/2.

Then we have
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∫
Dn,1

Δ(γ) = 1
2

∫
Cn,1

Δ(γ) + 1
2

∫
Cn,1

Δ(jγ)

= 1
2

∫
Cn,1

Δ(γ) + 1
4

∫
Cn/2

Δ(jγ) + 1
4

∫
Cn/2

Δ(jJζζζ2nγ).

For any γ ∈ jJζζζ2nCn/2, one can check

det(I + xγ) = 1 + 2x2 + x4.

Thus it follows from (5.19) and (5.25) that

mλ̃(Dn,1) = 1
2mλ̃(Cn,1) + 1

4η2 + 1
4ψ2.

These are the same as the formulae for Dn,1 in Theorem 5.3.

5.11. Groups Dn,2

We have the decomposition

Dn,2 = Cn � JjCn, n = 3, 4, 6.

For any γ ∈ JjCn, we obtain

det(I + xγ) = 1 + 2x2 + x4.

Since we have ∫
Dn,2

Δ(γ) = 1
2

∫
Cn

Δ(γ) + 1
2

∫
Cn

Δ(Jjγ),

we get

mλ̃(Dn,2) = 1
2 η̃n + 1

2ψ2.

These are the same as the formulae for Dn,2 in Theorem 5.3.

5.12. Group O1

Recall O1 = 〈T, JQ2〉 with Q2 in (5.4). There are 48 cosets of C1 in O1. Half of 
them belong to the subgroup T . In the other half, 12 of the 24 cosets have the same 
characteristic polynomial as Jζζζ4C1 and the remaining 12 cosets have the same as Jζζζ8C1. 
By (5.25), we obtain
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mλ̃(O1) = 1
2mλ̃(T ) + 1

4ψ2 + 1
4ψ4.

This coincides with the formula in Table 5.1 for O1.

5.13. Groups En

We have En = 〈SU(2), eπi/n〉, n = 1, 2, 3, 4, 6, where eπi/n is identified with

diag(eπi/n, eπi/n, e−πi/n, e−πi/n).

The number mλ̃(En) is equal to the number of independent weight vectors vμ with 
weight μ in V Sp(4)

λ̃
that generate the trivial representation of SU(2) and satisfy μ(ĥ1 +

ĥ2) ≡ 0 (mod 2n), equivalently, the number of independent weight vectors vμ such 
that μ(ĥ1 + ĥ2) ≡ 0 (mod 2n) and e1vμ = f1vμ = 0. The numbers mλ̃(En) are all 
calculated in Proposition 6.20, and they coincide with the formulae in Table 5.1. This 
proves Theorem 5.3 for En.

5.14. Groups J(En)

The number mλ̃(J(E1)) is equal to the number of independent J-fixed weight vectors 
vμ with weight μ in V Sp(4)

λ̃
such that e1vμ = f1vμ = 0. The numbers mλ̃(J(E1)) are 

calculated in Proposition 6.23, and they are the same as the formulae in Table 5.1.
For the other J(En), n = 2, 3, 4, 6, observe that

det
(
I + xJ

(
tA 0
0 tA

))
= 1 + (2 − | trA|2)x2 + x4 (5.28)

for any A ∈ SU(2) and t ∈ U(1). Thus∫
En

Δ(Jγ) =
∫
E1

Δ(Jγ) for n = 2, 3, 4, 6.

Notice from Proposition 6.23 that

mλ̃(J(E1)) = 1
2mλ̃(E1) + 1

2(−1)z δ(b ≡2 0).

Since J(E1) = E1 � JE1, we obtain the following:

Corollary 5.9. For n = 1, 2, 3, 4, 6,

∫
En

Δ(Jγ) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
(−1)zδ(b ≡2 0)χSp(2m)

(2m−b−2z,12z)

= (x1 · · ·xm)2
�m

2 �∑ �m
2 �−�∑

(−1)zχSp(2m)
(2m−2�−2z,12z). (5.29)
�=0 z=0
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From J(En) = En � JEn, n = 2, 3, 4, 6, we also obtain

mλ̃(J(En)) = 1
2mλ̃(En) + 1

2(−1)z δ(b ≡2 0),

which are equal to the formulae in Table 5.1.
Using the above results on J(En), we now prove another identity presented in the 

introduction.

Theorem 5.10 (Theorem 1.2 (2)). For any m ∈ Z≥1, the following identity holds:

m∑
k=0

(
m− k

�(m− k)/2	

) ∑
1≤i1<···<ik≤m

k∏
j=1

(x2
ij + x−2

ij
) =

�m
2 �∑

�=0

�m
2 �−�∑
z=0

(−1)zχSp(2m)
(2m−2�−2z,12z).

Proof. Recall ∫
SU(2)

| trA|2kdA = Ck, (5.30)

where Ck = 1
k+1
(2k
k

)
is the kth Catalan number. It is known that the second inverse 

binomial transformations of Catalan numbers are central binomial coefficients. Precisely, 
we have (

m

�m/2	

)
=

m∑
k=0

(−1)k
(
m

k

)
2m−k Ck. (5.31)

Using (5.30) and (5.31), we obtain

∫
SU(2)

(2 − | trA|2)mdA =
∫

SU(2)

m∑
k=0

(
m

k

)
2m−k(−1)k | trA|2kdA

=
m∑

k=0

(−1)k
(
m

k

)
2m−k

∫
SU(2)

| trA|2kdA =
(

m

�m/2	

)
.

Then, using (5.28), we have

∫
En

Δ(Jγ) =
∫

SU(2)

m∏
i=1

(1 + (2 − | trA|2)x2
i + x4

i ) dA

= (x1 · · ·xm)2
m∑

k=0

(
m− k

�(m− k)/2	

) ∑
1≤i1<···<ik≤m

k∏
j=1

(x2
ij + x−2

ij
).
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On the other hand, we have from (5.29)

∫
En

Δ(Jγ) = (x1 · · ·xm)2
�m

2 �∑
�=0

�m
2 �−�∑
z=0

(−1)zχSp(2m)
(2m−2�−2z,12z),

and obtain the desired identity. �
5.15. Groups U(2) and N(U(2))

The number mλ̃(U(2)) is equal to the number of independent weight vectors vμ with 
weight μ in V Sp(4)

λ̃
such that e1vμ = f1vμ = 0 and μ = 0, and we see from (6.17) that such 

a vector vμ exists with multiplicity 1 if and only if b is even. The number mλ̃(N(U(2))
is equal to the number of such vectors vμ which is fixed by J , and it follows from (6.19)
that, when it exits, the vector vμ is fixed by J if and only if b is even. These match with 
the formulae in Table 5.1.

5.16. Groups F∗

Recall that we have the embedding U(1) × U(1) into USp(4) given by

(u1, u2) �→ diag(u1, u2, u
−1
1 , u−1

2 ),

and that

a =
( 0 0 1 0

0 1 0 0
−1 0 0 0
0 0 0 1

)
, b =

(1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

)
, c =

( 0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

)
,

ab =
( 0 0 1 0

0 0 0 1
−1 0 0 0
0 −1 0 0

)
, ac =

( 0 0 0 1
−1 0 0 0
0 −1 0 0
0 0 −1 0

)
.

5.16.1. Group F
We have F ∼= U(1) ×U(1). The number mλ̃(F ) is equal to the number of independent 

weight vectors vμ such that μ = 0. This number is calculated in Proposition 6.24, and 
coincides with the formula in Table 5.1. That is,

∫
F

Δ(γ) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
ξ1(z, b)χSp(2m)

(2m−b−2z,12z), (5.32)

where

ξ1(z, b) = z(b + 1) + �b/2	 + 1.
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5.16.2. Group Fa

The number mλ̃(Fa) is equal to the number of a-fixed independent weight vectors vμ
such that μ = 0. This number is calculated in Proposition 6.25, and we obtain

∫
Fa

Δ(γ) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
(1
2ξ1 + 1

2ξ2)χ
Sp(2m)
(2m−b−2z,12z). (5.33)

Using (5.33), we can establish the last identity presented in the introduction.

Theorem 5.11 (Theorem 1.2(3)). For any m ∈ Z≥1, the following identity holds:

m∏
i=1

(xi + x−1
i )

�m
2 �∑

j=0
χ

Sp(2m)
(1m−2j) =

m∑
b=0

�m−b
2 �∑

z=0
ξ2(z, b)χSp(2m)

(2m−b−2z,12z).

