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Abstract

In this paper, we interpret the Gindikin—Karpelevich formula and the Casselman—Shalika formula as
sums over Kashiwara—Lusztig’s canonical bases, generalizing the results of Bump and Nakasuji (2010)
[7] to arbitrary split reductive groups. We also rewrite formulas for spherical vectors and zonal spherical
functions in terms of canonical bases. In a subsequent paper Kim and Lee (preprint) [14], we will generalize
these formulas to p-adic affine Kac—-Moody groups.
© 2011 Elsevier Inc. All rights reserved.
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0. Introduction

This paper was inspired by a paper by Bump and Nakasuji [7]. Their basic philosophy is
that an integral over a maximal unipotent subgroup of p-adic group can sometimes be re-
placed by a sum over crystal bases defined by Kashiwara [13]. The same approach was made
by McNamara in [19]. They demonstrated this for the Gindikin—Karpelevich formula and the
Casselman—Shalika formula for GL,. More precisely, let F' be a p-adic field and N_ be the
maximal unipotent subgroup of GL,. Let x be an unramified character of 7, the maximal
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torus, and f° be the standard spherical vector corresponding to x. Let z be the element of
LT ¢ GL,(C), the L-group of GL,, corresponding to x by the Satake isomorphism. Then the
Gindikin—Karpelevich formula for the longest Weyl group element can be written as

-1

l1—qg 'z _
f fFPmydn=T] = > Gab)g™ g d), (0.1)
N_(F) acdt be’B

where B = B(00) is the crystal basis for U~ (the negative part of the quantized enveloping
algebra).

Let A be a dominant integral weight and x; be the irreducible character of GL, (C) with the
highest weight A. Then the Casselman—Shalika formula can be written as

/ mdn= ] (1-q'2*)x@

N_(F) acpt

— Z Go (b)q—(wl (Wi(b)), p} g1 (WH(D)) 0.2)
beB) 1,07 )

where w; is the longest Weyl group element.

The definition of the coefficients G (b) in (0.1) and (0.2) is based on the “boxing rule” and
“circling rule” in [4,5,7]. (See also [2,3,6].) We show that if we use canonical bases due to Lusztig
[15] and tensor products of crystals, we obtain simple formulas for the coefficients in a uniform
way. We can also generalize the above formulas. Namely, we prove, for any w € W and for any
split reductive group,

10
/fo(w_ln) dn = 1_[ llq—az — Z (1 . q_l)d(‘pi(b))z—wt(b)’ 03)
N wedw) L beGo-1)
1—[ (1- q_ll‘)‘)_1 = Z g~ T @B g
ac®(w) beGw1)
@ [ (—g'2%) =2 3 Gplbigz™ ™. 0.4)
vePy b'@beB;, 0B,

(See Propositions 1.4 and 2.1 for the notations.) Notice that in the Casselman—Shalika formula
(0.4), we used crystal bases because they behave well with respect to the tensor product. Notice
also that the left-hand side of (0.4) can be written as

(M2 @ [] (1—1"2),

a€¢+

where M =|A, | and t = ¢~ !. Hence we obtain the product expansion of (0.2).

We first prove (0.3) by induction, and deduce (0.4) from (0.3) and the Weyl character formula.
In the course of proof, we see that the Casselman—Shalika formula (0.4) can be considered as a
q-deformation of the Weyl character formula.
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K. Joshi and R. Raghunathan [12] constructed interesting infinite product identities for
L-functions. As an application of our formulas, we write their identities in terms of canonical
bases (see Remark 2.21).

In Section 3, we interpret some formulas in [9] such as for spherical vectors and zonal
spherical functions due to Macdonald in terms of canonical bases. As a generalization of the
Gindikin—Karpelevich formula, we write the action of intertwining operators on some Iwahori-
fixed vectors in terms of canonical bases. In the subsequent paper [14], we will generalize all
these formulas to p-adic affine Kac—Moody groups.

1. Gindikin—-Karpelevich formula

Let g be the finite-dimensional simple Lie algebra over C. We have the set of simple roots
A ={aq,...,a,}, the set @ of roots and the set @ of positive roots. Let W be the Weyl group
of g with generators s1, 52, ..., s, and let w; be the longest element of W. We identify a reduced
expression s;, i, - - - §;, for w € W with the k-tuple 1 = (i1, i2, ..., ix). We will denote by R(w)
the set of all reduced expressions i for w.

