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In this paper, we study automorphic correction of the hyperbolic Kac-Moody algebra
E10, using the Borcherds product for O(10, 2) attached to a weakly holomorphic
modular form of weight − 4 for SL2(Z). We also clarify some aspects of automorphic
correction for Lorentzian Kac-Moody algebras and give heuristic reasons for the
expectation that every Lorentzian Kac-Moody algebra has an automorphic correction.
C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4820562]

I. INTRODUCTION

In his Wigner medal acceptance speech,22 Kac began with the remark, “It is a well kept secret
that the theory of Kac-Moody algebras has been a disaster.” He continued to mention two exceptions:
the affine Kac-Moody algebras and Borcherds’ algebras. He explained the common feature of these
algebras with the idea of locality. If we look at a narrower class of Borcherds’ algebras related to
the Monster Lie algebras5, 6 and modular products,7 we observe another common feature of these
algebras. Namely, the denominator functions of these algebras are automorphic forms.

One of Borcherds’ motivations for constructing the fake Monster Lie algebra was to extend or
correct the underlying Kac-Moody Lie algebra to obtain a generalized Kac-Moody algebra whose
denominator function is an automorphic form. Gritsenko and Nikulin pursued Borcherds’ idea to
construct many examples of automorphic correction for rank 3 Lorentzian Kac-Moody algebras.17–19

For example, for Feingold and Frenkel’s rank 3 Kac-Moody algebra F ,15 the automorphic correction
is given by the Siegel cusp form �35(Z) of weight 35, called Igusa modular form. See Ref. 17 or
Sec. II D of this paper.

What are the benefits of having automorphic correction? First, automorphic forms satisfy a lot
more of symmetries than the usual denominator function. For instance, we can prove generalized
Macdonald identities as consequences of modular transforms7 (Theorem 6.5). Second, we obtain
generalized Kac-Moody algebras with known root multiplicities and may apply analytic tools such
as the method of Hardy-Ramanujan-Rademacher to compute asymptotic formulas for root multi-
plicities, and thereby obtain bounds for root multiplicities of underlying Kac-Moody algebras. This
analytic approach was taken in Ref. 25 to obtain upper bounds for root multiplicities of F . Third,
we may get connections to and applications for other branches of mathematics. Indeed, Borcherds’
work8 on the fake Monster Lie superalgebra has applications to the moduli space of Enriques
surfaces, and Gritsenko and Nikulin’s work17 is related to the moduli space of K3 surfaces.

This paper is a continuation of our work on automorphic correction of hyperbolic Kac-Moody
algebras. In our previous paper,26 automorphic correction for some rank 2 symmetric hyperbolic
Kac-Moody algebras was constructed using Hilbert modular forms which are Borcherds lifts of
weakly holomorphic modular forms.9, 11 In this paper, we clarify some aspects of automorphic
correction for Lorentzian Kac-Moody algebras and give heuristic reasons for the expectation that
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every Lorentzian Kac-Moody algebra has an automorphic correction. We consider the examples of
the rank 3 hyperbolic Kac-Moody algebra F and rank 2 symmetric hyperbolic Kac-Moody algebras,
and explain why automorphic correction is highly non-trivial from the point of view of automorphic
forms.

After that, we focus on the Kac-Moody algebra E10. The algebra E10 has attracted much attention
from mathematical physicists, for example.1,27,13,3 Moreover, Viswanath30 showed that it contains
every simply laced hyperbolic Kac-Moody algebra as a Lie subalgebra. The root multiplicities of
this algebra was first studied by Kac, Moody, and Wakimoto.23

In Sec. III, we review a concrete realization of root lattice of E10 as 2 × 2 hermitian matrices
over octavians, and in Sec. IV, we obtain automorphic correction of the hyperbolic Kac-Moody
algebra E10. The automorphic correction is provided by a Borcherds lift on O(10, 2) of the weakly
holomorphic modular form f(τ ) = E4(τ )2/�12(τ ), where E4(τ ) is the Eisenstein series of weight
4 and �12(τ ) is the modular discriminant function. Since f(τ ) = ∑

nc(n)qn has positive Fourier
coefficients, the automorphic correction G of E10 is a generalized Kac-Moody algebra. However,
c(n) is too large to produce good upper bounds for root multiplicities of E10. At the end of this
paper, we give for comparison two other generalized Kac-Moody algebras which contain E10. Their
denominators are not automorphic forms, but they yield good upper bounds for root multiplicities
of E10.

II. AUTOMORPHIC CORRECTION

In this section, we recall the theory of automorphic correction established by Gritsenko and
Nikulin.17–19 The original idea of automorphic correction can be traced back to Borcherds’ work.5, 6

A. Modular forms on O(n + 1, 2)

Let (V, Q) be a non-degenerate quadratic space over Q of type (n + 1, 2). Let V (C ) be the
complexification of V and P(V (C )) = (V (C ) − {0})/C ∗ be the corresponding projective space. Let
K+ be a connected component of

K = {[Z ] ∈ P(V (C )) : (Z , Z ) = 0, (Z , Z̄ ) < 0}, (2.1)

and let O+
V (R) be the subgroup of elements in OV (R) which preserve the components of K.

