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Abstract
We introduce real Lösungen as an analogue of real roots. For each mutation sequence of an
arbitrary skew-symmetrizable matrix, we define a family of reflections along with associated
vectors which are real Lösungen and a set of curves on a Riemann surface. The matrix
consisting of these vectors is called L-matrix. We explain how the L-matrix naturally arises
in connection with the C-matrix. Then we conjecture that the L-matrix depends (up to signs
of row vectors) only on the seed, and that the curves can be drawn without self-intersections,
providing a new combinatorial/geometric description of c-vectors.

1 Introduction

Let Q be a quiverwithn vertices and nooriented cycles of length≤ 2. Themost basic invariant
of a representation of Q is its dimension vector. ByKac’sTheorem [18], the dimension vectors
of indecomposable representations of Q are positive roots of the Kac–Moody algebra gQ

associated to the quiver Q.
When Q is acyclic, a representation M of Q is called rigid if Ext1(M, M) = 0, and the

dimension vectors of indecomposable rigid representations are called real Schur roots as
they are indeed real roots of gQ . In the category of representations of Q, rigid objects are
foundational. Therefore an explicit description of real Schur roots is essential for the study
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of the category, and there have been various results related to description of real Schur roots
of an acyclic quiver [5, 16, 17, 27, 29, 34].

In a previous paper [20], we conjectured a correspondence between real Schur roots of an
acyclic quiver and non-self-crossing curves on amarkedRiemann surface and hence proposed
a new combinatorial/geometric description. Recently, Felikson and Tumarkin [12] proved our
conjecture for all 2-complete acyclic quivers. (An acyclic quiver is called 2-complete if it has
multiple edges between any pair of vertices.)

Now,when Q is general, it is natural to consider the c-vectors of Q as dimension vectors of
rigid objects. Indeed, when Q is acyclic, the set of positive c-vectors is identical with the set
of real Schur roots [21]. For an arbitrary quiver Q, a positive c-vector is the dimension vector
of a rigid indecomposable representation of a quotient of the completed path algebra. This
quotient was introduced by Derksen, Weyman and Zelevinksy [9], and is called a Jacobian
algebra. Thus c-vectors naturally generalize real Schur roots in this sense, though they are
not necessarily real roots of the corresponding Kac–Moody algebra.

Originally, c-vectors (and C-matrices) were defined in the theory of cluster algebras [13],
and together with their companions, g-vectors (and G-matrices), played fundamental roles
in the study of cluster algebras (for instance, see [9, 14, 15, 22, 24]). As a cluster algebra
is defined not only for a skew-symmetric matrix (i.e. a quiver) but also for an arbitrary
skew-symmetrizable matrix, one can ask:

Can we have a combinatorial/geometric description of the c-vectors (and C-matrices)
of a cluster algebra associated with an arbitrary skew-symmetrizable matrix?

In this paper, we propose a conjectural, combinatorial/geometric model for C-matrices asso-
ciated to an arbitrary skew-symmetrizable matrix, which extends our model from the acyclic
case [20].

For this purpose, we introduce the notion of real Lösungen as an analogue of real roots,
and define a family of reflections along with associated vectors which are real Lösungen for
each mutation sequence of an arbitrary skew-symmetrizable matrix. The matrix consisting
of these real Lösungen is called L-matrix. We show that the L-matrix comes from certain
leading terms when the C-matrix is presented using reflections. We conjecture that the L-
matrices (up to signs of row vectors) depend only on seeds, i.e., do not depend on mutation
sequences leading to the same seed. We believe that understanding these new matrices is
a key to generalizing Coxeter groups and their quotients arising from cluster algebras, in
particular, generalizing Felikson–Tumarkin’s result [11].

When a skew-symmetrizable matrix is acyclic, it is natural to consider the corresponding
symmetrizable generalized Cartan matrix. For a general skew-symmetrizable matrix, we
consider generalized intersection matrices (GIMs)1 introduced by Slodowy [32, 33]. A GIM
is a square matrix A = [ai j ] with integral entries such that

1. for diagonal entries, aii = 2;
2. ai j > 0 if and only if a ji > 0;
3. ai j < 0 if and only if a ji < 0.

Since we are more interested in cluster algebras associated with skew-symmetrizable
matrices, we restrict ourselves to the class of symmetrizable GIMs. This class contains the
collection of all symmetrizable generalized Cartan matrices as a special subclass.

1 Some authors call them quasi-Cartan matrices. For example, see [3].
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LetA be the (unital)Z-algebra generated by si , ei , i = 1, 2, . . . , n, subject to the following
relations:

s2i = 1,
n∑

i=1

ei = 1, si ei = −ei , ei s j =
{

si + ei − 1 if i = j,

ei if i �= j,
ei e j =

{
ei if i = j,

0 if i �= j .

Let W be the subgroup of the units of A generated by si , i = 1, . . . , n. Note that W is
(isomorphic to) the universal Coxeter group. Thus the algebra A can be considered as the
algebra generated by the reflections and projections of the universal Coxeter group. Keeping
computations at the level of A will reveal some important features of mutations.

Definition 1.1 Let A = [ai j ] be an n × n symmetrizable GIM, and D = diag(d1, . . . , dn) be
the symmetrizer, i.e. the diagonal matrix such that di ∈ Z>0, gcd(d1, . . . , dn) = 1 and AD
is symmetric. Let � = ∑n

i=1 Zαi be the lattice generated by the formal symbols α1, · · · , αn .

1. An element γ = ∑
miαi ∈ � is called a Lösung if
∑

1≤i, j≤n

d j ai j mi m j = 2dk for some k = 1, . . . , n. (1.1)

A Lösung is positive if mi ≥ 0 for all i . Each αi is called a simple Lösung.
2. Define a representation π : A → End(�) by

π(si )(α j ) = α j − a jiαi and π(ei )(α j ) = δi jαi , i, j = 1, . . . , n.

We suppress π when we write the action of an element of A on �. A Lösung γ is real if
γ = si1si2 · · · sik (αi ) for some i = 1, . . . , n and k ≥ 0.

Remark 1.2 When A is symmetric, a Lösung is also called a root in some literature. For
example, see [1, 25]. When A is a generalized Cartan matrix of finite, affine or hyperbolic
type, this terminology does not bring any confusion with a root2 of the root system associated
with A because a Lösung is a root of the root system [19, Proposition 5.10]. However, in
general, a Lösung is not a root of the root system. See [23, p.11] for the case when A is of
type E11. In order to avoid possible confusion, we introduce the term Lösung to distinguish
it from a root of a root system.

Nevertheless, if A is a generalized Cartan matrix, real Lösungen are the same as real roots
of the Kac–Moody algebra associated with A. We expect that, for each symmetrizable GIM,
there may exist a Lie algebra for which real roots can be defined and are compatible with
real Lösungen, but we do not yet know which Lie algebra would be adequate. Some related
works can be found in [3, 4, 6, 7, 26, 32, 33, 35].

Fix an n × n skew-symmetrizable matrix B = [bi j ] and let D = diag(d1, . . . , dn) be its
symmetrizer such that B D is skew-symmetric, di ∈ Z>0 and gcd(d1, . . . , dn) = 1. Consider
the n × 2n matrix

[
B I

]
. After a sequence w of mutations, we obtain

[
Bw Cw

]
. The matrix

Cw is called the C-matrix and its row vectors the c-vectors. Write their entries as

Bw = [
bwi j

]
, Cw = [

cwi j

] =
⎡

⎢⎣
cw1
...

cwn

⎤

⎥⎦ , (1.2)

where cwi are the c-vectors. For a mutation sequence w = [ii , i2, . . . , i�], i j ∈ {1, 2, . . . , n},
we define w[k] := [ii , i2, . . . , i�, k].
2 Historically, when Killing investigated the structure of a finite dimensional simple Lie algebra L with Cartan
subalgebra h, the roots of the characteristic polynomial det(adL x − t), x ∈ h, were called the roots [8].
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Definition 1.3 For each mutation sequence w, define rwi ∈ W ⊂ A inductively with the
initial elements ri = si , i = 1, . . . , n, as follows:

rw[k]
i =

{
rwk rwi rwk if bwikcwk > 0,

rwi otherwise.
(1.3)

Clearly, each rwi is written in the form

rwi = gw
i si (g

w
i )

−1
, gw

i ∈ W, i = 1, . . . , n.

This construction has been used in the literature including [2, 11, 12, 34] when the asso-
ciated GIM is a Cartan matrix.

Definition 1.4 Fix a GIM A, and define

lwi = gw
i (αi ), i = 1, . . . , n.

Then the L-matrix Lw associated to A is defined to be the n × n matrix whose i th row is lwi
for i = 1, . . . , n, i.e.,

Lw =
⎡

⎢⎣
lw1
...

lwn

⎤

⎥⎦ ,

and the vectors lwi are called the l-vectors of A.
Note that the L-matrix and l-vectors associated to a GIM A implicitly depend on the

representation π which is suppressed from the notation. When multiple GIMs are being
discussed we will use the notation l A,w

i to distinguish between different sets of l-vectors.

When we fix a GIM, we will always choose a linear ordering≺ on {1, 2, . . . , n} and define
the associated GIM A = [ai j ] by

ai j =

⎧
⎪⎨

⎪⎩

bi j if i ≺ j,

2 if i = j,

−bi j if i 	 j .

(1.4)

An ordering ≺ provides a certain way for us to regard the skew-symmetrizable matrix B as
acyclic even when it is not.

As our geometricmodel, we consider a Riemann surface and admissible curves (Definition
2.1), and define a map from the set of admissible curves to the set of monomials in si ’s in
W (Definition 2.3). The first conjecture below extends our conjecture in [20] from acyclic
quivers to skew-symmetrizable matrices. The second conjecture claims that we can choose
a GIM A to obtain a set of reflections that only depend on the seed.

Conjecture 1.5 Fix an ordering ≺ on {1, 2, . . . , n} so that a GIM A is determined. Then
for any mutation sequence w, there exist non-self-intersecting admissible curves ηwi such
that π(rwi ) = π

(
s(ηwi )

)
, where s(ηwi ) are the monomials in W associated to ηwi for i =

1, 2, . . . , n.

Conjecture 1.6 For any skew-symmetrizable matrix B, there exists a linear ordering ≺ and
its associated GIM A such that if w and v are two mutation sequences with Cw = Cv then
π(rwi ) = π(rvi ), i = 1, . . . , n.
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For any acyclic skew-symmetrizable matrix, choosing a linear ordering where i ≺ j if
and only if bi j < 0 yields a GIM that is a Cartan matrix by (1.4). In this case, Conjecture 1.6
has been proven in [34] using some results from categorification of cluster algebras.

As the main result of this paper, we show that the reflections rwi naturally arise in con-
nection with the C-matrix. It also justifies potential importance of the matrix Lw . The key
idea is to maintain that we should have a “root system” for each mutation sequence w as in
the acyclic case. More precisely, we choose a linear ordering ≺ and its associated GIM, and
inductively define an n-tuple of elements swi ∈ A and an n-tuple of vectors λwi ∈ Z

n (∼= �),
i = 1, 2, . . . , n, so that the following formulae hold:

swi (λwj ) =

⎧
⎪⎨

⎪⎩

λwj + bwj iλ
w
i if i ≺ j,

−λwj if i = j,

λwj − bwj iλ
w
i if i 	 j,

(1.5)

where Bw = [bwi j ]. We denote by 
w the matrix whose rows are λwi .