Let U be the quantized enveloping algebra of g. Then U is a Q(v)-algebra generated by the
elements E;, F;, Kiil, iefl,2,...,r}.Let UT be the subalgebra generated by the E;’s and let
U~ be the subalgebra generated by the F;’s.

Let Tif’_l be the automorphism of U as in Section 37.1.3 of [17]. For ¢ = (c1, ¢2, . .., ¢x) € NF
andie R(w), we let

Fic — Fi(cl)T-// 1(F.(cz)) STV —lT'U T » (F. Ck))’
1 2 I, k—1, 17

i1, — ir,—1° i

and define G = {F": c e N¥}, and denote by U,, the Q(v)-span of Gj. Let ~: U — U be the

(Q-algebra automorphism of U taking E; to E;, F; to F;, K; to Kl._l, and v to v~ 1.

Theorem 1.1. (See [15,18].) Suppose that i € R(w). The Z[v]-span L, of Gj is independent

of i. Let w : Ly — Ly/vLy be the natural projection. The image 7w (Gj) is also independent
of i; we denote it by G,. The restriction of @ to Ly N Ly, is an isomorphism of Z-modules

71 Lo N Ly — Loy /Ly, and G(w) = 711_1 (Gyw) is a Q(v)-basis of U, .

When w = wy, we obtain a Q(v)-basis Gy, of U™, which is called the canonical basis. We
will write B = G,,,. We define a map ¢; : G(w) — N¥ fori e R(w) by setting ¢j(b) = ¢, where
¢ € N¥ is given by

>
Il

Ff modvLl,.

1

Then ¢; is a bijection.
For w € W, we set

P(w)={o e ?; | wa <0}.
If £(ws;) > £(w), we have

(siw ) =@ (w) U {wal, (1.2)
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and if £(s;w) > £(w) then

Q)(w_lsi) = s,-(@ (w_l)) U {a;}.
For ¢ = (c1, ¢, . .., cx) € N¥, we denote by d(c) the number of nonzero c;’s.

Proposition 1.4. For any i € R(w), w € W, we have

04

I 1—q~ 'z _ T (1= g ) e
I —z* '

acd (w1 beG(w)

(1.3)

(1.5)

Proof. We will use induction on the length ¢(w) of w. If w = s; for some i, then the identity
(1.5) is easily verified. Assume that the identity (1.5) is true for w =s;, ---s;, € W, and that
L(ws;) = L(w) + 1. We will write i = (i,...,ix) and i’ = (i1, ..., i, 1). Using (1.2) and an

induction argument, we obtain

l_[ 1 _q—lzoz B 1_[ 1— q—lza 1 — q—lzwai
-z 1 —z* 1 —zwei

acd(siw=1) acd (w1

beG(w) jz1
_ Z (1 _q—l)d(¢i(b))z—wt(b)
beG(w)
+ Z Z (1 _q—l)d(¢i(b))+lz—wt(b)+jwai.
i>1beG(w)

On the other hand, since b’ € G(ws;) satisfies

b/ = bT-// T// . T//

i1, —1%ip,—1 """ 4, =1

(Fl.(j)) mod vLy,

for unique b € G(w) and j > 0, we can write G(ws;) as a disjoint union

Gws;) = | J{b' € Gws) | ¢y (V) = (c1..... ck. j). i €NJ.
j=0

Now it is clear that

Z (1 _q—l)d(¢i/(b))z—wt(b)

beG(ws;)

_ Z (1 _q—l)d(¢i(b))z—wt(b) +Z Z (1 _q—l)d(¢i(b))+lz—wt(b)+jwa,-.

beG(w) i>1beG(w)

This completes the proof. O

( 2 (1—q“)d(¢i(b))z‘““’)> <1+Z(1—q‘l)zjw“i)
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Let Ei and I:"; be the Kashiwara operators on U~ as defined in [13]. Let A C Q(v) be the
subring of elements regular at v = 0, and let £’ be the A-lattice spanned by the set S given by

~ ~

S=|F,F,,---F;, -1eU |m>0, ji=1,2,...,r}.
Theorem 1.6. (See [13].)

