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CHARACTER EXPANSION OF KAC–MOODY CORRECTION
FACTORS

KYU-HWAN LEE, DONGWEN LIU AND THOMAS OLIVER

A correction factor naturally arises in the theory of p-adic Kac–Moody
groups. We expand the correction factor into a sum of irreducible char-
acters of the underlying Kac–Moody algebra. We derive a formula for the
coefficients which lie in the ring of power series with integral coefficients. In
the case that the Weyl group is a universal Coxeter group, we show that the
coefficients are actually polynomials.

1. Introduction

Let W be a Coxeter group, and consider its Poincaré series

χ(q) :=
∑
w∈W

q`(w),

where q is an indeterminate and `(w) is the length of w. R. Steinberg [1968]
showed that the series χ(q) represents a rational function in q. When W is the
Weyl group of an irreducible, reduced, finite root system 8, I.G. Macdonald [1972]
found the following identity:

(1-1)
∑
w∈W

∏
α∈8+

(
1− qe−wα

1− e−wα

)
= χ(q),

where 8+ is the set of positive roots and eβ is a formal exponential associated
to β in the root lattice Q. Macdonald’s identity reflects the geometry of the flag
manifold.

A generalization of the left-hand side of (1-1) to a Kac–Moody root system 8

would be

M(q) :=
∑
w∈W

∏
α∈8+

(
1− qe−wα

1− e−wα

)m(α)

,
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where m(α) is the multiplicity of α. The identity (1-1) is no longer true for M(q),
and so it is interesting to compute the correction factor M(q)/χ(q).1 Macdonald
[2003] computed this quotient for the affine Kac–Moody case. The computation
turns out to be equivalent to the Macdonald constant term conjecture [1982], which
was proven by I. Cherednik [1995].

The correction factor appears in the study of p-adic affine Kac–Moody groups,
namely in the formal computation of Fourier coefficients of Eisenstein series and
in the study of corresponding Hecke algebras. For example, it was shown by
Braverman, Finkelberg and Kazhdan [Braverman et al. 2012] that this correction
factor appears in the Gindikin–Karplevich formula for affine Kac–Moody groups;
see also [Braverman et al. 2014; 2016; Gaussent and Rousseau 2014; Bardy-Panse
et al. 2016]. The correction factor in the general case was studied by Muthiah,
Puskás and Whitehead [Muthiah et al. 2020]. They encoded the data of the correction
factor into a collection of polynomials indexed by positive imaginary roots and
derived formulas for these polynomials.

We study the correction factor M(q)/χ(q) for arbitrary Kac–Moody root sys-
tems, which we write as a sum of characters ch(L(λ)) of integrable irreducible
representations L(λ) of the Kac–Moody algebra g with root system 8. As the first
main result of this paper, we prove that the sum is supported on λ ∈ P+ ∩ Q−im,
where P+ is the set of dominant integral weights and Q−im is the cone generated by
negative imaginary roots. More precisely, we obtain:

Theorem 1.1. Given a Kac–Moody algebra g, let P+ denote its set of dominant
integral weights and Q−im its negative imaginary root cone. Then there are dλ∈Z[[q]],
λ ∈ P+ ∩ Q−im, such that

(1-2) M(q)/χ(q)=
∑

λ∈P+∩Q−im

dλ ch(L(λ)).

Actually, we prove this result for any W -invariant functions with support in
the negative root cone Q−; see Theorem 2.13. We recover (1-1) as an immediate
consequence, since P+∩Q−im= {0} for finite root systems. This result also explains
why the known formulas in the affine case only involve imaginary roots.

The coefficients dλ are related to the function H(µ; q), µ ∈ Q, which was
introduced by Kim and Lee [2011; 2012] in a study of p-adic integrals using
canonical/crystal bases from the context of Weyl group multiple Dirichlet series;
see [Bump 2012] for a survey. See Definition 3.1 for the definition of H(µ; q). We

1A slight modification of this quotient, denoted by m, is what Macdonald called the constant term
in the affine case and is also called the “correction factor” in the literature (see (2-10) for a precise
definition).
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prove the following formula (Theorem 3.5):

(1-3) χ(q)dλ =
∑
w∈W

(−1)`(w)H(−w ◦ λ; q),

where w ◦ λ := w(λ+ ρ)− ρ with a Weyl vector ρ.
Using (1-3), one can compute dλ explicitly. In particular, in the rank 2 hyperbolic

case, we observe that they are actually polynomials in q. Generalizing this obser-
vation, we prove that dλ are always polynomials when W is a universal Coxeter
group, or equivalently, when ai j a j i ≥ 4 for all i, j ∈ I with the generalized Cartan
matrix A = (ai j )i, j∈I of g. Formally, we obtain:

Theorem 1.2. Assume that the Weyl group W of g is a universal Coxeter group.
Then we have dλ ∈ Z[q] for all λ ∈ P+ ∩ Q−im.

It would be very interesting to see if dλ are polynomials for arbitrary Kac–Moody
root systems. We expect that these coefficients carry important combinatorial,
representation-theoretic information, which is yet to be revealed. We hope that we
can investigate these issues in the near future.

The main text proceeds as follows. In Section 2 we review standard background
material and construct a large ring containing M(q) equipped with a W -action. We
conclude with the statement that W -invariant elements admit a character expansion,
which applies in particular to M(q). In Section 3 we compute the character
coefficients in terms of the function H . Though the formula deduced involves an
infinite sum, it exhibits a large amount of cancellation and in Section 4 we show that
it is in fact a polynomial when W is a universal Coxeter group. In the Appendix,
we give compute the coefficients for certain small imaginary roots of a rank 2
hyperbolic Kac–Moody algebra.

2. Existence of character coefficients

We will use the conventions and terminology of [Kac 1983]. Let I = {1, . . . , n}
and let A be a generalized Cartan matrix with realization (h,5,5∨). In particular,
the elements of the set 5= {α1, . . . , αn} ⊂ h∗ (resp. 5∨ = {α∨1 , . . . , α

∨
n } ⊂ h) are

the simple roots (resp. simple coroots). The root lattice Q (resp. positive root cone
Q+) is the Z-span (resp. Z≥0-span) of 5. We set Q− =−Q+. A partial order ≥
on h∗ is defined by µ≥ ν if µ− ν ∈ Q+. We say α ∈ h∗ is positive (resp. negative)
if α > 0 (resp. α < 0).