Proof. We have the decomposition

Fa = F � aF.

For γ ∈ aF , we have

det(I + xγ) = (1 + x2)(1 + (u + u−1)x + x2), u ∈ U(1).

Thus we obtain∫
Fa

Δ(γ) = 1
2

∫
F

Δ(γ) + 1
2

∫
F

Δ(aγ)

= 1
2

∫
F

Δ(γ) + 1
2

m∏
i=1

(1 + x2
i )
∫

U(1)

m∏
i=1

(1 + (u + u−1)xi + x2
i )du

= 1
2

∫
F

Δ(γ) + 1
2(x1 · · ·xm)

m∏
i=1

(1 + x2
i )

�m
2 �∑

j=0
χ

Sp(2m)
(1m−2j),

where we use the identity in Theorem 4.1 for U(1). It follows from (5.32) and (5.33) that

∫
F

Δ(aγ) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
ξ2(z, b)χSp(2m)

(2m−b−2z,12z) (5.34)

= (x1 · · ·xm)
m∏
i=1

(1 + x2
i )

�m
2 �∑

j=0
χ

Sp(2m)
(1m−2j),

and we obtain the desired identity. �
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5.16.3. Group Fc

We have Fc = F � cF . For γ ∈ cF , we obtain

det(I + xγ) = 1 + (u1u2 + u−1
1 u−1

2 )x2 + x4.

Thus ∫
Fc

Δ(γ) = 1
2

∫
F

Δ(γ) + 1
2

∫
F

Δ(cγ)

= 1
2

∫
F

Δ(γ) + 1
2

∫
U(1)

∫
U(1)

m∏
i=1

(1 + (u1u2 + u−1
1 u−1

2 )x2
i + x4

i )du1du2

= 1
2

∫
F

Δ(γ) + 1
2

∫
U(1)

∫
U(1)

m∏
i=1

(1 + (u1 + u−1
1 )x2

i + x4
i )du1du2

= 1
2

∫
F

Δ(γ) + 1
2

∫
U(1)

m∏
i=1

(1 + (u + u−1)x2
i + x4

i )du,

since du1 is translation-invariant. It follows from (5.15) that

mλ̃(Fc) = 1
2ξ1(z, b) + 1

2η2(z, b),

which is the same as the formula in Table 5.1.

5.16.4. Group Fab

We have Fab = F � abF . For γ ∈ abF , we have

det(I + xγ) = (1 + x2)2.

Thus ∫
Fab

Δ(γ) = 1
2

∫
F

Δ(γ) + 1
2

∫
F

Δ(abγ)

= 1
2

∫
F

Δ(γ) + 1
2

m∏
i=1

(1 + x2
i )2.

It follows from (6.24) and (5.25) that

∫
Fab

Δ(γ) = (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
(1
2ξ1 + 1

2ψ2)χSp(2m)
(2m−b−2z,12z).

This coincides with the formula in Table 5.1.
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5.16.5. Group Fac

There are four cosets of F in Fac represented by 1, ac, (ac)2, (ac)3. For γ ∈ acF or 
(ac)3F , we have

det(I + xγ) = 1 + x4.

For γ ∈ (ac)2F = abF , we have

det(I + xγ) = (1 + x2)2.

Using (5.25), we have

∫
Fac

Δ(γ) = 1
4

∫
F

Δ(γ) + 1
4

m∏
i=1

(1 + x2
i )2 + 1

2

m∏
i=1

(1 + x4
i )

= (x1 · · ·xm)2
m∑
b=0

�m−b
2 �∑

z=0
(1
4ξ1 + 1

4ψ2 + 1
2ψ4)χSp(2m)

(2m−b−2z,12z).

This coincides with the formula in Table 5.1.

5.16.6. Group Fa,b

There are four cosets of F in Fa,b represented by 1, a, b, ab. For γ ∈ aF or bF , we 
have

det(I + xγ) = (1 + x2)(1 + (u + u−1)x + x2), u ∈ U(1).

For γ ∈ abF , we have

det(I + xγ) = (1 + x2)2.

Thus it follows from (5.25) and (5.34) that

mλ̃(Fa,b) = 1
4ξ1(z, b) + 1

4ψ2(z, b) + 1
2ξ2(z, b),

which is the same as the formula in Table 5.1.

5.16.7. Group Fab,c

There are four cosets of F in Fab,b represented by 1, ab, c, abc. For γ ∈ cF or abcF , 
we have

det(I + xγ) = 1 + (u1u
−1
2 + u−1

1 u2)x2 + x4.

Thus using the results on Fab and Fc, we have
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mλ̃(Fab,c) = 1
4ξ1(z, b) + 1

4ψ2(z, b) + 1
2η2(z, b),

which is the same as the formula in Table 5.1.

5.16.8. Group Fa,b,c

There are eight cosets of F in Fa,b,c represented by 1, ac, (ac)2, (ac)3, a, b, c, abc. 
Using the results on Fa, Fb, Fac and Fabc, we have

mλ̃(Fa,b,c) = 1
8ξ1(z, b) + 1

4ξ2(z, b) + 1
8ψ2(z, b) + 1

4ψ4(z, b) + 1
4η2(z, b),

which coincides with the formula in Table 5.1.

5.17. Groups G1,3 and N(G1,3)

Recall that G1,3 ∼= U(1) × SU(2) and

N(G1,3) = 〈G1,3, a〉, where a =
( 0 0 1 0

0 1 0 0
−1 0 0 0
0 0 0 1

)
.

The number mλ̃(G1,3) is equal to the number of independent weight vectors vμ in V Sp(4)
λ̃

such that μ = 0 and ê2 and f̂2 act trivially, and the number mλ̃(N(G1,3)) is equal to the 
number of a-fixed such vectors. From Proposition 6.28, we obtain the same numbers as 
in the formulae in Table 5.1 for G1,3 and N(G1,3).

5.18. Groups G3,3 and N(G3,3)

Recall that G3,3 ∼= SU(2) × SU(2) and

N(G3,3) = 〈G3,3, J〉, where J =
(0 0 0 1

0 0 −1 0
0 −1 0 0
1 0 0 0

)
.

In this case, the number mλ̃(G3,3) is equal to the number of independent weight vectors 
vμ in V Sp(4)

λ̃
such that μ = 0 and êi and f̂i act trivially for i = 1, 2, and the number 

mλ̃(N(G3,3)) is equal to the number of J-fixed such vectors. From Proposition 6.29, we 
obtain the same numbers as those in Table 5.1 for G3,3 and N(G3,3).

We have checked all the formulae in Table 5.1. This completes our proof of Theo-
rem 5.3. �
6. Branching rules

In this section we study branching rules that arise in relation to the Sato–Tate groups. 
The results are essentially used in Section 5 for the proof of Theorem 5.3. We present these 
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branching rules for Lie algebras. This will be more consistent with standard notations 
for crystals which are our main tools in this section. We refer the reader to [11,27,31]
for a theory of crystals. In particular, we mainly follow the conventions in [27,32] for 
tableaux realization of crystals.

The Cartan types of Lie algebras sp4 and sl2 will be denoted by C2 and A1, respectively. 
A partition (a, b) of length ≤ 2 will be considered as a weight of C2 type corresponding 
to aε1 + bε2. The irreducible representation of sp4(C) with highest weight (a, b) will be 
denoted by VC2(a, b) and its crystal by BC2(a, b). Similar notations will be adopted for 
other types. In this section, since we are mainly interested in the Sato–Tate groups,

we assume that a− b is even, and write z := (a− b)/2.

This assumption is justified by (5.11).

6.1. From C2 to A1 × A1

For a partition (a, b) of length ≤ 2, define a set of pairs of integers

ΦA1×A1(a, b) := {(a− r − s, b− r + s) | 0 ≤ r ≤ b, 0 ≤ s ≤ a− b}. (6.1)

Clearly, we have

|ΦA1×A1(a, b)| = (a− b + 1)(b + 1).

Example 6.1.