For Z ∈ V (C ), write Z = X + iY with X, Y ∈ V (R ). Given an even lattice L ⊂ V , let � ⊆
O+

L := OL ∩ O+
V (R ) be a subgroup of finite index. Then � acts on K discontinuously. Let

K̃+ = {Z ∈ V (C ) − {0} : [Z ] ∈ K+}.
Let k ∈ 1

2Z, and χ be a multiplier system of �. Then a meromorphic function � : K̃+ −→ C
is called a meromorphic modular form of weight k and multiplier system χ for the group �, if

(1) � is homogeneous of degree − k, i.e., �(cZ) = c− k�(Z) for all c ∈ C − {0},
(2) � is invariant under �, i.e., �(γ Z) = χ (γ )�(Z) for all γ ∈ �.

This definition agrees with the one given in Ref. 19. Since SO(3, 2) is isogeneous to Sp4, the
automorphic forms on O(3, 2) are Siegel modular forms. Similarly, SO(2, 2) is isogeneous to SL2

× SL2, and so the automorphic forms on O(2, 2) are Hilbert modular forms.

B. Automorphic correction

A Kac-Moody algebra g is called Lorentzian if its generalized Cartan matrix is given by a set of
simple roots of a Lorentzian lattice M, namely, a lattice with a non-degenerate integral symmetric
bilinear form ( · , · ) of signature (n, 1) for some integer n ≥ 1. Assume that g is a Lorentzian
Kac-Moody algebra. Let � be a set of (real) simple roots of g. Then the generalized Cartan matrix
A of g is given by

A =
(

2(α,α′)
(α,α)

)
α,α′∈�

.
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The Weyl group W is a subgroup of O(M). Consider the cone

V (M) = {β ∈ M ⊗ R | (β, β) < 0},
which is a union of two half cones. One of these half cones is denoted by V +(M). The reflection
hyperplanes of W partition V +(M) into fundamental domains, and we choose one fundamental
domain D ⊂ V +(M) so that the set � of (real) simple roots is orthogonal to the fundamental
domain D and

D = {β ∈ V +(M) | (β, α) ≤ 0 for all α ∈ �}.
Note that this is a negative Weyl chamber. We have a Weyl vector ρ ∈ M ⊗ Q satisfying (ρ, α) =
− (α, α)/2 for each α ∈ �.

Define the complexified cone �(V +(M)) = M ⊗ R + iV +(M). Let L =
(

0 −m
−m 0

)
⊕ M

be an extended lattice for some m ∈ N. We consider the quadratic space V = L ⊗ Q and obtain K+

as in (2.1). Define a map �(V +(M)) → K by z → [ (z,z)
2m e1 + e2 + z

]
, where {e1, e2} is the basis

for

(
0 −m

−m 0

)
. Then the space K+ is canonically identified with �(V +(M)).

The denominator of g is
∑

w∈W det(w)e(−(w(ρ), z)), which is not an automorphic form on
�(V +(M)) in general. Gritsenko and Nikulin19,17, 18 introduced the concept of automorphic cor-
rection, originated in Borcherds’ construction of the fake Monster Lie algebra. The idea is to add
imaginary simple roots to extend the given Kac-Moody algebra so that the denominator of the
extended algebra becomes an automorphic form. Their construction is given by a meromorphic
automorphic form �(z) on �(V +(M)) with respect to a subgroup � ⊂ O+

L of finite index. Following
their definition, an automorphic form �(z) is called an automorphic correction of the Lorentzian
Kac-Moody algebra g if it has a Fourier expansion of the form

�(z) =
∑
w∈W

det(w)

⎛⎝e (−(w(ρ), z)) −
∑

a∈M∩D, a �=0

m(a) e(−(w(ρ + a), z))

⎞⎠ ,

where e(x) = e2π ix and m(a) ∈ Z for all a ∈ M ∩ D.
An automorphic correction �(z) defines a generalized Kac-Moody superalgebra G as in Ref. 19

so that the denominator of G is �(z). In particular, the function �(z) determines the set of imaginary
simple roots of G in the following way: First, assume that a ∈ M ∩ D and (a, a) < 0. If m(a) > 0,
then a is an even imaginary simple root with multiplicity m(a), and if m(a) < 0, then a is an odd
imaginary simple root with multiplicity − m(a). Next, assume that a0 ∈ M ∩ D is primitive and (a0,
a0) = 0. Then we define μ(na0) ∈ Z, n ∈ N by

1 −
∞∑

k=1

m(ka0)t k =
∞∏

n=1

(1 − tn)μ(na0),

where t is a formal variable. If μ(na0) > 0, then na0 is an even imaginary simple root with multiplicity
μ(na0); if μ(na0) < 0, then na0 is an odd imaginary simple root with multiplicity − μ(na0).

The generalized Kac-Moody superalgebra G will be also called an automorphic correction of
g. Using the Weyl-Kac-Borcherds denominator identity for G, the automorphic form �(z) can be
written as the infinite product

�(z) = e(−(ρ, z))
∏

α∈�(G)+
(1 − e(−(α, z)))mult(G,α),

where �(G)+ is the set of positive roots of G and mult(G, α) is the root multiplicity of α in G.
Here are properties of G:

(1) In general, the root multiplicities may be negative. So G is a superalgebra. If �(z) is holomor-
phic, then root multiplicities are positive, and hence G is a generalized Kac-Moody algebra.

(2) G and g have the same root lattice M, the same Weyl vector ρ, and the same Weyl group W .
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(3) A positive root of g is also a positive root of G, and in such a case, mult(g, α) ≤ mult(G, α).
However, not all roots of G are roots of g.