Let g be the Kac–Moody algebra associated to A, which admits the root space
decomposition g=⊕α∈Qgα , with g0 = h. Given α ∈ Q, its multiplicity m(α) is the
dimension of the vector space gα . A nonzero α ∈ Q is a root if m(α) 6= 0. We will
denote the set of roots by 8, and the set of positive (resp. negative) roots by 8+

(resp. 8−).
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Let W denote the Weyl group of g, which is the subgroup of Aut(h∗) generated
by the simple reflections si , i ∈ I . A root α ∈ 8 is called real if there is w ∈ W
such that wα is a simple root. A root that is not real is called imaginary. If α is
real, then m(α)= 1. The set of real (resp. imaginary) roots is denoted by 8re (resp.
8im), and the set of positive real (resp. positive imaginary) roots is denoted by 8+re
(resp. 8+im).

Let q denote a formal variable, and let Z[[q]] be the ring of power series in q with
integer coefficients. Recall that f (q) ∈ Z[[q]] is invertible if and only if the constant
term f (0) of f is equal to ±1. The inverse of a unit in Z[[q]] will be written as a
fraction whenever it is convenient. For example, we write

1
1− q

= 1+ q + q2
+ · · · .

Example 2.1. The Poincaré series of the Weyl group W is defined as follows:

(2-1) χ(q)=
∑
w∈W

q`(w) ∈ Z[[q]],

where the length `(w) of w ∈ W is the minimal ` such that w = si1 · · · si` is a
product of simple reflections. As the only word of length 0 is the identity element,
the constant term of χ(q) is 1. Thus, χ(q) ∈ Z[[q]]×.

Notation. To each λ ∈ h∗, we associate a formal exponential denoted by eλ, and
define eλeµ = eλ+µ for λ,µ ∈ h∗. Let Z((q)) denote the ring of Laurent series
with integral coefficients, and let R be a subring of Z((q)). We denote by S(R) the
additive group of formal sums

∑
λ∈h∗ aλeλ with aλ ∈ R for all λ ∈ h∗.

Definition 2.2. The support of a formal sum
∑

λ∈h∗ aλeλ ∈S(R) is the set of λ∈ h∗

such that aλ 6= 0.

If f =
∑

λ∈Q aλeλ is a unit of S(R) and has support in a translate of Q−, then
f has a unique product expansion as in [Muthiah et al. 2020, Proposition 2.2]:

(2-2)
∑
λ∈Q

aλeλ = ueλ0
∏

λ∈Q−\{0}

∏
n∈Z

(1− qneλ)m(λ,n),

for some u ∈ R×, λ0 ∈ Q and m(λ, n) ∈ Z such that, for every λ, the set {n ∈ Z :

m(λ, n) 6= 0} is bounded below.

Definition 2.3 [Muthiah et al. 2020, Section 2.3]. A product of the form (2-2) is
called a good product with coefficients in R if all λ appearing in its factors are
multiples of roots α ∈ 8, and the set of factors corresponding to any real root
α ∈8re is finite. We will denote by G(R) the multiplicative group of good products
with coefficients in R.
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An element of G(R) expands to a formal sum in S(R) by definition. The notion
of a good product is introduced, in part, to define the action of W as below.

Definition 2.4. We define an action of W on G(R) by extending the following
action on the factors of (2-2) multiplicatively:

(2-3) w(1− qneλ)=
{

1− qnew(λ) w(λ) < 0,
(−qnew(λ))(1− q−ne−w(λ)) w(λ) > 0,

for w ∈W . Given f ∈ G(R), we will sometimes write f w =w( f ). We will denote
by GW (R) the ring of W -invariant elements of G(R).

Define the negative imaginary cone Q−im to be the cone generated by negative
imaginary roots. Then we have Q−im =

⋂
w∈W w(Q

−). Thus if f ∈ GW (R) is
supported on Q−, then it is in fact supported on Q−im. It was noted in [Muthiah
et al. 2020] that, for w ∈W and f =

∑
λ∈h∗ aλeλ ∈ G(R), we have

(2-4) w( f )=
∑
λ∈h∗

aλewλ.

Remark 2.5. The set of f ∈ S(R) supported on Q− is not closed under the action
of W defined by (2-4), but G(R) is.

The basic good product in this paper is

(2-5) 1 :=
∏
α∈8+

(
1− qe−α

1− e−α

)m(α)

.

Here (1−qe−α)/(1−e−α)= 1+
∑

n≥1(1−q)e−nα , and it is clear that1∈G(Z[q]).
Since m(α)= 1 for α ∈8+re, we set

(2-6) 1re :=
∏
α∈8+re

(
1− qe−α

1− e−α

)
, 1im :=

∏
α∈8+im

(
1− qe−α

1− e−α

)m(α)

so that we have
1=1re1im.

Finally, define

(2-7) M(q) :=
∑
w∈W

1w.

Clearly, M(q) is W -invariant since it is the sum of W -action on 1.

Lemma 2.6. The formal sum M(q) is a W -invariant good product with coefficients
in Z[[q]], i.e., M(q) ∈ GW (Z[[q]]). Moreover, M(q) is supported on Q−im and has
the constant term equal to χ(q).
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Proof. Since the set 8+im is W -invariant, and m(wα)=m(α) for w ∈W and α ∈8,
we have 1wim =1im. It follows that 1w = (1re1im)

w
=1wre1im. By Definition 2.4,

we have

w

(
1− qe−α

1− e−α

)
=

{
1−qe−w(α)

1−e−w(α) if w(α) > 0,
qe−w(α)(1−q−1ew(α))

e−w(α)(1−ew(α)) =
q(1−q−1ew(α))

1−ew(α) if w(α) < 0,

for w ∈W and α ∈8+re. One can immediately see that the sum M(q) is supported
on Q−. Since

(2-8)

1− qe−α

1− e−α
= 1+

∑
n≥1

(1− q)e−nα,

q(1− q−1e−α)
1− e−α

=
q − e−α

1− e−α
= q −

∑
n≥1

(1− q)e−nα,

we see that 1w is a good product with coefficients in Z[q], i.e., 1w ∈ G(Z[q]).
Now we check that the coefficient of e−β in M(q)=

∑
w∈W 1

w is an element
of Z[[q]] for β ∈ Q+. For w ∈W , define

8(w) := {α ∈8+re | w(α) < 0} =8+ ∩w−18−.

It is well-known that |8(w)| = `(w). Thus we have

(2-9) 1wre =
∏

α∈8(w−1)

(
q − e−α

1− e−α

) ∏
α∈8+re\8(w−1)

(
1− qe−α

1− e−α

)

= q`(w)
∏

α∈8(w−1)

(
1− q−1e−α

1− e−α

) ∏
α∈8+re\8(w−1)

(
1− qe−α

1− e−α

)
.

