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Abstract
We compute the auto-correlations functions of order m ≥ 1 for the characteristic polyno-
mials of random matrices from certain subgroups of the unitary groups U(2) and U(3) by
establishing new branching rules. These subgroups can be understood as certain analogues of
Sato–Tate groups of USp(4) in our previous paper. Our computation yields symmetric poly-
nomial identities with m-variables involving irreducible characters of U(m) for all m ≥ 1 in
an explicit, uniform way.
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1 Introduction

1.1 Auto-Correlation Functions

Thedistributionof characteristic polynomials of randommatrices has beenof great interest for
their applications in mathematical physics and number theory. Since Keating and Snaith [21,
22] computed averages of characteristic polynomials of random matrices in 2002 motivated
in part by connections to number theory and in part by the importance of these averages
in quantum chaos [1], it has become clear that averages of characteristic polynomials are
fundamental for random matrix models [2–5, 15, 16, 28].
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On the way of these developments, the auto-correlation functions of the distributions
of characteristic polynomials in the compact classical groups were computed by Conrey,
Farmer, Keating, Rubinstein and Snaith [8, 9] and by Conrey, Farmer and Zirnbauer [10,
11]. Later, Bump and Gamburd [7] obtained different derivations of the formulas starting
from (analogues of) the dual Cauchy identity and adopting a representation-theoretic method.
Their results show that the auto-correlation functions are actually combinations of characters
of classical groups.

For example, for the symplectic groups, an analogue of the dual Cauchy identity is due to
Jimbo–Miwa [19] and Howe [18]:

m∏

i=1

g∏

j=1

(xi +x−1
i +t j +t−1

j ) =
∑

λ�(gm )

χ
Sp(2m)

λ (x±1
1 , . . . , x±1

m )χ
Sp(2g)

λ̃
(t±1
1 , . . . , t±1

g ), (1.1)

where χ
Sp(2m)

λ is the irreducible character of Sp(2m,C) associated with the partition λ �
(gm) and we set λ̃ = (m − λ′

g, . . . , m − λ′
1) with λ′ = (λ′

1, . . . , λ
′
g) the transpose of λ. This

identity can be considered as a reflection of Howe duality. Using this identity, Bump and
Gamburd computed the auto-correlation functions to obtain

∫

USp(2g)

⎛

⎝
m∏

j=1

det(I + x jγ )

⎞

⎠ dγ = (x1 . . . xm)g χ
Sp(2m)

(gm ) (x±1
1 , . . . , x±1

m ). (1.2)

1.2 Sato–Tate Groups

The celebrated Sato–Tate conjecture for elliptic curves (i.e. genus 1 curves) predicts that the
distribution of Euler factors of an elliptic curve is the same as the distribution of character-
istic polynomials of random matrices from SU(2), U(1) or N (U(1)), where N (U(1)) is the
normalizer of U(1) in SU(2). The conjecture is proven (under some conditions) by the works
of R. Taylor, jointly with L. Clozel, M. Harris, and N. Shepherd-Barron [12, 17, 30]. For
curves of higher genera, J.-P. Serre, N. Katz and P. Sarnak [20, 29] proposed a generalized
Sato–Tate conjecture. Pursuing this direction, K. S. Kedlaya and A. V. Sutherland [23] and
later together with F. Fité and V. Rotger [13] made a list of 52 compact subgroups of USp(4)
called Sato–Tate groups that would classify all the distributions of Euler factors for abelian
surfaces. Recently, Fité, Kedlaya and Sutherland showed that there are 410 Sato–Tate groups
for abelian threefolds [14].

1.3 Our PreviousWork

Inspired by the approach of Bump and Gamburd, in a previous paper [26], the authors
computed the auto-correlation functions of characteristic polynomials for Sato–Tate groups
H ≤ USp(4), which appear in the generalized Sato–Tate conjecture for genus 2 curves. The
result of [26] can be described as follows. Let H ≤ USp(4) be a Sato–Tate group. Then, for
arbitrary m ∈ Z≥1, we have

∫

H

m∏

j=1

det(I + x jγ )dγ = (x1 · · · xm)2
m∑

b=0

� m−b
2 �∑

z=0

m(b+2z,b)χ
Sp(2m)

(2m−b−2z ,12z)
, (1.3)
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where the coefficients m(b+2z,b) are the multiplicities of the trivial representation in the

restrictions χ
Sp(4)
(b+2z,b)

∣∣
H and are explicitly given in the paper [26] for all the Sato–Tate groups

of abelian surfaces. Exploiting the representation-theoretic meaning ofm(b+2z,b), the authors

obtained this result by establishing branching rules for χ
Sp(4)
(b+2z,b)

∣∣
H .

Moreover, since most of the Sato–Tate groups are disconnected, we can decompose the
integral in (1.3) according to coset decompositions, and find that the characteristic poly-
nomials over some cosets are independent of the elements of the cosets. Combining this
observation with the computations of branching rules, we obtain families of non-trivial iden-
tities of irreducible characters of Sp(2m,C) for all m ∈ Z≥1. For example, we have, for any
m ∈ Z≥1,

m∏

i=1

(x2i + x−2
i ) =

m∑

b=0

� m−b
2 �∑

z=0

ψ4(z, b)χ
Sp(2m)

(2m−b−2z ,12z)
, (1)

where ψ4(z, b) is defined on the congruence classes of z and b modulo 4 by the table

z\b 0 1 2 3

0 1 −1 0 0
1 0 1 −1 0
2 −1 1 0 0
3 0 −1 1 0

Notice that the irreducible characters χ
Sp(2m)

λ are symmetric functions with the number of
terms growing very fast asm increases, but that the coefficientsψ4(z, b) are independent ofm.
In order to produce the left-hand side of the identities, there must be systematic cancelations
in the right-hand side.

1.4 Schur Functions

The Schur functions Sλ form the distinguished self-dual basis of the ring of symmetric func-
tions. They appear naturally in representation theory, algebraic combinatorics, enumerative
combinatorics, algebraic geometry and quantum physics. In particular, (i) every Schur func-
tion corresponds to an irreducible character of the unitary group, which implies the ring of
symmetric functions form the Grothendieck ring for unitary groups, (ii) it has various com-
binatorial realizations in various aspects of algebraic combinatorics. Hence understanding
the properties of Schur functions takes a center stage in these research areas. One of the key
features of understanding Schur functions is how other symmetric functions can be expressed
in the basis of Schur functions; that is, computing the coefficients of Sλ, called Schur coeffi-
cients, in the expansions. One of the well-known instances is the (inverse of) Kostka matrix,
which can be understood as Schur coefficients for monomial (complete) symmetric functions
in algebraic combinatorics, and as composition multiplicities of V (λ) in the permutation rep-
resentation W (λ) in representation theory. Recall that the (inverse of) Kostka matrix is a
uni-upper triangular matrix with integer coefficients and entries in the Kostka matrix has a
description in terms of semistandard Young tableaux. However, the closed-form formulas for
entries in the (inverse of) Kostka matrix are not available in general. Another well-known
instance is Littlewood–Richardson rule, which can be understood as Schur coefficients for a
product of two Schur functions in algebraic combinatorics, and as composition multiplicities
of V (λ)’s in the tensor product V (μ) ⊗ V (η) in representation theory.
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1.5 Main Result

In what follows, we describe the main result of this paper and its application.
(M) We compute explicitly the auto-correlation functions for H = U(1) ≤ U(g) (g =

2, 3) and for the subgroups H ≤ U(g) (g = 2, 3) defined in (1.6) below. Namely, for any
m ∈ Z≥1, we obtain

∫

H≤U(g)

m∏

i=1

det(I + xiγ ) dγ =
∑

λ�(gm )

mλ′(H) SU(m)
λ (x), (1.4)

where the coefficients mλ′(H) are completely determined. Here SU(m)
λ (x) denotes the char-

acter of the irreducible representation V (λ) of the unitary group U(m), which are Schur
functions.

(A) As an application of the main result, we give closed-form formulas of Schur coeffi-
cients cλg1,g2 for special infinite families of symmetric functions t(m)

g1,g2(x), which also have

simple expansions in terms of monomial symmetric functions {m(m)
λ (x)}. That is, for any

m ∈ Z≥1 and 1 ≤ g1 + g2 ≤ 3, we obtain

t(m)
g1,g2(x) :=

m∏

i=1

(1 ± xg1
i )(1 ± xg2

i ) =
∑

λ�((g1+g2)m )

cλg1,g2 SU(m)
λ (x), (1.5)

where the Schur coefficients cλg1,g2 are given in closed-form formulas. Note that t(m)
g1,g2(x) has

an expansion in m(m)
λ (x) with coefficients from {1, 0,−1}. Thus the explicitly determined

cλg1,g2 is a combination of entries in the inverse Kostkamatrices for which explicit expressions
are not known.

Let us explain the main result and its application in more detail. We note that more than
half of the Sato–Tate groups for genus 2 curves considered in [13, 26] are subgroups of
USp(4) having U(1) as the connected component of the identity. They are generated by U(1)
and some twisting elements, resulting in disconnected groups, and those twists bring about
interesting structures. We make a search of analogous structures inside U(2) and U(3) and
find the following six groups:

H2 := 〈U(1), J2〉, H ′
2,4 := 〈U(1), ζζζ 2,4〉 ≤ H2,4 := 〈U(1), J2, ζζζ 2,4〉 ≤ U(2),

H3 := 〈U(1), J3〉, H ′
3,4 := 〈U(1), ζζζ 3,4〉 ≤ H3,4 := 〈U(1), J3, ζζζ 3,4〉 ≤ U(3), (1.6)

where

J2 :=
(

0 1
−1 0

)
, ζζζ 2,4 :=

(√−1 0
0

√−1

)
, J3 :=

⎛

⎝
0 1 0

−1 0 0
0 0 1

⎞

⎠ , ζζζ 3,4 :=
⎛

⎝

√−1 0 0
0

√−1 0
0 0 1

⎞

⎠ .