Theorem 1.7 Fix a linear ordering ≺ on {1, 2, . . . , n} to obtain its associated GIM A. Then,
for each mutation sequence w, we have


w = Cw.

Moreover,

swi ≡ rwi (mod 2A), i = 1, 2, . . . , n.

As one can see from the flow chart in Table 1, the definitions of swi and λwi are somewhat
convoluted and heavily depend on ≺. Nevertheless, in the end, we obtain Cw and rwi which
do not depend on ≺. Moreover, this process reveals that rwi are certain leading terms in swi .
Since swi are related to λwi and rwi to lwi , the l-vectors lwi can be considered as “leading terms”
of the c-vectors cwi (= λwi ). What Conjectures 1.5 and 1.6 claim is that these leading terms
carry essential information.

To illustrate Theorem 1.7, we present Example 1.8 below. Conjecture 1.5 will be checked
for this example in Example 2.2 after an admissible curve is defined. Conjecture 1.6 is trivially
satisfied for this matrix since its exchange graph is a tree (see [28]) and thus Cv = Cw does
not occur (unless v and w differ only by repeated mutations [i, i] at the same index). A
non-trivial example of Conjecture 1.6 is given in Example 2.14.

Example 1.8 Consider the skew-symmetrizable matrix B =
[

0 3 −3
−2 0 2
2 −2 0

]
with the sym-

metrizer D = diag(3, 2, 2), and the sequence of consecutivemutations at indices 2, 3, 2, 1, 2:

[
B I

] [2,3,2,1,2]−−−−−−−−−→
⎡

⎣
0 −3 9 5 18 15
2 0 −4 −2 −7 −6

−6 4 0 0 −2 −1

⎤

⎦

Thus we have obtained three c-vectors (5, 18, 15), (−2,−7,−6) and (0,−2,−1).
We take the linear ordering 1 	 2 	 3. Then its GIM A and the symmetrized matrix AD

are as follows:

A =
⎡

⎣
2 −3 3

−2 2 −2
2 −2 2

⎤

⎦ , AD =
⎡

⎣
6 −6 6

−6 4 −4
6 −4 4

⎤

⎦ .
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In accordance with (1.1), define a quadratic form by

q(x, y, z) = 6x2 + 4y2 + 4z2 − 12xy − 8yz + 12zx .

Then we have

q(5, 18, 15) = 6, q(−2,−7,−6) = 4, q(0,−2,−1) = 4.

Thus all three c-vectors are Lösungen for A.
From Definition 1.3, we obtain

rv1 = s3s2s1s2s3s2s3s2s1s2s3s2s3s2s1s2s3, rv2 = s3s2s1s2s3s2s3s2s1s2s3, rv3 = s2s3s2,

where v is the mutation sequence [2, 3, 2, 1, 2]. For the GIM A, Definition 1.4 gives rise to
the l-vectors

lv1 = s3s2s1s2s3s2s3s2(α1) = (5, 18, 15),

lv2 = s3s2s1s2s3(α2) = (2, 7, 6), lv3 = s2(α3) = (0, 2, 1).

On the other hand, following the definitions in Sect. 2, we obtain similar results for the λwi .
In particular,

λv1 = s3s2s1s2s3s2s3s2(α1) = (5, 18, 15),

λv2 = −s3s2s1s2s3(α2) = (−2,−7,−6), λv3 = −s2(α3) = (0,−2,−1).

Thus the matrix 
v =
⎡

⎣
5 18 15

−2 −7 −6
0 −2 −1

⎤

⎦ equals the C-matrix.

However, l-vectors will not always be equal to positive c-vectors. Indeed, they need not

even be sign-coherent. For the choice of GIM A′ =
⎡

⎣
2 3 −3
2 2 2

−2 2 2

⎤

⎦ we see that

l A′,v
1 = (149,−462, 1341), l A′,v

2 = (−10, 31,−90), l A′,v
2 = (0,−2, 1).

1.1 Organization of the paper

In Sect. 2, precise definitions will be made for the objects appeared in this introduction, and
Conjectures 1.5 and 1.6 will be presented in a more refined way, and other examples will
be given. In Sect. 3 the elements swi ∈ A and the vectors λwi will be defined with a running
example, and Theorem 1.7 will be stated more precisely. In Sect. 4, Theorem 1.7 will be
proven through induction. The main induction step consists of six different cases, each of
which has a few subcases.

2 Conjectures

In this section, we present our conjectures in a more precise way after making necessary
definitions.

For a nonzero vector c = (c1, . . . , cn) ∈ Z
n , we define c > 0 if all ci are non-negative,

and c < 0 if all ci are non-positive. This induces a partial ordering < on Z
n . Define |c| =

(|c1|, . . . , |cn |).
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Assume that M = [mi j ] is an n × 2n matrix of integers. Let I := {1, 2, . . . , n} be the set
of indices. Forw = [ii , i2, . . . , i�], i j ∈ I, we define the matrix Mw = [mw

i j ] inductively: the
initial matrix is M forw = [ ], and assumingwe have Mw, define thematrix Mw[k] = [mw[k]

i j ]
for k ∈ I with w[k] := [ii , i2, . . . , i�, k] by

mw[k]
i j =

{
−mw

i j if i = kor j = k,

mw
i j + sgn(mw

ik) max(mw
ikmw

k j , 0) otherwise,
(2.1)

where sgn(a) ∈ {1, 0,−1} is the signature of a. The matrix Mw[k] is called the mutation of
Mw at the index k.

Let B = [bi j ] be an n × n skew-symmetrizable matrix and D = diag(d1, . . . , dn) be
its symmetrizer such that B D is symmetric, di ∈ Z>0 and gcd(d1, . . . , dn) = 1. Consider
the n × 2n matrix

[
B I

]
and a mutation sequence w = [i1, . . . , ik]. After the mutations at

the indices i1, . . . , ik consecutively, we obtain
[
Bw Cw

]
. Write their entries as in (1.2). It is

well-known that the c-vector cwi is non-zero for each i , and either cwi > 0 or cwi < 0 due to
sign coherence of c-vectors ( [10, 14]).

Choose a linear ordering ≺ on the set I, and define a GIM A = [ai j ] by (1.4). From
Definition 1.1, we have Lösungen associated with A. Set λ1 = (1, 0, . . . , 0), λ2 =
(0, 1, 0, . . . , 0), . . . , λn = (0, . . . , 0, 1) to be a basis of Zn . Recall that we have defined
the algebra A in the introduction. Define a representation π : A → End(Zn) by

π(si )(λ j ) = λ j − a jiλi and π(ei )(λ j ) = δi jλi for i, j ∈ I, (2.2)

and by extending it through linearity, where δi j is the Kronecker delta. We will suppress π

when we write the action of an element of A on Z
n . As before, denote by W the subgroup

of the units of A generated by si , i = 1, . . . , n.
To introduce our geometric model3 for c-vectors, we need a Riemann surface equipped

with n labeled curves as below. Let P1 and P2 be two identical copies of a regular n-gon.
For σ ∈ Sn , label the edges of each of the two n-gons by Tσ(1), Tσ(2), . . . , Tσ(n) counter-
clockwise.

On Pi (i = 1, 2), let Li be the line segment from the center of Pi to the common endpoint
of Tσ(1) and Tσ(2). Later, these line segments will only be used to designate the end points
of admissible curves and will not be used elsewhere. Fix the orientation of every edge of P1

(resp. P2) to be counter-clockwise (resp. clockwise) as in the following picture.

Let�σ be the Riemann surface of genus  n−1
2 � obtained by gluing together the two n-gons

with all the edges of the same label identified according to their orientations. The edges of
the n-gons become n different curves in �σ . If n is odd, all the vertices of the two n-gons are

3 An alternative geometric model can be found in [12].
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Fig. 1 The curves ηvi corresponding to Example 1.8 displayed on �σ where σ = (3, 1, 2) ∈ S3 written in
one-line notation

identified to become one point in �σ and the curves obtained from the edges become loops.
If n is even, two distinct vertices are shared by all curves. Let T = T1 ∪ · · · Tn ⊂ �σ , and V
be the set of the vertex (or vertices) on T .

LetW be the universal Coxeter group of rank n, which is by definition isomorphic to the
free product of n-copies of Z/2Z, and let R be the set of reflections in W. We will denote
an element of W as a word from the alphabet I = {1, 2, . . . , n}. In particular, an element v
of R can be written as v = i1i2 · · · ik such that k is an odd integer and i j = ik+1− j for all
j = 1, 2, . . . , k.

Definition 2.1 An admissible curve is a continuous function η : [0, 1] −→ �σ such that

1. η(x) ∈ V if and only if x ∈ {0, 1};
2. there exists ε > 0 such that η([0, ε]) ⊂ L1 and η([1 − ε, 1]) ⊂ L2;
3. if η(x) ∈ T \ V then η([x − ε, x + ε])meets T transversally for sufficiently small ε > 0;
4. υ(η) ∈ R, where υ(η) := i1 · · · ik ∈ W is given by

{x ∈ (0, 1) : η(x) ∈ T } = {x1 < · · · < xk} and η(x�) ∈ Ti� for � ∈ {1, . . . , k}.
We consider curves up to isotopy. When i p = i p+1, 1 ≤ p ≤ k − 1, for υ(η) = i1 · · · ik ,

the curve η is isotopic to a curve η1 with υ(η1) = i1 · · · i p−1i p+2 · · · ik . If η1 and η2 are
curves with υ(η1) = i1 · · · ik and υ(η2) = j1 · · · j�, define their concatenation η1η2 to be a
curve such that υ(η1η2) = i1 · · · ik j1 · · · j�.

Example 2.2 Continuing Example 1.8, we choose admissible curves ηvi on a triangulated
torus �σ such that rvi = s(ηvi ) and draw the curves in Fig. 1 to illustrate that they are non-
self-intersecting. This verifies Conjecture 1.5 for this example. (In this example, it is not
necessary to go through π .) We also draw the curves on the universal cover of �σ in Fig. 2
to see that they have no pairwise intersections.

Definition 2.3 For v = i1i2 · · · ik ∈ W, define s(v) = si1 · · · sik ∈ W ⊂ A. We write
s(η) = s(υ(η)) for an admissible curve η.

Now we state Conjecture 1.5 in a more refined way.

Conjecture 2.4 (Conjecture 1.5) Fix an ordering on I so that a GIM A is determined. Then,
for each mutation sequence w, there exists a family of non-self-crossing admissible curves
ηwi , i = 1, . . . , n, on the Riemann surface �σ for some σ ∈ Sn such that π(rwi ) = π

(
s(ηwi )

)
.
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Fig. 2 The curves from
Example 1.8. The shortest curve
corresponds to ηv3 , and the

longest one to ηv1

Fig. 3 The curves for Example 2.5 drawn on �σ with σ = (1, 4, 2, 3)

Example 2.5 Consider the matrix B =

⎡

⎢⎢⎣

0 −1 −1 2
1 0 1 −1
1 −1 0 −1

−2 1 1 0

⎤

⎥⎥⎦. It arises from a triangulation of

the torus with one boundary component with one marked point. It is commonly referred to
as the dreaded torus. With the mutation sequence w = [2, 3, 4, 2, 1, 3], we have

[
B I

] w−−→

⎡

⎢⎢⎣

0 1 −1 −1 0 2 3 2
−1 0 −1 2 2 3 3 2
1 1 0 −1 −1 −2 −3 −2
1 −2 1 0 0 −2 −2 −1

⎤

⎥⎥⎦ .