For β ∈ Q+, the coefficient of e−β in 1w =1wre1im, a priori an element in Z[[q]],
is of the form

q`(w) pβ,w

for some pβ,w ∈ Z((q)). Recall the height of β =
∑n

i=1 miαi ∈ Q+, mi ≥ 0, is
defined to be

ht(β) :=
n∑

i=1

mi .

It is easy to observe from (2-8) and (2-9) the crude estimate that the degrees of
pβ,w in q−1 and q are both bounded by ht(β). Thus we have pβ,w ∈ Z[q, q−1

].
Moreover qm appears in q`(w) pβ,w only if `(w)≤ m+ ht(β). Since there are only
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finitely many w ∈W of a given length, we see that

M(q)=
∑
w∈W

1w =
∑
β∈Q+

(∑
w∈W

q`(w) pβ,w

)
e−β

with the coefficient of e−β given by a well-defined sum∑
w∈W

q`(w) pβ,w ∈ Z[[q]].

In particular, when β = 0, we have p0,w = 1 for all w ∈W and the constant term
of M(q) is equal to

∑
w∈W q`(w) = χ(q).

We have already seen that M(q) is supported on Q− at the beginning of the
proof. Since M(q) is also W -invariant, it is supported on Q−im. (See the paragraph
after Definition 2.4.)

Using [Muthiah et al. 2020, Proposition 2.2], we may write M(q) as a product
of the form (2-2) with λ0 = 0. Since M(q) is supported on Q−im, no factor corre-
sponding to a real root arises in the product and hence M(q) is a good product. �

Remark 2.7. (1) We have the following identity in GW (Z[[q]]):

(2-10) mM(q)=1imχ(q),

where m is as defined in [Muthiah et al. 2020, (3.5)]. Each of m−1, 1im and M(q)
expands to a formal sum supported on Q−im.

(2) In the paper [Bardy-Panse et al. 2019], it was pointed out that M(q) is not
an element of GW (Z[q, q−1

]) but an element of GW (Z((q))). As a refinement,
Lemma 2.6 shows that M(q) ∈ GW (Z[[q]]).

Now we move on to study a character expansion of an element in GW (Z[[q]]).

Definition 2.8. Fix a Weyl vector ρ ∈ h∗, i.e., a vector satisfying ρ(α∨i ) = 1, for
all i ∈ I . The circle action2 of W on h∗ is defined by

(2-11) w ◦ λ= w(λ+ ρ)− ρ.

Example 2.9. We have

(2-12) w ◦ 0= wρ− ρ,

which can be written as a sum of negative roots. Indeed, one has

(2-13) ρ−wρ =
∑

α∈8(w−1)

α,

2This action is slightly different from the action with the same notation in [Kim and Lee 2012].
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where, for w ∈W ,

(2-14) 8(w) :=8+ ∩w−18−.

Denote by P the weight lattice of g, and by P+ ⊂ P the subset of dominant
integral weights. For λ ∈ P , define

πλ :=

∑
w∈W (−1)`(w)ew(λ+ρ)∑
w∈W (−1)`(w)ewρ

.

Recall the denominator identity

(2-15)
∑
w∈W

(−1)`(w)ewρ−ρ =
∏
α∈8+

(1− e−α)m(α).

For λ ∈ P , define

(2-16) ξλ :=
∑
w∈W

(−1)`(w)ew◦λ.

Lemma 2.10. (1) For w ∈W , we have

w

( ∏
α∈8+

(1− e−α)m(α)
)
= (−1)`(w)eρ−wρ

∏
α∈8+

(1− e−α)m(α).

(2) For λ ∈ P and w ∈W , we have

ξλ = (−1)`(w)ξw◦λ and πλ = (−1)`(w)πw◦λ.

Proof. (1) From the denominator identity (2-15), we have

w

( ∏
α∈8+

(1− e−α)m(α)
)
=

∑
w1∈W

(−1)`(w1)eww1ρ−wρ

=

∑
w1∈W

(−1)`(w)+`(ww1)eww1ρ−ρeρ−wρ

= (−1)`(w)eρ−wρ
∑
w1∈W

(−1)`(ww1)eww1ρ−ρ

= (−1)`(w)eρ−wρ
∏
α∈8+

(1− e−α)m(α).

(2) Let w ◦ λ= µ. Then w(λ+ ρ)= µ+ ρ. Now we have∑
w1∈W

(−1)`(w1)ew1(λ+ρ) =

∑
w1∈W

(−1)`(w)+`(w1w
−1)ew1w

−1w(λ+ρ)

= (−1)`(w)
∑
w1∈W

(−1)`(w1w
−1)ew1w

−1(µ+ρ).
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Multiplying both sides by e−ρ , we get ξλ = (−1)`(w)ξµ = (−1)`(w)ξw◦λ. Dividing
both sides by

∑
w1∈W (−1)`(w1)ew1ρ−ρ , we obtain πλ = (−1)`(w)πw◦λ. �

Consider the following subset of Q−:

(2-17) Q′ :=
⋂
w∈W

w ◦ Q−.

The Weyl group W acts on Q′ by the circle action, and so Q− ⊂ Q′.

Lemma 2.11. Assume that λ ∈ Q′. Then the following hold:

(1) There exists a unique µ ∈ Q− and v ∈W such that µ+ρ ∈ P+ and v ◦λ= µ.

(2) The stabilizer subgroup

W ◦λ := {w ∈W : w ◦ λ= λ}

is generated by reflections in W .

(3) If λ ∈ P+ ∩ Q−, then W ◦λ = {1}.

Proof. Write λ=
∑

i miαi with mi ≤ 0 for all i . If λ+ ρ ∈ P+, there is nothing to
prove. If not, there exists j such that λ(α∨j )≤−2. We have

s j ◦ λ= s j (λ+ ρ)− ρ = λ− (λ(α
∨

j )+ 1)α j ∈ Q−.

Since λ(α∨j )+1< 0, we have m j <m j − (λ(α
∨

j )+1)≤ 0. If (s j ◦λ)+ρ is in P+,
we are done. Otherwise, repeat the process with replacing λ with s j ◦ λ. Since the
coefficients are increasing and bounded above by 0, this process must end.

Assume that λ+ ρ ∈ P+. Suppose that w ◦ λ = µ and µ+ ρ ∈ P+ for w =
si1si2 · · · si` 6= 1, a reduced expression. Then we have w(λ+ ρ) = µ+ ρ. Since
(λ+ρ)(α∨i` )≥ 0, we have (µ+ρ)(w(α∨i` ))≥ 0. Since w= si1si2 · · · si` is a reduced
expression, we get w(α∨i` ) < 0, and (µ+ρ)(w(α∨i` ))≤ 0. Thus (µ+ρ)(w(α∨i` ))= 0
and (λ+ ρ)(α∨i` ) = 0. Hence si`(λ+ ρ) = λ+ ρ and si` ◦ λ = λ. By induction,
we obtain µ = λ, which completes a proof of (1). We have also shown that the
subgroup W ◦λ is generated by simple reflections for λ+ ρ ∈ P+.