Hence finding an automorphic correction of g is, given a sum
∑

w∈W det(w)e (−(w(ρ), z)), to
find m(a) for each a ∈ M ∩ D, a �= 0, so that the resulting sum

∑
w∈W

det(w)

⎛⎝e (−(w(ρ), z)) −
∑

a∈M∩D, a �=0

m(a) e(−(w(ρ + a), z))

⎞⎠ ,

is an automorphic form on O(n + 1, 2). It is highly non-trivial. We will demonstrate how non-trivial
it is, using a Siegel cusp form and a Hilbert modular form.

C. Questions

Here are some questions about automorphic correction.

(1) The first natural question is whether an automorphic correction is unique. If it is, then the
automorphic form �(z) is determined by the Weyl vector ρ (along with M and W ), and by the
property that its Fourier coefficients are integers.

(2) Given a Lorentzian Kac-Moody algebra g, the necessary and sufficient condition for the
existence of an automorphic correction is that we have an automorphic form �(z) which has
a Fourier expansion of the form �(z) = ∑

a ∈ Mm(a)e( − (ρ + a, z)) with m(a) ∈ Z and m(0)
= 1, and satisfies �(wz) = det(w)�(z) for w ∈ W . (See the arguments in Sec. IV.) The Weyl
vector ρ is minimal in the sense that if the Fourier coefficient m(a) of e( − (ρ + a, z)) is
non-zero, then a ∈ V +(M).
There are many examples of automorphic forms on O(n + 1, 2) with integer Fourier coef-
ficients. This gives a heuristic reason for the expectation that every Lorentzian Kac-Moody
algebra would have an automorphic correction. Now the question is: How can we construct
�(z) for a given g? We need to know how to determine the level, namely, determine � ⊂ O+

L ,
and the weight, and multiplier system χ of �(z). Here, one may have to consider half-integral
weight forms, and the multiplier system can be quite complicated. Any such automorphic form
will have infinite product expansion. It is a striking application of Kac-Moody algebras.

(3) A related question is whether a given automorphic form with integer Fourier coefficients could
be an automorphic correction for a certain Kac-Moody algebra. Bruinier10 proved that a large
class of meromorphic forms for n ≥ 2 can be written as infinite products, called Borcherds
products. It will be interesting to study when these products become automorphic correction.

(4) Another question is: How can we determine when G is a superalgebra from the original algebra
g? Namely, when do we look for a meromorphic automorphic form as automorphic correction
for g?

D. Rank 3 hyperbolic Kac-Moody algebra F

Let F = g(A) be the hyperbolic Kac-Moody algebra associated with the generalized Cartan

matrix A = (ai j ) =
⎛⎝ 2 −2 0

−2 2 −1
0 −1 2

⎞⎠. We denote by S2(C) (resp. S2(Z)) the set of all symmetric

2 × 2 complex (resp. integer) matrices, and define a quadratic form on S2(Z) by (X, X ) = −2 det X
for X ∈ S2(Z). Let {α1, α2, α3} be the set of simple roots, identified with elements in S2(Z),

α1 =
(

0 −1
−1 0

)
, α2 =

(
1 1
1 0

)
, α3 =

(−1 0
0 1

)
.

Then the imaginary positive roots are identified with positive semi-definite matrices in S2(Z). If
N ∈ S2(Z) is positive semi-definite, we will write N ≥ 0. The set of positive real roots is given by

�+
re =

{(
n1 n2

n2 n3

)
∈ S2(Z)

∣∣∣n1n3 − n2
2 = −1, n2 ≤ n1 + n3, 0 ≤ n1 + n3, 0 ≤ n3

}
.
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The Weyl group W of F is isomorphic to PGL2(Z) through the map given by

σ1 →
(

1 0
0 −1

)
, σ2 →

(−1 1
0 1

)
, σ3 →

(
0 1
1 0

)
,

where σ i (i = 1, 2, 3) are the simple reflections corresponding to αi. The Siegel upper half-plane H2

of genus 2 is defined by

H2 = {Z = X + iY ∈ S2(C) | Y is positive definite} .

We will use the coordinates z1, z2, z3 for H2 so that Z =
(

z1 z2

z2 z3

)
∈ H2, and define the pairing

(X, Z) for X ∈ S2(Z) by (X, Z) = − tr(XZ).
The denominator identity for F is

e(tr(P Z ))
∏

0≤N∈S2(Z)

(1 − e(tr(N Z )))mult(N )
∏

N∈�+
re

(1 − e(tr(N Z )))

=
∑

g∈PGL2(Z)

det(g)e(tr(g Pgt Z )), (2.2)

where P =
(

3 1
2

1
2 2

)
. The matrix P corresponds to ρ, the Weyl vector.

In Theorem 1.5 of Ref. 17, Gritsenko and Nikulin proved that the Siegel modular form �35(Z)
of weight 35 is an automorphic correction of F . In order to define �35(Z) as a product, we need to
consider some Jacobi forms first. For k ≥ 4 even, we define the Jacobi-Eisenstein series of weight k
and index m by

Ek,m(τ, z) = 1
2

∑
c,d∈Z
(c,d)=1

∑
λ∈Z

(cτ + d)−k e

(
mλ2 aτ + b

cτ + d
+ 2mλ

z

cτ + d
− cmz2

cτ + d

)
,

where a, b are chosen so that

(
a b
c d

)
∈ SL2(Z). We also consider a Jacobi form of weight 12 and

index 1,

φ12,1(τ, z) = 1
144

(
E2

4(τ )E4,1(τ, z) − E6(τ )E6,1(τ, z)
)
,

where Ek(τ ) are the usual Eisenstein series of weight k defined by

Ek(τ ) = 1
2

∑
c,d∈Z
(c,d)=1

(cτ + d)−k .