(a) ΦA1×A1(2, 2) = {(2, 2), (1, 1), (0, 0)}.
(b) ΦA1×A1(4, 2) = {(4, 2), (3, 1), (2, 0), (3, 3), (2, 2), (1, 1), (2, 4), (1, 3), (0, 2)}.

Let t1 = (1
2 , −

1
2 , 0, 0) and t2 = (0, 0, 12 , −

1
2 ) be weights of type A1 × A1. For non-

negative integers p and q, the crystal BA1×A1(pt1 + qt2) can be realized as the set of 
one-row standard tableaux with entries 1, 1, 2 or 2 having the order 1 ≺ 1 ≺ 2 ≺ 2 such 
that

the total number of 1 and 1 is p and the total number of 2 and 2 is q. (6.2)

For instance,

BA1×A1(3t1 + t2) = {1112, 1112, 1112, 1112, 1112, 1112, 1112, 1112}.

The cardinality of BA1×A1(pt1 + qt2) is (p + 1)(q + 1).
Note that, BA1×A1(pt1 +qt2) is minuscule; i.e., each weight space in BA1×A1(pt1 +qt2)

is 1-dimensional. The crystal graph of BA1×A1(t1 + t2) is given by
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12 21

12
2

12
112

Clearly, the Kashiwara operators ẽ1 and ẽ2 commute. For a pair (a1, a2) of non-
negative integers and i = 1, 2, we have

BA1×A1(a1t1 + a2t2) ⊗BA1×A1(ti)

= BA1×A1((a1 + δi,1)t1 + (a2 + δi,2)t2) ⊕ δ(ai ≥ 1)BA1×A1((a1 − δi,1)t1 + (a2 − δi,2)t2)
(6.3)

and

BA1×A1(a1t1 + a2t2) ⊗BA1×A1(t1 + t2)

= BA1×A1((a1 + 1)t1 + (a2 + 1)t2) ⊕ δ(a2 > 0)BA1×A1((a1 + 1)t1 + (a2 − 1)t2)

⊕ δ(a1 > 0)BA1×A1((a1 − 1)t1 + (a2 + 1)t2)

⊕ δ(a1a2 > 0)BA1×A1((a1 − 1)t1 + (a2 − 1)t2).

(6.4)

On the other hand, for a highest weight crystal BC2(a, b) (a ≥ b ≥ 0), we have

BC2(a, b) ⊗BC2(1, 0) = BC2(a + 1, b) ⊕ δ(a > b)BC2(a, b + 1)

⊕ δ(b > 0)BC2(a, b− 1) ⊕ δ(a− 1 ≥ b)BC2(a− 1, b)
(6.5)

and

BC2(a, b) ⊗BC2(1, 1) = BC2(a + 1, b + 1) ⊕ δ(b > 0)BC2(a + 1, b− 1)

⊕ δ(a > b)BC2(a, b) ⊕ δ(a− 2 ≥ b)BC2(a− 1, b + 1)

⊕ δ(b > 0)BC2(a− 1, b− 1).

(6.6)

Proposition 6.2. For each partition (a, b), we have

BC2(a, b)|A1×A1 �
⊕

(p,q)∈ΦA1×A1 (a,b)
BA1×A1(pt1 + qt2).

Proof. For simplicity we write BA(p, q) for BA1×A1(pt1 + qt2). By direct calculation, one 
can see that

BC2(1, 0)|A1×A1 = BA(1, 0) ⊕BA(0, 1).

We first apply an induction argument on a using (6.3) and (6.5) to obtain the formula 
for BC2(a + 1, b). Namely, BC2(a, b) ⊗BC2(1, 0) can be replaced with
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( ⊕
(p,q)∈ΦA1×A1 (a,b)

BA(p, q)
)

⊗ (BA(1, 0) ⊕BA(0, 1))

Then, for the composition factors in RHS of (6.5) except BC2(a + 1, b), we apply the 
induction on a. Now we use (6.4) and (6.6) to obtain the formula for BC2(a + 1, b + 1). 
More precisely, BC2(a, b) ⊗BC2(1, 1) can be replaced with( ⊕

(p,q)∈ΦA1×A1 (a,b)
BA(p, q)

)
⊗ (BA(1, 1) ⊕BA(0, 0)) .

Then, for the composition factors in RHS of (6.6) except BC2(a + 1, b + 1), we apply the 
induction on a + b. We obtain our assertion for BC2(a + 1, b + 1) by comparing LHS and 
RHS of (6.6). �
Corollary 6.3.

(a) For (p, q) ∈ ΦA1×A1(a, b), the multiplicity of BA1×A1(pt1 + qt2) in BC2(a, b)|A1×A1 is 
1.

(b) BA1×A1(0) appears in BC2(a, b)|A1×A1 if and only if a = b.

6.2. Sato-Tate groups Cn

Recall that we set ĥ1 = E11 − E33 and ĥ2 = E22 − E44, where Eij are the 4 ×
4 elementary matrices. From the embedding (5.2), we have the induced Lie algebra 
embedding sl2(C) × sl2(C) ↪→ sp4(C) such that

(h, 0) �−→ ĥ1 and (0, h) �−→ ĥ2,

where h =
(1 0

0 −1
)
.

Consider the Sato–Tate groups Cn for n = 1, 2, 3, 4, 6. By definition the number 
mλ̃(Cn) is equal to the multiplicity of trivial representations in χSp(4)

λ̃
|Cn

. Throughout 
this section, write

λ̃ = (a, b).

As observed in Section 5.1, the number m(a,b)(Cn) is equal to the number of independent 
weight vectors with weight μ in the representation VC2(a, b) such that

μ(ĥ1 + ĥ2) = 0 and μ(ĥ1 − ĥ2) ≡ 0 (mod 2n), n = 1, 2, 3, 4, 6.

If a − b is odd then μ(ĥ1 + ĥ2) cannot be zero. This verifies (5.11), and we assume that 
a − b is even in what follows, and write

z := (a− b)/2.
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Proposition 6.4 (n = 1). For a partition (a, b), assume that a − b is even. Then the sum 
of weight multiplicities of the weights μ such that μ(ĥ1 + ĥ2) = 0 is given by∑

(p,q)∈ΦA1×A1 (a,b)

(min(p, q) + 1) = (b + 1)(z2 + zb + 2z + b/2 + 1),

which is equal to η̃1(z, b) = η1(z, b).

Proof. Since we have the branching decomposition in Proposition 6.2, we look at 
BA1×A1(pt1 +qt2) for (p, q) ∈ ΦA1×A1(a, b). If a tableau in the realization of BA1×A1(pt1 +
qt2) has weight μ, then μ(ĥ1 + ĥ2) is equal to

(the number of 1 and 2) − (the number of 1 and 2).

Thus the number of elements in BA1×A1(pt1+qt2) with weights μ such that μ(ĥ1+ĥ2) = 0
is equal to min(p, q) + 1 (recall (6.2)).

The elements (p, q) in ΦA1×A1(a, b) and the corresponding numbers min(p, q) + 1 can 
be each arranged into an array of size (2z + 1) × (b + 1) as follows, where we put (p, q)
in the left and min(p, q) + 1 in the right:

(a, b) (a − 1, b − 1) · · · (a − b, 0)
(a − 1, b + 1) (a − 2, b) · · · (a − b − 1, 1)

...
... · · ·

...
(a − z + 1, b + z − 1) (a − z, b + z − 2) · · · (a − b − z + 1, z − 1)

(b + z, b + z) (b + z − 1, b + z − 1) · · · (z, z)
(b + z − 1, a − z + 1) (b + z − 2, a − z) · · · (z − 1, a − b − z + 1)

...
... · · ·

...
(b + 1, a − 1) (b, a − 2) · · · (1, a − b − 1)

(b, a) (b − 1, a − 1) · · · (0, a − b)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b + 1 b · · · 1
b + 2 b + 1 · · · 2

...
... · · ·

...
b + z b + z − 1 · · · z

b + z + 1 b + z · · · z+1
b + z b + z − 1 · · · z

...
... · · ·

...
b + 2 b + 1 · · · 2
b + 1 b · · · 1

(6.7)
Taking sums by rows and adding up the results yields∑

(p,q)∈ΦA1×A1 (a,b)

(min(p, q) + 1)

= (b + 1)
2 (2(b + 2) + 2(b + 4) + · · · + 2(b + 2z) + (b + 2z + 2)) ,

which is equal to η1(z, b). �
Remark 6.5. In (6.7), all (p, q)’s with p = q form the row containing (b + z, b + z).