Assume that λ ∈ P+ ∩ Q−, and suppose that w ◦λ= λ for w = si1si2 · · · si` 6= 1,
a reduced expression. Then (λ+ ρ)(α∨i` ) > 0 and the above argument leads to a
contradiction. Thus we must have w = 1. This proves (3).

Now assume that λ ∈ Q′. By Lemma 2.11(1), there exists v ∈ W such that
v ◦ λ+ ρ ∈ P+. Then W ◦v◦λ is generated by simple reflections si . Hence W ◦λ is
generated by v−1siv, which are reflections. This completes a proof of (2). �

Lemma 2.12. Assume that λ∈Q′. The series ξλ∈G(Z) defined in (2-16) is nonzero
if and only if the stabilizer subgroup W ◦λ of λ under the circle action is trivial.
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Proof. Suppose that ξλ = 0. Then the term eλ cancels with (−1)`(w)ew◦λ for some
w 6= 1. In particular, λ= w ◦ λ, and the stabilizer subgroup W ◦λ is not trivial.

Conversely, assume that the stabilizer subgroup W ◦λ is not trivial. By Lemma 2.11
there exists a reflection s ∈ W ◦λ such that s ◦ λ= λ. It follows from Lemma 2.10
that ξλ = (−1)`(s)ξ s◦λ

=−ξλ. Hence ξλ = 0. �

Given λ ∈ P+, let L(λ) denote the irreducible highest weight module of g

with highest weight λ. The module L(λ) admits a weight space decomposition
L(λ)=⊕µ∈h∗Lµ. The character ch(L(λ)) of L(λ) is defined by

(2-18) ch(L(λ))=
∑
µ∈h∗

(dim Lµ)eµ.

If λ ∈ P+, then by [Kac 1983] we have

(2-19) πλ = ch(L(λ)).

Theorem 1.1 is a consequence of the following result.

Theorem 2.13. Given a Kac–Moody algebra g, let P+ denote its set of dominant
integral weights and Q−im its negative imaginary root cone. If f ∈ GW (Z[[q]]) is
such that supp( f )⊂ Q−, then there are cλ ∈ Z[[q]], λ ∈ P+ ∩ Q−im, such that

(2-20) f =
∑

λ∈P+∩Q−im

cλ ch(L(λ)).

Proof. Since f is supported on Q−, we may write the following product as a sum
supported on Q−:

(2-21) 4= f ·
∏
α∈8+

(1− e−α)m(α) =
∑
β∈Q−

cβeβ .

As f is invariant under W , it follows from Lemma 2.10(1) that

(2-22) w

(
f ·

∏
α∈8+

(1− e−α)m(α)
)
=

∑
β∈Q−

cβewβ

= (−1)`(w)eρ−wρ f ·
∏
α∈8+

(1− e−α)m(α)

=

∑
γ∈Q−

(−1)`(w)cγ eρ−wρ+γ .

Comparing coefficients, we see that for β ∈ Q−,

cβ = (−1)`(w)cw◦β .
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Moreover, cβ = 0 unless β ∈ Q′, i.e., 4 is supported on Q′. If λ+ ρ ∈ P+ and
λ 6∈ P+ ∩ Q− for λ ∈ Q−, then there exists α∨i such that (λ+ ρ)(α∨i ) = 0 and
si ◦ λ= λ. Thus ξλ = 0 by Lemma 2.12.

By Lemma 2.11(1) and the above argument, we group the terms of (2-21) to get
a sum over P+ ∩ Q−, which is the subset of representatives λ of the ◦-action of W
on Q′ such that ξλ 6= 0:

(2-23) 4=
∑
β∈Q′

cβeβ =
∑

λ∈P+∩Q−
cλξλ.

On the other hand, for λ ∈ P+, Weyl’s character formula implies

(2-24) ξλ = ch(L(λ))
∏
α∈8+

(1− e−α)m(α).

The result follows from combining (2-23) with (2-24), noting that f is in fact
supported on Q−im. �

Remark 2.14. As mentioned in the introduction, we recover (1-1) as an immediate
consequence of Theorem 2.13, since P+∩ Q−im = {0} for finite root systems. In the
affine case, we have P+∩Q−im=Z≤0 ·δ with the minimal positive imaginary root δ,
and the theorem shows that the right-hand side of (2-20) only involves imaginary
roots.

3. A formula for the character coefficients

In this section, we derive a formula for the coefficients in the expansion of M(q)
into a sum of characters. We begin with the definition of a function which will play
an important role in what follows.

Definition 3.1 [Kim and Lee 2011; 2012]. The function H : Q+→ Z[q] is defined
by the generating series in G(Z[q]):

(3-1)
∑
µ∈Q+

H(µ; q)e−µ =
∏
α∈8+

(1− qe−α)m(α),

where m(α) is the multiplicity of α. When we do not need to specify q, we will
frequently write H(µ)= H(µ; q).

Remark 3.2. In [Kim and Lee 2011; 2012], the function H was denoted by Hρ .
See (2-13) in [Kim and Lee 2012].

Definition 3.3. Let µ ∈ Q+, and P := {(α; i) : α ∈8+, i = 1, 2, . . . ,m(α)}. An
admissible partition of µ is a finite set p⊂P such that

∑
(α,i)∈p α = µ. Let P(µ)

be the set of admissible partitions of µ. Given p∈P(µ), we will refer to an element
(α, i) ∈ p as part of p, and denote the number of parts in p by |p|.



170 KYU-HWAN LEE, DONGWEN LIU AND THOMAS OLIVER

Examples of admissible partitions are given in the Appendix.

Lemma 3.4. We have

(3-2) H(µ)=
∑

p∈P(µ)

(−q)|p|.

Proof. Equation (3-2) follows from expanding the product in (3-1) and computing
the coefficient of e−µ. �

We now prove (1-3), which we state below as a theorem for ease of reference.

Theorem 3.5. For λ ∈ P+ ∩ Q−im, define dλ by (1-2). Then we have

(3-3) χ(q)dλ =
∑
w∈W

(−1)`(w)H(−w ◦ λ).