Indeed, the groups in (1.6) are generated byU(1) and some twisting elements. One can see
that these groups also satisfy direct analogues of the axioms (ST1)–(ST3) for the Sato–Tate
groups in [13, Definition 3.1] or [14, Definition 3.12], since each G of these groups satisfies
the following1:

1 (AST1) and (AST2) follow from the definitions. For (AST3), it will be shown in later sections that the
integral in (1.4) with H replaced by Gi has integer coefficients as a polynomial of x1, x2, . . . , xm . This
implies that the expected value of χ(γ ) is an integer when χ is the character of any tensor product of
fundamental representations. Since an irreducible representation appears as the highest component in such a
tensor product, we can use induction on weights with the lexicographic order to obtain an integer expected
value for an irreducible character χ .
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(AST1) The group G is a closed subgroup of U(2) or U(3).
(AST2) There exists a homomorphism θ : U(1) → G0 such that θ(u) has eigenvalues u or

u−1 and the image of θ generates a dense subgroup of G0, where G0 is the identity
component of G.

(AST3) For each component Gi of G (i = 0, 1, . . . , k − 1) and each irreducible character
χ of GLd(C), the expected value of χ(γ ) over γ ∈ Gi is an integer, where k is the
number of connected components of G.

Moreover, these groups bring about interesting identities in Application below as some
Sato–Tate groups do in [26]. In that sense, we consider them as analogues of the Sato–Tate
groups. However, in this paper, we do not attempt to classify subgroups of U(2) and U(3)
that satisfy axioms (AST1)–(AST3).

Now we present the main result more precisely.
Main Theorem. Let H ≤ U(g) (g = 2, 3) be U(1) or a group in (1.6). Then, for any

m ∈ Z≥1, we have

∫

H≤U(g)

m∏

i=1

det(I + xiγ ) dγ =
∑

λ�(gm )

mλ′(H) SU(m)
λ (x)

where the coefficient mλ′(H) are the composition multiplicities of the trivial representation
in the restriction χ

U(g)

λ′ |H and are explicitly given in Theorems 3.1, 3.4, 4.6 and 4.14.
This theorem can be interpreted as a result on branching rules from U(g) to H in repre-

sentation theory. Since H are disconnected except U(1), the branching rules do not follow
from classical results. Actually, the proof of the theorem requires concrete realization of the
representation structure of V (λ′) over U(g) with respect to H and various combinatorial
consideration to determine the cardinalities of certain linearly independent subsets in V (λ′).

For an application of Main Theorem, we observe (i) H ’s are decomposed into discon-
nected cosets

H2 = U(1)  J2 U(1), H2,4 = H ′
2,4  J2 U(1)  ζζζ 2,4 J U(1),

H3 = U(1)  J3 U(1), H3,4 = H ′
3,4  J3 U(1)  ζζζ 3,4 J U(1),

and (ii) the characteristic polynomials in the underlined cosets of H are independent of
elements of the coset. These observations together with some manipulations of the integral
in Main Theorem enable us to obtain closed-form identities involving Schur functions.

Application. For arbitrary m ∈ Z≥1, we have the following identities :

(A)
m∏

i=1

(1+x2i ) =
m∑

b=0

� m−b
2 �∑

j=0

(−1) j SU(m)

(2b,12 j )
(x) (derived from H2, Theorem 3.1),

(B)
1

2

(
m∏

i=1

(1 + x2i ) +
m∏

i=1

(1 − x2i )

)
=

∑

(b+2 j,b)�(m2)
b+ j≡20

(−1) j SU(m)

(2b,12 j )
(x)

(derived from H2,4 and H ′
2,4, Theorem 3.4),

(C)
m∏

i=1

(1+xi )(1+x2i ) =
∑

λ�(3m )

λ=(3k ,2b,1z)

τ (z, b) SU(m)
λ (x) (derived from H3, Theorem4.6),
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(D)
1

2

(
m∏

i=1

(1 + xi )(1 + x2i ) +
m∏

i=1

(1 + xi )(1 − x2i )

)
=

∑

λ�(3m )

ωε(z, b′) SU(m)
λ (x),

(derived from H3,4 and H ′
3,4, Theorem4.14),

where

(i) τ(z, b) ∈ {−1, 0, 1} is defined on the congruence of z and b modulo 4 as in the following
table

τ(z, b) =
z\b 0 1 2 3

0 1 1 0 0
1 1 0 −1 0
2 0 −1 −1 0
3 0 0 0 0

(ii) ωε(z, b′) depends on the congruence of z and b modulo 2, 4 and given in Corollary 4.13.

Combining the identities inApplication and replacing xi with−xi , we obtain all the other
identities in (1.5) (see (3.6), Corollary 4.17, Corollary 4.18 and Remark 4.19).

Note that the identities obtained involves negative Schur coefficients and the number of
terms in Schur functions grows enormously as m increases. However, our result implies that
such combinations of Schur functions have miraculous cancellations and yield symmetric
functions with positive coefficients. Furthermore, the identities state that the Schur coeffi-
cients do not depend onm (see Example 3.3, Example 4.8 andExample 4.16). These identities
seem intriguing from the viewpoint of representation theory and algebraic combinatorics. It
might have been difficult for us to expect that such identities exist, without regard to the
auto-correlation functions and branching rules of the newly introduced groups in (1.6).

1.6 Organization of the Paper

In Section 2, we review the necessary backgrounds for auto-correlation functions and the
dual Cauchy identity. In Section 3, we compute the auto-correlation functions of H ’s of U(2)
and establish the corresponding identities involving Schur functions. In Section 4, we present
the auto-correlation functions of H ’s of U(3) and consider the corresponding identities by
analyzing the representation structure of V (λ)with respect to H ’s. But we postpone a part of
the proof to Section 5, which is devoted to determine the composition multiplicities of trivial
representations in χ

U(g)

λ′ |H ’s. This amounts to the proof for U(3). We convert this problem
into counting the pairs of integers encoding certain information from representation theory.
By expressing the cardinalities as closed-form formulas, we complete the proof.

Convention 1.1 Throughout this paper, we keep the following conventions.

(i) For a statement P, the notation δ(P) is equal to 1 or 0 according to whether P is true
or not.

(ii) For m, m′ ∈ Z and k ∈ Z>0, we write m ≡k m′ if k divides m − m′, and m �≡k m′
otherwise.

2 Dual Cauchy Identity and Auto-Correlation Functions

In this section, we fix notations and review the dual Cauchy identity and establish a general
formula for the auto-correlation functions of characteristic polynomials.
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A partition λ = (λ1 ≥ · · · ≥ λk) is a non-increasing sequence of non-negative integers
λi . Define |λ| = ∑k

i=1 λi and (λ) = k. We write λ = (mk) when m = λ1 = · · · = λk .

More generally, a partition is written as (mk1
1 , mk2

2 , . . . , mks
s ) for m1 > m2 > · · · > ms and

ki ≥ 1. For two partitions λ = (λ1 ≥ · · · ≥ λk) and μ = (μ1 ≥ · · · ≥ μl), we define a
partial order λ � μ if k ≤ l and λi ≤ μi for all i = 1, 2, . . . , k. A partition λ corresponds
to a Young diagram, and the transpose λ′ is defined to be the partition corresponding to the
transpose of the Young diagram of λ.

Let U(g) be the unitary group for g ≥ 1. For a partition λwith at most g parts, let SU(g)
λ be

the Schur function associated with λ. It is well-known that SU(g)
λ is the irreducible character

of U(g) with highest weight λ. Denote by Vg(λ) the representation space of SU(g)
λ . When g

is clear from the context, we will simply write V (λ).

Definition 2.1 Let H be a closed subgroup of U(g). Define mλ(H) to be the multiplicity of
the trivial representation 1H in the restriction of V (λ) to H .

2.1 Dual Cauchy Identity

Let us recall the dual Cauchy identity (see, e.g., [7, (9)]) :

Lemma 2.2 For any m ≥ 1 and g ≥ 1, we have

m∏

i=1

g∏

j=1

(1 + xi t j ) =
∑

λ�(gm )

SU(m)
λ (x)SU(g)

λ′ (t),

where x = (x1, . . . , xm) and t = (t1, . . . , tg). We also have

m∏

i=1

g∏

j=1

(1 − xi t j ) =
∑

λ�(gm )

(−1)|λ|SU(m)
λ (x)SU(g)

λ′ (t),

by replacing xi to −xi .

Following Proposition 3.3 in [26], we obtain a formula for the auto-correlation functions.

Proposition 2.3 Let H be a subgroup of U(g) and dγ be the probability Haar measure on
H. Then, for each m ≥ 1, the auto-correlation function for the distribution of characteristic
polynomials of H is given by

∫

H

m∏

i=1

det(I + xiγ ) dγ =
∑

λ�(gm )

mλ′(H) SU(m)
λ (x), (2.1)

∫

H

m∏

i=1

det(I − xiγ ) dγ =
∑

λ�(gm )

(−1)|λ|mλ′(H) SU(m)
λ (x). (2.2)

Proof Let t1, . . . , tg be the eigenvalues of γ ∈ H . Since we have

det(I + xiγ ) =
g∏

j=1

(1 + xi t j ),
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it follows from Lemma 2.2 that
∫

H

m∏

j=1

det(I + x jγ )dγ =
∫

H

m∏

i=1

g∏

j=1

(1 + xi t j )dγ

=
∫

H

∑

λ�(gm )

SU(m)
λ (x)SU(g)

λ′ (t)dγ =
∑

λ�(gm )

SU(m)
λ (x)

∫

H
SU(g)

λ′ (t)dγ.