Proposition 6.6 (n = 2). For a partition (a, b), assume that a − b is even. Then the sum 
of weight multiplicities of the weights μ such that μ(ĥ1 + ĥ2) = 0 and μ(ĥ1 − ĥ2) ≡4 0 is 
given by ∑

(p,q)∈ΦA1×A1 (a,b)

(min(p, q) + 1), (6.8)
q≡2 0
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and the sum is equal to

η̃2(z, b) = 1
2η1(z, b) + 1

2η2(z, b).

Proof. Write μ = rε1 + sε2 for a weight of BA1×A1(pt1 + qt2) satisfying r + s = 0. Then 
we have

r − s = 2r ≡4 0 ⇐⇒ r ≡2 s ≡2 q ≡2 0.

With this observation, our first assertion follows from the first paragraph in the proof of 
Proposition 6.4.

Now let us consider the second assertion; i.e., the sum is equal to

1
2η1(z, b) + 1

2η2(z, b).

Since p ≡2 q, the sum (6.8) amounts to the sum of odd integers in the right array of 
(6.7). For any block of 4 integers of the form

i + 1 i
i i− 1

in (6.7), the sum of odd integers is 2i. By decomposing the right array in (6.7) into as 
many such blocks of 4 integers as possible in each of the cases b ≡2 0, 1 and z ≡2 0, 1, 
we can check the sum is equal to 1

2η1 + 1
2η2.

For example, if b ≡2 1 and z ≡2 0, the first z rows of the array are decomposed into 
b+1
2 × z

2 blocks of 4 integers, and the sum of odd integers from those blocks is

1
4 (b + 1)z(b + z + 1).

The sum of odd integers in the middle row is

1
4 (b + 1)(b + 2z + 1),

and the total sum of odd integers is

2 × 1
4 (b + 1)z(b + z + 1) + 1

4 (b + 1)(b + 2z + 1) = 1
2 (b + 1)(z2 + zb + 2z + (b + 1)/2),

which is the same as 1
2η1 + 1

2η2 in this case. �
Proposition 6.7 (n = 3). Assume that a −b is even. Then the sum of weight multiplicities 
of the weights μ such that μ(ĥ1 + ĥ2) = 0 and μ(ĥ1 − ĥ2) ≡6 0 is given by∑

(p,q)∈ΦA1×A1 (a,b)

(�min(p, q)/3	 + 1 − δ(min(p, q) ≡3 1)) , (6.9)
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and the sum is equal to

η̃3(z, b) = 1
3η1(z, b) + 2

3η3(z, b).

Proof. Consider (p, q) ∈ ΦA1×A1(a, b), and without loss of generality assume that p ≥ q. 
Write μ = rε1 + sε2 for a weight of BA1×A1(pt1 + qt2) satisfying r + s = 0. Explicitly, 
the set of such weights (r, s) is

{(−q, q), (−q + 2, q − 2), . . . , (q − 2,−q + 2), (q,−q)}. (6.10)

Since r+s = 0, the condition r−s ≡6 0 is equivalent to s ≡3 0. In each case of q ≡3 0, 1, 2, 
we count the number of pairs (−s, s) in (6.10) such that s ≡3 0, and it is equal to⎧⎪⎪⎨⎪⎪⎩

q/3 + 1 if q ≡3 0,
(q − 1)/3 if q ≡3 1,
(q + 1)/3 if q ≡3 2.

This justifies the expression in (6.9).
Now we have to add the numbers �(e − 1)/3	 + 1 − δ((e − 1) ≡3 1), where e runs over 

the right array in (6.7). Observe that, for any consecutive 3 integers i + 1, i, i − 1, we 
have

i =
i+1∑

e=i−1
�(e− 1)/3	 + 1 − δ((e− 1) ≡3 1).

By decomposing the right array in (6.7) into blocks of 3-consecutive integers as many as 
possible, we can check the sum is equal to 1

3η1 + 2
3η3. �

Proposition 6.8 (n = 4). Assume that a −b is even. Then the sum of weight multiplicities 
of the weights μ such that μ(ĥ1 + ĥ2) = 0 and μ(ĥ1 − ĥ2) ≡8 0 is given by∑

(p,q)∈ΦA1×A1 (a,b)
q≡2 0

(2 × �min(p, q)/4	 + 1), (6.11)

and the sum is equal to

η̃4(z, b) = 1
4η1(z, b) + 1

4η2(z, b) + 1
2η4(z, b).

Proof. As in the proof of Proposition 6.7, consider (p, q) ∈ ΦA1×A1(a, b) with p ≥ q and 
the set (6.10). Since r+ s = 0, the condition r− s ≡8 0 is equivalent to s ≡4 0. If s ≡4 0, 
then we must have q ≡2 0. Thus, in each case of q ≡4 0, 2, we count the number of pairs 
(−s, s) in (6.10) such that s ≡4 0, and it is equal to
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2 × �q/4	 + 1.

This justifies the expression in (6.11).
We need to add the numbers (2 ×�(e − 1)/4	 +1) × δ((e − 1) ≡2 0), where e runs over 

the right array in (6.7). Observe that, for 8-integers in any block of the form

i + 2 i + 1 i i− 1
i + 1 i i− 1 i− 2

in (6.7), we have

2i =
1∑

u=0

i+1+u∑
e=i−2+u

(2 × �(e− 1)/4	 + 1) × δ((e− 1) ≡2 0).

By decomposing the right array in (6.7) into as many such blocks of 8 integers as 
possible in each of the cases b ≡4 0, 1, 2, 3 and z ≡4 0, 1, 2, 3, we can see that the sum is 
equal to 1

4η1 + 1
4η2 + 1

2η4. �
Proposition 6.9 (n = 6). Assume that a −b is even. Then the sum of weight multiplicities 
of the weights μ such that μ(ĥ1 + ĥ2) = 0 and μ(ĥ1 − ĥ2) ≡12 0 is given by∑

(p,q)∈ΦA1×A1 (a,b)
q≡2 0

(2 × �min(p, q)/6	 + 1), (6.12)

and the sum is equal to

η̃6(z, b) = 1
6η1(z, b) + 1

6η2(z, b) + 1
3η3(z, b) + 1

3η6(z, b).

Proof. As in the proof of Proposition 6.7, consider (p, q) ∈ ΦA1×A1(a, b) with p ≥ q and 
the set (6.10). Since r+s = 0, the condition r−s ≡12 0 is equivalent to s ≡6 0. If s ≡6 0, 
then q ≡2 0. Thus, in each case of q ≡6 0, 2, 4, we count the number of pairs (−s, s) in 
(6.10) such that s ≡6 0, and it is equal to

2 × �q/6	 + 1.

This justifies the expression in (6.12).
We have to add the numbers (2 ×�(e − 1)/6	 +1) × δ((e − 1) ≡2 0), where e runs over 

the right array in (6.7). Observe that, for any 12-integers of the form

i + 3 i + 2 i + 1 i i− 1 i− 2
i + 2 i + 1 i i− 1 i− 2 i− 3

in (6.7), we have
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2i =
1∑

u=0

i+2+u∑
e=i−3+u

(2 × �(e− 1)/6	 + 1) × δ((e− 1) ≡2 0).

By decomposing the right array in (6.7) into as many such blocks of 12 integers as 
possible in each of the cases, we see that the sum is equal to 1

6η1 + 1
6η2 + 1

3η3 + 1
3η6. �

In the next subsection, we need the following.

Corollary 6.10. Assume that a − b is even. Then we have

ψ̃1(z, b) = (−1)b
∑

(p,p)∈ΦA1×A1 (a,b)

(p + 1),

ψ̃2(z, b) = (−1)b
∑

(p,p)∈ΦA1×A1 (a,b)
p≡2 0

(p + 1),

ψ̃3(z, b) = (−1)b
∑

(p,p)∈ΦA1×A1 (a,b)

(�p/3	 + 1 − δ(p ≡3 1)) ,

ψ̃4(z, b) = (−1)b
∑

(p,p)∈ΦA1×A1 (a,b)
p≡2 0

(2 × �p/4	 + 1),

ψ̃6(z, b) = (−1)b
∑

(p,p)∈ΦA1×A1 (a,b)
p≡2 0

(2 × �p/6	 + 1),

where ψ̃i(z, b) are defined in Corollary 5.7.