Proof. By definition, we have

M(q)=
∑
w∈W

1w =
∑
w∈W

∏
α∈8+

(1− qe−wα)m(α)

(1− e−wα)m(α)

=

∑
w∈W

∑
µ∈Q+ H(µ)e−wµ∏

α∈8+(1− e−wα)m(α)

=

∑
µ∈Q−

H(−µ)
∑
w∈W

ewµ∏
α∈8+(1− e−wα)m(α)

.

Using Lemma 2.10 (1), we deduce that

M(q)=
1∏

α∈8+(1− e−α)m(α)
∑
µ∈Q−

∑
w∈W

(−1)`(w)H(−µ)ew◦µ.

As in the proof of Theorem 2.13, put

4 :=M(q)
∏
α∈8+

(1− e−α)m(α) =
∑
µ∈Q−

∑
w∈W

(−1)`(w)H(−µ)ew◦µ.

Since 4 is supported on Q′, we may rewrite the above double sum as

4=
∑
β∈Q′

∑
w∈W

(−1)`(w)H(−w ◦β)eβ .

The theorem then follows from (2-23). �

Example 3.6. Given w ∈ W , write w = si1 · · · si` as a reduced expression. If
8(w−1) is as defined in (2-14), then

(3-4) 8(w−1)= {αi1, si1(αi2), . . . , si1 · · · si`−1(αi`)},
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and

(3-5) w ◦ 0= ρ−wρ =
∑

α∈8(w−1)

α = αi1 + si1(αi2)+ · · ·+ si1 · · · si`−1(αi`).

Suppose that
ρ−wρ = β1+β2+ · · ·+βk

for some positive roots β1, . . . , βk ∈8
+. Note that we have

si1(ρ−wρ) 6∈ Q+.

Since si1 keeps 8+ except αi1 , one of the βi must equal αi1 . Then si1(ρ−wρ−αi1)

is equal to ρ−w′ρ where w′= si2 · · · si` . Arguing by induction on `(w), we deduce
that (3-5) is the unique decomposition of w ◦ 0 into a sum of positive roots. Now it
follows from (3-2) that

(3-6) H(−w ◦ 0)= H(ρ−wρ)= (−q)`(w),

and so the formula (3-3) yields
d0 = 1.

Lemma 3.7. For all nonzero λ∈ P+∩Q− andw∈W , the coefficients of H(−w◦λ)
sum to zero.

Proof. From [Kim and Lee 2012, Lemma 3.18], we have

(3-7) H(µ; 1)=
{
(−1)`(w) if ρ−wρ = µ for some w ∈W,
0 otherwise.

Therefore, it suffices to show that

(3-8) −w ◦ λ=−(w(λ+ ρ)− ρ)= ρ−w(λ+ ρ) 6= ρ− vρ

for any v ∈W . Equation (3-8) is equivalent to λ+ ρ 6= w−1vρ, and so it is enough
to show, for any v ∈W ,

λ 6= vρ− ρ.

If v = 1 there is nothing to prove. Consider an arbitrary v 6= 1, and write v−1 as a
reduced word si1 · · · sik . Then we have

ρ(v−1α∨ik
) < 0,

and
(vρ− ρ)(α∨ik

)= vρ(α∨ik
)− ρ(α∨ik

)= ρ(v−1α∨ik
)− 1≤−2.

Thus vρ− ρ /∈ P+. Since λ ∈ P+, we have λ 6= vρ− ρ. �
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Definition 3.8. Let λ ∈ Q− and

(3-9) p= {(β1;m1), (β2;m2), . . . , (βt ;mt)} ∈ P(−λ).

Given w ∈W , we define

(3-10) m(p, w)= t − 2× #{(βi ; j) ∈ p : wβi < 0}.

With p as in (3-9), we define

φi (p) :=


{(siβ1;m1), . . . , (siβt ;mt), (αi ; 1)} if β j 6= αi for any j,
{(siβ1;m1), . . . , (siβ j−1;m j−1), (siβ j+1;m j+1), . . . , (siβt ;mt)}

if β j = αi for some j .

Since

−si ◦ λ=−si (λ+ ρ)+ ρ =−si (λ)+αi ,

we see that φi (p)∈P(−si◦λ). In other words, φi defines a map P(−λ)→P(−si◦λ).
Replacing λ with si ◦λ, we obtain similarly a map from P(−si ◦λ) to P(−λ). One
can check that these maps are inverses to each other, and so the map φi is a bijection
from P(−λ) to P(−si ◦ λ).

Lemma 3.9. If `(wsi )= `(w)+ 1, then

m(φi (p), w)= m(p, wsi )+ 1.

Proof. Consider φi (p)= {(β1;m1), . . . , (βt ;mt)} ∈ P(−λ). First assume that

p= {(siβ1;m1), . . . , (siβt ;mt), (αi ; 1)}.

By applying wsi to the first components, we get wβ1, . . . , wβt ,−wαi . Since
−wαi < 0 from the condition `(wsi )= `(w)+ 1, we obtain

m(p, wsi )= m(φi (p), w)+ 1− 2= m(φi (p), w)− 1.

Next assume that

p= {(siβ1;m1), . . . , (siβ j−1;m j−1), (siβ j+1;m j+1), . . . , (siβt ;mt)}.

In this case, we have β j = αi , and obtain m(p, wsi )= m(φi (p), w)− 1. �

Proposition 3.10. If λ ∈ Q− and w ∈W , then

(3-11) (−1)`(w)H(−w ◦ λ)= q`(w)
∑

p∈P(−λ)

(−q)m(p,w).
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Proof. Write w = si1si2 · · · si` as a reduced expression. By Lemma 3.9, we have

H(−si1si2 · · · si` ◦ λ)=
∑

p∈P(−si1 si2 ···si`◦λ)

(−q)m(p,id)

=

∑
p∈P(−si2 ···si`◦λ)

(−q)m(φsi1
(p),id)

=

∑
p∈P(−si2 ···si`◦λ)

(−q)m(p,si1 )+1

=

∑
p∈P(−si3 ···si`◦λ)

(−q)m(φsi2
(p),si1 )

=

∑
p∈P(−si3 ···si`◦λ)

(−q)m(p,si1 si2 )+2

...

=

∑
p∈P(−λ)

(−q)m(p,si1 ···si` )+`,

which amounts to the identity (3-11). �

4. Polynomiality

In this section we prove Theorem 1.2. That is, we show that dλ is a polynomial
when the Weyl group W of g is a universal Coxeter group.

Assume that W be a universal Coxeter group of rank n ∈ Z>0. By definition,
the group W is isomorphic to the free product of n-copies of Z/2Z. Denote its
generators by si , i = 1, . . . , n. The identity element is the only word of length 0,
and for any ` ≥ 1 there are n(n− 1)`−1 words of length `. We thus compute the
Poincaré series of W to be

χ(q)=
∑
w∈W

q`(w)=1+nq
∞∑

k=0

((n−1)q)k=1+
nq

1−(n−1)q
=

1+q
1−(n−1)q

∈Z[[q]].