123
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Choose the linear ordering 1 ≺ 3 ≺ 2 ≺ 4. From Definition 1.3, we obtain

rw1 = s1s3(s2s4s2s3)
2s1(s3s2s4s2)

2s3s1,

rw2 = s1s3(s2s4s2s3)
2s2(s3s2s4s2)

2s3s1,

rw3 = s1s3s2s4s2s3s2s4s2s3s1,

rw4 = s2s3s2s4s2s3s2.

In Fig. 3 we provide curves ηwi such that s(ηwi ) = rwi for all i ∈ I. It is clear that they
are non-self-intersecting on the surface �σ with σ = (1, 4, 2, 3) ∈ S4 written in one-line
notation. By inspection these curves can be seen to be pairwise non-crossing.

In Example 2.6 we show π is necessary in Conjecture 2.4 to avoid self-intersections.

Example 2.6 Consider the matrix B =

⎡

⎢⎢⎣

0 −2 −2 3
2 0 4 2
2 −4 0 −1

−3 −2 1 0

⎤

⎥⎥⎦. Applying to the mutation

sequence w = [4, 3, 1, 4, 1] we have
rw4 = s3s4s1(s4s3)

2s4s2(s4s3)
3s4s2s4(s3s4)

2s1s4s3.

Let η be the curve defined by s(η) = rw4 . Upon inspection, for any σ ∈ S4 the curve η has
a self-intersection in �σ . However, for any choice of GIM we have π((s3s4)3) = 1 so the
curve η′ given by υ(η′) = 34132423143 ∈ W satisfies π(rw4 ) = π(s(η′)) and can be drawn
with no self-intersections.

In order to refine Conjecture 1.6, we need a new definition. A sequence of indices
(i1, . . . , id) is said to be a chordless cycle in a skew-symmetrizable matrix B if

1. i j = ik if and only if { j, k} = {1, d},
2. for any distinct j, k ∈ {1, . . . , d} we have bi j ,ik �= 0 if and only if | j − k| = 1,

Additionally, a chordless cycle is said to be oriented if and only if all entries bi j ,i j+1 for
j = 1, . . . , d − 1 have the same sign. Two chordless cycles are considered equivalent if they
have the same underlying set of indices.

Conjecture 2.7 (Conjecture 1.6) Let B be a skew-symmetrizable matrix.

1. There exists a linear ordering ≺ on I such that every oriented chordless cycle (i1, . . . , id)

in B has an odd number of positive ai j ,i j+1 , j = 1, . . . , d − 1, where A = [ai j ] is the
GIM determined by ≺.

2. Fix an ordering ≺ and its GIM A satisfying the condition in (1). If w and v are two
mutation sequences such that Cw = Cv then π(rwi ) = π(rvi ), i = 1, . . . , n.

The elements π(rwi ) can be viewed as elements of π(W), and Conjecture 2.7 can be
interpreted as a statement about relations in π(W). Relations for these groups have been
explored for particular skew-symmetrizable matrices and a restricted class of GIMs in [2, 11,
30]. A thorough investigation of relations in π(W) and their application to Conjecture 2.7
will take place in a subsequent article. It is expected that all of the discovered relations will
hold for any GIM satisfying the condition in Conjecture 2.7 (1) which is a weaker than
Seven’s notion of admissibility [29, 30].

In Proposition 1 below, we will prove Conjecture 2.7 (1) for a special family using results
in [29, 31]. In discussing the notion of cycles we will briefly switch from the perspective of
matrices to that of the directed graph.
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Definition 2.8 Let B be an n ×n skew-symmetrizable matrix. Define G(B) to be the directed
graph with vertices in I and arrows i → j for bi j < 0.

Note that the definition of a chordless cycle for a matirx B is equivalent to the standard
definition of chordless cycle in the directed graph G(B).

Now, for the time being, assume that B = [bi j ] is a skew-symmetrizable matrix which can
be mutated from an acyclic matrix B0 through a mutation sequencew, i.e., assume B = Bw

0 .
Let A0 be the generalized Cartan matrix associated with B0, and define

A = [ai j ] := Cw A0(C
w)�. (2.3)

Then, by [31, Theorems 1.2] (see also [29]), the matrix A is a GIM such that |ai j | = |bi j |
for i �= j and

every oriented chordless cycle of G(B) has exactly one edge {i, j} such that ai j > 0.

(2.4)

Let us consider the following conditions for G(B):

(AC1) every oriented (not necessarily chordless) cycle has at least one edge {i, j} such that
ai j > 0;

(AC2) if an edge {i, j} with ai j > 0 is contained in a cycle either oreinted or non-oriented,
then it is also contained in an oriented chordless cycle.

Proposition 1 Assume that B is a skew-symmetrizable matrix which can be mutated from an
acyclic matrix B0. Let A = [ai j ] be the GIM defined in (2.3). Suppose that (AC1) and (AC2)
hold. Then Conjecture 2.7 (1) is true.

Proof It follows from (2.4) that A satisfiesConjecture 2.7 (1) if it arises froma linear ordering.
To this effect, let G = G(B), and define G◦ to be the graph obtained from G by reversing the
directions of edges {i, j} with ai j > 0. We will show that G◦ is acyclic, and define a relation
≺ on the set I of vertices as follows:

i ≺ j if there is a directed path i = i1 → · · · → i p = j in G◦.

Then the relation ≺ will be a strict partial order on I.
Suppose that there is an oriented cycle E0 = (i0 → i1 → · · · → i p = i0) in G◦.

Then it is also a cycle in G, but not necessarily oriented. We inductively define the sequence
E0, E1, . . . , E p of oriented cycles in G◦ as follows: Suppose that Ed is defined for some
d ∈ {0, 1, . . . , p − 1}. If aid ,id+1 < 0 then we define Ed+1 to be equal to Ed . Suppose
that aid ,id+1 > 0. By (AC2), there must be an oriented chordless cycle (id → j1 → j2 →
· · · → jr → id+1 → id) in G. Then we define Ed+1 as a subgraph of G◦ to be the oriented
cycle obtained from Ed by replacing the single arrow id → id+1 with the oriented path
id → j1 · · · → jr → id+1. Here, thanks to (2.4), we have aid , j1 < 0, a je, je+1 < 0 for
e ∈ {1, . . . , r − 1}, and a jr ,id+1 < 0. Once E0, E1, . . . , E p are defined, the last one E p is
an oriented cycle (k0 → k1 → · · · → ks = k0) such that {i0, . . . , i p−1} ⊆ {k0, . . . , ks−1}
and ake,ke+1 < 0 for all e = 0, . . . , s − 1. By definition of G◦, the graph G also has the same
oriented cycle (k0 → k1 → · · · → ks = k0). This contradicts (AC1). Thus G◦ is acyclic.

Now refine ≺ to a linear ordering on I. Let Ã = [ãi j ] be given by (1.4). We need to show
that Ã = A. We have ãi j = ai j = 2 if i = j , and ãi j = ai j = 0 if bi j = 0. Assume i ≺ j and
ãi j = bi j < 0. If ai j > 0, then j ≺ i by definition, which is a contradiction. Thus ai j < 0
and ãi j = ai j . Assume i ≺ j and ãi j = bi j > 0. Then b ji < 0. If ai j < 0, then a ji < 0 and
hence j ≺ i by definition, which is a contradiction. Thus ai j > 0 and ãi j = ai j . The other
cases are similar, and we have ãi j = ai j in all the cases. ��
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Example 2.9 Let B = [bi j ] be the skew-symmetricmatrix associatedwith the quiver Q below
via the rule bi j = −1 if i → j and bi j = 0 if there is no arrow between i and j . This quiver is
obtained applying mutations at vertices 6, 5, 3, 4 to the acyclic quiver Q0 also shown below.

From (2.3), we obtain GIM A = [ai j ] =
⎡

⎣
2 −1 1 0 0 0

−1 2 −1 −1 1 0
1 −1 2 0 −1 −1
0 −1 0 2 −1 0
0 1 −1 −1 2 1
0 0 −1 0 1 2

⎤

⎦ associated to B (or Q). We

specify the signature of ai j on Q(= G) and draw the acyclic graph G◦ defined in the proof
of Proposition 1:

It is easy to see that G satisfies (AC1) and (AC2). Indeed, we see (2.4) holds, and there
is only one additional (simple) oriented cycle (1, 3, 6, 5, 4, 2, 1) with chords, which has two
positive edges. Now the definition of ≺ in the proof of Proposition 1 yields 5 ≺ 4 ≺ 2 ≺ 1,
5 ≺ 3 ≺ 2 ≺ 1 and 5 ≺ 3 ≺ 6. Thus a refinement to a linear odering is given by
5 ≺ 4 ≺ 3 ≺ 6 ≺ 2 ≺ 1, which gives rise to A via (1.4). Clearly, Conjecture 2.7 (1) holds
with this linear ordering.

Example 2.10 Let B be the skew-symmetric matrix associated with the quiver Q below in the
same way as in Example 2.9. This quiver is obtained applying mutations at vertices 5, 3, 4
to the acyclic quiver Q0 also shown below.

From (2.3), we obtain GIM A = [ai j ] =
⎡

⎣
2 −1 0 1 0 −1

−1 2 0 1 0 −1
0 0 2 −1 1 0
1 1 −1 2 −1 −1
0 0 1 −1 2 0

−1 −1 0 −1 0 2

⎤

⎦. We specify the signature

of ai j on Q(= G) and draw the acyclic graph G◦:
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It is straightforward to check that G satisfies (AC1) and (AC2), and we can take 1 ≺ 2 ≺
3 ≺ 6 ≺ 4 ≺ 5 for Conjecture 2.7 (1).

Remark 2.11 It will be interesting to investigate when a skew-symmetrizable matrix mutated
from an acyclicmatrix satisfies (AC1) and (AC2). It may be that such amatrix always satisfies
the conditions.

The lemma below provides another sufficient condition for existence of a linear ordering
≺ and its GIM A satisfying the condition in Conjecture 2.7 (1). If we do not require that a
GIM is determined by a linear ordering, it can be proven that a GIM satisfying the condition
of Conjecture 2.7 (1) always exists for any skew-symmetrizable matrix. But in order to define
the elements swi ∈ A as in the next section, it is necessary that A arises from a linear ordering.

Lemma 2.12 Let B be a skew-symmetrizable matrix. Consider G = G(B) as undirected.
Assume that each of the (undirected) chordless cycles in G has an edge in the cycle that is
not contained in any other (undirected) chordless cycles. Then Conjecture 2.7 (1) is true.

Proof For a collection of arrows E = {e1, . . . , ep} in G, we can define a new directed graph
H by reversing the direction of the arrows of E . If H is acyclic we may define a linear order
by setting i ≺ j if i → j is an arrow ofH and extending it to a linear ordering on I. We will
show that there exists a set of arrows that contains an odd number of arrows (actually one
arrow) from every oriented chordless cycle of G such that H is acyclic. Therefore it follows
from (1.4) that the associated GIM satisfies the condition in the statement of the lemma.

As in the statement of the lemma, we consider G undirected for the time being. Let
{C1, C2, . . . , Cs} be the set of undirected chordless cycles in G and take E ′ = {e1, e2, . . . , es}
to be the set of edges in G such that ei is an edge of Ci and not an edge of C j for any j �= i .
Such an E ′ exists by the assumption. Let T be the spanning tree obtained from removing the
edges in E ′ from G. Now we consider G directed again, and let ēi be the opposite arrow of
ei . We will construct the desired sequence E of arrows as a subset of E ′ by iteratively taking
ei to be in E if and only if either

1. Ci is oriented in G, or
2. T ∪ {ēk |ek ∈ E, k < i} ∪ {ei } has an oriented cycle.

Now defineH from G by reversing the direction of the arrows of E . Then for any oriented
cycle of G we have reversed only one arrow of the cycle by (1) and the choice of E ′, so any
oriented chordless cycle of G is no longer oriented in H. Furthermore every non-oriented
cycle of G remains non-oriented in H by (2). Therefore all of the chordless cycles of H are
non-oriented and it must be that H is acyclic. ��

We now give an example illustrating the proof of Lemma 2.12.