Now we define a weak Jacobi form φ0, 1(τ , z) of weight 0 and index 1 by

φ0,1(τ, z) = φ12,1(τ, z)

�12(τ )
=

∞∑
n=0

∑
r∈Z

c(n, r ) e(nτ + r z), (2.3)

where �12(τ ) = e(τ )
∏

n≥1(1 − e(nτ ))24 and c(n, r) are the Fourier coefficients. Since c(n, r) depends
only on 4n − r2, the following function is well-defined:

c(N ) =
{

c(n, r ) if N = 4n − r2,

0 otherwise.

In particular, we have c(0) = 10, c( − 1) = 1, and c(n) = 0 for n < − 1. We use the function c(N) to
define

c2(N ) = 8c(4N ) + 2
((−N

2

) − 1
)

c(N ) + c
(

N
4

)
, (2.4)
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where we put

(
D

2

)
=

⎧⎪⎨⎪⎩
1 for D ≡ 1 (mod 8),

−1 for D ≡ 5 (mod 8),

0 for D ≡ 0 (mod 2).

For Z =
(

z1 z2

z2 z3

)
∈ H2, we set q = e(z1), r = e(z2), and s = e(z3). Let S2( 1

2Z) be the set of

symmetric half integral 2 × 2 matrices. Then we have

�35(Z ) = q3rs2
∏

(n,l,m)∈D
(1 − qnrlsm)c2(4nm−l2) =

∑
0<T ∈S2( 1

2Z)

A(T )e(tr(T Z )), (2.5)

where T > 0 means positive definite, and the integers c2(N) are defined in (2.4), and we denote by
D the set of integer triples (n, l, m) ∈ Z3 such that (1) (n, l, m) = ( − 1, 0, 1) or (2) n ≥ 0, m ≥
0 and either n + m > 0 and l is arbitrary or n = m = 0 and l < 0. Since �35(Z) is holomorphic,
the root multiplicities c2(N) are positive, and hence the automorphic correction G is a generalized
Kac-Moody algebra.

The group PGL2(Z) acts on S2(R) by g(S) = gSgt. Then a fundamental domain D is given by
the negative Weyl chamber of F through our identification of simple roots with matrices in S2(R).
Explicitly, we obtain

D =
{(

y1 y2

y2 y3

)
∈ S2(R)

∣∣∣ 0 ≤ 2y2 ≤ y3 ≤ y1; if y2 = 0, then 0 < y3 ≤ y1

}
.

Note that D is the fundamental domain defined in Sec. II B. Since A(gT gt ) = det(g)A(T ) for
g ∈ PGL2(Z), we can write �35(Z) as

�35(Z ) =
∑

T ∈S2( 1
2Z)∩D

A(T )
∑

g∈PGL2(Z)

det(g)e(tr(gT gt Z )).

Note that the inner sum for T = P is the summation side of the denominator identity (2.2)
of the hyperbolic Kac-Moody algebra F . Hence the automorphic correction is to find A(T) for all
T ∈ S2(Z) ∩ D so that the resulting sum∑

T ∈D

A(T )
∑

g∈PGL2(Z)

det(g)e(tr(gT gt Z ))

is modular. It is highly non-trivial from the point of view of automorphic forms.

E. Rank 2 hyperbolic Kac-Moody algebras

Let A =
(

2 −3
−3 2

)
be a generalized Cartan matrix, and H(3) be the hyperbolic Kac-Moody

algebra associated with the matrix A. Let F = Q[
√

5] and O be the ring of integers of F. We choose
a fundamental unit ε0 = 1+√

5
2 and set η = ε2

0 = 3+√
5

2 .
The roots ofH(3) can be identified with elements of the inverse different d−1 = 1√

5
O as follows.

The set of positive real roots is given by

�+
re =

{
1√
5
η j ( j > 0), − 1√

5
η̄ j ( j ≥ 0)

}
,

where x̄ is the conjugate of x in F. The set of positive imaginary roots is given by

�+
im =

{
1√
p

η j (mη − n),
1√
5

η j (nη − m),
1√
5

η̄ j (n − mη̄),
1√
5

η̄ j (m − nη̄)

}
, (2.6)
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where j ≥ 0 and (m, n) ∈ �k for k ≥ 1 and the set �k is defined to be{
(m, n) ∈ Z≥0 × Z≥0 :

√
4k

5
≤ m ≤

√
k, n = 3m − √

5m2 − 4k

2

}
.

See Refs. 28, 14, 24, and 26 for more details. The Weyl group W also acts on F; in particular, the
simple reflections r1 and r2 are given by

r1x = η2 x̄ and r2x = x̄ for x ∈ F.

Then the Weyl group is identified with the semidirect product of multiplication by η2n, n ∈ Z and
conjugation, i.e., W ∼= {η2n : n ∈ Z} � {·̄}.