Proof. After dividing cases according to the congruence classes of b and z, the compu-
tation becomes straightforward in each case. For example, consider ψ̃2(z, b) and assume 
that b and z are both even. Then the sum in the right hand side is equal to

(z + b/2 + 1)(b/2 + 1).

On the other hand, in this case, ψ1(z, b) = (b +1)(z+ b/2 +1) and ψ2(z, b) = z+ b/2 +1. 
Thus

ψ̃2(z, b) = 1
2ψ1(z, b) + 1

2ψ2(z, b) = (z + b/2 + 1)(b/2 + 1).

The other cases are similar. �
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6.3. Sato–Tate groups J(Cn)

Let J =
(0 0 0 1

0 0 −1 0
0 −1 0 0
1 0 0 0

)
. For the branching rules for J(Cn), we need more infor-

mation than the crystal isomorphism in Proposition 6.2. Let V and W ⊂
∧2

V be the 
fundamental representations of Sp(4, C). Take a basis {v1, v2, v1, v2} of V such that

Jv1 = v2, Jv2 = −v1, Jv1 = −v2 and Jv2 = v1. (6.13)

Write

w12 = v1 ∧ v2, w11 = v1 ∧ v1, w12 = v1 ∧ v2,

w21 = v2 ∧ v1, w22 = v2 ∧ v2, w12 = v1 ∧ v2,

and take the basis {w12, w12, w21, w12, w22 − w11} for W . Then we have

J(w12) = w12, J(w12) = −w12, J(w21) = −w21,

J(w12) = w12 and J(w22 − w11) = −w22 + w11.

We realize the representation VC2(a, b) for a partition (a, b) as the irreducible com-
ponent of Syma−b V ⊗ Symb W generated by the highest weight vector va−b

1 ⊗ wb
12. In 

particular, V = VC2(1, 0) and W = VC2(1, 1). We identify VC2(a +1, b +1) with the image 
of the embedding

ιa+1,b+1 : VC2(a + 1, b + 1) ↪→ VC2(a, b) ⊗ VC2(1, 1)

given by

va−b
1 ⊗ wb+1

12 �→ (va−b
1 ⊗ wb

12) ⊗ w12.

Let VA(p, q) be the representation of A1 × A1 with highest weight pt1 + qt2. When 
a − b is even, we inductively specify A1 × A1-highest weight vectors v(p,q;a,b) in VC2(a, b)
to describe the decomposition

VC2(a, b)
∣∣
A1×A1

∼=
⊕

(p,q)∈ΦA1×A1 (a,b)
VA(p, q)

in what follows.
For VC2(a, 0) with a even, let v(p,q;a,0) := vp1v

q
2 for (p, q) ∈ ΦA1×A1(a, 0). Then one can 

see that v(p,q;a,0) are A1 × A1-highest weight vectors with highest weights pt1 + qt2. For 
the induction, assume that v(p,q;a,b) are A1 × A1-highest weight vectors in VC2(a, b) with 
weights pt1 + qt2 for (p, q) ∈ ΦA1×A1(a, b) with a − b even.



K.-H. Lee, S.-j. Oh / Advances in Mathematics 401 (2022) 108309 47
Consider the following subset of ΦA1×A1(a, b)

φA(a, b) := {(a, b), (a− 1, b + 1), (a− 2, b + 2), . . . , (b + 1, a− 1), (b, a)}, (6.14)

by taking r = 0 in (6.1). Now the lemma below completes the induction process.

Lemma 6.11. (1) For (p, q) ∈ φA(a + 1, b + 1), the vectors

v(p,q;a+1,b+1) = v
p−(b+1)
1 v

q−(b+1)
2 ⊗ wb+1

12

are A1 × A1-highest weight vectors in VC2(a + 1, b + 1) with weights pt1 + qt2.
(2) For each (p, q) ∈ ΦA1×A1(a + 1, b + 1) \ φA(a + 1, b + 1) = ΦA1×A1(a, b), there is an 

A1 × A1-highest weight vector v(p,q;a+1,b+1) of the form

v(p,q;a,b) ⊗ (w22 − w11) + u1 ⊗ w12 + u2 ⊗ w12 + u3 ⊗ w21 + u4 ⊗ w12

for some u1, u2, u3, u4 ∈ VC2(a, b), where VC2(a + 1, b + 1) is identified with the image of 
ιa+1,b+1 in VC2(a, b) ⊗ VC2(1, 1).

Proof. Note that v(a,b;a,b) = va−b
1 ⊗ wb

12 is the C2-highest weight vector of VC2(a, b).
(1) The vectors v(p,q;a+1,b+1) are obtained from the highest weight vector va−b

1 ⊗wb+1
12

by applying f1 successively. Since there are no v1, v2 factors in the elements, they are 
clearly A1 × A1-highest weight vectors.

(2) Starting from the C2-highest weight vector v(a,b;a,b) ⊗ w12, we apply f1’s and f2’s 
to obtain v(p,q;a,b) ⊗w12 + u and then apply f1f2 to obtain v(p,q;a,b) ⊗ (w22 −w11) + u′, 
where the terms of u and u′ have w12, w12, w21 or w12 as right-most factors. We can 
determine constants ck, dl, M and N so that(

1 +
N∑
l=1

dlf̂
l
2ê

l
2

)(
1 +

M∑
k=1

ckf̂
k
1 ê

k
1

)
· (v(p,q;a,b) ⊗ (w22 − w11) + u′)

is an A1×A1-highest vector. Since the action of êi and f̂i, i = 1, 2, on v(p,q;a,b)⊗(w22−w11)
is trivial, this highest weight vector is of the desired form. �
Proposition 6.12 (n = 1). For a partition (a, b) with a − b ≡2 0, the number of linearly 
independent vectors in VC2(a, b),

(i) which are fixed by the action of J , and
(ii) whose weights μ satisfy μ(ĥ1 + ĥ2) = 0,

is equal to

θ̃1(z, b) = θ1(z, b) =
{

1
2z(b + 1)(z + b + 1) if b is odd,
1 (z + 1)(b + 1)(z + b + 2) if b is even.
2
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Proof. Suppose that v is a vector of VC2(a, b) which lies inside the A1×A1-representation 
generated by the vector v(p,q;a,b) inductively defined in Lemma 6.11 for (p, q) ∈
ΦA1×A1(a, b). Then the number of v1 and v1 factors in each of the terms of v is p. After 
the action of J on v induced from (6.13), the number of v1 and v1 factor in each of the 
terms of J(v) is q. In particular, if p �= q then v �= J(v). Since J2 = I, the vector v+J(v)
is fixed by J . Furthermore, if v is of weight μ such that μ(ĥ1 + ĥ2) = 0, then the weight 
of J(v) has the same property. Thus, when p �= q, a J-fixed vector of weight μ such that 
μ(ĥ1 + ĥ2) = 0 must be of the form v + J(v).

Recall that the number of independent vectors in the isomorphic copy of VA(p, q) in 
VC2(a, b) with weights μ such that μ(ĥ1 + ĥ2) = 0 is equal to min(p, q) + 1, and the 
numbers are displayed in array (6.7). The observation made in the previous paragraph 
shows that the total number of J-fixed independent vectors in the isomorphic copy of 
VA(p, q) for p �= q with such weights μ is given by the sum of the numbers in the first z
rows of array (6.7):

(a, b) (a − 1, b − 1) · · · (a − b, 0)
(a − 1, b + 1) (a − 2, b) · · · (a − b − 1, 1)

...
... · · ·

...
(a − z + 1, b + z − 1) (a − z, b + z − 2) · · · (a − b − z + 1, z − 1)

∣∣∣∣∣∣
b + 1 b · · · 1
b + 2 b + 1 · · · 2

...
... · · ·

...
b + z b + z − 1 · · · z

(see Remark 6.5). Explicitly, the total number for the case p �= q is

b + 1
2 ((b + 2) + (b + 4) + · · · + (b + 2z)) = 1

2z(b + 1)(z + b + 1). (6.15)

Now let us consider the case p = q. Using induction on a + b, we will show

Jv = (−1)bv

for any vector v with weight μ such that μ(ĥ1+ĥ2) = 0 in the isomorphic copy of VA(p, p)
in VC2(a, b).