(1) Let " : L' — L'/vL be the natural projection, and let B' = 7/(S). Then B’ is a Q-basis of
L'/vL’, called the crystal basis.
(2) The operators E; and F; act on L/ JvL foreachi=1,2,...,r. They satisfy

E;(B'YCB'U{0} and F;(B)C B

For b, b’ € B' we have F;b="b' if and only le b =b.
(3) For each b € B’, there is a unique element be L NL such that & (b) = b. The set of
elements {b: b € B'} forms a basis of U™, called the global basis of U ™.

It was shown by Lusztig [16] that Kashiwara’s global basis coincides with his canonical basis.
There is a parametrization of B arising from Kashiwara’s construction, and the parametrization
again depends on i € R(wy). Leti= (i, i2,...,ix) € R(w;) and b € B. Let a; be maximal such
that Efllb = 0 mod vL'; let a; be maximal such that glazz E?llb = 0 mod v£’, and so on. That

is, a; is maximal such that Ef’ E?’_l . EYp # 0 mod vL'. We define a map v : B — NF
j j—1 11

by ¥i(b) = a, where a = (ay,az,...,ar) € N* is determined as above. We obtain from The-
orem 1.6(2) that b = ffl" I?IZZ co ii" -1 mod v£'. The map v; is injective, and we will write
Ci=1 (B). It is known that Cj is a cone. For i, j € R(w;), we define the Berenstein—Zelevinsky
function O’i'] : C; —> N by

o =gy

Descriptions of the cone Cj and the function aij can be obtained from Section 3 of [1].
Fora=(aj,as,...,ar) e NFandi= (i1, ..., ix) € R(w;), we define

73 — 74% +arj, +e-taga, .

Corollary 1.7. For any i, j € R(w;), we have
d(ff (a)) ey
[1 71 — =2 (-
acdy acCj

Proof. Considering the case w = wy in Proposition 1.4, we obtain the identity of the corollary
from the definitions. O

Example 1.8. Let g = sl4. We choose i = (1,2, 1,3,2,1) € R(w;). Then the cone Cj is deter-
mined by
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a; =20, a >a3z >0,
ag

a=(a1,a2,a3,a4,0a5,a6) € Ci <=
>0,

as = as =

and the Berenstein-Zelevinsky function o] : C; — N is given by

oi(a) =oi(a1, az, as, as, as, ag) = (a1, as, ay — az, ae, as — as, as — de).

Qne can easily see that the “circling rule” for a;’s in [5,7] is the same as having coordinates of
o;'(a) become zero. Then we obtain from Corollary 1.7 the result of Theorem 2 in Bump and
Nakasuji’s paper [7].

2. Casselman-Shalika formula
Fore=(c1,c2,...,cx) e NF weset Z(e)=c) +ca+ -+ cx.

Proposition 2.1. For any i € R(w) for w € W, we have

1—[ (1—q_lza)_l= Z q—2(¢i(b))Z—Wt(b)_ (2.2)

acd (w1 beG(w)

Proof. One can prove the identity using an induction argument as in the proof of Proposition 1.4.
We omit the details. O

When w is a particular Weyl group element (see wg below), the left-hand side of the identity in
Proposition 2.1 can be considered as a local L-function, and we have written the local L-function
as a sum over a canonical basis. We make it more precise. We refer the reader to [10, Part II,
Chapters 4 and 6], for the notations and relevant material. In particular, see Example 4.2 on
p. 120 and Lemma 6.1 on p. 137.

Let o be a simple root and set & = A — {«}. Then 6 determines a maximal parabolic sub-
group P = MN, where M is the Levi subgroup. Let wg be the unique Weyl group element
such that wo(a) < 0 and wo(@) C A. Let 7, be a spherical representation of M(Q,) such that
p < I(xp), where x, is a quasi-character of the maximal split torus. Then for s € C, we have
I(s,mp) = I(xp ®exp(si, Hp(-))), where A is the fundamental weight corresponding to .. By
Theorem 6.7 of [10], the identity (1.5) becomes

ﬁ L(is.7p.ri)  _ T (1 p )

beG(wy ")

where z is the Satake parameter in YA C “G corresponding to the character n = Xp ®
exp(sA, Hg(-)) of A such that n o 8¥ = BY(z) for any root B. Here we are considering 8
on the right side as a root of G.