From Schur orthogonality (for example, [6]), the integral
∫

H SU(g)

λ′ (t)dγ is equal to the

multiplicity of the trivial representation 1H of H in the restriction of SU(g)

λ′ to H , which is
equal to mλ′(H) by Definition 2.1. This establishes the first identity. The second identity
follows from replacing xi with −xi in the first identity. �
Corollary 2.4 Suppose that −I ∈ H. Then mλ′(H) = 0 whenever |λ′| is odd.

Proof If −I ∈ H , we have
∫

H

m∏

j=1

det(I + x jγ )dγ =
∫

H

m∏

j=1

det(I − x jγ )dγ.

Our assertion follows from (2.1) and (2.2) by comparing the right-hand sides, since the Schur
functions are linearly independent. �

We recall the classical branching rule from U(g) to U(g − 1) for g ≥ 2.

Proposition 2.5 Let Vg(λ) be the irreducible representation of U(g) with highest weight λ.
Then we have

[Vg(λ) : Vg−1(μ)] ≤ 1

for any partition μ with at most g − 1 parts. Furthermore, [Vg(λ) : Vg−1(μ)] = 1 precisely
when

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ μg−1 ≥ λg.

3 Identities for g = 2

In this section, we consider some disconnected subgroups H of U(2) and compute mλ′(H)

for λ � (2m) in (2.1). This computation produces identities involving Schur functions SU(m)
λ

for all m ∈ Z≥1.

We identify U(1) with the subgroup

{(
t 0
0 t−1

)
: t ∈ C, |t | = 1

}
≤ U(2).

3.1 Subgroup 〈U(1), J〉

Let us consider the subgroup H2 of U(2) generated by U(1) and J :=
(

0 1
−1 0

)
, i.e.

H2 = 〈U(1), J 〉 ≤ U(2).

Then we have
H2 = U(1)  J U(1). (3.1)
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Theorem 3.1 For any partition (a, b) � (m2), we have

m(a,b)(U(1)) = δ(a ≡2 b) and m(a,b)(H2) = δ(a ≡4 b).

Furthermore, for any m ∈ Z≥1, we have

m∏

i=1

(1 + x2i ) =
∑

λ�(2m )
λ′=(b+2 j,b)

(−1) j SU(m)
λ (x) =

m∑

b=0

� m−b
2 �∑

j=0

(−1) j SU(m)

(2b,12 j )
(x), (3.2)

where we set j := (a − b)/2.

Proof For any γ =
(

t 0
0 t−1

)
∈ U(1), we have det(I + x Jγ ) = 1 + x2. Let du = du(γ ) be

the probability Haar measure on U(1) ≤ U(2). By Proposition 2.3 and (3.1), we have

∑

λ�(2m )

mλ′(H2)SU(m)
λ (x) =

∫

H2

m∏

i=1

det(I + xiγ )dγ

= 1

2

∫

U(1)

m∏

i=1

det(I + xiγ )du + 1

2

∫

U(1)

m∏

i=1

det(I + xi Jγ )du

= 1

2

∑

λ�(2m )

mλ′(U(1))SU(m)
λ (x) + 1

2

∫

U(1)

m∏

i=1

(1 + x2i )du

= 1

2

∑

λ�(2m )

mλ′(U(1))SU(m)
λ (x) + 1

2

m∏

i=1

(1 + x2i ). (3.3)

Let v1 = (1, 0) and v2 = (0, 1) be the standard unit vectors of V := C
2, and consider

the standard representation of U(2) on V , and let det be the one-dimensional representation
of U(2) defined by the determinant. For λ′ = (a, b) � (m2), we have V (λ′) ∼= detb ⊗
Syma−b(V ). Thus the trivial U(1)-module is generated by v

j
1v

j
2 only when a − b is even,

where we set j := (a − b)/2. In other word, we have

m(a,b)(U(1)) = δ(a ≡2 b).

Furthermore, since J sends v1 �→ −v2 and v2 �→ v1, we see that v
j
1v

j
2 is fixed by J when j

is even. Therefore,
m(a,b)(H2) = δ( j ≡2 0) = δ(a ≡4 b).

Note that, when λ′ = (b + 2 j, b), we have λ = (2b, 12 j ). Now it follows from (3.3) that

m∏

i=1

(1 + x2i ) =
m∑

b=0

� m−b
2 �∑

j=0

(2δ( j ≡2 0) − 1) SU(m)

(2b,12 j )
(x) =

m∑

b=0

� m−b
2 �∑

j=0

(−1) j SU(m)

(2b,12 j )
(x).

�
Remark 3.2 The left hand side of (3.2) can be written as a simple combination of the mono-
mial symmetric functions. Namely, we have

m∏

i=1

(1 + x2i ) =
m∑

k=0

m(m)

(2k )
(x),
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wherem(m)
λ denote the monomial symmetric functions in m-variables associated with parti-

tions λ with (λ) ≤ m.

Example 3.3 Let us see an example for the case m = 10 in Theorem 3.1. We have

10∏

i=1

(1 + x2i ) =
10∑

b=0

� 10−b
2 �∑

j=0

(−1) j SU(10)
(2b,12 j )

(x). (3.4)

Note that SU(10)
(24,12)

(x) appears in the right hand side of (3.4)with the coefficient−1 since j = 1.

As a polynomial itself, SU(10)
(24,12)

(x) contains 8701 monomial terms and SU(10)
(24,12)

(1) = 29700,
where 1 = (1, 1, . . . , 1). Actually, there are 15 Schur functions with negative coefficient −1
in the right hand side of (3.4) including SU(10)

(24,12)
(x). After amazing cancellations among Schur

functions, we obtain a symmetric function in the left hand side of (3.4), which contains only
1024 monomial terms with coefficients all 1 in its expansion.

3.2 Subgroup 〈U(1), J,���4〉

Set

ζζζ 4 :=
(√−1 0

0
√−1

)
∈ U(2),

and denote by H2,4 the subgroup of U(2) generated by U(1), J and ζζζ 4. That is, we define

H2,4 := 〈U(1), J , ζζζ 4〉 ≤ U(2).

Then we have
H2,4 = U(1)  J U(1)  ζζζ 4 U(1)  ζζζ 4 J U(1).

Let H ′
2,4 be the subgroup of H2,4 generated by U (1) and ζζζ 4.

Theorem 3.4 For any partition (a, b) � (m2), we have

m(a,b)(H ′
2,4) = δ(a + b ≡4 0) and m(a,b)(H2,4) = δ(a + b ≡4 0)δ(a − b ≡4 0).

Moreover, for any m ∈ Z≥1, we have

1

2

(
m∏

i=1

(1 + x2i ) +
m∏

i=1

(1 − x2i )

)
=

∑

(a,b)�(m2)
a+b≡40

(−1)δ(a �≡4b)SU(m)

(2b,1a−b)
(x)

=
∑

(b+2 j,b)�(m2)
b+ j≡20

(−1) j SU(m)

(2b,12 j )
(x),

(3.5)

where we set j := (a − b)/2 as before.

Proof Let λ′ = (a, b) � (m2). We keep the notations in the proof of Theorem 3.1 for
V (λ′) ∼= detb ⊗ Syma−b(V ). A vector in V (λ′) is fixed by U(1) if it is of the form v

j
1v

j
2 up

to scalar multiplication. Since det(ζζζ 4) = −1, we get

ζζζ 4 v
j
1v

j
2 = (−1)b+ jv

j
1v

j
2 .
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We see that b + j ≡2 0 ⇔ a + b ≡4 0, and if a + b ≡4 0 then a − b ≡2 0. Thus we obtain

m(a,b)(H ′
2,4) = δ(a + b ≡4 0).

Asobserved in the proof of Theorem3.1, the vector v j
1v

j
2 is fixed by J if and only ifa−b ≡4 0.

Therefore we have
m(a,b)(H2,4) = δ(a + b ≡4 0)δ(a − b ≡4 0).

Let dγ ′ = dγ ′(γ ) be the probability Haar measure on H ′
2,4. Since

det(I + x Jγ ) = 1 + x2 and det(I + x ζζζ 4 Jγ ) = 1 − x2

for all γ ∈ U(1), we have
∫

H2,4

�(γ )dγ = 1

2

∫

H ′
2,4

�(γ )dγ ′ + 1

4

∫

J U(1)
�(γ )du + 1

4

∫

ζζζ 4 J U(1)
�(γ )du

= 1

2

∫

H ′
2,4

�(γ )dγ ′ + 1

4

m∏

i=1

(1 + x2i ) + 1

4

m∏

i=1

(1 − x2i ),

where we write �(γ ) = ∏m
i=1 det(I + xiγ ) for convenience. Applying Proposition 2.3 to

the integrals, we obtain

1

2

(
m∏

i=1

(1 + x2i ) +
m∏

i=1

(1 − x2i )

)
=

∑

(a,b)�(m2)

(
2m(a,b)(H2,4) − m(a,b)(H ′

2,4)
)

SU(m)

(2b,1a−b)
(x)

=
∑

(a,b)�(m2)
a+b≡40

(−1)δ(a �≡4b)SU(m)

(2b,1a−b)
(x) =

∑

(b+2 j,b)�(m2)
b+ j≡20

(−1) j SU(m)

(2b,12 j )
(x).

�
Remark 3.5 (1) The identity (3.5) can be derived from (3.2). We will consider the alternate
proof in Section 3.3.

(2) As in Remark (3.2), we observe that the left hand side of (3.5) is a simple combination
of the monomial symmetric functions in m-variables:

1

2

(
m∏

i=1

(1 + x2i ) +
m∏

i=1

(1 − x2i )

)
=

� m
2 �∑

k=0

m(m)

(22k )
(x).