First assume that (p, p) ∈ φA(a, b), where the set φA(a, b) is defined in (6.14). Then by 
Lemma 6.11 (1) we have a highest weight vector of the form vp−b

1 vp−b
2 ⊗ wb

12. A weight 
vector v in the A1 × A1-representation generated by this highest weight vector has the 
form

v = f̂ �
2 f̂

k
1 (vp−b

1 vp−b
2 ⊗ wb

12), 
, k ∈ Z≥0.

If we further assume v has weight μ such that μ(ĥ1 + ĥ2) = 0, then 
 + k = p.
Using the relations

Jf̂2 = −ê1J and Jf̂1 = −ê2J

and the symmetry of A1 × A1-representation, we obtain
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Jv = Jf̂ �
2 f̂

k
1 (vp−b

1 vp−b
2 ⊗ wb

12) = (−1)�+kê�1ê
k
2 J(vp−b

1 vp−b
2 ⊗ wb

12)

= (−1)p+p−bê�1ê
k
2 (vp−b

2 vp−b

1 ⊗ wb
12) = (−1)bf̂ �

2 f̂
k
1 (vp−b

1 vp−b
2 ⊗ wb

12)

= (−1)bv.

Next assume that (p, p) /∈ φA(a, b), a ≥ b ≥ 1. By Lemma 6.11 (2) we have a highest 
weight vector of the form

v(p,p;a−1,b−1) ⊗ (w22 − w11) + u,

where u = u1⊗w12+u2⊗w12+u3⊗w21+u4⊗w12 for some u1, u2, u3, u4 ∈ VC2(a −1, b −1). 
Since f̂1 and f̂2 act trivially on (w22−w11), a weight vector v in the A1×A1-representation 
generated by this highest weight vector is of the form

v =
(
f̂ �
2 f̂

k
1 v(p,p;a−1,b−1)

)
⊗ (w22 − w11) + f̂ �

2 f̂
k
1 u.

We further assume that v has weight μ such that μ(ĥ1+ĥ2) = 0. By induction hypothesis, 
we have

Jf̂ �
2 f̂

k
1 v(p,p;a−1,b−1) = (−1)b−1f̂ �

2 f̂
k
1 v(p,p;a−1,b−1).

Since J(w22 − w11) = −(w22 − w11), we obtain

Jv = (−1)b
(
f̂ �
2 f̂

k
1 v(p,p;a−1,b−1)

)
⊗ (w22 − w11) + J

(
f̂ �
2 f̂

k
1 u
)
.

Recall that VA(p, q) is minuscule. The action of J preserves the weight space containing 
v since the number of v2 factors is equal to that of v1 factors in the terms of v. Thus we 
must have Jv = (−1)bv as claimed in this case too.

We have just shown that all the weight vectors in the isomorphic copy of VA(p, p) with 
weight μ such that μ(ĥ1 + ĥ2) = 0 are fixed by J if b is even, and that none of them are 
fixed by J if b is odd. Combining this with the result for p �= q in (6.15), the total number 
of J-fixed independent vectors of VC2(a, b) with weight μ such that μ(ĥ1 + ĥ2) = 0 is 
equal to (6.15) if b is odd, and to the sum of (6.15) and the z + 1st row of the array in 
(6.7) if b is even, which is given by

1
2z(b+ 1)(z + b+ 1) + {(b+ z + 1) + (b+ z) + · · ·+ (z + 1)} = 1

2(z + 1)(b+ 1)(z + b+ 2).

In either case, we obtain the function θ1(z, b). �
Proposition 6.13 (n = 2, 3, 4, 6). Assume that a −b is even. For n = 2, 3, 4, 6, the number 
of independent vectors in VC2(a, b), which are fixed by the action of J , with weights μ
such that μ(ĥ1 + ĥ2) = 0 and μ(ĥ1 − ĥ2) ≡2n 0, is equal to θ̃n(z, b) defined in (5.23).
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Proof. Suppose that v is a vector of VC2(a, b) which lies inside the A1×A1-representation 
generated by the vector v(p,q;a,b) inductively defined in Lemma 6.11 for (p, q) ∈
ΦA1×A1(a, b), and assume that v is of weight μ such that μ(ĥ1 + ĥ2) = 0. The total 
numbers of such vectors are equal to η̃n(z, b) by Propositions 6.6–6.9, and the numbers 
of such vectors only for p = q are equal to ψ̃n(z, b) by Corollary 6.10.

As observed in the proof of Proposition 6.12, if p �= q then the J-fixed vectors are 
precisely given by J(v) + v; if p = q and b is even then all the vectors v of weight μ such 
that μ(ĥ1 + ĥ2) = 0 are fixed by J ; if p = q and b is odd then none of such vectors are 
fixed by J . The conditions μ(ĥ1 − ĥ2) ≡2n 0 exactly bring out the restrictions on the 
sums considered in Propositions 6.6–6.9.

Thus, when n = 2, the number of J-fixed vectors of weight μ satisfying the conditions 
is given by

1
2 η̃2(z, b) + (−1)b 1

2

∑
(p,p)∈ΦA1×A1 (a,b)

p≡2 0

(p + 1) = 1
2 η̃2(z, b) + 1

2 ψ̃2(z, b) = θ̃2(z, b),

where we use Corollary 6.10 and the definition of θ2(z, b) in (5.10) along with the def-
initions of η̃2, ψ̃2 and θ̃2. Similarly, when n = 3, 4, 5, the numbers of J-fixed vectors of 
weight μ satisfying the conditions are equal to

1
2 η̃n(z, b) + 1

2 ψ̃n(z, b) = θ̃n(z, b). �
6.4. From C2 to A1 via removing the second vertex

In this section, we shall prove the branching decomposition of VC2(a, b) to A1 via Levi 
rule which removes the second vertex in the Dynkin diagram of type C2

1 2 ,

where we assume a + b ≡2 0. We are mainly interested in the composition multiplicity 
of the trivial representation VA1(0) inside VC2(a, b)|A1 . We state the result at the crystal 
level as in Proposition 6.2.

Proposition 6.14. For a partition (a, b), set ε := δ(a + b ≡2 1) and l = �(a − b − 1)/2�. 
Then we have

BC2(a, b)|A1 ∼=
(

l−1⊕
i=0

(2i + 1 + ε)(b + 1)BA1(2i + ε)
)

⊕
(

l+b⊕
(2l + 1 + ε)(l + b + 1 − j)BA1(2j + ε)

)
.

j=l
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Proof. As Proposition 6.2, the assertion can be proved by using double induction on 
a + b and the Clebsch–Gordan formula. �
Corollary 6.15. The multiplicity of the trivial representation VA1(0) in VC2(a, b)|A1 is equal 
to

δ(a + b ≡2 0) × (b + 1).

Now we shall interpret Corollary 6.15 via Kashiwara–Nakashima crystal. The crystal 
of vector representation is given as follows:

1 1→ 2 2→ 2 1→ 1

with a linear order

1 ≺ 2 ≺ 2 ≺ 1.

Now let us recall C2-type Kashiwara–Nakashima tableaux.

Definition 6.16. Let Y be a Young diagram with at most 2-rows.

(1) A C2-tableaux of shape Y is a tableau obtained from Y by filling the boxes with 
entries {1, 2, 2, 1}.

(2) A C2-tableaux is said to be semistandard if the entries in each row are weakly in-
creasing and the entries in each column are strictly increasing.

We define B(Y ) to be the set of all semistandard C2-tableaux T satisfying the following 
conditions:

(a) T does not have a column 1
1 ;

(b) T does not have a pair of adjacent columns 2 2
• 2 or 2 •

2 2 .

Definition 6.17. Assume that (a, b) is a partition with a + b ≡2 0. For each 0 ≤ k ≤ b, 
define Tk be the semistandard C2-tableaux of shape (a, b) such that

(1) the first row of the tableau Tk is filled with the sequence of entries (1k, 2z, 2y), where

z = a− b

2 and y = a + b

2 − k;

(2) the second row of the tableau Tk is filled with the sequence of entries (2k, 1b−k).
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Lemma 6.18. For each 0 ≤ k ≤ b, the tableaux Tk is contained in B(Y ).