Suppose that 7, is generic, i.e., it has a Whittaker model. Then by Theorem 8.11 of [10], the
identity (2.2) becomes

m
[T +ismpm= Y p St v
i=l beG(wy ")
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A special case is when G = GL,,+1 and M = GL, x GL;. Consider the cuspidal representation
7 ®E& ! of M/Q, where 7 = @ ) is a cuspidal representation of GL,/Q and £ = Q) &, is a

Dirichlet character modulo N. Suppose 7, < I(u1, ..., uy). Then
I(s,mp, ®&, ") > (1| | @+~ @ | [T @&, |77T).
Hence z = (,ul(p)p_ﬁ, ey un(p)p_#, S;l(p)p%). Therefore we have
L(s,m, X '
(s, 7mp X &p)  _ S (- pYAHO) i)
L(1+s,m, x§)p)
beG(wyh)

and

L 4smyxE)= Y. pEoen v,
beG(wy ")

Let P be the set of dominant integral weights and Q" = ) "_,(Z>0)«; be the Z>(-span
of A.For A € P*, let L; be the irreducible highest weight module of g with the highest weight .

Definition 2.3. Let . € PT and i € R(w;). We define Hy (-; q) : QT — Z[¢~!] using the gener-
ating series

Y H =Y (D 3 (1 - gD i),

neQt weWw beB

and we write

Xe(L) = ) Hy(u; )z ™"
ueQ+

In what follows, we will see that H) (-; g) does not depend on the choice of i.

We denote by x (L, ) the usual character of L, . (It was denoted by x; in the Introduction.) By
the Weyl character formula,

Zwew(_l)ﬁ(w)zw(k+p)—p

[eco, (1 —27%)

= x(Ly).
In particular, if A = 0, then

Y (=)t =z [T (1-279). 2.4)

weW acd
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By Proposition 1.4,

A (b)) 1—qg 'z
> (=g )72 = T (?)

beB Ol€¢+

Thus we obtain

Xq(Lp) = ( Z (_DK(w)pr) (Z(l _ q—l)d(¢i(b))zwt(b))

weW beB
B 1 _q—lz—ot
— P _ o
=z 1_[(1 z )1_[( 1—z‘“>
Ol€¢+ (X€¢+
:Z’O 1_[ (l—q_lz_o‘).
C(E‘p+

Therefore we have proved the following.

Proposition 2.5.

xe@Lp)=2" ] (1—q~'z7%).

ae<D+
When g = —1 in (2.6), we have the following identity.

Lemma 2.7.

xaLp)=2 [ (1+27%) =x(Ly).

O{E(p+

2¢i foreachi =1,...,r, we have

Z (—1)t) g2wp — 42p 1_[ (1 _ Z—2a).

weW Ol€¢+

Proof. In (2.4), by replacing z* by z

Since

ZweW (_ l)é(w)Zpr
Cew (D20

X(L,o) =

we obtain the result. O

Remark 2.8. By Definition 2.3,

XLy =Y Hy(ui =Dz~ =2 [] (1+27).

M€Q+ acdy

(2.6)
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Therefore, if H,(u; —1) #0, p — u must be a weight of L,, and H,(u; —1) 1s the multiplicity
of p—pin L.

Now we have the following corollary which is a generalization of the second equality of the
Casselman—Shalika formula (0.2).

Corollary 2.9.

Xq(Latp) = X (L3) Xq(Lp)- (2.10)
Proof. By Definition 2.3 and Proposition 1.4,
ew). wOAp) l—gq7 'z
Xq(Lip) = Z(—l) z 1_[ H_—g )
weW aedy

By the Weyl character formula and Proposition 2.5, the right-hand side is x (L) x4(L,). O

Remark 2.11. When g = 1, we see that xi(Ly,)z"” is the numerator of the Weyl character
formula. Hence we can think of (2.10) as a g-deformation of the Weyl character formula. Since
Xoo(Lp) =12, by setting g = 0o, we have

Xoo(Latp) =27 x (Ly).

Hence by Definition 2.3,

> Hiuyp(ps 00)2* " = x (L)
HEQ+

Therefore, H; 4, (w; 00) is the multiplicity of the weight A — v in L;.
By putting ¢ = —1 in (2.10), and by Lemma 2.7,

Lemma 2.12.

X—I(Lk+p) = Z H)H_p(,bb; —I)Z)wl—p_”
neQt

= x (L) x(Lp) = x(Ly® Ly).
Hence, Hyy,(; —1) is the multiplicity of the weight A + p —  in the tensor product Ly ® L.

Before we further investigate the implication of the Casselman—Shalika formula (2.10), we
need the following lemma.