3.3 Pieri’s rule

One can see that
m∏

i=1

(1 − x2i ) =
∑

λ�(2m )
λ′=(b+2 j,b)

(−1)b SU(m)

(2b,12 j )
(x) =

m∑

k=0

(−1)km(m)

(2k )
(x). (3.6)

Indeed, by replacing xi with
√−1 xi in (3.2), we obtain

m∏

i=1

(1 − x2i ) =
∑

λ�(2m )
λ′=(b+2 j,b)

(−1) j (−1) j+b SU(m)

(2b,12 j )
(x) =

∑

λ�(2m )
λ′=(b+2 j,b)

(−1)b SU(m)

(2b,12 j )
(x),
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and the second equality in (3.6) follows from the definition of the monomial symmetric
functionm(m)

(2k )
. Combining (3.2) with (3.6) yields the identity (3.5). If we combine (3.2) and

(3.6) in a different way, we obtain

1

2

(
m∏

i=1

(1 + x2i ) −
m∏

i=1

(1 − x2i )

)
=

∑

(a,b)�(m2)
a+b≡42

(−1)δ(a �≡4b)SU(m)

(2b,1a−b)
(x) =

� m−1
2 �∑

k=0

m(m)

(22k+1)
(x).

Moreover, (3.6) can also be proven using Pieri’s rule. Since the idea can be used in other
cases, let us see the proof. We first consider the trivial case g = 1 to use the results for the
case g = 2. Let m(m)

λ be the monomial symmetric function of m-variables associated to a
partition λ with (λ) ≤ m, as before. Then, in particular, we have

m(m)

(1k )
= SU(m)

(1k )
for k ≤ m

and obtain
m∏

i=1

(1 + xi ) =
m∑

k=0

m(m)

(1k )
(x) =

∑

λ�(1m )

SU(m)
λ (x). (3.7)

By replacing xi with −xi , we have
m∏

i=1

(1 − xi ) =
m∑

k=0

(−1)km(m)

(1k )
(x) =

∑

λ�(1m )

(−1)|λ|SU(m)
λ (x). (3.8)

Recall Pieri’s rule from, e.g., Macdonald’s book [27, (5.17)]:

SU(m)
λ (x) ×

m∏

i=1

(1 + xi ) = SU(m)
λ (x) ×

(
m∑

l=0

el(x)

)
=

∑

λ�μ�λ+(1m )

SU(m)
μ (x), (3.9)

where el(x) denotes the elementary symmetric function of partition (l) of length 1 and
λ + (1m) = (λ1 + 1, λ2 + 2, . . . , λm + 1) for λ = (λ1, λ2, . . . , λm).

By (3.9) and (3.8), we have
m∏

i=1

(1 − x2i ) =
m∏

i=1

(1 + xi ) ×
∑

(1k )�(1m )

(−1)k SU(m)

(1k )
(x)

=
m∑

k=0

∑

(1k )�μ�(2k ,1m−k )

(−1k)SU(m)
μ (x)

(3.10)

Thus for any partition (2b, 1a−b) � (2m), the coefficient of SU(m−1)
(2b,1a−b)

(x) in (3.10) is given
by

a∑

s=b

(−1)s =

⎧
⎪⎨

⎪⎩

0 if a − b ≡2 1,

1 if a − b ≡2 0 and b ≡2 0,

−1 if a − b ≡2 0 and b ≡2 1.

When a − b ≡2 0, write a − b = 2 j . Then we have
m∏

i=1

(1 − x2i ) =
∑

λ�(2m )
λ′=(b+2 j,b)

(−1)b SU(m)

(2b,12 j )
(x)
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as desired.
Using a similar argument, we obtain two more identities.

Proposition 3.6 For any m ∈ Z≥1, we have

m∏

i=1

(1 + 2xi + x2i ) =
∑

(a,b)�(m2)

(a − b + 1)SU(m)

(2b,1a−b)
(x), (3.11)

m∏

i=1

(1 − 2xi + x2i ) =
∑

(a,b)�(m2)

(−1)a−b(a − b + 1)SU(m)

(2b,1a−b)
(x). (3.12)

Proof By (3.9) and (3.7), we have

m∏

i=1

(1 + xi )
2 =

m∏

i=1

(1 + xi ) ×
∑

(1k )�(1m )

SU(m)

(1k )
(x)

=
m∑

k=0

∑

(1k )�μ�(2k ,1m−k )

SU(m)
μ (x)

(3.13)

Thus for any partition (2b, 1a−b) � (2m), the coefficient of SU(m)

(2b,1a−b)
(x) in (3.13) is equal to

a∑

s=b

1 = a − b + 1,

and the identity (3.11) follows. By replacing xi with −xi in (3.11), we obtain (3.12).

�

Remark 3.7 The above use of Pieri’s rule may not be applicable, in general, if one can try to
obtain closed-form formulas for g ≥ 3. For instance, based on Theorem 3.1 about g = 2, one
can check the formula in Theorem 4.6 about g = 3 below using Pieri’s rule, for first several
small values of m. But, when g ≥ 3, obtaining closed-form formula for the coefficient of
SU(m)
λ , m ≥ 1, seems not easy in this approach.

4 Identities for g = 3

In this section, we consider some disconnected subgroups H of U(3) and compute mλ′(H)

for λ � (3m) in (2.1). As with the case g = 2, our computation yields identities involving
Schur functions SU(m)

λ for all m ∈ Z≥1.

To begin with, we embed U(1) into U(3) via

U (1) �
⎧
⎨

⎩

⎛

⎝
t 0 0
0 t−1 0
0 0 1

⎞

⎠ : t ∈ C, |t | = 1

⎫
⎬

⎭ ,

and U(2) into U(3) via A �→
(

A 0
0 1

)
for A ∈ U(2).
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4.1 Subgroup 〈U(1), J〉

Define

J :=
⎛

⎝
0 1 0

−1 0 0
0 0 1

⎞

⎠ ∈ U(3).

Note that

J 2 =
⎛

⎝
−1 0 0
0 −1 0
0 0 1

⎞

⎠ ∈ U(1) and J 4 =
⎛

⎝
1 0 0
0 1 0
0 0 1

⎞

⎠ = I .

Consider the subgroup H3 of U(3) generated by J and U(1), i.e.

H3 := 〈U(1), J 〉 ≤ U(3).

Then one can easily check that J normalizes U(1), and H3 = U(1)  J U(1). Note that

J

⎛

⎝
t 0 0
0 t−1 0
0 0 1

⎞

⎠ =
⎛

⎝
0 t−1 0
−t 0 0
0 0 1

⎞

⎠ and det(I + x Jγ ) = (1 + x)(1 + x2) (4.1)

for all γ ∈ U(1).
We prove a useful lemma.

Lemma 4.1 For any k ∈ Z≥0, we have

m(a+k,b+k,k)(U(1)) = m(a,b,0)(U(1)) and m(a+k,b+k,k)(H3) = m(a,b,0)(H3).

Proof Let det be the one-dimensional representation of U(3) defined by the determinant.
Then we have

V (a + k, b + k, k) = detk ⊗ V (a, b, 0).

Since det(A) = 1 for any A ∈ U(1) and det(J ) = 1, the assertion follows.

�
Thanks to Lemma 4.1, we need to consider the irreducible representations V (λ′) of U(3)

only for λ′ = (a, b, 0). In what follows, we assume λ′ = (a, b, 0) and freely write V (a, b) =
V (λ′). Note that we may also regard V (a, b) as the irreducible representation of sl(3,C)

with highest weight (a, b). More precisely, define h1, h2 ∈ sl(3,C) by

h1 = diag(1,−1, 0) and h2 = diag(0, 1,−1),

and denote by h the subspace of sl(3,C) spanned by h1 and h2. We regard any partition
μ = (μ1, μ2) as an element of h∗ by setting

μ(h1) = μ1 − μ2 and μ(h2) = μ2,

and μ is a weight of sl(3,C).
LetV andW = ∧2 V be the fundamental representations ofU(3). Take a basis {v1, v2, v3}

of V such that
Jv1 = −v2, Jv2 = v1 and Jv3 = v3. (4.2)

Write
w12 = v1 ∧ v2, w13 = v1 ∧ v3, w23 = v2 ∧ v3.
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Then {w12, w13, w23} is a basis for W , and we have

Jw12 = w12, Jw13 = −w23 and Jw23 = w13.

As sl(3,C)-representations, V and W are equivalent and can be described as follows:

V : 1
1→ 2

2→ 3 , W : 1
2

2→ 1
3

1→ 2
3 . (4.3)

The diagrams mean

f1v1 = v2, f2v2 = v3, f2w12 = w13, f1w13 = w23

and fiv j = 0 and fiw jk = 0 for other choices of i, j, k, where we set f1 :=(
0 0 0
1 0 0
0 0 0

)
, f2 :=

(
0 0 0
0 0 0
0 1 0

)
∈ sl(3,C). Equivalently, if we set e1 :=

(
0 1 0
0 0 0
0 0 0

)
, e2 :=

(
0 0 0
0 0 1
0 0 0

)
∈

sl(3,C), we have

e2v3 = v2, e1v2 = v1, e1w23 = w13, e2w13 = w12

and eiv j = 0 and eiw jk = 0 for other choices of i, j, k. The embedding U(2) ↪→ U(3)
corresponds to 〈e1, h1, f1〉 ∼= sl(2,C) ↪→ sl(3,C).

We realize the representation V (a, b) for a partition (a, b) as the irreducible component
of Syma−b V ⊗ Symb W generated by the highest weight vector va−b

1 ⊗ wb
12. In particular,

V = V (1, 0) and W = V (1, 1). We identify V (a+1, b+1)with the image of the embedding

ιa+1,b+1 : V (a + 1, b + 1) ↪→ V (a, b) ⊗ V (1, 1) (4.4)

given by
va−b
1 ⊗ wb+1

12 �→ (va−b
1 ⊗ wb

12) ⊗ w12.

For a partition (a, b), set z := a − b and define a set of partitions which interlace with
(a, b):

�(a, b) := {(p, q) | a ≥ p ≥ b ≥ q ≥ 0}.
Clearly, we have

|�(a, b)| = (a − b + 1)(b + 1) = (z + 1)(b + 1).