Let H be the upper half plane. We define a paring on F × H2 by

(ν, z) = −5 (νz2 + ν̄z1) for ν ∈ F and z = (z1, z2) ∈ H2,

and consider the denominator function of H(3) as a function on H2. Then the denominator identity
is, for z ∈ H2,

e(−(ρ, z))
∏

α∈�+

(1 − e(−(α, z)))mult(α) =
∑
w∈W

det(w)e(−(wρ, z)),

where we have

ρ = 1

5
(1 + η) = ε0

tr(ε0)
√

5
= 1 + √

5

2
√

5
.

Consider the Hilbert modular form � of weight 5 defined by

�(z) = e

(
ε0z1√

5
− ε̄0z2√

5

) ∏
ν∈d−1

ν�0

(1 − e(νz1 + ν̄z2))s(pνν̄)a(pνν̄)
∏

ν∈d−1, ν+2ν̄>0
N (ν)=−m2/5

(1 − e(νz1 + ν̄z2))

for z = (z1, z2) ∈ H2, where s(n) = 1 if 5 � n or s(n) = 2 otherwise, and a(n) is the Fourier coefficient
of the weakly holomorphic modular form f of weight 0 for the group �0(5) with principal part q− 1,

f (τ ) = q−1 +
∞∑

n=0

a(n)qn = q−1 + 5 + 11q − 54q4 + 55q5 + 44q6 − 395q9 + 340q10 + · · · .

The function �(z) has a Fourier expansion of the form

�(z) =
∑

ν∈d−1

A(ν)e(νz1 + ν̄z2).

It is known (cf. Ref. 11) that �(z) is a meromorphic cusp form and skew-symmetric, i.e., �(z2,
z1) = − �(z1, z2). We set �(z) = �(5z2, 5z1) = − �(5z1, 5z2). In Ref. 26, it is shown that �(z) is
an automorphic correction of H(3), and we can write

�(z) = e(−(ρ, z))
∏

ν∈d−1

ν�0

(1 − e(−(ν, z)))s(pνν̄)a(pνν̄)
∏

α∈�+
re

(1 − e(−(ν, z))) =
∑

ν∈d−1

A(ν)e(−(ν, z)).

Since �(z) is meromorphic, the automorphic correction G is a superalgebra.
Let D be a fundamental domain of d−1 by the action of W . Since �(wz) = det(w)�(z) for

w ∈ W , we have A(wν) = det(w)A(ν), and we can write �(z) as∑
ν∈D

A(ν)
∑
w∈W

det(w)e(−(wν, z)).

Note that the inner sum when ν = ρ is the denominator of the hyperbolic Kac-Moody algebra H(3).
So finding an automorphic correction of H(3) is highly non-trivial.
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III. KAC-MOODY ALGEBRA E10

In this section, we fix our notations for the hyperbolic Kac-Moody algebra E10. We will follow
the notational conventions in Ref. 16 for the root system of E10.

Let O be the normed division algebra of octonians, consisting of the elements of the form

x0 +
7∑

i=1

xi ei , xi ∈ R,

and equipped with the multiplication satisfying the relations

e2
i = −1, ei e j = −e j ei (i �= j), ei ei+1ei+3 = −1,

where the indices are to be taken modulo seven. Let H2(O) be the Jordan algebra of all Hermitian 2
× 2 matrices over O, i.e.,

H2(O) =
{

X =
(

x+ z
z̄ x−

)
: x+, x− ∈ R, z ∈ O

}
.

We define a quadratic form on H2(O) by

‖X‖2 = −2 det(X ) = −2(x+x− − zz̄),

and obtain the corresponding symmetric bilinear form (X, Y ) = 1
2 (‖X + Y‖2 − ‖X‖2 − ‖Y‖2),

X, Y ∈ H2(O). That is, if X =
(

x+ z
z̄ x−

)
and Y =

(
y+ w

w̄ y−

)
, then

(X, Y ) = −x+y− − y+x− + zw̄ + wz̄.

We choose the following octonionic units to be the simple roots of the lattice E8:

a1 = e3, a2 = 1
2 (−e1 − e2 − e3 + e4),

a3 = e1, a4 = 1
2 (−1 − e1 − e4 + e5),

a5 = 1, a6 = 1
2 (−1 − e5 − e6 − e7),

a7 = e6, a8 = 1
2 (−1 + e2 + e4 + e7).

The root lattice spanned by these simple roots gives all octonionic integers called octavians, and we
will denote the lattice by O. Thus we make the identification O ∼= E8. The highest root is given by

θ = 2a1 + 3a2 + 4a3 + 5a4 + 6a5 + 4a6 + 2a7 + 3a8 = 1
2 (e3 + e4 + e5 − e7).

We consider a lattice � in H2(O) given by

� =
{

X =
(

x+ z
z̄ x−

)
: x+, x− ∈ Z, z ∈ O

}
,

and choose vectors

α−1 =
(

1 0
0 −1

)
, α0 =

( −1 −θ

−θ̄ 0

)
, αi =

(
0 ai

āi 0

)
, 1 ≤ i ≤ 8.

Then {α − 1, α0, α1, . . . , α8} is a basis for � and the matrix
(

2(αi ,α j )
(αi ,αi )

)
is the generalized Cartan

matrix of E10. We will denote by g the corresponding Kac-Moody algebra of E10. We define �+ to
be the additive monoid generated by α − 1, α0, α1, . . . , α8, i.e.,

�+ := Z≥0 α−1 + Z≥0 α0 + Z≥0 α1 + · · · + Z≥0 α8.