Lemma 2.13. Assume that Ay, Ay € Py. Then the set of weights of Ly, ® L, is the same as that
of Lyy+2,-
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Proof. By Proposition 21.3, p. 114 in [11] u is a weight of L, if and only if x and all its Weyl
conjugates are less than A.

Now let 11, n2 be the weights of L, L;,, respectively. Then all weights of L;, ® L, are of
the form n; + ny [11, p. 117, Exercise 7]. Hence it is enough to show that n; 4 n; is a weight
of L;,+5,. Then we are done, since it is clear that n; + 1, and all its Weyl conjugates are less
than A1 +Ap. O

Now we use crystal bases, namely, bases at v = 0, since they behave nicely under tensor
products. Let B be the crystal basis associated to a dominant integral weight A € P,.. We choose
Gy(5q):B,— Zlg™ 1 by assigning any element of Zlg " toeach b e B, so that

Hy(w;q)= Y. Gybiq). (2.14)
beB,
wt(b)=p—p

By Remark 2.8, it is enough to consider € Q4 such that p — p is a weight of b € 95,
Using the function G, (-; g), we can rewrite the Casselman—Shalika formula in Corollary 2.9
in a familiar form:

Corollary 2.15.

Y Hupw 2P =y Lz [ (1—q7'27%)
neQt aedy

= Y Gz ®®) (2.16)
b'QbeB;, B,

Proof. The first equality is obvious from Proposition 2.5 and Corollary 2.9. For the second
equality, we obtain

x @z [T (1=a7'27%) = x@La)xg(Ly)

acd
=< > ZWt(w)( > Hp(u;q)zp_“)

b'esB neQt
(5 ) (5 et
beB, beB,

= Y Gyigz™®®. o
b'@beB, B,

The following proposition provides useful information on H; 4, (u; q) € Zlg™ .

Proposition 2.17. Assume that . € P,. Then we have Hy,(i; q) is a nonzero polynomial if and
only if . + p — w is a weight of L) 4 .
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Proof. We obtain from (2.16) that if Hy,(u;q) # 0 then A + p — u is a weight of L) ® L.
Then A + p — u is a weight of Ly, by Lemma 2.13. Conversely, assume that > + p — v is a
weightof L, ,, so a weight of L ® L,. By Lemma 2.12,

Z Hyo(1; —1)Zk+p_“/ =x(L,Q®L)y).
weQt

Since A + p — w is a weight of Ly ® L, the coefficient H; ,(u; —1) # 0. Then H; 4, (u; q) is
a nonzero polynomial. O

Remark 2.18. We have proved that H;,(u;q) = ap + alq_1 + -+ akq_k, a; € Z, and
H; 4, (w; 00) = ag is the multiplicity of the weight A — v in L, and Hj,(u; —1) is the multi-
plicity of the weight A + p — w in the tensor product L) ® L,. It would be interesting to study
how Hj ,(1; q) is related to the Kazhdan—Lusztig polynomials. We will pursue this in the sub-
sequent paper [14].

Example 2.19. We consider the case g = sl3 and fix i = (1,2, 1) € R(w;). Using the circling
and boxing rules in [5,7], we define G, (b; g) for each b € B,. Comparing Corollary 2.9 and
Theorem 1 in Bump and Nakasuji’s paper [7], we see that the condition in (2.14) is satisfied.

1[1]

1]2 1[1]
2] 13 —q " —q "
2 1
2 1
Y A,
1[3] 1]2]
2] 3] 0 —¢ ' (1-q7")
2 i
) 1
Y A,
1[3] 2[2]
13 3] q? q?
\ /
1
2[3]
13 —q°
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We let A = Ay and consider B; ® B ,. We present a crystal graph of B, ® B, in the following
figure. The tensor product should be read in the far-eastern reading in the figure. We put G, (b; q)
foreach b’ ® b € B; ® B,. We can calculate H,,(u) by taking the sum of G ,(b; g) over the
crystals b’ ® b with wt(b’ @ b) = A + p — u, i.e.