It follows from Proposition 2.5 that

the set �(a, b) is exactly the set of U(2)-highest weights in the restriction V (a, b)|U(2).
(4.5)

Example 4.2

(a) �(3, 2) = {(3, 0), (2, 0), (3, 1), (2, 1), (3, 2), (2, 2)}.
(b) �(4, 3) = {(4, 0), (3, 0), (4, 1), (3, 1), (4, 2), (3, 2), (4, 3), (3, 3)}.

For our purpose, we need to precisely describe U(2)-highest weight vectors in the
restriction V (a, b)|U(2). In what follows, we specify such vectors. We freely use the sl(3,C)-
representation structure on V (a, b) and apply actions of ei , fi (i = 1, 2) on vectors of
V (a, b).

For V (a, 0), define

v(k,0;a,0) := vk
1v

a−k
3 for (k, 0) ∈ �(a, 0) (or equivalently, for 0 ≤ k ≤ a).

By considering sl(2,C) action from (4.3), one can see that v(k,0;a,0) are U(2)-highest weight
vectors with highest weights (k, 0).
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Next let us consider U(2)-highest weight vectors of V (a + 1, 1) via the embedding ιa+1,1

in (4.4). Obviously, the vectors

v(k+1,1;a+1,1) := v(k,0;a,0) ⊗ w12

are contained in V (a+1, 1) from the construction of V (a+1, 1), and each of them is a U(2)-
highest weight vector of V (a + 1, 1), which generates a (k + 1)-dimensional U(2)-module.
Thus they correspond to the partitions (k + 1, 1) in �(a + 1, 1). Similarly, the vectors

v(k+1,0;a+1,1) := f2
(
v(k,0;a,0) ⊗ w12

) = v(k,0;a,0) ⊗ w13

are contained in V (a + 1, 1) and are U(2)-highest weight vectors of V (a + 1, 1). Each of
them generates a (k + 2)-dimensional U(2)-module. Hence they correspond to the partitions
(k + 1, 0) in �(a + 1, 1). Since

�(a + 1, 1) = {(k + 1, 1) | 0 ≤ k ≤ a}  {(k + 1, 0) | 0 ≤ k ≤ a},
we have obtained all the U(2)-highest weight vectors of the restriction V (a + 1, 1)|U(2).

Generally, for (p, q) ∈ �(a, b), define

v(p,q;a,b) := v
p−b
1 v

a−p
3 ⊗ w

q
12w

b−q
13 , b ≤ p ≤ a.

Lemma 4.3 The vectors v(p,q;a,b) are U(2)-highest weight vectors of V (a, b) for (p, q) ∈
�(a, b).

Proof It is straightforward to check that v(p,q;a,b) are U(2)-highest weight vectors. For induc-
tion, assume that v(p,q;a−1,b−1) are contained in V (a − 1, b − 1). Then, by the construction
of V (a, b), we have

v(k+b−1,b−1;a−1,b−1) ⊗ w12 =
(
vk
1v

a−b−k
3 ⊗ wb−1

12

)
⊗ w12 = vk

1v
a−b−k
3 ⊗ wb

12

= v(k+b,b;a,b) ∈ V (a, b)

for 0 ≤ k ≤ a − b. Since

f l
2v(k+b,b;a,b) = b!

(b−l)!v
k
1v

a−b−k
3 ⊗ wb−l

12 wl
13 = b!

(b−l)!v(k+b,b−l;a,b) for 0 ≤ l ≤ b,

we have v(p,q;a,b) ∈ V (a, b) for any (p, q) ∈ �(a, b).

�
The vectors in the above lemma are distinct, linearly independent and exhaust all the

U(2)-highest weight vectors in V (a, b). Note that

(J1) Since J (v(p,q;a,b)) = J (v
p−b
1 v

a−p
3 ⊗ w

q
12w

b−q
13 ) = (−1)p−qv

p−b
2 v

a−p
3 ⊗ w

q
12w

b−q
23 ,

the vector J (v(p,q;a,b)) is a U(2)-lowest vector in the U(2)-representation generated
by v(p,q;a,b).

(J2) J f1 = −e1 J .

Proposition 4.4 For a partition λ′ = (a, b, 0), the multiplicity mλ′(U(1)) of the trivial rep-
resentation in V (λ′)|U(1) is equal to the cardinality of the set

�(2)(a, b) := {(p, q) ∈ �(a, b) | p ≡2 q},
and the multiplicitymλ′(H3)of the trivial representation in V (λ′)|H3 is equal to the cardinality
of the set

�(4)(a, b) := {(p, q) ∈ �(a, b) | p ≡4 q}.
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Proof From the embeddings of U(1) into U(3), we see that the multiplicity mλ′(U(1)) is
equal to the number of linearly independent vectors in V (λ′) with weight μ such that

μ(h1) = 0.

Similarly, the multiplicity mλ′(H3) is equal to the number of linearly independent vectors v

in V (λ′) with weight μ such that

μ(h1) = 0 and Jv = v.

If we consider the restriction V (λ′)|U(2), then the condition μ(h1) = 0 means weight 0.
A weight 0 vector occurs in V2(p, q) precisely when p − q ≡2 0 with multiplicity 1, where
V2(p, q) is the irreducible representation of U(2) with highest weight (p, q). Thus the first
assertion follows from (4.5).

Write p − q = 2k. Then v := f k
1 v(p,q;a,b) is a weight 0 vector by Lemma 4.3. Using (J1)

and (J2) in (4.6), we obtain

J (v) = J f k
1 (v

p−b
1 v

a−p
3 ⊗ w

q
12w

b−q
13 ) = (−1)kek

1 J (v
p−b
1 v

a−p
3 ⊗ w

q
12w

b−q
13 )

=(−1)3kek
1(v

p−b
2 v

a−p
3 ⊗ w

q
12w

b−q
23 )=(−1)3k f k

1 (v
p−b
1 v

a−p
3 ⊗ w

q
12w

b−q
13 )= (−1)kv.

Thus v is fixed only when k is even. Thus the second assertion follows. �
The cardinalities of the sets �(2) and �(4) are computed in the following proposition.

Proposition 4.5 For a partition (a, b), write z := a − b. Then we have

|�(2)(a, b)| = �(z + 1)(b + 1)/2� ,

and

|�(4)(a, b)| = 1

2
(�(z + 1)(b + 1)/2� + τ(z, b))

where τ(z, b) ∈ {0,±1} is defined on the congruence classes of z and b modulo 4 as follows:

τ(z, b) =
z\b 0 1 2 3

0 1 1 0 0
1 1 0 −1 0
2 0 −1 −1 0
3 0 0 0 0

Proof The elements (p, q) in �(a, b) and the corresponding dimensions p − q + 1 can be
each arranged into an array of size (z + 1) × (b + 1) as follows, where we put (p, q) in the
left and its corresponding dimensions in the right:

(a, 0) (a, 1) · · · (a, b)

(a − 1, 0) (a − 1, 1) · · · (a − 1, b)

.

.

.

.

.

. · · ·
.
.
.

(b, 0) (b, 1) · · · (b, b)

∣∣∣∣∣∣∣

a + 1 a · · · a − b + 1
a a − 1 · · · a − b
.
.
.

.

.

. · · ·
.
.
.

b + 1 b · · · 1

(4.7)

By counting the number of odd integers in the right array, we obtain

|�(2)(a, b)| = �(z + 1)(b + 1)/2� ,

and by counting the number of integers congruent to 1 modulo 4 in the right array, we get

|�(4)(a, b)| = 1

2
(�(z + 1)(b + 1)/2� + τ(z, b)) .

�
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Now we state and prove the main theorem of this subsection.

Theorem 4.6 For a partition λ′ = (a + k, b + k, k), k ∈ Z≥0, we have

mλ′(U(1)) = �(z + 1)(b + 1)/2� and mλ′(H3) = 1

2
(�(z + 1)(b + 1)/2� + τ(z, b)) ,

where we set z := a − b. Furthermore, for any m ∈ Z≥1, we have

m∏

i=1

(1 + xi )(1 + x2i ) =
∑

λ�(3m )

λ=(3k ,2b,1z)

τ (z, b) SU(m)
λ (x), (4.8)

m∏

i=1

(1 − xi )(1 + x2i ) =
∑

λ�(3m )

λ=(3k ,2b,1z)

(−1)|λ|τ(z, b)SU(m)
λ (x). (4.9)

Proof From Proposition 4.4, we obtain

mλ′(U(1)) = |�(2)(a, b)| and mλ′(H3) = |�(4)(a, b)|,
and the formulas for mλ′(U(1)) and mλ′(H3) are from Proposition 4.5.

Let dγ, dγ1 be the probability Haar measures on H3,U(1) ≤ U(3), respectively. Since
H3 = U(1)  J U(1), we use (4.1) and Proposition 2.3 to obtain

∑

λ�(3m )

mλ′(H3)SU(m)
λ (x) =

∫

H3

m∏

i=1

det(I + xiγ )dγ

= 1

2

∫

U(1)

m∏

i=1

det(1 + xiγ )dγ1 + 1

2

∫

J U(1)

m∏

i=1

(1 +xi )(1+ x2i )dγ1

= 1

2

∑

λ�(3m )

mλ′(U(1))SU(m)
λ (x) + 1

2

m∏

i=1

(1 + xi )(1 + x2i ).

Hence, using Lemma 4.1,

m∏

i=1

(1+xi )(1+x2i )=
∑

λ�(3m )

(2mλ′(H3)−mλ′(U(1))) SU(m)
λ (x)=

∑

λ�(3m )

λ=(3k ,2b,1z)

τ (z, b)SU(m)
λ (x).