We write z ≥ w for z, w ∈ � if z − w ∈ �+.
The Weyl group W of g is generated by the simple reflections

wi (X ) = X − 2(X, αi )

(αi , αi )
αi , i = −1, 0, 1, . . . , 8, X ∈ H2(O).
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Now we determine the set �+
re of positive real roots and the set �+

im of positive imaginary

roots of g. We write �+ = �+
re ∪ �−

im. Consider X =
(

x+ z
z̄ x−

)
∈ �. From Proposition 5.10 in

Ref. 21, we have that X is a real root ⇔ det X = −1 and that X is an imaginary root ⇔ det X ≥ 0.
We have

X ∈ �+ ⇐⇒ det X ≥ −1 and X ∈ �+,

and it is easy to see that X ∈ �+ if and only if x− ≤ 0, x+ + x− ≤ 0, and z ≥ (x+ + x− )θ .
The Weyl vector ρ is given by

ρ = 30α−1 + 61α0 + 93α1 + 126α2 + 160α3 + 195α4 + 231α5 + 153α6 + 76α7 + 115α8.

Put in the matrix notation, it becomes

ρ =
( −31 −ρK

−ρK −30

)
∈ �, (3.1)

where ρK = 1
2 (1 + e1 + 11e2 + e3 + 15e4 + 19e5 + e6 − 23e7) ∈ O. Under the identification O ∼=

E8, ρK corresponds to ρE8 . We have (ρ, αi) = − 1 for each i = − 1, 0, 1, . . . , 8 and (ρ, ρ) =
− 1240, and (ρK, αi) = 1 for each i = 1, . . . , 8. We obtain another criterion for positive roots:

X ∈ �+ ⇐⇒ det X ≥ −1 and (ρ, X ) < 0. (3.2)

It is proved in Ref. 16 that the simple reflections w−1, w0,...,wi , are given by

wi (X ) = Mi X̄ M̄t
i , i = −1, 0, ..., 8,

where

M−1 =
(

0 1
1 0

)
, M0 =

(−θ 1
0 θ̄

)
, Mi =

(
ai 0
0 −āi

)
and ai ∈ O, i = 1, ..., 8, corresponds to the simple roots of E8 as before.

Now W = W + � {w−1}, where W + is the even part, i.e., the subgroup of elements of even
length. Here W + is generated by s0 = w−1w0, si = w−1wi , i = 1, ..., 8. Then

si (X ) = Si X S̄t
i , S0 =

(
0 θ

−θ̄ 1

)
, Si =

(
0 −ai

āi 0

)
.

For s ∈ W +, write s = si1 · · · sik , and define

s(X ) = si1 · · · sik (X ).

Then formally we can write W + = P SL2(O).
We defined the simple roots in such a way that a fundamental domain of H2(O) under the Weyl

group action is given by

D = {X ∈ H2(O) : (X, αi ) ≤ 0 for i = −1, 0, 1, . . . , 8}. (3.3)

It is a negative Weyl chamber of E10, namely,

D = {r−1λ−1 + r0λ0 +
8∑

i=1

riλi : ri ≤ 0, i = −1, 0, 1, . . . , 8},

where λi’s are the fundamental weights, i.e., (λi, αj) = δij. Since O is self-dual, we have

λ−1 =
(

1 0
0 0

)
, λ0 =

(
1 0
0 1

)
, λi =

(
1 1

2 ai
1
2 āi 1

)
.

Hence we have

D =
{(

x+ z
z̄ x−

)
: x+ ≤ x− ≤

8∑
i=1

ri ≤ 0, 2z =
8∑

i=1

ri ai

}
.
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IV. AUTOMORPHIC CORRECTION OF E10

Let M be the even unimodular Lorentzian lattice IIs + 1, 1 and we let L = M ⊕ II1, 1. Borcherds
proved the following theorem.

Theorem 4.1 Ref. 7, Theorem 10.1. Suppose that f(τ ) = ∑
nc(n)qn is a weakly holomorphic

modular form of weight − s/2 for SL2(Z) with integer coefficients, with 24|c(0) if s = 0. Choose a
negative norm vector v0 ∈ M ⊗ R. Then there is a unique vector ρv0 ∈ M such that

�(z) = e(−(ρv0 , z))
∏

(r,v0)>0

(1 − e(−(r, z)))c(−(r,r )/2) (4.1)

is a meromorphic automorphic form of weight c(0)/2 for O+
L .

We consider the case when s = 8 and the weakly holomorphic modular form is defined by

f (τ ) = E4(τ )2/�12(τ ) = q−1 + 504 + 73764q + 2695040q2 + · · · .

Borcherds mentions this modular form in Sec. 16 of Ref. 7. See also Ref. 20. We write M = II9, 1 =
E8 ⊕ II1, 1. Then we have an isomorphism ν : M

∼−→ � defined by

ν : (z, x+, x−) →
(−x+ −z

−z̄ −x−

)
.

Furthermore, a set of simple roots of the lattice M and its Dynkin diagram are given by those of the
Kac-Moody algebra E10 considered in Sec. III through the identification � ∼= M. (See also Ref. 12).
Thus the Kac-Moody algebra E10 is Lorentzian.