Hipsa)= Y. Gubiq).
b'®beB; ®Bp
wt(b' @b)=A+p—n

If we define G, 4, (b; q) for b € 9B, 1, using the circling and boxing rules as in [5,7], it follows
from Corollary 2.9 and Theorem 1 in [7] that

Hy 1 p(; q) = E Giip(b;q).
be%Hp
wt(b)=A+p—u
® &N 1) 1 —q ! -¢(1-q¢"

/1 x 2 1 1 2 2 1

_
e(2] e[l o[ o[ 1 —q ! 0 q?
/ 2 1 1 ¥ 2 1 P |1 /k 2
® B el B el [ B B em [ e@ —¢° —q! 0 ¢

VLA LV

[] , _ - - '
Bl <[ Bl el -q! -¢' —qa'(l-gh) ¢?
2 1/|1 |1 2 1/|1 ‘1
P A _ -3
BT 3 O 3 Y 3 R 5 Y 3 R 5 el ) 0 —q(l=a?) g q
2 1/ 2 1/
A AP

®[3] q q

=

= =
=
x

%,\@%p Gp(b; q)b’@b

Remark 2.20. Since we can define G, in an arbitrary way under the condition (2.14) and still
obtain H, 4 ,, the circling and boxing rules in [5,7] seem to be very special.

Remark 2.21. K. Joshi and R. Raghunathan [12] have interesting infinite product identities for
the L-functions. We can interpret their identities in terms of canonical bases. Let m = Q ,, be
a cuspidal representation of GL,/Q. Given N € N, let Xy be the set of all Dirichlet characters
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modulo N. Let p be a fixed prime and &, be the local character at p associated to § € X for
some N. Since £(p) =0 1if p|N, Proposition 2.5 of [12] states

o

L(s,mp) 1—[ H L(s+1,7m) x&p).

L(s+1,7p) _NZISEXN

Then by using Propositions 1.3 and 2.1, we can write the above identity in terms of canonical
bases and obtain

Z (1 _p—l)d(¢i(b))z—wt(b) _ lo—o[ l—[ ( Z p—E(qﬁi(b))ZS—wt(b)),

beG(wy") N=1£6€Xy " peGug")
where 7, — I(u1,..., us), and
z=(w1(p)p~ 7T, ..., ta(p)p” 7T, puit),
ze = (1 (P)p ™™, ooy i (P)p~ T, Ep ()~ pitT).

3. Spherical functions and generalization of the Gindikin—Karpelevich formula

Let us recall some notations and results from [9]. Let G be a split reductive group. Let O be
the valuation ring of a p-adic field F' with its maximal ideal P and kK = O/P be the residue field.
We abuse notation and write G = G(F). Let K = G(O) and I be the Iwahori subgroup of K
defined as the inverse image under the projection G(QO) — G (k).

We define the G-projection &2, from C2° onto I (x) by

1
P (f)(g) = / x'8%(b) f (bg) db.

B

For each w e W, let ¢y y = &, (11y1), and let ¢g , = &2, (1k). Here given a subset S of G,
the notation 1g denotes the characteristic function of S. We will sometimes omit the reference
to x. Then the functions ¢,,, w € W, form a basis of I (x)’, and the function ¢ is a basis of the
1-dimensional space I ( k.

The intertwining operator Ty, : I (x) — I (wy) satisfies

Tw(¢K,x) = Cw(X)(pK,wx,

where we set

1,

1—qg 'z
1 —z¢

cw() =[] caG) and ca(x)=

aed(w)

We have another basis { f,,} of 7(x)’ such that
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I iftx=w,

. —1 —
Tw(fx)(l)—/fX(w ”)d”_{o if x # w,
Ny

where we set Ny, = (wNw ™' N N)\N. Then we have, for the longest Weyl group element wy,

fwl :¢w1,

and

Pk = Z b = Z Cw(X) fw-

weW weW

Using Proposition 1.4, we rewrite the above formula as follows.

Proposition 3.1.

Pk = Z fw< Z (1 _q—l)d(¢i(b))z—wt(b)>

weW beGw=1)
:Zz—wt(b)( 3 (1_q—l)d(¢i(b))fw)'
beB weW
beGw™h

Now we study the effect of intertwining operators on Iwahori-fixed vectors. Casselman [9]

proved that if £(s;w) > £(w) for some i =1, ..., r, we have
Ty (Bu.x) = (¢5: 00 = Dowosix +4 Dsiwsix (3.2)
T, (¢siw,x) = ¢w,six + (Cs,- (x) — q_l)(bsiw,six- (3.3)

One can find the following results in Reeder’s paper [20, p. 323].

Lemma 3.4.