The identity (4.9) follows from (4.8) by replacing xi with −xi . �
Remark 4.7 The left hand side of (4.8) is a simple combination of the monomial symmetric
functionsm(m)

λ associated with partitions λ in m-variables:

m∏

i=1

(1 + xi )(1 + x2i ) =
∑

λ�(3m )

m(m)
λ (x).

Example 4.8 (1) Let us see an example for the case m = 7 in Theorem 4.6. We have

7∏

i=1

(1 + xi )(1 + x2i ) =
∑

λ�(37)
λ=(3k ,2b,1z)

τ (z, b)SU(7)
λ (x) (4.10)
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One can see that SU(7)
(32,22,11)

(x) appears in the right hand side of (4.10) with the coefficient

−1 as τ(1, 2) = −1. As a polynomial, SU(7)
(32,22,11)

(x) contains 1778 monomial terms and

SU(7)
(32,22,11)

(1) = 7560, where 1 = (1, 1, . . . , 1). There are 18 Schur functions with coefficient

−1 in the right hand side of (4.10) including SU(7)
(32,22,11)

(x). On the other hand, we obtain a
polynomial in the left hand side of (4.10), which contains 16384 monomial terms with
coefficient all 1. One can check this, for example, using SageMath.

(2) Let us consider the case m = 20 in Theorem 4.6. We have

20∏

i=1

(1 + xi )(1 + x2i ) =
∑

λ�(320)
λ=(3k ,2b,1z)

τ (z, b)SU(20)
λ (x) (4.11)

Here SU(20)
(26,15)

(x) appears in the right hand side of (4.11) with the coefficient −1 as τ(5, 6) =
τ(1, 2) = −1.UsingWeylCharacterRing inSageMath, one can check that SU(20)

(26,15)
(1) =

4557090720. Including SU(20)
(26,15)

, there are 315 Schur functions with coefficient −1 in the
right hand side of (4.11) and the specialization of the left hand side of (4.11) at 1 is equal to
420 = 1099511627776. However, checking whether the right hand side of (4.11) coincides
with the left hand side of (4.11) may well go beyond the capacity of a regular personal
computer.

4.2 Subgroup 〈U(1), J,���4〉

Let us set

ζζζ 4 :=
⎛

⎝

√−1 0 0
0

√−1 0
0 0 1

⎞

⎠ ∈ U (3) \ U (1).

Then we have

det(I + xζζζ 4 Jγ ) = (1 + x)(1 − x2) and det(I + x Jγ ) = (1 + x)(1 + x2). (4.12)

Define H3,4 to be the subgroup generated by U(1), J , ζζζ 4, i.e.

H3,4 := 〈U(1), J , ζζζ 4〉 ≤ U(3).

Then we have the coset decomposition

H3,4 = U(1)  J U(1)  ζζζ 4 U(1)  ζζζ 4 J U(1). (4.13)

Let H ′
3,4 be the subgroup of H3,4 generated by U(1), ζζζ 4. Note that

H3,4 = H ′
3,4  J H ′

3,4. (4.14)

Lemma 4.9 For any c ∈ Z≥2, we have

m(a,b,c)(H3,4) = m(a−2,b−2,c−2)(H3,4) and m(a,b,c)(H ′
3,4) = m(a−2,b−2,c−2)(H ′

3,4).

Proof As before, let det be the one-dimensional representation of U(3) defined by the deter-
minant. Then we have

V (a, b, c) = det2 ⊗ V (a − 2, b − 2, c − 2).

Since det(A) = 1 for any A ∈ U(1), det(J ) = 1 and det(ζζζ 4) = −1, the assertion follows. �
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By Lemma 4.9, it suffices to consider partitions of the form

(a, b, ε), ε ∈ {0, 1}.
For a partition (a, b, ε) (ε ∈ {0, 1}), define

�(a, b, ε) := {(p, q) ∈ Z
2 | a ≥ p ≥ b ≥ q ≥ ε}.

For example, �(3, 2, 1) = {(3, 2), (2, 2), (3, 1), (2, 1)}. From Proposition 2.5, we see that

the set �(a, b, ε) is exactly the set of U(2)-highest weights in the restriction V (a, b,ε)|U(2).
(4.15)

Proposition 4.10 For a partition λ′ = (a, b, ε) (ε ∈ {0, 1}), the multiplicity mλ′(H ′
3,4) is the

same as the cardinality of the set

�(2,4)(λ′) = {(p, q) ∈ �(λ′) | p + q ≡4 0},
and the multiplicity mλ′(H3,4) is the same as the cardinality of the set

�(4,4)(λ′) = {(p, q) ∈ �(λ′) | p − q ≡4 0, p + q ≡4 0}.
Proof Let v be a weight vector fixed by H ′

3,4. Then, in particular, v is fixed by U(1), and we

may write v = f k
1 v(p,q;a,b) for p − q = 2k as in the proof of Proposition 4.4. Since

v = f k
1 (v

p−b
1 v

a−p
3 ⊗ w

q
12w

b−q
13 ) = Cv

p−b−k
1 vk

2v
a−p
3 ⊗ w

q
12w

b−q
13

+(other terms with the same weight),

for some constant C , the number of v1 factors and the number of v2 factors are the same,
which is equal to k + q = (p + q)/2, and we have

ζζζ 4v = (
√−1)(p+q)v = v.

Thus we have p + q ≡4 0, which implies p − q ≡2 0.
If v is also fixed by J , the we obtain an additional condition p − q ≡4 0 as in (the proof

of) Proposition 4.4. �
The cardinalities of the sets�(2,4)(λ′) and�(4,4)(λ′)will be computed in the next section,

and we present the resulting formulas in the following two propositions.

Proposition 4.11 For a partition λ′ = (a, b, ε) (ε ∈ {0, 1}), write z :=a − b and b′ := b − ε.
Then we have

|�(2,4)(λ′)| = (z + 1)(b′ + 1) + κε(z, b′)
4

, (4.16)

where κε(z, b′) are defined on the congruence classes of z and b′ modulo 4 by

κ0(z, b) =
z\b 0 1 2 3

0 3 −2 1 0
1 2 −4 2 0
2 1 −2 3 0
3 0 0 0 0

and κ1(z, b′) =
z\b′ 0 1 2 3

0 −1 2 1 0
1 −2 4 −2 0
2 1 2 −1 0
3 0 0 0 0

.

Proposition 4.12 For a partition λ′ = (a, b, ε) (ε ∈ {0, 1}), write z :=a − b and b′ := b − ε.
Then we have

|�(4,4)(λ′)| = b′z + ηε(z, b′) · (b′, z) + ξε(z, b′)
8

, (4.17)
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where (x, y) · (b′, z) = xb′ + yz, and ηε(z, b′) and ξε(z, b′) are defined on the congruence
classes of z and b′ by

η0(z, b) =
z\b 0 1

0 (2, 2) (0, 1)
1 (1, 2) (1, 1)

, η1(z, b′) =
z\b′ 0 1

0 (0, 0) (2, 1)
1 (1, 0) (1, 1)

,

ξ0(z, b) =
z\b 0 1 2 3

0 8 0 4 0
1 6 −3 2 1
2 4 −4 4 0
3 2 1 2 1

and ξ1(z, b′) =
z\b′ 0 1 2 3

0 0 6 0 2
1 0 5 −4 1
2 0 2 −4 2
3 0 1 0 1

.

Corollary 4.13 For each partition λ′ = (a, b, ε) (ε ∈ {0, 1}), write z :=a −b and b′ :=b−ε.
Then we have

ωε(z, b′) := 2|�(4,4)(λ′)| − |�(2,4)(λ′)| = αε(z, b′) · (b′, z) + βε(z, b′)
4

,

where (x, y) · (b′, z) = xb′ + yz, and αε(z, b′) and βε(z, b′) are defined on the congruence
classes of z and b′ by

α0(z, b) =
z\b 0 1

0 (1, 1) (−1, 0)
1 (0, 1) (0, 0)

, α1(z, b′) =
z\b′ 0 1

0 (−1, −1) (1, 0)
1 (0,−1) (0, 0)

,

β0(z, b) =
z\b 0 1 2 3

0 4 1 2 −1
1 3 0 −1 0
2 2 −3 0 −1
3 1 0 1 0

and β1(z, b′) =
z\b′ 0 1 2 3

0 0 3 −2 1
1 1 0 −3 0
2 −2 −1 −4 1
3 −1 0 −1 0

.

Now we state and prove the main result of this subsection.

Theorem 4.14 For a partition λ′ = (a + 2k, b + 2k, ε + 2k) (k ∈ Z≥0, ε ∈ {0, 1}), write
z := a − b and b′ := b − ε. Then we have

mλ′(H ′
3,4)=

(z+1)(b′+1)+κε(z, b′)
4

and mλ′(H3,4)= b′z+ηε(z, b′) · (b′, z)+ξε(z, b′)
8

.

Furthermore, for any m ∈ Z≥1, we have

1

2

(
m∏

i=1

(1 + xi )(1 + x2i ) +
m∏

i=1

(1 + xi )(1 − x2i )

)
=

∑

λ�(3m )

ωε(z, b′) SU(m)
λ (x), (4.18)

where z, b′, ε are determined by the transpose λ′ of λ � (3m).

Proof The first assertion follows from Propositions 4.10, 4.11, 4.12 and Lemma 4.9. Let
dγ, dγ1, dγ2 be the probability Haar measures on H3,4, H ′

3,4,U(1) ≤ U(3), respectively.We
use the coset decompositions (4.13) and (4.14) and the computation (4.12) and Proposition
2.3 to obtain

∑

λ�(3m )

mλ′ (H3,4)SU(m)
λ (x) =

∫

H3,4

m∏

i=1

det(I + xiγ )dγ

= 1

2

∫

H ′
3,4

m∏

i=1

det(I +xiγ )dγ1+ 1

4

∫

J U(1)

m∏

i=1

det(I +xiγ )dγ2+ 1

4

∫

ζζζ 4 J U(1)

m∏

i=1

det(I +xiγ )dγ2
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= 1

2

∑

λ�(3m )

mλ′ (H ′
3,4)SU(m)

λ (x) + 1

4

m∏

i=1

(1 + xi )(1 + x2i ) + 1

4

m∏

i=1

(1 + xi )(1 − x2i ).