Proof. The condition (a) is obviously satisfied. Let us check whether Tk satisfies the 
condition (b). Note that, for 1 ≤ s ≤ b, if an entry placed in the position (1, s) is 2, then 
the entry placed in the position (2, s) is 1, if it exists, by definition. Thus the condition 
(b) is satisfied. �
Proposition 6.19. For each 0 ≤ k ≤ b, we have

ẽ1Tk = f̃1Tk = 0,

where ẽ1 and f̃1 are the Kashiwara operators.

Proof. We use the far eastern reading [27]. Then, since the 1-signature of 1
2 is •,

we do not need to read the first k-columns for 1-signature. (6.16)

Set

s1 := (the number of 1’s in Tk) − (the number of 1’s in Tk),
s2 := (the number of 2’s in Tk) − (the number of 2’s in Tk).

By definition s1 = s2 = 2k − b. By an induction and (6.16), it suffices to consider when 
k = 0. Then, by the far eastern reading, T0 can be read as follows:

2 ⊗b−a ⊗ ( 2 ⊗ 1 )⊗
3b−a

2 ⊗ ( 2 ⊗ 1 )⊗
a−b
2

Since (i) the 1-signature of 2 is +, (ii) the 1-signature of 2 ⊗ 1 is •, (iii) the 1-signature 
of 2 ⊗ 1 is −−, our assertion follows. �

We keep the assumption that a − b is even. By Corollary 6.15, the C2-tableaux 
{Tk}0≤k≤b exhaust all the trivial representations VA1(0) inside VC2(a, b)|A1 . Note that 
the weight of Tk is

(2k − b)(ε1 + ε2), 0 ≤ k ≤ b. (6.17)

For the Sato–Tate groups En, n = 1, 2, 3, 4, 6, the number m(a,b)(En) is equal to the 
number of independent weight vectors vμ in VC2(a, b) with weight μ such that μ(ĥ1+ĥ2) ≡
0 (mod 2n) and e1vμ = f1vμ = 0. By Proposition 6.19, the number m(a,b)(En) for each 
n is equal to the number of tableaux Tk such that

2k − b ≡n 0.
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We count the number of such tableaux for each n = 1, 2, 3, 4, 6, and summarize the 
results in the following proposition.

Proposition 6.20. Assume that a − b is even. Then the number of independent weight 
vectors vμ in VC2(a, b) with weight μ such that μ(ĥ1 + ĥ2) ≡2n 0 and e1vμ = f1vμ = 0 is 
equal to ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b + 1 if n = 1,
(b + 1)δ(b ≡2 0) if n = 2,
�b/3	 + 1 − δ(b ≡3 1) if n = 3,
(2�b/4	 + 1)δ(b ≡2 0) if n = 4,
(2�b/6	 + 1)δ(b ≡2 0) if n = 6.

6.5. Sato–Tate groups J(En)

We keep the notations of Section 6.3. We start with a lemma on representations of 
sl2(C).

Lemma 6.21. Assume that v is a vector of weight 0 in a finite dimensional representation 
of sl2(C) with the standard basis {e, h, f}. Suppose that eN+1v = 0 for N ∈ Z≥0. Then 
the vector (

N∑
k=0

(−1)k

k + 1 f (k)e(k)

)
v

either vanishes or generates the trivial representation of sl2(C), where f (k) = fk/k! and 
e(k) = ek/k!.

Proof. Since

f (k+1)e(k) =
k∑

t=0

1
t!e

(k−t)f (k+1−t)
t∏

s=1
(s + 1 − t− h)

(see [27, Exercise 1.3 (c)]), we have

f (k+1)e(k) = e(k)f (k+1) + e(k−1)f (k)

on the weight 0 space. Similarly, since

ef (k) = f (k)e + f (k−1)(h− k + 1),

we have
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1
k + 1ef

(k)e(k) = f (k)e(k+1) + f (k−1)e(k)

on the weight 0 space.
Since eN+1v = 0 and the weight of v is zero, we also have fN+1v = 0. Then

f

(
N∑

k=0

(−1)k

k + 1 f (k)e(k)

)
v =

(
N∑

k=0

(−1)kf (k+1)e(k)

)
v

= fv +
(

N∑
k=1

(−1)k(e(k)f (k+1) + e(k−1)f (k))
)
v

= fv − fv + (−1)Ne(N)f (N+1)v = 0.

Similarly,

e

(
N∑

k=0

(−1)k

k + 1 f (k)e(k)

)
v =

(
N∑

k=0

(−1)k 1
k + 1ef

(k)e(k)

)
v

= ev +
(

N∑
k=1

(−1)k(f (k)e(k+1) + f (k−1)e(k))
)
v

= ev − ev + (−1)Nf (N)e(N+1)v = 0. �
Now we consider VC2(a, b) for a partition (a, b) with a − b even. Assume that e1v =

f1v = 0 for a vector v in VC2(a, b). Since J commutes with e1 and f1, we have

e1Jv = f1Jv = 0. (6.18)

By Proposition 6.19 and (6.17), the vectors on which e1 and f1 act trivially have 
weights t(ε1 + ε2) where t = 2k− b for 0 ≤ k ≤ b. The action of J sends weight t(ε1 + ε2)
to −t(ε1 + ε2). If v is a vector such that e1v = f1v = 0, then Jv + v is fixed by J and 
e1(Jv+ v) = f1(Jv+ v) = 0 by (6.18). Conversely, any J-fixed vector of non-zero weight 
on which e1 and f1 act trivially must be of the form Jv + v.

Therefore, if b is odd then t cannot be zero and the number of J-fixed vectors v such 
that e1v = f1v = 0 is equal to (b + 1)/2 from Proposition 6.20. If b is even then the 
number of J-fixed vectors of non-zero weight such that e1v = f1v = 0 is equal to b/2. 
Now the remaining case is when b is even and the weight is 0. There is only one vector of 
weight 0 on which e1 and f1 act trivially. We will determine whether J fixes this vector 
or not.

Lemma 6.22. Assume that b is even. Suppose that v ∈ VC2(a, b) ⊂ Syma−b V ⊗ Symb W

is a vector of weight 0 such that e1v = f1v = 0. Then v has a scalar multiple of

(vz1vz1 + vz2v
z
2) ⊗ w

b/2
12 w

b/2
12

as a non-zero term, where z = (a − b)/2.
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Proof. Let

ṽ := (vz1vz1 + vz2v
z
2) ⊗ w

b/2
12 w

b/2
12 .

If we apply ek2 on the vector ṽ for 1 ≤ k ≤ z + b/2, the result for each k can be written 
in terms of

(vz1vz1 + vz2v
z
2) ⊗ w

b/2
12 wl

21w
b/2−l

12 , vz+m
2 vz−m

2 ⊗ w
b/2
12 wl

21w
b/2−l

12 ,

v2z
2 ⊗ w

b/2
12 wl

21w
b/2−l

12 , vz+l
2 vz−l

2 ⊗ w
b/2
12 w

b/2
21

for some l and m, and the signs of the coefficients of these terms are determined by the 
parity of the exponent of w21. In particular, the result of the action of e2 on vz+m

2 vz−m
2 ⊗

w
b/2
12 wl

21w
b/2−l

12 is not canceled out with other terms. Thus if we apply ez+b/2
2 on ṽ, all 

the terms are combined and the result is a scalar multiple of

v2z
2 ⊗ w

b/2
12 w

b/2
21 .

(One can check that the coefficient is (−1)b/2(z + b/2)!.)
Similarly, the action of e2z+b

1 on v2z
2 ⊗ w

b/2
12 w

b/2
21 results in a scalar multiple of

v2z
1 ⊗ w

b/2
12 w

b/2
12

and the following action of eb/22 brings it to a scalar multiple of the highest weight vector 
v2z
1 ⊗wb

12. Thus we have shown that the highest vector can be obtained from the vector 
ṽ by applying e1’s and e2’s. This implies that if we apply f1’s and f2’s on the highest 
weight vector appropriately then we obtain

a vector v̂ of weight 0 which has a non-zero scalar multiple of ṽ as a term.