Given λ ∈ P+∩Q−im, our aim is to establish the polynomiality of

(4-1) dλ =
∑

w∈W (−1)`(w)H(w ◦ λ)
χ(q)

=
(1− (n− 1)q)

∑
w∈W (−1)`(w)H(w ◦ λ)
1+ q

∈ Z[[q]].
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Fix λ ∈ P+∩Q−im, and define

(4-2) N =max
{
`(w)+ 1

∣∣∣ (wαi ; j) is a part of any p ∈ P(−λ)
for 1≤ i ≤ n, j ∈ Z and w ∈W

}
.

Since W is a universal Coxeter group, the number N is well-defined. For the time
being, fix an arbitrary element v ∈W of length N . Let Wv be the set of elements in
W whose reduced word has v as its rightmost factor. For p ∈ P(−λ), define

(4-3) m(p,Wv)= |p| − 2× #{(βi ; j) ∈ p | wβi < 0 for some w ∈Wv}.

Write

(4-4)
∑

p∈P(−λ)

(−q)m(p,Wv) =

r∑
k=0

akqk

for some ak ∈ Z and r ≥ 0, and define

Qv :=

r−1∑
k=0

((n− 1)ka0+ (n− 1)k−1a1+ (n− 1)k−2a2+ · · ·+ ak)qk,(4-5)

Av := (n− 1)r a0+ (n− 1)r−1a1+ (n− 1)r−2a2+ · · ·+ ar .(4-6)

It follows from (3-11) that∑
w∈Wv

(−1)`(w)H(−w ◦ λ)=
∑
w∈Wv

q`(w)
∑

p∈P(−λ)

(−q)m(p,w)

= q N (Qv + Avqr (1+ (n− 1)q + (n− 1)2q2
+ · · · ))

= q N
(

Qv + Av
qr

1− (n− 1)q

)
,

and so

(4-7)
∑
w∈W

(−1)`(w)H(−w◦λ)

=

∑
w∈W,`(w)<N

q`(w)
∑

p∈P(−λ)

(−q)m(p,w)+q N
∑

v∈W,`(v)=N

(
Qv+Av

qr

1−(n−1)q

)
.

Proposition 4.1. For any w ∈W , the sum∑
w∈W

(−1)`(w)H(−w ◦ λ)

is divisible by 1+ q.
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Proof. Let N be defined as in (4-2), and v ∈W be an arbitrary element of length N .
For any w ∈W , we have ∑

p∈P(−λ)

1m(p,w)
= |P(−λ)|.

Therefore ∑
w∈W
`(w)<N

(−1)`(w)
∑

p∈P(−λ)

1m(p,w)
= |P(−λ)|

∑
w∈W
`(w)<N

(−1)`(w).

Since ∑
w∈W
`(w)<N

(−1)`(w) =
N−1∑
k=0

(−1)k#{w ∈W : `(w)= k},

and

#{w ∈W : `(w)= k} =
{

1 k = 0,
n(n− 1)k−1 k > 0,

we deduce∑
w∈W
`(w)<N

(−1)`(w)

= 1− n+ n(n− 1)− n(n− 1)2+ · · ·+ (−1)N−1n(n− 1)N−2

= 1− n[1+ (−1)(n− 1)+ (−1)2(n− 1)2+ · · ·+ (−1)N−2(n− 1)N−2
]

= 1− n[1+ (1− n)+ (1− n)2+ · · ·+ (1− n)N−2
]

= 1− n((1− (1− n)N−1)/(1− (1− n)))

= (1− n)N−1.

Combining the above, we see that∑
w∈W
`(w)<N

(−1)`(w)
∑

p∈P(−λ)

1m(p,w)
= (1− n)N−1

|P(−λ)|.

Let Av and Qv be defined as in (4-6) and (4-5), respectively. Then we have

(−1)r

n
Av =

(−1)r

n
((n− 1)r a0+ (n− 1)r−1a1+ · · ·+ ar ),

and

Qv = a0(1−(n−1)+(n−1)2+· · ·+(−1)r−1(n−1)r−1)

−a1(1−(n−1)+(n−1)2+· · ·+(−1)r−2(n−1)r−2)+· · ·+(−1)r−1ar−1

=
1
n (1−(1−n)r )a0−

1
n (1−(1−n)r−1)a1+· · ·

+(−1)r−2 1
n (1−(1−n)2)ar−2+(−1)r−1ar−1,



176 KYU-HWAN LEE, DONGWEN LIU AND THOMAS OLIVER

so that

Qv + Av (−1)r
n =

1
n (a0− a1+ a2− a3+ · · ·+ (−1)r ar )=

1
n |P(−λ)|.

Evaluating (4-7) at q =−1, we get

(1− n)N−1
|P(−λ)| + (−1)N n(n− 1)N−1 1

n |P(−λ)| = 0. �

Proof of Theorem 1.2. It follows from (4-7) that

(1− (n− 1)q)
∑
w∈W

(−1)`(w)H(−w ◦ λ)

is a polynomial. By Proposition 4.1, the sum
∑

w∈W (−1)`(w)H(−w◦λ) is divisible
by 1+ q. Thus we see from (4-1) that dλ is a polynomial. �

Remark 4.2. From [Kim and Lee 2012, (3-21)], we know that

(4-8) H(−w◦λ;−1)= H(ρ−w(λ+ρ);−1)=dim V (ρ)w(λ+ρ)=dim V (ρ)λ+ρ .

Taking the alternating sum, we get∑
w∈W

(−1)`(w)H(−w ◦ λ;−1)= dim V (ρ)λ+ρ
∑
w∈W

(−1)`(w),

which does not converge. In Proposition 4.1, the sum
∑

w∈W (−1)`(w)H(−w◦λ; q)
is to be interpreted via its analytic continuation given by the rational function
in (4-7).

Appendix

In this appendix, we consider the explicit example of the Kac–Moody algebra
g=H(3) associated to the generalized Cartan matrix

(A-1) A =
(

2 −3
−3 2

)
.

The Weyl group W is the universal Coxeter group of rank 2, that is, W is isomorphic
to the free product (Z/2Z) ∗ (Z/2Z). As there are two elements for a given length
≥ 1, the Poincaré series has the following closed form:

χ(q)= 1+ 2q
∞∑
`=0

q` = 1+ 2q
(

1
1− q

)
=

1+ q
1− q

∈ Z[[q]].