Hence, using Corollary 4.13,

1

2

(
m∏

i=1

(1+xi )(1+x2i )+
m∏

i=1

(1+xi )(1− x2i )

)
=
∑

λ�(3m )

(
2mλ′(H3,4)−mλ′(H ′

3,4)
)

SU(m)
λ (x)

=
∑

λ�(3m )

ωε(z, b′)SU(m)
λ (x).

�
Remark 4.15 (1) The left hand side of (4.18) can be written as a simple combination of the
monomial symmetric functions in m-variables:

1

2

(
m∏

i=1

(1 + xi )(1 + x2i ) +
m∏

i=1

(1 + xi )(1 − x2i )

)
=

∑

λ′�(m3)

λ′
2≡20

m(m)
λ (x).

where λ′ = (λ′
1, λ

′
2, λ

′
3).

(2) By replacing xi by −xi in (4.18), we obtain

1

2

(
m∏

i=1

(1 − xi )(1 + x2i ) +
m∏

i=1

(1 − xi )(1 − x2i )

)
=

∑

λ�(3m )

(−1)|λ|ωε(z, b′)SU(m)
λ (x).

Example 4.16 (1) Let us see the case m = 7 in Theorem 4.14. Then we have

1

2

(
7∏

i=1

(1 + xi )(1 + x2i ) +
7∏

i=1

(1 + xi )(1 − x2i )

)
=

∑

λ�(37)

ωε(z, b′) SU(7)
λ (x) (4.19)

The function SU(7)
(3,22,1)

(x) appears in the right hand side of (4.19) with the coefficient −2

as λ′ = (4, 3, 1) and hence z = 1 and b′ = 2. As a polynomial itself, SU(7)
(32,22,11)

(x) contains

1239 monomial terms and SU(7)
(3,22,11)

(1) = 3402. There are 36 Schur functions with negative

coefficients in the right hand side of (4.19) including SU(7)
(3,22,1)

(x). However, we obtain a
polynomial of 8192 monomial terms with all coefficient 1 in the left hand side of (4.19).

(2) Let us see the case m = 20 in Theorem 4.14:

1

2

(
20∏

i=1

(1 + xi )(1 + x2i ) +
20∏

i=1

(1 + xi )(1 − x2i )

)
=

∑

λ�(3m )

ωε(z, b′) SU(20)
λ (x) (4.20)

Here SU(20)
(29,12)

(x) appears in the right hand side of (4.20)with the coefficient−3 asλ′ = (11, 9)

and hence z = 2 and b′ ≡4 1. One can check that SU(20)
(29,12)

(1) = 12342120700. There
are 590 Schur functions with negative coefficients in the right hand side of (4.20), and the
specialization of the right hand side of (4.20) at 1 is equal to 239. This shows some systematic,
evenmiraculous, cancelations ofmonomial terms in Schur functions involved in this example.

Combining Theorems 4.6 and 4.14, we obtain the following identity.
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Corollary 4.17 For each partition λ′ = (a + 2k, b + 2k, ε + 2k) (k ∈ Z≥0, ε ∈ {0, 1}), write
z := a − b and b′ := b − ε. Then we have

m∏

i=1

(1 + xi )(1 − x2i ) =
∑

(λ′
1,λ

′
2,λ

′
3)�(m3)

(−1)δ(λ
′
2≡21)m(m)

λ (x) =
∑

λ�(3m )

ω̃ε(z, b′) SU(m)
λ (x),

where

ω̃ε(z, b′) := αε(z, b′) · (b′, z) + β̃ε(z, b′)
2

.

Here β̃ε(z, b′) are defined on the congruence classes of z and b′ by

β̃0(z, b) =
z\b 0 1

0 2 −1
1 1 0

and β̃1(z, b′) =
z\b′ 0 1

0 −2 1
1 −1 0

.

Similarly, combining Theorem 4.6 and Corollary 4.17, we obtain another identity below.

Corollary 4.18 For each partition λ′ = (a + 2k, b + 2k, ε + 2k) (k ∈ Z≥0, ε ∈ {0, 1}), write
z := a − b and b′ := b − ε. Then we have

1

2

(
m∏

i=1

(1 + xi )(1 + x2i ) −
m∏

i=1

(1 + xi )(1 − x2i )

)
=

∑

(λ′
1,λ

′
2,λ

′
3)�(m3)

λ′
2 �≡21

m(m)
λ (x)

=
∑

λ�(3m )

ω̂ε(z, b′) SU(m)
λ (x),

where

ω̂ε(z, b′):= = −αε(z, b′) · (b′, z) + β̂ε(z, b′)
4

.

Here β̂ε(z, b′) are defined on the congruence classes of z and b′ by

β̂0(z, b) =
z\b 0 1 2 3

0 0 3 −2 1
1 1 0 −3 0
2 −2 −1 −4 1
3 −1 0 −1 0

and β̂1(z, b′) =
z\b′ 0 1 2 3

0 4 1 2 −1
1 3 0 −1 0
2 2 −3 0 −1
3 1 0 1 0

.

Remark 4.19 Replacing xi with −xi , we obtain identities for

m∏

i=1

(1 − xi )(1 + x2i ) and
m∏

i=1

(1 − xi )(1 − x2i )

and hence identities for

1

2

(
m∏

i=1

(1 − xi )(1 + x2i ) ±
m∏

i=1

(1 − xi )(1 − x2i )

)
.

5 Proofs for the Cardinalities of 8(2,4) and 8(4,4)

In this section, we will prove the explicit closed-form formulas of �(2,4) and �(4,4), which
are presented in Propositions 4.10 and 4.11, respectively. Throughout this section, we will
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explain the reason why the functions κε(z, b), ηε(z, b) and ξε(z, b) are defined with respect
to congruence classes modulo 2 or 4. We start this section with an example.

Let us consider the partition ν′ = (a, b, 0) = (a, b) = (7, 2) of length 2. Note that

• z = a − b = 5 and hence z + 1 = 6, b + 1 = 3,
• among the partitions (a, b) with

a − b = 5 and b ≡4 2, (5.1)

the partition (7, 2) is the smallest one.

Thus the set �(7, 2) can be displayed by the following (6 × 3)-array as in (4.7):

(7, 2) (7, 1) (7, 0)
(6, 2) (6, 1) (6, 0)
(5, 2) (5, 1) (5, 0)
(4, 2) (4, 1) (4, 0)
(3, 2) (3, 1) (3, 0)
(2, 2) (2, 1) (2, 0)

z

2

=
(z + b, b) (z + b, b − 1) (z + b, 0)

(z + b − 1, b) (z + b − 1, b − 1) (z + b − 1, 0)
· · ·
· · ·

(b + 1, b) (b + 2, 1) (b + 1, 0)
(b, b) (b + 1, 1) (b, 0)

z

b

(5.2)

Motivated by (5.2), for (k, l) ∈ Z
2 and z, b ∈ Z≥0, we define the set (k, l)

z

b
of pairs of

integers:

(k, l)
z

b
:= {(p, q) ∈ Z

2 | k + b ≥ p ≥ k, z + l ≥ q ≥ l}, (5.3)

whose cardinality is (z + 1) × (b + 1).
In (5.2), one can check that, for ν′ = (7, 2), we have

• �(2,4)(ν′) = {(4, 0), (3, 1), (7, 1), (6, 2), (2, 2)},
• �(4,4)(ν′) = {(4, 0), (6, 2), (2, 2)},

and hence �(2,4)(ν′) \ �(4,4)(ν′) = {(3, 1), (7, 1)}. Here one can notice that (p, q) ∈
�(2,4)(ν′) \ �(4,4)(ν′) are located in the second column of (5.2), since

q ≡4 1 and hence p ≡4 3, yielding p − q �≡4 0. (5.4)

Let us consider a partition μ′ = (11, 6) which is the second smallest case in the sense
of (5.1). Then its corresponding �(11, 6) can be represented by the following (6× (3+ 4))-
array as follows:

(11, 6) (11, 5) (11, 4)
(10, 6) (10, 5) (10, 4)
(9, 6) (9, 5) (9, 4)
(8, 6) (8, 5) (8, 4)
(7, 6) (7, 5) (3, 4)
(6, 6) (6, 5) (6, 4)

z

2

(11, 3) (11, 2) (11, 1) (11, 0)
(10, 3) (10, 2) (10, 1) (10, 0)
(9, 3) (9, 2) (9, 1) (9, 0)
(8, 3) (8, 2) (8, 1) (8, 0)
(7, 3) (7, 2) (7, 1) (7, 0)
(6, 3) (6, 2) (6, 1) (6, 0)

z

3

(5.5)

Here the left (resp. right) part of (5.5) coincides with (b + 4, 4)
z

2

(
resp. (b + 4, 0)

z

3

)
.

Then one can see that (i) the left part of (5.5) can be obtained from (5.2) by adding (4, 4)
for each entry and (ii) the right part of (5.5) consists of four columns. Since the number of

(p, q)’s satisfying p + q ≡4 0 in (b + 4, 4)
z

2
is the same as |�(2,4)(ν′)| by (i), and each

row in (b + 4, 0)
z

3
contains (p, q) with p + q ≡4 0 exactly once by (ii), we have

|�(2,4)(μ′)| = |�(2,4)(ν′)| + (z + 1) = 5 + 6.
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For the same reason as in (5.4), the (p, q)’s with p + q ≡4 0 with q ≡4 1, 3 cannot satisfy
the condition p − q ≡4 0. Thus we obtain

|�(4,4)(μ′)| = |�(4,4)(ν′)| + (z + 1)

2
= 3 + 3.