Set

v :=
(

N∑
k=0

(−1)k

k + 1 f
(k)
1 e

(k)
1

)
v̂, where eN+1

1 v̂ = 0.

Since e1ṽ = f1ṽ = 0, the vector v is non-zero and still has a scalar multiple of ṽ as a 
term. By Lemma 6.22, we have e1v = f1v = 0. Since every vector of weight 0 on which 
e1 and f1 act trivially is a scalar multiple of v, we are done. �

Continue to assume that b is even, and consider a vector v of weight 0 such that 
e1v = f1v = 0. Since the space of weight 0 vectors on which e1 and f1 act trivially 
is one-dimensional, we have Jv = ±v from the fact that J2 = 1. Furthermore, such a 
vector has a non-zero term (vz1vz1 + vz2v

z
2) ⊗w

b/2
12 w

b/2
12 by Lemma 6.22. Since Jw12 = w12

and Jw12 = w12, we see that
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J
(
(vz1vz1 + vz2v

z
2) ⊗ w

b/2
12 w

b/2
12

)
= (−1)z

(
(vz1vz1 + vz2v

z
2) ⊗ w

b/2
12 w

b/2
12

)
.

It follows that

Jv = (−1)zv. (6.19)

Combining this with the observations made in the paragraph right before Lemma 6.22, 
we have proved the following proposition.

Proposition 6.23. Assume that a − b is even, and set z := (a − b)/2. Then the number of 
J-fixed vectors v with weight μ such that e1v = f1v = 0 is equal to

1
2 (b + 1) + 1

2 (−1)zδ(b ≡2 0).

6.6. Sato–Tate group F

Recall that we have the embedding U(1) × U(1) into USp(4) given by

(u1, u2) �→ diag(u1, u2, u
−1
1 , u−1

2 ),

and that the group F is the image of this embedding. The number m(a,b)(F ) is equal to 
the number of independent weight vectors vμ in VC2(a, b) such that μ = 0.

Recall the array in (6.7), which lists the elements of ΦA1×A1(a, b)

Proposition 6.24. Assume that a −b is even. Then the multiplicity of weight 0 in VC2(a, b)
is equal to the number of elements (p, q) ∈ ΦA1×A1(a, b) such that p ≡ q ≡ 0 mod 2. 
Explicitly, the number is equal to

ξ1(z, b) := z(b + 1) + �b/2	 + 1.

Proof. A weight zero space appears in BA1×A1(pt1 + qt2) only if p ≡ q ≡ 0 mod 2. 
Then our assertion follows from the fact that BA1×A1(pt1 + qt2) is minuscule, and that 
the Cartan subalgebra for A1 × A1 is the Cartan subalgebra for C2. One can count the 
number of such pairs (p, q) in (6.7) to see that it is equal to ξ1(z, b). �
6.7. Sato–Tate group Fa

Since we have

av1 = −v1, av2 = v2, av1 = v1, av2 = v2,

it follows from Proposition 6.24 that the number of a-fixed vectors of weight 0 in VC2(a, b)
is equal to the number of elements (p, q) ∈ ΦA1×A1(a, b) such that p ≡4 0 and q ≡2 0.
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Proposition 6.25. The number of a-fixed vectors of weight 0 in VC2(a, b) is equal to

1
2ξ1(z, b) + 1

2ξ2(z, b),

where ξ2(z, b) is defined on the congruence classes of z and b by

z\b 0 1 2 3
0 1 1 0 0
1 0 −1 −1 0

Proof. There are 8 cases according to the congruence classes of z and b. Since all the 
cases are similar, we only prove the case when b ≡4 0 and z ≡2 0. In this case, a ≡4 0, 
and the pairs (p, q) ∈ ΦA1×A1(a, b) satisfying p ≡4 0 and q ≡2 0 can be arranged as 
follows:

(a, b) (a − 4, b − 4) · · · (a − b, 0)
(a − 4, b + 4) (a − 4, b + 2) (a − 4, b) (a − 4, b − 2) (a − 8, b) · · · (a − b − 4, 4)
(a − 8, b + 8) (a − 8, b + 6) (a − 8, b + 4) (a − 8, b + 2) (a − 12, b + 4) · · · (a − b − 8, 8)

...
... · · ·

...
(b, a) (b, a − 2) (b, a − 4) (b, a − 8) (b − 4, a − 4) · · · (0, a − b)

The number of pairs in the array is

z

2(b + 1) + b

4 + 1,

which is equal to 1
2ξ1(z, b) +

1
2ξ2(z, b). This proves our assertion in this case. �

6.8. From C2 to A1 via removing the first vertex

In this subsection, we shall prove the branching decomposition of VC2(a, b) with a +b ≡
0 mod 2 to A1 via b := (B2 � C2) ×Levi rule which removes the first vertex in the Dynkin 
diagram of C2. Specifically we want to count the composition multiplicity of VA1(0) inside 
VC2(a, b)|bA1 .

Proposition 6.26. For a partition (a, b) = (k + l, k), we have

BC2(k + l, k)|bA1 =
(

k⊕
i=0

(l + 1)(i + 1)BA1(i)
)
⊕
(

l+k⊕
i=k+1

(k + 1)(l + k + 1 − i)BA1(i)
)
.

Proof. As Proposition 6.2 and Proposition 6.14, our assertion follows from the induction 
on a + b and the Clebsch–Gordan formula. �
Corollary 6.27. The composition multiplicity of VA1(0) inside VC2(a, b)|bA is b − a + 1.
1
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Now we investigate on which crystal elements in BC2(a, b) the operators ẽ2 and f̃2 act 
trivially. For a partition (a, b), set c := a − b. For 0 ≤ k ≤ c, we define the semistandard 
C2-tableaux T ′

k as follows:

T ′
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1c−k2k2t21t1k

1t22t2k
if k ≤ b and b− k = 2t + 1,

1c−k2k2t1t1k

1t2t2k
if k ≤ b and b− k = 2t,

1c−k2b1k−b1b

2b
if k ≥ b.

Here xs denotes x · · · x︸ ︷︷ ︸
s-times

.

Then one can easily check that they are contained in B(Y ) and

ẽ2T
′
k = f̃2T

′
k = 0.

Note that the weight of T ′
k is

(2k − c)ε1, 0 ≤ k ≤ c = a− b. (6.20)

Since the number of such crystal elements is b −a +1, it follows from Corollary 6.27 that 
they exhaust all the crystal elements in BC2(a, b) on which the operators ẽ2 and f̃2 act 
trivially.

For the Sato–Tate subgroups G1,3 and N(G1,3), we record the following.

Proposition 6.28. Assume that a − b is even, and let z = (a − b)/2. Then the dimension 
of weight 0 space in VC2(a, b) on which e2 and f2 act trivially is one, and the space is 
fixed by the action of a precisely when z is even.

Proof. It follows from (6.20) that the weight of T ′
k is zero if and only if k = (a − b)/2. 

This proves the first assertion. For the second assertion, let v be a vector in the one-
dimensional weight 0 space on which e2 and f2 act trivially. Then the vector lies in 
the A1 × A1-representation generated by the highest weight vector v(a−b,0;a,b) defined in 
Lemma 6.11. It follows from the definition of v(a−b,0;a,b) that the vector v has a scalar 
multiple of

vz1v
z
1 ⊗ (w22 − w11)b

as a term. Since av1 = −v1, av1 = v1 and a(w22 − w11) = w22 − w11, the vector v is 
fixed by a if and only if z is even. �

Finally, for the Sato–Tate subgroups G3,3 and N(G3,3), we have the following.
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Proposition 6.29. The dimension of weight 0 space in VC2(a, b) on which êi and f̂i act 
trivially, i = 1, 2, is one if a = b and is zero otherwise. In the case a = b, the space is 
fixed by the action of J precisely when b is even.

Proof. The first assertion follows from Corollary 6.3 (b). For the second assertion, let 
v be a vector in the one-dimensional weight 0 space on which êi and f̂i act trivially, 
i = 1, 2. Then the vector v is a scalar multiple of v(0,0;a,b) defined in Lemma 6.11. It 
follows from the definition of v(0,0;a,b) that the vector v has a scalar multiple of

(w22 − w11)b

as a term. Since J(w22 −w11) = −(w22 −w11), the vector vμ is fixed by J if and only if 
b is even. �
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