We take v0 = (−ρE8 ,−m,−d/24) ∈ M where m is the constant term of E4(τ )f(τ )E2(τ )/24, and
d is the constant term of E4(τ )f(τ ). One can check m = 30, d = 744 and

ρE8 = 29α1 + 57α2 + 84α3 + 110α4 + 135α5 + 91α6 + 46α7 + 68α8.

From Theorem 10.4 in Ref. 7, the vector ρv0 in Theorem 4.1 is given by

ρv0 = (ρK , m, d/24) = (ρE8 , 30, 31) = −v0.

Therefore, the vector ρv0 in Theorem 4.1 exactly corresponds to the Weyl vector ρ of E10 in (3.1),
i.e., we have

ν(ρv0 ) = ρ =
( −31 −ρK

−ρ̄K −30

)
∈ � and ν(v0) = −ρ. (4.2)

Consequently, if ν(r) = α, we get

(r, v0) > 0 ⇐⇒ (α, ρ) < 0. (4.3)

We denote by �f(z) the automorphic form given by the Borcherds product (4.1). With all the
preparations we made in the above, we can now prove the following theorem.

Theorem 4.2. The function �f(z) is an automorphic correction for the Kac-Moody algebra E10.

Proof. We identify M with � via the isometry ν as before. Write f(τ ) = ∑
nc(n)qn, and note that

−(r, r )/2 = −(ν(r ), ν(r ))/2 = det ν(r ) for r ∈ M. Since c(n) = 0 for n ≤ − 2, we obtain from (3.2)
and (4.3),

(r, v0) > 0 and c(−(r, r )/2) �= 0 ⇐⇒ ν(r ) ∈ �+, (4.4)

where �+ is the set of positive roots of E10. Therefore, we obtain from (4.1) and (4.2),

� f (z) = e(−(ρ, z))
∏

α∈�+
(1 − e(−(α, z)))c(−(α,α)/2).
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We claim that � f (wi z) = −� f (z) for each i = − 1, 0, 1, . . . , 8. Indeed, since (ρ, αi) = − 1, we
have

� f (wi z) = e(−(ρ,wi z))
∏

α∈�+
(1 − e(−(α,wi z)))c(−(α,α)/2)

= e(−(wiρ, z))
∏

α∈�+
(1 − e(−(wiα, z)))c(−(α,α)/2)

= e(−(ρ + αi , z))
1 − e((αi , z))

1 − e(−(αi , z))

∏
α∈�+

(1 − e(−(α, z)))c(−(α,α)/2)

= −� f (z).

Then we have � f (wz) = det(w)� f (z) for w ∈ W .
Now we use the same argument as in the proof of Theorem 5.16 in Ref. 26 and obtain that

� f (z) =
∑
w∈W

det(w)

⎛⎝e (−(w(ρ), z)) −
∑

a∈�∩D, a �=0

m(a) e(−(w(ρ + a), z))

⎞⎠ ,

where D is defined in (3.3) and m(a) ∈ Z for all a ∈ � ∩ D. It completes the proof. �

A. Some remarks

Note that f(τ ) = ∑
nc(n)qn has positive Fourier coefficients. Hence the automorphic correction

G of E10 is a generalized Kac-Moody algebra with �f as the denominator. Moreover, from (4.4),
we see that the set of positive roots of E10 coincides with the set of positive roots of G. Let δ be
the minimal null root, i.e., (δ, δ) = 0. Then mult(δ) = 8 in E10. However, it follows from c(0) =
504 that mult(δ) = 504 in G. The extra 496 dimensions come from imaginary simple roots. Since
� f (wz) = det(w)� f (z) for w ∈ W , we can write, using the fundamental domain D, the function
�f(z) as

� f (z) =
∑
r∈D

A(r )
∑
w∈W

det(w)e(−(w(r ), z)).

The inner sum when r = ρ is the denominator of E10.
We obtain asymptotics of Fourier coefficients of the modular form f(z), using the method of

Hardy-Ramanujan-Rademacher. Recall that

f (τ ) = E4(τ )2/�(τ ) = q−1 +
∞∑

n=0

c(n)qn = q−1 + 504 + 73764q + 2695040q2 + · · · .

The function f is a modular form of weight − 4 for the full modular group SL2(Z). Therefore as in
Ref. 25, we can show

c(n) = 2πn− 5
2 I5(4π

√
n) + O

(
n− 9

4 log(4π
√

n)I5
(
2π

√
n
))

,

where I5(x) is the Bessel I-function. It has an asymptotic expansion I5(x) = ex√
2πx

(1 + O( 1
x )).

B. Other generalized Kac-Moody algebras containing E10

We close this paper with mentioning two other generalized Kac-Moody algebras which contain
E10. We can compare these algebras with the automorphic correction G of E10. These generalized
Kac-Moody algebras are not automorphic correction, but they provide some upper bounds for root
multiplicities of E10.
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1. The algebra gI I9,1 of physical states

Let M be a nonsingular even lattice, and V(M) be the vertex algebra associated with M. Then
we have the Virasoro operators Li on V(M) for each i ∈ Z. We define the physical space Pn for each
n ∈ Z to be the space of vectors v ∈ V(M) such that

L0(v) = nv and Li (v) = 0 for i > 0.