We denote the simple roots by α1, α2 and the simple reflections by s1, s2 as before.
When p = {(β1;m1), (β2;m2), . . . , (βt ;mt)} is an admissible partition, we will
sometimes write

p= (β1;m1)+ (β2;m2)+ · · ·+ (βt ;mt).

For the root multiplicities of H(3), we refer the reader to [Kang and Melville 1995].
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Example A.1. Consider λ = −2α1 − 2α2 ∈ Q−. Then there are 4 admissible
partitions of −λ:

(1) (2α1+ 2α2; 1).

(2) (α1; 1)+ (α1+ 2α2; 1).

(3) (α2; 1)+ (2α1+α2; 1).

(4) (α1; 1)+ (α2; 1)+ (α1+α2; 1).

All the roots appearing in the list above have multiplicity 1, and so

H(−λ)= H(2α1+ 2α2)=−q + 2q2
− q3
=−q(q − 1)2.

We calculate
−s1 ◦ λ=−s1(λ+ ρ)+ ρ = 5α1+ 2α2,

and see that −s1 ◦ λ has 4 admissible partitions:

(1) (5α1+ 2α2; 1).

(2) (α1; 1)+ (4α1+ 2α2; 1).

(3) (2α1+α2; 1)+ (3α1+α2; 1).

(4) (α1; 1)+ (α1+α2; 1)+ (3α1+α2; 1).

Again, all the roots appearing have multiplicity 1. We therefore deduce that

H(−s1 ◦ λ)=−q(q − 1)2 = H(−λ).

Similarly, we compute

H(−s2 ◦ λ)=−q(q − 1)2 = H(−λ).

The circle action of s1s2 on λ yields

−s1s2 ◦ λ= 14α1+ 5α2,

which is not a root. Yet again we have 4 admissible partitions, in which all the roots
still have multiplicity 1, but the lengths are different:

(1) (α1; 1)+ (13α1+ 5α2; 1).

(2) (α1; 1)+ (3α1+α2; 1)+ (10α1+ 4α2; 1).

(3) (α1; 1)+ (5α1+ 2α2; 1)+ (8α1+ 3α2; 1).

(4) (α1; 1)+ (2α1+α2; 1)+ (3α1+α2; 1)+ (8α1+ 3α2; 1).

It follows that

H(−s1s2 ◦ λ)= q2(q − 1)2 =−q H(−s1 ◦ λ)=−q H(−λ).

One can see that this pattern continues as proved in the previous section to yield

(A-2) H(−w ◦ λ)= (−q)`(w)−1 H(−λ), w ∈W, w 6= id .



178 KYU-HWAN LEE, DONGWEN LIU AND THOMAS OLIVER

It follows from (3-3) and (A-2) that∑
w∈W

(−1)`(w)H(−w ◦ λ)= H(−λ)+
∑

w∈W, w 6=id

(−1)`(w)(−q)`(w)−1 H(−λ)

= (1+ q−1)H(−λ)− q−1χ(q)H(−λ),
and so

d−2α1−2α2 =

[
(1+ q−1)

1− q
1+ q

− q−1
]

H(−λ)=−H(−λ)= q(q − 1)2.

Example A.2. Let λ=−2α1− 3α2 ∈ Q−, which is a root with multiplicity 2. We
have admissible partitions:

(1) (2α1+ 3α2, n), n ∈ {1, 2}.

(2) (2α1+ 2α2, 1)+ (α2, 1).

(3) (α1+ 3α2, 1)+ (α1, 1).

(4) (α1+ 2α2, 1)+ (α1+α2, 1).

(5) (α1+ 2α2, 1)+ (α1, 1)+ (α2, 1).

Therefore
H(−λ)=−2q + 3q2

− q3
=−q(q − 1)(q − 2).

We have
−s1 ◦ λ= 8α1+ 3α2,

which is a root with multiplicity 1, and admissible partitions:

(1) (8α1+ 3α2, 1).

(2) (7α1+ 3α2, n)+ (α1, 1), n ∈ {1, 2}.

(3) (5α1+ 2α2, 1)+ (3α1+α2, 1).

(4) (5α1+ 2α2, 1)+ (2α1+α2, 1)+ (α1, 1).

(5) (4α1+ 2α2, 1)+ (3α1+α2, 1)+ (α1, 1).

Therefore

H(−s1 ◦ λ)=−q + 3q2
− 2q3

=−q(q − 1)(2q − 1).

On the other hand
−s2 ◦ λ= 2α1+ 4α2,

which is a root of multiplicity 1, and admissible partitions:

(1) (2α1+ 4α2, 1).

(2) (2α1+ 3α2, n)+ (α2, 1), n ∈ {1, 2}.

(3) (α1+ 3α2, 1)+ (α1+α2, 1).

(4) (α1+ 3α2, 1)+ (α1, 1)+ (α2, 1).
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(5) (α1+ 2α2, 1)+ (α1+α2, 1)+ (α2, 1).

Therefore
H(−s2 ◦ λ)=−q + 3q2

− 2q3.

Now
−s2s1 ◦ λ= 8α1+ 22α2,

which is not a root. We make a list of all admissible partitions:

(1) (8α1+ 21α2, 1)+ (α2, 1).

(2) (7α1+ 18α2, n1)+ (α1+ 3α2, 1)+ (α2, 1), n1 ∈ {1, 2}.

(3) (5α1+ 13α2, 1)+ (3α1+ 8α2, 1)+ (α2, 1).

(4) (5α1+ 13α2, 1)+ (2α1+ 5α2, 1)+ (α1+ 3α2, 1)+ (α2, 1).

(5) (4α1+ 10α2, 1)+ (3α1+ 8α2, 1)+ (α1+ 3α2, 1)+ (α2, 1).

It follows that

H(−s2s1 ◦ λ)= q2
− 3q2

+ 2q4
= q2(2q2

− 3q + 2).

On the other hand,
−s1s2 ◦ λ= 11α1+ 4α2,

which is not a root, and its admissible partitions are:

(1) (10α1+ 4α2, 1)+ (α1, 1).

(2) (8α1+ 3α2, 1)+ (3α1+α2, 1).

(3) (8α1+ 3α2, 1)+ (2α1+α2, 1)+ (α1, 1).

(4) (7α1+ 3α2, n)+ (3α1+α2)+ (α1, 1), n ∈ {1, 2}.

(5) (5α1+ 2α2, 1)+ (3α1+ 2α2, 1)+ (2α1+α2, 1)+ (α1, 1).

Therefore

H(−s1s2 ◦ λ)= 2q2
− 3q3

+ q4
= q2(q − 1)(q − 2).