Example 2.13 Let B be the skew-symmetric matrix given in Fig. 4, or any skew-symmetric
matrix with the same directed graph G shown in the figure. The graph G has two oriented
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Fig. 4 A skew-symmetric matrix
B and the digraph associated to it
in Lemma 2.12. The proof of the
lemma is illustrated in
Example 2.13

chordless cycles (1, 3, 4, 1) and (2, 4, 5, 2), and three undirected chordless cycles C1, C2 and
C3 given by {1, 3, 4}, {1, 2, 4}, and {2, 4, 5}, respectively. Consider e1 = 3 → 1, e2 = 1 → 2,
and e3 = 5 → 2. Then E ′ = {e1, e2, e3} satisfies the assumption of Lemma 2.12, and we

obtain the spanning tree

T =

21

3 4 5 by removing E ′ from G. Now
to construct E we see that e1 ∈ E by condition (1), e2 /∈ E since C2 is not oriented and

T ∪{e1, e2} =

21

3 4 5 does not have an oriented cycle, and e3 ∈ E by condition (1).

Thus E = {e1, e2}, and

H =

21

3 4 5. The covering relations dictated by the
acyclic graph H are 1 ≺ 4 ≺ 3, 1 ≺ 2 ≺ 4, and 2 ≺ 4 ≺ 5. One extension of these relations
to a linear ordering is 1 ≺ 2 ≺ 4 ≺ 3 ≺ 5. It is straightforward to check that the associated
GIM has exactly one positive entry for each oriented chordless cycle of B (or of G).

Recall the definition of an L-matrix from Definition 1.4. We now provide an example
illustrating Conjecture 2.7 and l-vectors.

Example 2.14 Let B be the matrix from Example 2.5. For the two mutation sequences w =
[3, 4, 1, 3, 4, 3] and v = [4, 1, 3, 4, 1, 3] we have Cw = Cv . On the other hand,

rw1 = s3s4s3s1s3s4s3,

rw2 = s3s4s3s1s3s4s2s4s3s1s3s4s3,

rw3 = s3s4s1s3s4s3s1s3s1s3s4s3s1s4s3,

rw4 = s3s4s1s3s4(s3s1)
2s3s4s3(s1s3)

2s4s3s1s4s3,

and

rv1 = s3(s4s1)
2s4s3s4s1s4s3s4(s1s4)

2s3,

rv2 = s3(s4s1)
2s4s3s4s1s4s3(s4s1)

2s4s2s4(s1s4)
2s3s4s1s4s3s4(s1s4)

2s3,

rv3 = s3(s4s1)
2s4s3s4(s1s4)

2s3,

rv4 = (s3s4s1)
2s4(s1s4s3)

2.

There are two oriented cycles on vertices {1, 4, 2} and {1, 4, 3} in B. Take the GIM arising
from the linear ordering 1 ≺ 2 ≺ 3 ≺ 4. Then only the entry a14 is positive for the cycles, and
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the condition in Corollary 1.6 is satisfied. Direct computation shows that π(rwi ) = π(rvi ),
and Conjecture 1.6 is verified.

We identify αi with λi in Definition 1.4 and compute the l-vectors

lw1 = s3s4s3(λ1) = (1, 0,−1,−1), lw2 = s3s4s3s1s3s4(λ2) = (−1, 1, 0, 1),

lw3 = s3s4s1s3s4s3s1(λ3) = (2, 0, 0,−3), lw4 = s3s4s1s3s4(s3s1)
2s3(λ4) = (−3, 0, 0, 4),

and obtain the L-matrix

Lw =

⎡

⎢⎢⎣

1 0 −1 −1
−1 1 0 1
2 0 0 −3

−3 0 0 4

⎤

⎥⎥⎦ .

On the other hand,

lv1 = (−1, 0, 1, 1) = −lw1 , lv2 = (−1, 1, 0, 1) = lw2 ,

lv3 = (−2, 0, 0, 3) = −lw3 , lv4 = (−3, 0, 0, 4) = lw4 .

One may hope that the reflections rwi would give a direct generalization of [34, Theorem
1.4] with the expectation that a product of rwi ’s might equal sσ̃ (1)sσ̃ (2) · · · sσ̃ (n) inW for some
σ̃ ∈ Sn . However Example 2.15 provides a counterexample.

Example 2.15 Let B be the matrix from Example 2.6. After the mutation sequence w =
[2, 3, 2, 1] we have

rw1 = s1, rw2 = s1s2s1, rw3 = s2s3s2, rw4 = s3s4s3.

It is straightforward to check that
∏

i∈I rwσ(i) �= sσ̃ (1)sσ̃ (2)sσ̃ (3)sσ̃ (4) for any pair of σ, σ̃ ∈ S4.
The same is true when considering the matrix representation of the si for any choice of GIM
associated to B.

This collection {rwi } also provides an example where for any σ ∈ S4 there will always be
some pair of curves in ηwi and ηwj satisfying Conjecture 2.4 that intersect.

3 Main theorem

In this section, we define the elements swi ∈ A and the vectors λwi to present themain theorem
of this paper precisely. The key idea is that we make the formulae (1.5) inductively hold for
each mutation sequencew. This process shows that there is a unique term in swi that survives
mod 2A without regard to the choice of an ordering ≺. More precisely, we prove swi ≡ rwi
(mod 2A). When B is acyclic, the c-vectors cwi are the reflection vectors of π(rwi ) as shown
in [34] with the linear ordering ≺ defined by i ≺ j if and only if bi j < 0. However, for
general B, it is not true any more and comparing rwi with swi will help us understand how the
reflections rwi arise in relation to the c-vectors cwi as it will be shown as a part of the main
theorem that cwi = λwi .

Throughout this section, assume that B = [bi j ] is a skew-symmetrizable matrix. Fix a
linear ordering ≺ on I to obtain its associated GIM A = [ai j ] from (1.4).
Example 
-1 As a running example in this section, we consider the skew-symmetrizable
matrix

B =
⎡

⎣
0 1 −3

−2 0 −2
3 1 0

⎤

⎦
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Table 1 Flow chart for defining swi and λwi

with symmetrizer D = diag(1, 2, 1) and linear ordering 1 ≺ 2 ≺ 3. Following the convention
in (1.4), we produce the GIM

A =
⎡

⎣
2 1 −3
2 2 −2

−3 −1 2

⎤

⎦ .

Assume that a mutation sequence w is given. We will inductively define the elements
swi ∈ A and the vectors λwi , i ∈ I, in what follows. The procedure is summarized in Table 1.

For convenience, we recall the definition ofA and its representation on Zn . As before, set
λ1 = (1, 0, . . . , 0), λ2 = (0, 1, 0, . . . , 0), . . . , λn = (0, . . . , 0, 1) to be a basis of Zn .
Definition 
-1 Let A be the (unital) Z-algebra generated by si , ei , i ∈ I, subject to the
following relations:

s2i = 1,
n∑

i=1

ei = 1, si ei = −ei , ei s j =
{

si + ei − 1 if i = j,

ei if i �= j,
ei e j =

{
ei if i = j,

0 if i �= j .

Define a representation π : A → End(Zn) by

π(si )(λ j ) = λ j − a jiλi and π(ei )(λ j ) = δi jλi for i, j ∈ I, (3.1)

and by extending it through linearity, where δi j is the Kronecker delta. We will suppress π

when we write the action of an element of A on Zn .
Example 
-2 Continuing from Example 
-1, the action of si , i = 1, 2, 3, are respectively
given by the following matrices:

⎡

⎣
−1 0 0
−2 1 0
3 0 1

⎤

⎦ ,

⎡

⎣
1 −1 0
0 −1 0
0 1 1

⎤

⎦ ,

⎡

⎣
1 0 3
0 1 2
0 0 −1

⎤

⎦ .
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Here the action of si on the vector λ j is to be understood by multiplication of the matrix on
the right.
Definition 
-2 Suppose that w starts with k. Let Ps([ ], [k]) be the set of (i, j), i, j ∈ I,
such that

λi > sk(λi ) and λ j < sk(λ j ) and (k ≺ i ≺ j or i ≺ j ≺ k), or
λ j < sk(λ j ) and k = i ≺ j .

Let Pτ ([ ], [k]) be the set of (i, j), i, j ∈ I, such that

λi > sk(λi ) and λ j < sk(λ j ) and (k ≺ i ≺ j or i ≺ j ≺ k), or
λ j > sk(λ j ) and k = i 	 j .

Definition 
-3 Define

eτ,i =
∑

e j ∈ A,

where the sum is over j such that (i, j) ∈ Pτ ([ ], [k]) or ( j, i) ∈ Pτ ([ ], [k]), and define
τi = si + 2(1 − si )eτ,i for i ∈ I. (3.2)

Definition 
-4 Define

λ
[k]
i =

{
τk(λi ) if λi < sk(λi ) and k ≺ i, or if λi > sk(λi ) and k 	 i, or if i = k,

λi otherwise.
(3.3)

Example
-3Continuing from Example
-2, takew = [2, 3] so k = 2.We havePs([], [2]) =
{(2, 3)} and Pτ ([], [2]) = {(2, 1)}. It follows that eτ,1 = e2, eτ,2 = e1, and eτ,3 = 0. Putting
everything together we see that

τ1 = s1 + 2(1 − s1)e2, τ2 = s2 + 2(1 − s2)e1, τ3 = s3.

We then have

τ2(λ1) = (2 − s2)(λ1) = (1, 1, 0),

τ2(λ2) = s2(λ2) = (0,−1, 0), τ2(λ3) = s2(λ3) = (0, 1, 1).

By (3.3) we define λ
[2]
i := τ2(λi ) for all i ∈ I.

Definition 
-5 Inductively, assume w = v[k, �, . . . , m], including the case v = [ ]. For
i �= k, define

ev[k]
i =

{
τ vk evi τ vk if λvi < svk (λvi ) and k ≺ i, or if λvi > svk (λvi ) and k 	 i,

evi otherwise,
(3.4)

and

ev[k]
k = evk − evk ev[k]

+ ,

where we set

ev[k]
+ =

∑

j �=k, λ
v[k]
j �=λvj

ev[k]
j .

Example
-4 Continuing from Example 
-3 we have k = 2, � = 3, and v = []. For i = 1, 3
we have e[2]

i = τ2eiτ2. More explicitly,

e[2]
1 = τ2e1τ2 = (2 − s2)e1, e[2]

3 = τ2e3τ2 = s2e3.
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For i = 2,

e[2]
+ = e[2]

1 + e[2]
3 = 2e1 − s2(e1 − e3)

and finally

e[2]
2 = e2(1 − e[2]

1 − e[2]
3 ) = s2(e1 − e3) − e1 + e2 + e3.

Definition 
-6 Define

ev[k]
s,i =

∑
ev[k]

j ,

where the sum is over j such that (i, j) ∈ Ps(v, v[k]) or ( j, i) ∈ Ps(v, v[k]), and define

sv[k]
i =

{
τ vk τ vi τ vk + 2(1 − τ vk τ vi τ vk )ev[k]

s,i if λvi < svk (λvi ) and k ≺ i, or if λvi > svk (λvi ) and k 	 i,

τ vi + 2(1 − τ vi )ev[k]
s,i otherwise.