(1) If T,~1(¢pyy)(1) #0, then w < x.
(2) Ty-1(uw)(1) = 1.
(3) If w < siw, then T-15, (Puw) (1) = ¢, (x) — 1.

In the following proposition, we write the action of intertwining operators on some Iwahori-
fixed vectors in terms of canonical bases. This can be regarded as a generalization of the
Gindikin—Karpelevich formula. A relevant result and interesting conjectures can be found in [8].

Proposition 3.5. Assume that £(w'w) = L(w") +£(w) for w, w' € W. We write w' = sj,si,_, - i,
in a reduced expression and suppose that

w gsijw, foreach j=1,..., k, (3.6)
Sip WK Si; - -syw,  foreach j=1,...,k—1. (3.7)
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Then
T 1) = 1 - q—lza 1l=0 —1\¢@W)_p—w'1p —wt(b)
w—lw/—1(¢w)( )= 1_[ Tl —( —q ) z Z z .
aed (w1 beG(w’)
Proof. Using induction on the length of w’, we first prove
1 — q—lza
Tyt @)= ] (—Zo-1) (3.8)

aed (w1

If £(w") = 1, we obtain (3.8) from Lemma 3.4(3).
Now we consider the case £(w’) = k. Applying Casselman’s formulas (3.2), Lemma 3.4 and
the assumptions (3.6), (3.7), we obtain

Tw_lsil"'sik (¢w,x)(1) - Tw_lsil”'sik—l TSik (¢w,)()(1)
=Ty g (€5, 0O = Dwsy x + 4 s w.s; 1) (D)
w Sll-"Slk_l 175 alkX SlkW,Ssz

= (CSik (x) — I)Tw—l Sik_1¢w,s,-kx(1)

Sil .es

1 — g 'z%*
=@ 00-0 T (e 1)

ae¢(sil~~~sik_1)
1—qg 1z
1—2z%
aed (w1

The last two equalities come from induction and (1.3), respectively.
We see that

l—q_lz“ B PR N1 (7 z
[ (—1_20, 1)—(1 « )" Tl (3.9)

aed (w1 aed(w' )
Recall that we have
—1
Z a=p—w p.
acd (w1

Applying Proposition 2.1 to the right-hand side of (3.9) with ¢ = 1, we obtain the second equality
of the proposition. O

We give examples where the assumption (3.6) or (3.7) is not satisfied. We consider the root
system of type C>. Let 0 = s54,, T = 54, be the simple reflections with respect to the short and

long simple roots, respectively. Then the Weyl group is given by

W={l,0,7,01,70,010,T0T,0T0OT =TOTO}.
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We first consider 7,4 (@, ;) (1). In this case, o §§ o2. So (3.6) is not satisfied, and we obtain

Toeo (Po,)(1) = Toz (D101 + (o (X) = ¢ )0y ) (1)
= (CUOQ(X) - 1)(Carot1 (x) — 1) (CO' x) — )(Ca(xz(X) )

Next we consider 7514 (¢1)(1). Then o < to. So (3.7) is not satisfied, and we get

Toro @1.,0(1) = Tor((co G0 = 1)1.0x +4 7 $o.0,) (D
= l_[ (Ca(X) - 1) —l—q_l(cwz(x) — 1).

aed(oto)

In general, if the assumption (3.6) is satisfied and (3.7) is not, then

—1y—1 (Pw) (1) = 1_[ (ca (x)— 1) + some lower terms.

acdw'

Let Iy be the zonal spherical function corresponding to x. It satisfies

r,(1=1, Iy (kigks) =T, (g) forallky,kr € K and g € G.

We have the Cartan decomposition G = KT~ K, where T~ corresponds to the set of dominant
integral coweights. Then Macdonald’s identity shows that for r € 7, we have

@)= 07831 Y cuy (wx) ™) wx) @),
weW

where O =", cywq ™. Let z,, -1 be the Satake parameter corresponding to (wx)~'. Then

—wt(b) _ zZ

we see that 2, -1 wXWt(b). So by Proposition 1.4, we have

cuy (wx)™) =Y (1 =g )OO gud),

beB

Hence we obtain the following proposition.

Proposition 3.10.

r,@) = Q—l(sg(;) Z (wx)(t)<2(1 _ q—l)d(¢i(b))zwxwt(b))

weW beB
_o s HE d(¢1(b))( Z(wx)(t)zwt(b)).
beB weW
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