Next
−s1s2s1 ◦ λ= 59α1+ 22α2,

which is not a root. We have

H(−s1s2s1 ◦ λ)=−q3
+ 3q4

− 2q5.

Also

−s2s1s2 ◦ λ= 11α1+ 30α2, and H(−s2s1s2 ◦ λ)=−2q3
+ 3q4

− q5.

We arrange the information above into Table 1, in which the columns are indexed
by n ∈ N and the rows are indexed by w ∈W (written as reduced words, ordered
lexicographically). The entry corresponding to roww and column n is the coefficient
of qn in H(−w ◦ λ). An empty space indicates that the coefficient is zero. There
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w w ◦ λ 1 2 3 4 5 · · ·

id (2, 3) −2 3 −1
s1 (8, 3) −1 3 −2
s2 (2, 4) −1 3 −2

s2s1 (8, 22) 1 −3 2
s1s2 (11, 4) 2 −3 1

s1s2s1 (59, 22) −1 3 −2
s2s1s2 (11, 30) −2 3 −1
...

...
...

...
. . .

Table 1. Coefficients of qn in H(−w ◦ λ).

is one additional column, which lists the image w ◦ λ of λ under the circle action
by w, written in coordinates with respect to the basis {−α1,−α2}.

Observe that the strings (−2, 3,−1) and (−1, 3,−2) repeat with each iteration,
shifting 1 space and switching signs as the word length increases. The coefficient
of qn in χ(q)dλ can be calculated by taking the sum of the entries in a column
multiplied by (−1)`(w). We see that

d−2α1−3α2 = 0.

Example A.3. Consider λ=−3α1−3α2 ∈ Q−. There are 12 admissible partitions
of −λ:

(1) (3α1+ 3α2; 1).

(2) (3α1+ 3α2; 2).

(3) (3α1+ 3α2; 3).

(4) (3α1+ 2α2; 1)+ (α2; 1).

(5) (3α1+ 2α2; 2)+ (α2; 1).

(6) (2α1+ 3α2; 1)+ (α1; 1).

(7) (2α1+ 3α2; 2)+ (α1; 1).

(8) (2α1+ 2α2; 1)+ (α1+α2; 1).

(9) (2α1+α2; 1)+ (α1+ 2α2; 1).

(10) (α1; 1)+ (α1+α2; 1)+ (α1+ 2α2; 1).

(11) (α2; 1)+ (α1+α2; 1)+ (2α1+α2; 1).

(12) (α1; 1)+ (α2; 1)+ (2α1+ 2α2; 1).
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w w ◦ λ 1 2 3 4 5 6 · · ·

id (3,3) −3 6 −3
s1 (7,3) −2 5 −4 1
s2 (3,7) −2 5 −4 1

s1s2 (19,7) 2 −5 4 −1
s2s1 (7,19) 2 −5 4 −1

s1s2s1 (19,51) −2 5 −4 1
s2s1s2 (51,19) −2 5 −4 1
...

...
...

...
...

. . .

Table 2. Coefficients of qn in H(−w ◦ λ).

w w ◦ λ 1 2 3 4 5 6 7 · · ·

id (3, 4) −4 8 −5 1
s1 (10, 4) −1 7 −8 2
s2 (3, 6) −3 8 −6 1

s2s1 (10,27) 1 −7 8 −2
s1s2 (16,6) 4 −9 5

s1s2s1 (72,27) −1 7 −8 2
s2s1s2 (16,43) −4 9 −5

s1s2s1s2 (72,190) 1 −7 8 −2
s2s1s2s1 (114,43) 4 −9 5

...
...

...
...

...
. . .

Table 3. Coefficients of qn in H(−w ◦ λ).

Note that m(3α1 + 3α2) = 3, m(2α1 + 3α2) = m(3α1 + 2α2) = 2, and the other
roots each have multiplicity 1. We conclude

H(−λ)= H(3α1+ 3α2)=−3q + 6q2
− 3q3

=−3q(q − 1)2.

We continue to obtain Table 2.
Observe that the string (−2, 5,−4, 1) repeats with each iteration, shifting 1 space

and switching signs as the word length increases. Since −2+ 5− 4+ 1= 0, the
coefficient of qn is 0 for n ≥ 4. As it happens, the coefficient of q2 is 0 too. We
conclude

d−3α1−3α2 =
−q3
+ q

χ(q)
= q(q − 1)2.

Example A.4. Let λ=−3α1− 4α2 ∈ Q−. We produce Table 3 which is similar to
that in Example A.3 This time, the strings (1,−7, 8,−2) and (4,−9, 5) alternate.
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0 1 2 3 4
0 1 −q(q − 1) q(q − 1)2 q(q − 1)2 2q(q − 1)2

1 0 2q2(q − 1) −q2(q − 1)(q − 4)
2 −q(q − 1)2(q2

+ q − 1)

Table 4. The polynomial dλ for λ=−mα1− (m+ n)α2 ∈ P+, m
is the row and n is the column.

Note that both strings sum to zero. We see that for n ≥ 5, the coefficient of qn in
dλ is 0. The coefficients of q and q4 are also 0. Altogether we obtain

d−3α1−4α2 =
−2q2(1+ q)

χ(q)
= 2q2(q − 1).

Example A.5. We may compute other dλ in a similar way. In Table 4, the entry
in the space (m, n) is the polynomial dλ for λ=−mα1− (m+ n)α2 ∈ P+. From
symmetry in H(3), we have d−mα1−(m+n)α2 = d−(m+n)α1−mα2 . We also have

d−5α1−5α2 =−q(q − 1)(q3
+ 3q2

− 7q + 2).

Acknowledgments

We thank Dinakar Muthiah, Anna Puskás and Ian Whitehead for helpful discussions,
and are grateful to the anonymous referee for helpful comments.

References

[Bardy-Panse et al. 2016] N. Bardy-Panse, S. Gaussent, and G. Rousseau, “Iwahori–Hecke algebras
for Kac–Moody groups over local fields”, Pacific J. Math. 285:1 (2016), 1–61. MR Zbl

[Bardy-Panse et al. 2019] N. Bardy-Panse, S. Gaussent, and G. Rousseau, “Macdonald’s formula for
Kac–Moody groups over local fields”, Proc. Lond. Math. Soc. (3) 119:1 (2019), 135–175. MR Zbl

[Braverman et al. 2012] A. Braverman, M. Finkelberg, and D. Kazhdan, “Affine Gindikin–Karpele-
vich formula via Uhlenbeck spaces”, pp. 17–29 in Contributions in analytic and algebraic number
theory (Göttingen, Germany, 2009), edited by V. Blomer and P. Mihăilescu, Springer Proc. Math. 9,
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