(3.5)

Example 
-5 In Example 
-3 we computed Ps([], [2]) = {(2, 3)} so

e[2]
s,1 = 0, e[2]

s,2 = e[2]
3 , e[2]

s,3 = e[2]
2 .

Now by comparing si (λi ) given in Example 
-2 to λi , we have

s[2]
1 = τ2τ1τ2 + 2(1 − τ2τ1τ2)e

[2]
s,1 = τ2τ1τ2

= (2 − 2s1 + s2s1)s2 + 2(1 − 2s2 + 2s1s2 − s2s1s2)e1 + 2(−2 + 2s1 + 2s2 − s2s1)e3,

s[2]
2 = τ2 + 2(1 − τ2)e

[2]
s,2 = 2(e1 − e3) + s2(1 − 2(e1 − e3)) = s2 + 2(1 − s2)(e1 − e3),

s[2]
3 = τ3 + 2(1 − τ3)e

[2]
s,3 = s2s3s2 + 2(1 + s2s3)e2 + 2(1 − 2s2 − s2s3s2)e3.

Definition 
-7 Let Ps(v[k], v[k, �]) be the collection of (i, j) such that

(� ≺ i ≺ j or i ≺ j ≺ �) and λ
v[k]
i > sv[k]

� (λ
v[k]
i ) and λ

v[k]
j < sv[k]

� (λ
v[k]
j ), or

� = i 	 j and λ
v[k]
� < 0 and λ

v[k]
j > sv[k]

� (λ
v[k]
j ), or

� = i ≺ j and λ
v[k]
� > 0 and λ

v[k]
j < sv[k]

� (λ
v[k]
j ).

Similarly, let Pτ (v[k], v[k, �]) be the collection of (i, j) such that

(� ≺ i ≺ j or i ≺ j ≺ �) and λ
v[k]
i > sv[k]

� (λ
v[k]
i ) and λ

v[k]
j < sv[k]

� (λ
v[k]
j ), or

� = i 	 j and λ
v[k]
� > 0 and λ

v[k]
j > sv[k]

� (λ
v[k]
j ), or

� = i ≺ j and λ
v[k]
� < 0 and λ

v[k]
j < sv[k]

� (λ
v[k]
j ).

Example 
-6 Continuing from Example 
-5 we have

s[2]
3 (λ

[2]
1 ) = (1, 1, 1), s[2]

3 (λ
[2]
2 ) = (0, 3, 2), s[2]

3 (λ
[2]
3 ) = (0,−4,−3)

so Ps([2], [2, 3]) = ∅ and Pτ ([2], [2, 3]) = {(3, 2)}.
Definition 
-8 Define

ev[k]
τ,i =

∑
ev[k]

j ∈ A,

where the sum is over j such that (i, j) ∈ Pτ (v[k], v[k, �]) or ( j, i) ∈ Pτ (v[k], v[k, �]),
and define

τ
v[k]
i = sv[k]

i + 2(1 − sv[k]
i )ev[k]

τ,i for i ∈ I. (3.6)
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Definition 
-9 Finally, define

λ
v[k,�]
j =

⎧
⎪⎨

⎪⎩

τ
v[k]
� (λ

v[k]
j ) if λ

v[k]
j < sv[k]

� (λ
v[k]
j ) and � ≺ j,

or if λ
v[k]
j > sv[k]

� (λ
v[k]
j ) and � 	 j, or if � = j,

λ
v[k]
j otherwise.

(3.7)

Example 
-7 Continuing from Example 
-6 we have

e[2,3]
τ,1 = 0, e[2,3]

τ,2 = e[2]
3 , e[2,3]

τ,3 = e[2]
2 .

Furthermore,

τ
[2]
1 = s[2]

1 , τ
[2]
2 = s2 − 2(1 − s2)e1, τ

[2]
3 = s2s3s2 + 2(1 − s2s3s2 + s2s3 − s2)e1.

In Example 
-5 we computed s[2]
3 (λ

[2]
i ). Finishing our running example we conclude that

λ
[2,3]
1 = λ

[2]
1 = (2 − s2)(λ1) = (1, 1, 0),

λ
[2,3]
2 = τ

[2]
3 (λ

[2]
2 ) = s2s3(λ2) = (0, 1, 2),

λ
[2,3]
3 = τ

[2]
3 (λ

[2]
3 ) = −s2(λ3) = (0,−1,−1).

For any mutation sequence w, set


w =
⎡

⎢⎣
λw1
...

λwn

⎤

⎥⎦ .

Now we restate the main theorem of this paper.

Theorem 3.1 (Theorem 1.7) Let B be a skew-symmetrizable matrix. Fix a linear ordering
≺ on I to obtain a GIM A. Then, for any mutation sequence w, we have

λwi = cwi for all i ∈ I, (C1)

or equivalently,


w = Cw;
for i, j ∈ I,

swi (λwj ) =

⎧
⎪⎨

⎪⎩

λwj + bwj iλ
w
i if i ≺ j,

−λwj if i = j,

λwj − bwj iλ
w
i if i 	 j,

ewi (λwj ) = δi jλ
w
j ; (C2)

moreover, for all i ∈ I ,

swi ≡ rwi (mod 2A). (C3)

In what follows, we prove (C3). A proof of (C1) and (C2) will be given in Sect. 4.

Proof of (C3) Notice from (3.6) that swi ≡ τwi modulo 2A. Then theEq. (3.5) becomesmodulo
2A

sv[k]
i ≡

{
svk svi svk if λvi < svk (λvi ) and k ≺ i, or if λvi > svk (λvi ) and k 	 i,

svi otherwise.
(3.8)
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Using (C1) and (C2), both of the conditions λvi < svk (λvi ), k ≺ i and λvi > svk (λvi ), k 	 i can
be rewritten as

bvikλ
v
k = bvikcvk > 0,

which does not depend on the choice of a GIM. Now (C3) follows from the Definitions (3.2),
(3.5) and (3.6) and from induction. ��

3.1 Some observations

We close this section with examples which show some relationship between c-vectors and
Lösungen.

Example 3.2 Consider thematrix B =

⎡

⎢⎢⎣

0 −1 −1 −1
1 0 1 −1
1 −1 0 1
1 1 −1 0

⎤

⎥⎥⎦. Themutation sequence [1, 2, 3, 4, 2]

produces the c-vector (5, 2, 2, 2) which is not a Lösung for any choice of GIM associated to
B.

Example 3.3 below shows that even if a c-vector is a real Lösung our formula may not
always express it as such.

Example 3.3 Consider the matrix B =

⎡

⎢⎢⎣

0 1 0 0
−1 0 −1 0
0 1 0 1
0 0 −1 0

⎤

⎥⎥⎦ . This is a finite-type matrix that

corresponds to an orientation of the Dynkin diagram A4. After the mutation sequence w =
[2, 4, 2] with the GIM associated to the linear order 4 ≺ 2 ≺ 3 ≺ 1 our formula produces

λw3 = −s2s4s2λ3 − 2s2λ3 + 2λ3 + 2s4s2λ3 = (0, 0, 1, 1).

However, we also have s2s4s2λ3 = (0, 0, 1, 1) so we see that λw3 could just be expressed as
the real Lösung s2s4s2λ3 as opposed to the linear combination of real Lösungen given above.
For completeness, we have s2λ3 = (0, 1, 1, 0) and s4s2λ3 = (0, 1, 1, 1).

It is also worth noting that the matrix representation of −s2s4s2 − 2s2 + 2 + 2s4s2 is not
equal to the matrix representation of s2s4s2. Furthermore, for any choice of linear ordering
the expression for λw3 that our formula produces will always have three or four terms even
though the vector is a real Lösung.

4 Proof of (C1) and (C2) in Theorem 3.1

In this section we prove Theorem 3.1. We start with the following proposition which shows
that swi , ewi satisfy natural relations for each w.

Proposition 2 For i, j ∈ I and for any mutation sequence w, the following relations hold:

n∑

i=1

ewi = 1, (4.1)

ewi ewj = δi j e
w
i , (4.2)
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ewi swj =
{

swi + ewi − 1 if i = j,

ewi if i �= j,
(4.3)

ewi τwj =
{

τwi + ewi − 1 if i = j,

ewi if i �= j,
(4.4)

swi swi = 1, τwi τwi = 1, (4.5)

swi ewi = −ewi , τwi ewi = −ewi . (4.6)

Proof We use induction. If w = [], all the relations follow from the definitions. Assume the
relations hold for v. In what follows, we show that they hold for v[k], k ∈ I.

Relation (4.1): Since evi τ vk = evi for i �= k by induction, we have (1 − evk )τ vk = (1 − evk ),
and obtain

n∑

i=1

ev[k]
i = ev[k]

k +
∑

i �=k

ev[k]
i

= evk − evk
∑

i �=k
λ
v[k]
i �=λvi

ev[k]
i +

∑

i �=k
λ
v[k]
i �=λvi

ev[k]
i +

∑

i �=k
λ
v[k]
i =λvi

ev[k]
i

= evk + (1 − evk )
∑

i �=k
λ
v[k]
i �=λvi

τ vk evi τ vk +
∑

i �=k
λ
v[k]
i =λvi

evi

= evk +
∑

i �=k
λ
v[k]
i �=λvi

(1 − evk )evi +
∑

i �=k
λ
v[k]
i =λvi

evi =
n∑

i=1

evi = 1.

Relations (4.2): Suppose that i �= k and j �= k. Note that evi τ vk = evi and evj τ
v
k = evj .

Assume ev[k]
i = evi and ev[k]

j = evj . Then

ev[k]
i ev[k]

j = evi evj = δi j e
v
i = δi j e

v[k]
i .

Assume ev[k]
i = τ vk evi τ vk and ev[k]

j = evj . Then

ev[k]
i ev[k]

j = τ vk evi τ vk evj = τ vk evi evj = δi jτ
v
k evi = δi j e

v[k]
i .

Assume ev[k]
i = evi and ev[k]

j = τ vk evj τ
v
k . Then

ev[k]
i ev[k]

j = evi τ vk evj τ
v
k = evi evj τ

v
k = δi j e

v
i τ vk = δi j e

v[k]
i .

Assume ev[k]
i = τ vk evi τ vk and ev[k]

j = τ vk evj τ
v
i . Then

ev[k]
i ev[k]

j = τ vk evi τ vk τ vk evj τ
v
k = τ vk evi evj τ

v
k = δi jτ

v
k evi τ vk = δi j e

v[k]
i .

For i �= k and j �= k, write A =
⎛

⎜⎝1 −
∑

i �=k, λ
v[k]
i �=λvi

ev[k]
i

⎞

⎟⎠ for the time being, and we get

ev[k]
k ev[k]

j = evk Aev[k]
j =

{
evk (ev[k]

j − ev[k]
j ) = 0 if λ

v[k]
i �= λvi ,

evk ev[k]
j = evk evj = 0 if λ

v[k]
i = λvi ,
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ev[k]
i ev[k]

k = ev[k]
i evk A =

{
τ vk evi τ vk evk A = τ vk evi evk A = 0 if λ

v[k]
i �= λvi ,

evi evk A = 0 if λ
v[k]
i = λvi ,

ev[k]
k ev[k]

k = evk Aevk A =
⎛

⎜⎝evk −
∑

i �=k, λ
v[k]
i �=λvi

evk τ vk evi τ vk evk

⎞

⎟⎠ A = evk A = ev[k]
k .