Since
�(4,4)(c + 4, d + 4) =

(
�(4,4)(c, d) + (4, 4)

)
 (d + 4, 0)

z

3

and the number of (p, q)’s satisfying p + q ≡4 0 (resp. p + q ≡4 0 and p − q ≡4 0) in

(d + 4, 0)
z

3
does not change for any (c, d) with c − d = 5 and d ≡4 2, the closed-form

formulas arewritten in (4.16) and (4.17), which are determined by |�(k,4)(ν′)|, |�(k,4)(μ′)|−
|�(k,4)(ν′)| (k = 2, 4) depending on z and on the congruent classes of z and b modulo 4.

Now we generalize the argument above. We begin with a definition.

Definition 5.1 Fix ε ∈ {0, 1}, b′ ∈ {0, 1, 2, 3} and z ∈ Z≥0. We call the partition

ν′(z,b′, ε) := (z + b′ + ε,b′ + ε, ε)

the base partition for the triple (z,b′, ε)

For any finite set X of pairs of integers, we denote by φ(2,4)(X) (resp. φ(4,4)(X)) the
number of (p, q)’s in X satisfying p + q ≡4 0 (resp. p + q ≡4 0 and p − q ≡4 0). In
particular, we write

φ(u,4)(ν′) := φ(u,4)(�(ν′)) = |�(u,4)(ν′)| (u = 2, 4)

for a partition ν′ of the form (z + b′ + ε, b′ + ε, ε) (z, b′ ∈ Z≥0, ε ∈ {0, 1}). Then the
following lemma is obvious:

Lemma 5.2 For any (k, l)
z

b
and (m, n) ∈ Z

2, we have

φ(u,4)
(

(k, l)
z

b

)
= φ(u,4)

(
(k, l)

z

b
+ (4m, 4n)

)
(u = 2, 4).

Lemma 5.3 For any partition (a, b, ε) with a − b = z ∈ Z≥0 and ε ∈ {0, 1}, we have

φ(2,4)(a + 4, b + 4, ε) − φ(2,4)(a, b, ε) = z + 1.

Proof Let z = a − b and b′ = b − ε. Then we have

�(a + 4, b + 4, ε) = (b + 4, ε)
z

b′+4
, �(a, b, ε) = (b, ε)

z

b′

and hence

�(a + 4, b + 4, ε) = (�(a, b, ε) + (4, 4))
⊔

(b, ε)
z

3
. (5.6)

By Lemma 5.2, φ(u,4)(a, b, ε) = φ(u,4)
(

(b, ε)
z

b′ + (4, 4)
)

(u = 2, 4) and hence

φ(u,4)(a + 4, b + 4, ε) − φ(2,4)(a, b, ε) = φ(u,4)
(

(b, ε)
z

3

)
(u = 2, 4).

Recall that (b, ε)
z

3
consists of four columns with height z + 1. Thus we have

φ(2,4)
(

(b, ε)
z

3

)
= z + 1,

because each row in (b, ε)
z

3
contains (p, q) with p + q ≡4 0 exactly once. �
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Lemma 5.4 For any base partition ν′ = ν′(z,b′, ε), we have

φ(2,4)(ν′) = (b′ + 1)(z + 1) + κε(z,b′)
4

.

Proof (1) Note that, when b′ = 3 (resp. z ≡3 4), the integer κε(z,b′) = 0. The assertion for
this case comes from the fact that

�(ν′) = (b′ + ε, ε)
z

b′

consists of 4-columns with height z + 1 (resp. (b′ + 1)-columns with height z + 1 = 4k for
some k ∈ Z≥1), implying that each row in the set contains (p, q) with p + q ≡4 0 exactly
once (resp. each column in the set contains (p, q)’s with p + q ≡4 0 exactly k-times).

(2) Now let us consider the case when b′ = 2, z ≡4 1 and ε = 1. Write z = 4k + 1 for

some k ∈ Z≥0. Then (b′ + ε, ε)
z

b′ = (b′ + ε, ε)
z

2
can be described as follows:

(b′ + z + 1, 3) (b′ + z + 1, 2) (b′ + z + 1, 1)
(b′ + z, 3) (b′ + z, 2) (b′ + z, 1)

(b′ + z − 1, 3) (b′ + z − 1, 2) (b′ + z − 1, 1)
.
.
.

.

.

.

.

.

.

(b′ + 3, 3) (b′ + 3, 2) (b′ + 3, 1)
(b′ + 2, 3) (b′ + 2, 2) (b′ + 2, 1)
(b′ + 1, 3) (b′ + 1, 2) (b′ + 1, 1)

z

2

(5.7)

Here the underlined pairs (p, q) of integers satisfy the condition that p + q ≡4 0. One sees
that the number ti of underlined (p, q)’s in the column with q = i (i = 0, 1, 2) is given by

t0 = k + 1, t1 = k and t2 = k. (5.8)

Thus we have

φ(2,4)(ν′) = 3k + 1 = 3 × (4k + 2) − 2

4

which implies κ1(1, 2) = −2.
(3) For the remaining cases, one can prove the formula by a similar argument. �

Proof (Proof of Proposition 4.11) By Lemma 5.3 and Lemma 5.4, for a partition (a, b, ε) of
the form

(z + b′ + 4k + ε,b′ + 4k + ε, ε) (z = a − b, k ∈ Z≥0 and b′ ∈ {0, 1, 2, 3}),
we have

φ(2,4)(a, b, ε) = (b′ + 1)(z + 1) + κε(z,b′)
4

+ k × (z + 1)

= (b′ + 1)(z + 1) + κε(z, b′)
4

(∵ b′ = b − ε),

as we desired. �
Lemma 5.5 For any partition (a, b, ε) with a − b = z ∈ Z≥0, we have

φ(4,4)(a + 4, b + 4, ε) − φ(4,4)(a, b, ε) = z + ηε(z, b)1

2
,

where ηε(z, b)1 denotes the first component of ηε(z, b).
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Proof By (5.6), it suffices to show that

φ(4,4)
(

(b, ε)
z

3

)
= z + ηε(z, b)1

2
,

where φ(2,4)
(

(b, ε)
z

3

)
= z + 1 by Lemma 5.3 and the set (b, ε)

z

3
can be described as

follows:
(b + z, ε + 3) (b + z, ε + 2) (b + z, ε + 1) (b + z, ε)

(b + z − 1, ε + 3) (b + z − 1, ε + 2) (b + z − 1, ε + 1) (b + z − 1, ε)
(b + z − 2, ε + 3) (b + z − 2, ε + 2) (b + z − 2, ε + 1) (b + z − 2, ε)

.

.

.

.

.

.

.

.

.

.

.

.

(b + 2, ε + 3) (b + 2, ε + 2) (b + 2, ε + 1) (b + 2, ε)
(b + 1, ε + 3) (b + 1, ε + 2) (b + 1, ε + 1) (b + 1, ε)

(b, ε + 3) (b, ε + 2) (b, ε + 1) (b, ε)

z

3

(5.9)

Then, for each adjacent two rows, there are exactly two pairs of integers (pi , qi ) (i = 1, 2)
satisfying pi +qi ≡4 0, where exactly one of them does not satisfy the condition p −q ≡4 0
and the another satisfies the condition, as in (5.4).

(1) For z ≡2 1, we have always ηε(z, b) = 1 and hence
z + ηε(z, b)1

2
= z + 1

2
. Thus the

assertion for this case follows from the fact that z + 1 ≡2 0.
(2) Let us consider the case when z ≡2 0, b ≡2 1 and ε = 0. Then it suffices to consider

the bottom row in (5.9):
(b, 3) (b, 2) (b, 1) (b, 0)

Then exactly one of (b, 1) and (b, 3) satisfies the condition that p + q ≡4 0 but it does not
satisfies the condition that p − q ≡4 0, since q ≡4 1, 3. Hence

φ(4,4)
(

(b, 0)
z

3

)
= z

2
.

(3) The remaining 3-cases can be proved by a similar argument. �

Lemma 5.6 For any base partition ν′ = ν′(z,b′, ε), we have

φ(4,4)(ν′) = b′z + ηε(z,b′) · (b′, z) + ξε(z,b′)
8

.

Proof (1) As in Lemma 5.4, let us consider the case when b′ = 2, z ≡4 1 and ε = 1. Write
z = 4k + 1 for some k ∈ Z≥0. Then the underlined pairs (p, q) of integers in columns with
q = 1 or 3 in (5.7) cannot satisfy the condition p − q ≡4 0, while the ones in the column
with q = 2 in (5.7) satisfy the condition as p ≡4 2. Thus φ(2,4)(ν′) = k by (5.8). Since

k = 2(4k + 1) + (1, 0) · (2, 4k + 1) − 4

8
,

our assertion holds in this case.
(2) For the remaining cases, one can prove the formula by a similar argument. �

Proof (Proof of Proposition 4.12) By Lemma 5.5 and Lemma 5.6, for a partition (a, b, ε) of
the form

(z + b′ + 4k + ε,b′ + 4k + ε, ε) (z = a − b, k ∈ Z≥0 and b′ ∈ {0, 1, 2, 3}),
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we have

φ(2,4)(a, b, ε) = b′z + ηε(z,b′) · (b′, z) + ξε(z,b′)
8

+ k × z + ηε(z, b)1

2

= b′z + ηε(z, b′) · (b′, z) + ξε(z, b′)
8

(∵ b′ = b − ε),

as we desired. �

Remark 5.7 After the first version of this paper was posted on the arXiv, Ronald C. King
informed us that identities (1.5)-(1.5) in Application can be extracted from the work of
Yang–Wybourne, Lascoux–Pragacz and King–Wybourne–Yang [24, 25, 31] that appeared
in the mathematical physics literature in the 1980’s. Their methods are purely combinatorial
and do not have direct connections to auto-correlation functions.
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