We have proven

ev[k]
i ev[k]

j = δi j e
v[k]
i

for all i, j ∈ I.
Relations (4.3): Assume that i �= j and i �= k. Suppose that ev[k]

i = evi and ev[k]
j = evj .

Then we have

ev[k]
i sv[k]

j = evi

(
τ vj + 2(1 − τ vj )e

v[k]
s, j

)
= evi + 2evi (1 − τ vj )e

v[k]
s, j = evi = ev[k]

i .

Suppose that ev[k]
i = τ vk evi τ vk and ev[k]

j = evj .

ev[k]
i sv[k]

j = τ vk evi τ vk

(
τ vj + 2(1 − τ vj )e

v[k]
s, j

)
= τ vk evi + 2(τ vk evi − τ vk evi τ vj )e

v[k]
s, j = τ vk evi = ev[k]

i .

Suppose that ev[k]
i = evi and ev[k]

j = τ vk evj τ
v
k .

ev[k]
i sv[k]

j = evi

[
τ vk τ vj τ

v
k + 2(1 − τ vk τ vj τ

v
k )ev[k]

s, j

]
= evi + 2evi (1 − τ vk τ vj τ

v
k )ev[k]

s, j = evi = ev[k]
i .

Suppose that ev[k]
i = τ vk evi τ vk and ev[k]

j = τ vk evj τ
v
k . Note that

τ vk evi τ vk τ vk τ vj τ
v
k = τ vk evi τ vj τ

v
k = τ vk evi τ vk .

Then we have

ev[k]
i sv[k]

j = τ vk evi τ vk

[
τ vk τ vj τ

v
k + 2

(
1 − τ vk τ vj τ

v
k

)
ev[k]

s, j

]

= τ vk evi τ vk + 2
(
τ vk evi τ vk − τ vk evi τ vk

)
ev[k]

s, j = ev[k]
i .

Assume that i = k �= j . Suppose that ev[k]
j = evj . Note that

ev[k]
k τ vj =

⎛

⎜⎝evk −
∑

��=k, λ
v[k]
� �=λv�

evk τ vk ev�τ
v
k

⎞

⎟⎠ τ vj =
⎛

⎜⎝evk −
∑

��=k, λ
v[k]
� �=λv�

evk τ vk ev�τ
v
k

⎞

⎟⎠ = ev[k]
k .

Then we have

ev[k]
k sv[k]

j = ev[k]
k (τ vj + 2(1 − τ vj )e

v[k]
s, j )

= ev[k]
k τ vj + 2ev[k]

k (1 − τ vj )e
v[k]
s, j = ev[k]

k .

Suppose that ev[k]
j = τ vk evj τ

v
k . Note that

ev[k]
k τ vk τ vj τ

v
k =

⎛

⎝1 −
∑

��=k

ev[k]
�

⎞

⎠ τ vk τ vj τ
v
k

= τ vk τ vj τ
v
k −

∑

��=k, λ
v[k]
� =λv�

ev�τ
v
k τ vj τ

v
k −

∑

��=k, λ
v[k]
� �=λv�

τ vk ev�τ
v
j τ

v
k
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= τ vk τ vj τ
v
k − τ vk evj τ

b
j vτ vk −

∑

��=k, λ
v[k]
� =λv�

ev� −
∑

��=k, j, λ
v[k]
� �=λv�

τ vk ev�τ
v
k

= 1 − τ vk evj τ
v
k −

∑

��=k, λ
v[k]
� =λv�

ev� −
∑

��=k, j, λ
v[k]
� �=λv�

τ vk ev�τ
v
k

= 1 −
∑

��=k

ev[k]
� = ev[k]

k .

Then we have

ev[k]
k sv[k]

j = ev[k]
k

(
τ vk τ vj τ

v
k + 2(1 − τ vk τ vj τ

v
k )ev[k]

s, j

)
= ev[k]

k .

Assume that i = j �= k. Suppose that λv[k]
i = λvi . Since evi ev[k]

s,i = 0, we get

ev[k]
i sv[k]

i = evi

(
τ vi + 2(1 − τ vi )ev[k]

s,i

)

= evi τ vi − 2evi τ vi ev[k]
s,i = τ vi + evi − 1 − 2(τ vi + evi − 1)ev[k]

s,i

= τ vi + 2(1 − τ vi )ev[k]
s,i + evi − 1 = sv[k]

i + ev[k]
i − 1.

The case λ
v[k]
i �= λvi is similar to the case λ

v[k]
i = λvi . We omit the computations for this case.

Assume that i = j = k. Then

ev[k]
k sv[k]

k =
⎛

⎝1 −
∑

��=k

ev[k]
k

⎞

⎠ sv[k]
k = sv[k]

k −
∑

��=k

ev[k]
� sv[k]

k = sv[k]
k −

∑

��=k

ev[k]
� = sv[k]

k + ev[k]
k − 1.

Relations (4.4): For i �= j , we have ev[k]
i (1 − sv[k]

i ) = 0 and

ev[k]
i τ

v[k]
j = ev[k]

i

(
sv[k]

j + 2(1 − sv[k]
j )ev[k]

τ, j

)
= ev[k]

i .

For i = j , we get

ev[k]
i τ

v[k]
i = ev[k]

i

(
sv[k]

j + 2(1 − sv[k]
i )ev[k]

τ,i

)
= ev[k]

i sv[k]
j + 2ev[k]

i

(
1 − sv[k]

i

)
ev[k]
τ,i

= sv[k]
i + ev[k]

i − 1 − 2ev[k]
i sv[k]

i ev[k]
τ,i = sv[k]

i + 2
(
1 − sv[k]

i

)
ev[k]
τ,i + ev[k]

i − 1

= τ
v[k]
i + ev[k]

i − 1.

Relations (4.5): Suppose that i = k or i �= k and λ
v[k]
i = λvi . Since evj τ

v
i = evj and

τ vk evj τ
v
k τ vi = τ vk evj τ

v
k for j �= i, k, we have

ev[k]
j τ vi = ev[k]

j for j �= i .

Thus ev[k]
s,i τ vi = evs,i or ev[k]

s,i (1 − τ vi ) = 0, and we have

sv[k]
i sv[k]

i =
(
τ vi + 2(1 − τ vi )ev[k]

s,i

) (
τ vi + 2(1 − τ vi )ev[k]

s,i

)

= 1 + 2τ vi (1 − τ vi )ev[k]
s,i + 2(1 − τ vi )ev[k]

s,i τ vi + 4(1 − τ vi )ev[k]
s,i (1 − τ vi )ev[k]

s,i

= 1 + 2(τ vi − 1)ev[k]
s,i + 2(1 − τ vi )ev[k]

s,i = 1.
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Suppose that i �= k and λ
v[k]
i �= λvi . Since ev[k]

j τ vk τ vi τ vk = ev[k]
j for j �= i , the computation is

similar to the previous case to obtain sv[k]
i sv[k]

i = 1 in this case as well. Furthermore, since

ev[k]
τ,i sv[k]

i = ev[k]
τ,i , we get

τ
v[k]
i τ

v[k]
i =

(
sv[k]

i + 2
(
1 − sv[k]

i

)
ev[k]

s,i

) (
sv[k]

i + 2
(
1 − sv[k]

i

)
ev[k]
τ,i

)
= 1.

Relations (4.6): Assume i �= k, and suppose that λv[k]
i �= λvi . Then

sv[k]
i ev[k]

i =
(
τ vk τ vi τ vk + 2(1 − τ vk τ vi τ vk )ev[k]

s,i

)
ev[k]

i

= τ vk τ vi τ vk ev[k]
i = τ vk τ vi τ vk τ vk evi τ vk = −τ vk evi τ vk = −ev[k]

i .

The case λ
v[k]
i = λvi is similar. For i = k, we obtain

sv[k]
k ev[k]

k =
(
τ vk + 2

(
1 − τ vk

)
ev[k]

s,k

)
ev[k]

k = τ vk ev[k]
k

= τ vk evk

⎛

⎜⎝1 −
∑

��=k, λ
v[k]
� �=λv�

ev[k]
j

⎞

⎟⎠ = −evk

⎛

⎜⎝1 −
∑

��=k, λ
v[k]
� �=λv�

ev[k]
j

⎞

⎟⎠ = −ev[k]
k .

For i ∈ I, we have

τ
v[k]
i ev[k]

i =
(

sv[k]
i + 2

(
1 − sv[k]

i

)
ev[k]
τ,i

)
ev[k]

i = sv[k]
i ev[k]

i = −ev[k]
i .

��
Proof of Theorem 3.1 The statements (C1) and (C2) are true for w = [] from the definitions.
Assume that (C1) and (C2) hold for v. We will show that they also hold for v[k], k ∈ I.
There are cases (1)–(6) according to the order of i, j, k, and each case has several subcases.
Since arguments are all similar, we will show details for the cases (1), (3), (4) and (6) and
skip some details for the other cases.

To begin with, let us recall some definitions for ease of reference. From the definition of
mutation in (2.1), we have

bv[k]
i j =

⎧
⎪⎨

⎪⎩

−bvi j ifi = kor j = k,

bvi j + sgn(bvik) bvikbvk j if bvikbvk j > 0,

bvi j otherwise,

(4.7)

and rewrite the definition of c-vectors as

cv[k]
i =

⎧
⎪⎨

⎪⎩

−cvi if i = k,

cvi + sgn(bvik)b
v
ikcvk if bvikcvk > 0,

cvi otherwise.

(4.8)

For i �= k, consider the condition

λvi < svk (λvi ) and k ≺ i, or λvi > svk (λvi ) and k 	 i ∗, (*)

and rewrite (3.7), (3.4) and (3.5):

λ
v[k]
i =

{
τ vk (λvi ) if (∗) is true,
λvi otherwise; (4.9)
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ev[k]
i =

{
τ vk evi τ vk if (∗) is true,
evi otherwise; (4.10)

sv[k]
i =

{
τ vk τ vi τ vk + 2(1 − τ vk τ vi τ vk )ev[k]

s,i if (∗) is true,
τ vi + 2(1 − τ vi )ev[k]

s,i otherwise.
(4.11)

In each of the following cases (1)–(6), we will show the statements (C1) and (C2):

λwi = cwi for all i ∈ I; (C1)

for i, j ∈ I,

ewi (λwj ) = δi jλ
w
j , swi (λwj ) =

⎧
⎪⎨

⎪⎩

λwj + bwj iλ
w
i if i ≺ j,

−λwj if i = j,

λwj − bwj iλ
w
i if i 	 j .

(C2)

1) Assume that k ≺ i � j . By induction we have

svk (λvi ) = λvi + bvikλ
v
k , svk (λvj ) = λvj + bvjkλ

v
k .

a) Suppose bvikλ
v
k = −λvi + svk (λvi ) < 0 and bvjkλ

v
k = −λvj + svk (λvj ) < 0. Then from (4.8),

we have

cv[k]
i = cvi , cv[k]

j = cvj ,

and obtain from (4.9)

λ
v[k]
i = λvi , λ

v[k]
j = λvj .

By induction,

λ
v[k]
i = cv[k]

i , λ
v[k]
i = cv[k]

i ,

which proves (C1) in this case.
From (4.10),

ev[k]
i = evi , ev[k]

j = evj ,

and by induction,

ev[k]
i

(
λ
v[k]
j

)
= evi

(
λvj

)
= 0, ev[k]

i

(
λ
v[k]
i

)
= evi (λvi ) = λvi = λ

v[k]
i ,

ev[k]
j

(
λ
v[k]
i

)
= evj (λ

v
i ) = 0, ev[k]

j

(
λ
v[k]
j

)
= evj (λ

v
j ) = λvj = λ

v[k]
j .

We also have

sv[k]
i = τ vi + 2(1 − τ vi )ev[k]

s,i , sv[k]
j = τ vj + 2(1 − τ vj )e

v[k]
s, j .

From the definitions, (i, j), ( j, i) /∈ Ps(v, v[k]) ∪ Pτ (v, v[k]), and thus

sv[k]
i λ

v[k]
j =

(
τ vi + 2(1 − τ vi )ev[k]

s,i

)
λ
v[k]
j = τ vi λ

v[k]
j = τ vi λvj

= (
svi + 2(1 − svi )evτ,i

)
λvj = svi λvj

=
{

λvi + bvj iλ
v
k = λ

v[k]
i + bv[k]

j i λ
v[k]
k if i �= j,

−λvi = −λ
v[k]
i if i = j .
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Similarly, we get

sv[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]

i j λ
v[k]
k for i �= j .

This proves (C2) in this case.
b) Suppose bvikλ

v
k = −λvi + svk (λvi ) > 0 and bvjkλ

v
k = −λvj + svk (λvj ) > 0. From (4.8), we

have

cv[k]
i = cvi + sgn(λvk )b

v
ikcvk , cv[k]

j = cvj + sgn(λvk )b
v
jkcvk .

On the other hand, we obtain from (4.9)

λ
v[k]
i = τ vk (λvi ) = (svk + 2(1 − svk )evτ,k)(λ

v
i ).

If λvk < 0 then (k, i) ∈ Pτ (v, v[k]) and
λ
v[k]
i = (svk + 2(1 − svk ))(λvi ) = 2λvi − svk (λvi ) = λvi − bvikλ

v
k = cv[k]

i (4.12)

by induction. If λvk > 0 then (k, i) /∈ Pτ (v, v[k]) and
λ
v[k]
i = svk λvi = λvi + bvikλ

v
k = cv[k]

i . (4.13)

Similarly, λv[k]
j = cv[k]

j . This proves (C1) in this case.
From (4.10),

ev[k]
i = τ vk evi τ vk , ev[k]

j = τ vk evj τ
v
k ,

and by induction,

ev[k]
i (λ

v[k]
j ) = τ vk evi τ vk (τ vk λvj ) = τ vk evi (λvj ) = 0,

ev[k]
i (λ

v[k]
i ) = τ vk evi τ vk (τ vk λvi ) = τ vk evi (λvi ) = τ vk λvi = λ

v[k]
i .

Similarly, ev[k]
j (λ

v[k]
i ) = 0 and ev[k]

j (λ
v[k]
j ) = ev[k]

j .
We have

sv[k]
i = τ vk τ vi τ vk + 2(1 − τ vk τ vi τ vk )ev[k]

s,i , sv[k]
j = τ vk τ vj τ

v
k + 2(1 − τ vk τ vj τ

v
k )ev[k]

s, j .

From the definitions, (i, j), ( j, i) /∈ Ps(v, v[k]) ∪ Pτ (v, v[k]), and thus
sv[k]

i λ
v[k]
j =

(
τ vk τ vi τ vk + 2

(
1 − τ vk τ vi τ vk

)
ev[k]

s,i

)
λ
v[k]
j = τ vk τ vi τ vk λ

v[k]
j = τ vk τ vi λvj

= τ vk (svi + 2(1 − svi )evτ,i )λ
v
j = τ vk svi λvj .

If i �= j and λvk < 0, then we obtain from (4.12)

sv[k]
i λ

v[k]
j = τ vk svi λvj = τ vk (λvj + bvj iλ

v
i ) = τ vk λvj + bvj i (s

v
k + 2(1 − svk )evτ,k)λ

v
i

= λ
v[k]
j + bv[k]

j i (2 − svk )λvi = λ
v[k]
j + bv[k]

j i λ
v[k]
i .

If i �= j and λvk > 0, then it follows from (4.13) that

sv[k]
i λ

v[k]
j = τ vk λvj + bvj i (s

v
k + 2(1 − svk )evτ,k)λ

v
i

= λ
v[k]
j + bv[k]

j i svk λvi = λ
v[k]
j + bv[k]

j i λ
v[k]
i .

Similarly, we get

sv[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]

i j λ
v[k]
k for i �= j .
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If i = j then

sv[k]
i λ

v[k]
i =

(
τ vk τ vi τ vk + 2(1 − τ vk τ vi τ vk )ev[k]

s,i

)
λ
v[k]
i = τ vk τ vi τ vk λ

v[k]
i = τ vk τ vi λvi

= τ vk svi λvi = −τ vk λvi = −λ
v[k]
i .

This proves (C2) in this case.
c) Suppose bvikλ

v
k = −λvi + svk (λvi ) < 0 and bvjkλ

v
k = −λvj + svk (λvj ) > 0. From (4.8), we

have

cv[k]
i = cvi , cv[k]

j = cvj + sgn(λvk )b
v
jkcvk .

On the other hand, we obtain from (4.9)

λ
v[k]
i = λvi , λ

v[k]
j = τ vk (λvj ) = (svk + 2(1 − svk )evτ,k)(λ

v
j ).

Thus λ
v[k]
i = cv[k]

i by induction, and using the same argument as in (b), we also see that

λ
v[k]
j = cv[k]

j . Therefore (C1) is true in this case.
From (4.10),

ev[k]
i = evi , ev[k]

j = τ vk evj τ
v
k ,

and it follows from similar computations to those in (a) and (b) that

ev[k]
i (λ

v[k]
j ) = 0, ev[k]

i (λ
v[k]
i ) = λ

v[k]
i ,

ev[k]
j (λ

v[k]
i ) = 0, ev[k]

j (λ
v[k]
j ) = λ

v[k]
j .

We have

sv[k]
i = τ vi + 2(1 − τ vi )ev[k]

s,i , sv[k]
j = τ vk τ vj τ

v
k + 2(1 − τ vk τ vj τ

v
k )ev[k]

s, j .

From the definitions, (i, j) ∈ Ps(v, v[k]) ∩ Pτ (v, v[k]), and thus
sv[k]

i λ
v[k]
j = (τ vi + 2(1 − τ vi )ev[k]

s,i )λ
v[k]
j = τ vi λ

v[k]
j + 2(1 − τ vi )λ

v[k]
j = 2λv[k]

j − τ vi λ
v[k]
j

= 2λv[k]
j − (svi + 2(1 − svi )evτ,i )λ

v[k]
j .

If i �= j and λvk < 0, then (k, i) /∈ Pτ (v, v[k]), (k, j) ∈ Pτ (v, v[k]), and thus λ
v[k]
j =

τ vk (λvj ) = λvj − bvjkλ
v
k and by (4.7)

sv[k]
i λ

v[k]
j = 2λv[k]

j − (svi + 2(1 − svi )evτ,i )(λ
v
j − bvjkλ

v
k )

= 2λv[k]
j − (svi λvj − bvjk(λ

v
k − bvkiλ

v
i ) + 2(1 − svi )λvj )

= 2λv[k]
j − (2λvj − svi λvj − bvjkλ

v
k + bvjkbvkiλ

v
i )

= 2λv[k]
j − (λvj − bvj iλ

v
i − bvjkλ

v
k + bvjkbvkiλ

v
i )

= λ
v[k]
j + (bvj i − bvjkbvki )λ

v[k]
i = λ

v[k]
j + bv[k]

j i λ
v[k]
i .

If i �= j and λvk > 0, then (k, i), (k, j) /∈ Pτ (v, v[k]), and thus λ
v[k]
j = τ vk (λvj ) = λvj +bvjkλ

v
k

and by (4.7)

sv[k]
i λ

v[k]
j = 2λv[k]

j − (svi + 2(1 − svi )evτ,i )(λ
v
j + bvjkλ

v
k )

= λ
v[k]
j + (bvj i + bvjkbvki )λ

v[k]
i = λ

v[k]
j + bv[k]

j i λ
v[k]
i .
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Similarly, we get

sv[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]

i j λ
v[k]
k for i �= j and sv[k]

i λ
v[k]
i = −λ

v[k]
i .

This proves (C2) in this case.
d) Suppose bvikλ

v
k = −λvi + svk (λvi ) > 0 and bvjkλ

v
k = −λvj + svk (λvj ) < 0. This case is

similar to case (c) right above.
2) Assume that i � j ≺ k. Since this case is similar to case (1), we omit the details.
3) Assume that i ≺ k ≺ j . By induction we have

svk (λvi ) = λvi − bvikλ
v
k , svk (λvj ) = λvj + bvjkλ

v
k .

a) Suppose bvikλ
v
k = λvi − svk (λvi ) < 0 and bvjkλ

v
k = −λvj + svk (λvj ) < 0. From (4.8), we

have

cv[k]
i = cvi , cv[k]

j = cvj .

It follows from (4.9) that

λ
v[k]
i = λvi , λ

v[k]
j = λvj .

Thus λ
v[k]
i = cv[k]

i and λ
v[k]
j = cv[k]

j by induction. Thus (C1) is true in this case.
From (4.10),

ev[k]
i = evi , ev[k]

j = evj ,

and it follows from induction that

ev[k]
i (λ

v[k]
j ) = 0, ev[k]

i (λ
v[k]
i ) = λ

v[k]
i ,

ev[k]
j (λ

v[k]
i ) = 0, ev[k]

j (λ
v[k]
j ) = λ

v[k]
j .

We have

sv[k]
i = τ vi + 2(1 − τ vi )ev[k]

s,i , sv[k]
j = τ vj + 2(1 − τ vj )e

v[k]
s, j .

Clearly, (i, j), ( j, i) /∈ Ps(v, v[k]) ∪ Pτ (v, v[k]), and thus
sv[k]

i λ
v[k]
j = (τ vi + 2(1 − τ vi )ev[k]

s,i )λ
v[k]
j = τ vi λ

v[k]
j = (svi + 2(1 − svi )evτ,i )λ

v
j

= svi λvj = λvj + bvj iλ
v
i

=
{

λvi + bvj iλ
v
k = λ

v[k]
i + bv[k]

j i λ
v[k]
k if i �= j,

−λvi = −λ
v[k]
i if i = j .

Similarly, we get

sv[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]

i j λ
v[k]
k for i �= j and sv[k]

i λ
v[k]
i = −λ

v[k]
i .

This proves (C2) in this case.
b) Suppose bvikλ

v
k = λvi − svk (λvi ) > 0 and bvjkλ

v
k = −λvj + svk (λvj ) > 0. From (4.8), we

have

cv[k]
i = cvi + sgn(λvk )b

v
ikcvk , cv[k]

j = cvj + sgn(λvk )b
v
jkcvk .

We obtain from (4.9)

λ
v[k]
i = τ vk (λvi ) = (svk + 2(1 − svk )evτ,k)(λ

v
i ).
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If λvk > 0 then (k, i) ∈ Pτ (v, v[k]) and
λ
v[k]
i = (svk + 2(1 − svk ))(λvi ) = 2λvi − svk (λvi ) = λvi + bvikλ

v
k = cv[k]

i (4.14)

by induction. If λvk < 0 then (k, i) /∈ Pτ (v, v[k]) and
λ
v[k]
i = svk λvi = λvi − bvikλ

v
k = cv[k]

i . (4.15)

Similarly, λv[k]
j = cv[k]

j . This proves (C1) in this case.
From (4.10),

ev[k]
i = τ vk evi τ vk , ev[k]

j = τ vk evj τ
v
k ,

and it follows from induction that

ev[k]
i (λ

v[k]
j ) = 0, ev[k]

i (λ
v[k]
i ) = λ

v[k]
i ,

ev[k]
j (λ

v[k]
i ) = 0, ev[k]

j (λ
v[k]
j ) = λ

v[k]
j .

We have

sv[k]
i = τ vk τ vi τ vk + 2(1 − τ vk τ vi τ vk )ev[k]

s,i , sv[k]
j = τ vk τ vj τ

v
k + 2(1 − τ vk τ vj τ

v
k )ev[k]

s, j .

Clearly, (i, j), ( j, i) /∈ Ps(v, v[k]) ∪ Pτ (v, v[k]), and as in (1)-(b),

sv[k]
i λ

v[k]
j = τ vk svi λvj .

If λvk > 0, then we obtain from (4.14)

sv[k]
i λ

v[k]
j = τ vk svi λvj = τ vk (λvj + bvj iλ

v
i ) = τ vk λvj + bvj i (s

v
k + 2(1 − svk )evτ,k)λ

v
i

= λ
v[k]
j + bv[k]

j i (2 − svk )λvi = λ
v[k]
j + bv[k]

j i λ
v[k]
i .

If λvk < 0, then it follows from (4.15) that

sv[k]
i λ

v[k]
j = τ vk λvj + bvj i (s

v
k + 2(1 − svk )evτ,k)λ

v
i

= λ
v[k]
j + bv[k]

j i svk λvi = λ
v[k]
j + bv[k]

j i λ
v[k]
i .

Similarly, we get

sv[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]

i j λ
v[k]
k .

This proves (C2) in this case.
c) Suppose bvikλ

v
k = λvi − svk (λvi ) < 0 and bvjkλ

v
k = −λvj + svk (λvj ) > 0. From (4.8), we

have

cv[k]
i = cvi , cv[k]

j = cvj + sgn(λvk )b
v
jkcvk .

On the other hand, we obtain from (4.9)

λ
v[k]
i = λvi , λ

v[k]
j = τ vk (λvj ) = (svk + 2(1 − svk )evτ,k)(λ

v
j ).

Thus λ
v[k]
i = cv[k]

i by induction, and using the same argument as in (b), we also see that

λ
v[k]
j = cv[k]

j . Therefore (C1) is true in this case.
From (4.10),

ev[k]
i = evi , ev[k]

j = τ vk evj τ
v
k ,
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and it follows from induction that

ev[k]
i (λ

v[k]
j ) = 0, ev[k]

i (λ
v[k]
i ) = λ

v[k]
i ,

ev[k]
j (λ

v[k]
i ) = 0, ev[k]

j (λ
v[k]
j ) = λ

v[k]
j .

We have

sv[k]
i = τ vi + 2(1 − τ vi )ev[k]

s,i , sv[k]
j = τ vk τ vj τ

v
k + 2(1 − τ vk τ vj τ

v
k )ev[k]

s, j .

From the definitions, (i, j), ( j, i) /∈ Ps(v, v[k]), and thus
sv[k]

i λ
v[k]
j = (τ vi + 2(1 − τ vi )ev[k]

s,i )λ
v[k]
j = τ vi λ

v[k]
j .

If λvk < 0, then (k, i) /∈ Pτ (v, v[k]), (k, j) ∈ Pτ (v, v[k]), and thus λ
v[k]
j = τ vk (λvj ) =

λvj − bvjkλ
v
k and by (4.7)

sv[k]
i λ

v[k]
j = τ vi λ

v[k]
j = τ vi (λvj − bvjkλ

v
k ) = (svi + 2(1 − svi )evτ,i )(λ

v
j − bvjkλ

v
k )

= svi λvj − bvjksvi λvk = λvj + bvj iλ
v
i − bvjk(λ

v
k + bvkiλ

v
i )

= λvj − bvjk + (bvj i − bvjkbvki )λ
v
i = λ

v[k]
j + bv[k]

j i λ
v[k]
i .

If λvk > 0, then (k, i), (k, j) /∈ Pτ (v, v[k]) and thus λ
v[k]
j = τ vk (λvj ) = λvj + bvjkλ

v
k and by

(4.7)

sv[k]
i λ

v[k]
j = τ vi λ

v[k]
j = (svi + 2(1 − svi )evτ,i )(λ

v
j + bvjkλ

v
k )

= svi λvj + bvjksvi λvk = λvj + bvj iλ
v
i + bvjk(λ

v
k + bvkiλ

v
i )

= λ
v[k]
j + (bvj i + bvjkbvki )λ

v[k]
i = λ

v[k]
j + bv[k]

j i λ
v[k]
i .

Similarly, we get

sv[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]

i j λ
v[k]
k for i �= j and sv[k]

i λ
v[k]
i = −λ

v[k]
i .

This proves (C2) in this case.
d) Suppose bvikλ

v
k = λvi − svk (λvi ) > 0 and bvjkλ

v
k = −λvj + svk (λvj ) < 0. This case is

similar to (c) and we omit the details.
4) Assume that i ≺ k = j . By induction we have

svk (λvi ) = λvi − bvikλ
v
k , svk (λvk ) = −λvk .

a) Suppose bvikλ
v
k = λvi − svk (λvi ) < 0. From (4.8), we have

cv[k]
i = cvi , cv[k]

k = −cvk .

Since (k, k) /∈ Pτ (v, v[k]), we obtain from (3.7) and induction

λ
v[k]
i = λvi ,

λ
v[k]
k = τ vk (λvk ) = (svk + 2(1 − svk )evτ,k)λ

v
k = svk λvk = −λvk . (4.16)

Thus λ
v[k]
i = cv[k]

i and λ
v[k]
k = cv[k]

k by induction, and (C1) is true in this case.
From (4.10) and (4.1),

ev[k]
i = evi , ev[k]

k = 1 −
∑

��=k

ev[k]
� ,
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and it follows from induction that

ev[k]
i (λ

v[k]
k ) = evi (−λvk ) = 0, ev[k]

i (λ
v[k]
i ) = evi λvi = λ

v[k]
i ,

ev[k]
k (λ

v[k]
i ) =

⎛

⎝1 −
∑

��=k

ev[k]
�

⎞

⎠ λ
v[k]
i = λ

v[k]
i − λ

v[k]
i = 0.

We have

sv[k]
i = τ vi + 2(1 − τ vi )ev[k]

s,i , sv[k]
k = τ vk + 2(1 − τ vk )ev[k]

s,k .

We see that (k, i) /∈ Ps(v, v[k]) ∪ Pτ (v, v[k]), and thus
sv[k]

i λ
v[k]
k = (τ vi + 2(1 − τ vi )ev[k]

s,i )λ
v[k]
k = τ vi λ

v[k]
k = −(svi + 2(1 − svi )evτ,i )λ

v
k

= −svi λvk = −λvk − bvkiλ
v
i = λ

v[k]
k + bv[k]

ki λ
v[k]
i .

Similarly, we get

sv[k]
k λ

v[k]
i = λ

v[k]
i − bv[k]

ik λ
v[k]
k .

This proves (C2) in this case.
b) Suppose bvikλ

v
k = λvi − svk (λvi ) > 0. From (4.8), we have

cv[k]
i = cvi + sgn(λvk )b

v
ikcvk , cv[k]

k = −cvk .

On the other hand, we obtain from (3.7)

λ
v[k]
i = τ vk (λvi ) = (svk + 2(1 − svk )evτ,k)(λ

v
i ), λ

v[k]
k = −λvk .

If λvk < 0 then (k, i) /∈ Pτ (v, v[k]) and λ
v[k]
i = svk λvi = λvi − bvikλ

v
k ; if λvk > 0 then

(k, i) ∈ Pτ (v, v[k]) andλ
v[k]
i = (2−svk )λvi = λvi +bvikλ

v
k . Thusλ

v[k]
i = cv[k]

i andλ
v[k]
k = cv[k]

k
by induction, and (C1) is true in this case.

From (4.10), (4.1) and (4.4),

ev[k]
i = τ vk evi τ vk = τ vk evi , ev[k]

k = 1 −
∑

��=k

ev[k]
� ,

and it follows from induction that

ev[k]
i (λ

v[k]
k ) = τ vk evi (−λvk ) = 0, ev[k]

i (λ
v[k]
i ) = τ vk evi τ vk τ vk λvi = τ vk λvi = λ

v[k]
i ,

ev[k]
k (λ

v[k]
i ) =

⎛

⎝1 −
∑

��=k

ev[k]
�

⎞

⎠ λ
v[k]
i = λ

v[k]
i − λ

v[k]
i = 0.

We have

sv[k]
i = τ vk τ vi τ vk + 2(1 − τ vk τ vi τ vk )ev[k]

s,i , sv[k]
k = τ vk + 2(1 − τ vk )ev[k]

s,k .

If λvk < 0, then (k, i) /∈ Pτ (v, v[k]) and (k, i) ∈ Ps(v, v[k]), and thus

sv[k]
i λ

v[k]
k = (τ vk τ vi τ vk + 2(1 − τ vk τ vi τ vk )ev[k]

s,i )λ
v[k]
k = (2 − τ vk τ vi τ vk )(−λvk )

= −2λvk − τ vk τ vi λvk = −2λvk − τk(s
v
i + 2(1 − svi )evτ,i )λ

v
k

= −2λvk − τ vk svi λvk = −2λvk − τ vk (λvk + bvkiλ
v
i )

= −2λvk + λvk − bvkiτ
v
k λvi = λ

v[k]
k + bv[k]

ki λ
v[k]
i ,
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and since λ
v[k]
i = τ vk λvi = svk λvi = λvi − bvikλ

v
k , we have

sv[k]
k λ

v[k]
i = (τ vk + 2(1 − τ vk )evs,i )λ

v[k]
i = (2 − τ vk )τ vk λvi = 2τ vk λvi − λvi

= 2(λvi − bvikλ
v
k ) − λvi = (λvi − bvikλ

v
k ) − bvikλ

v
k = λ

v[k]
i − bv[k]

ik λ
v[k]
k .

If λvk > 0, then (k, i) ∈ Pτ (v, v[k]) and (k, i) /∈ Ps(v, v[k]), and the computations are
similar to the case right above. This proves (C2) in this case.
5) Assume that i = k ≺ j . Since this case is similar to case (4), we omit the details.

6) Assume that i = j = k. From (4.8), we have cv[k]
k = −cvk . As seen in (4.16), we have

λ
v[k]
k = −λvk . Thus by induction cv[k]

k = λ
v[k]
k , and (C1) holds. In cases (4) and (5), it is

proven that ev[k]
� λ

v[k]
k = 0 for � �= k. Thus using (4.1), we have

ev[k]
k λ

v[k]
k =

⎛

⎝1 −
∑

��=k

ev[k]
�

⎞

⎠ λ
v[k]
k = λ

v[k]
k .

Finally, since (k, k) /∈ Ps(v, v[k]), we see that
sv[k]

k λ
v[k]
k = (τ vk + 2(1 − τ vk )ev[k]

s,k )λ
v[k]
k = τ vk λ

v[k]
k = τ vk τ vk λvk = λvk = −λ

v[k]
k ,

where we use (4.5). This proves (C2) in this case, and a proof of Theorem 3.1 has been
completed. ��
Acknowledgements We are very grateful to Pavel Tumarkin, Ahmet Seven and anonymous referees for
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