Then the space gM := P1/L−1 P0 is a Lie algebra and satisfies the following properties:4

(i) Let g be a Kac-Moody Lie algebra with a generalized Cartan matrix that is indecomposable,
simply laced and non-affine. If the lattice M contains the root lattice of g, then g can be mapped
into gM so that the kernel is in the center of g.

(ii) Let d be the dimension of M, and α ∈ M be a root such that (α, α) ≤ 0. Then the root
multiplicities of α in gM is equal to

p(d−1)(1 − (α|α)/2) − p(d−1)(−(α|α)/2), (4.5)

where p(�)(n) is the number of multi-partitions of n into parts of � colors.

Therefore, when we have a hyperbolic Kac-Moody algebra g with root lattice M, the Lie algebra
gM contains g and provides an upper bound (4.5) for root multiplicities of g. Moreover, it is well
known that the Lie algebra gM is a generalized Kac-Moody algebra.

In particular, we can apply the above construction to the lattice M = II9, 1. Since M is the root
lattice of E10 as we have seen in the beginning of Sec. IV, the algebra gI I9,1 contains E10 and the root
multiplicity is given by p(9)(n) − p(9)(n − 1). Nicolai and his co-workers studied the algebra gI I9,1

extensively. For example, see Refs. 1 and 2.

2. Niemann’s algebra G2

In his Ph.D. thesis,29 Niemann constructed a generalized Kac-Moody algebra G2 which contains
E10.

Let � be the Leech lattice, i.e., the 24-dimensional positive definite even unimodular lattice
with no roots, and let �̂ be the central extension of � by a group of order 2. Assume that σ ∈ Aut(�̂)
is of order 2 and cycle shape 1828. Then we define the lattice M = �σ ⊕ II1, 1, where �σ is the
fixed point lattice. The Weyl vector ρ is given by ρ = (0, 0, 1) ∈ M and we denote by W σ the full
reflection group of the lattice M. We define pσ (n) by qη(z)−8η(2z)−8 = ∑∞

n=0 pσ (n)qn , q = e2π iz,
where η(z) is Dedekind’s eta-function.

With these data, Niemann29 constructed a generalized Kac-Moody algebra G2 and proved the
following twisted denominator identity of G2,

eρ
∏

r∈M+
(1 − er )pσ (1−(r,r )/2)

∏
(2M∗)+

(1 − er )pσ (1−(r,r )/4) (4.6)

=
∑

w∈W σ

det(w)w

(
eρ

∞∏
i=1

(1 − eiρ)8(1 − e2iρ)8

)
,

where M* is the dual of M. Moreover, he showed that G2 contains E10. Consequently, it follows from
(4.6) that

mult(E10, α) ≤
{

pσ (1 − 1
2 (α, α)) if α ∈ M, α /∈ 2M∗,

pσ (1 − 1
2 (α, α)) + pσ (1 − 1

4 (α, α)) if α ∈ 2M∗.

ACKNOWLEDGMENTS

We would like to thank Axel Kleinschmidt for helpful comments. This joint work was initiated
at the Korea Institute for Advanced Study (KIAS) in the summer of 2012, and was completed at
the Institute for Computational and Experimental Research in Mathematics (ICERM) in the spring



091701-13 H. H. Kim and K.-H. Lee J. Math. Phys. 54, 091701 (2013)

of 2013. We thank both institutes for stimulating environments for research. The first author was
partially supported by an NSERC grant.

1 O. Bärwald, R. W. Gebert, M. Günaydin, and H. Nicolai, “Missing modules, the gnome Lie algebra, and E10,” Commun.
Math. Phys. 195(1), 29–65 (1998).

2 O. Bärwald, R. W. Gebert, and H. Nicolai, “On the imaginary simple roots of the Borcherds algebra gI I9,1 ,” Nucl. Phys. B
510(3), 721–738 (1998).

3 E. A. Bergshoeff, O. Hohm, A. Kleinschmidt, H. Nicolai, T. A. Nutma, and J. Palmkvist, “E10 and gauged maximal
supergravity,” J. High Energy Phys. 01 (2009) 020.

4 R. E. Borcherds, “Vertex algebras, Kac-Moody algebras, and the Monster,” Proc. Natl. Acad. Sci. U.S.A. 83(10), 3068–3071
(1986).

5 R. E. Borcherds, “The monster Lie algebra,” Adv. Math. 83(1), 30–47 (1990).
6 R. E. Borcherds, “Monstrous moonshine and monstrous Lie superalgebras,” Invent. Math. 109(2), 405–444 (1992).
7 R. E. Borcherds, “Automorphic forms on Os + 2,2(R) and infinite products,” Invent. Math. 120, 161–213 (1995).
8 R. E. Borcherds, “The moduli space of Enriques surfaces and the fake Monster Lie superalgebra,” Topology 35(3), 699–710

(1996).
9 R. E. Borcherds, “Automorphic forms with singularities on Grassmannians,” Invent. Math. 132(3), 491–562 (1998).

10 J. H. Bruinier, “On the converse theorem for Borcherds products,” e-print arXiv:1210.4821.
11 J. H. Bruinier and M. Bundschuh, “On Borcherds products associated with lattices of prime discriminant,” Ramanujan J.

7(1–3), 49–61 (2003).
12 J. H. Conway, “The automorphism group of the 26-dimensional even unimodular Lorentzian lattice,” J. Algebra 80(1),

159–163 (1983).
13 T. Damour, A. Kleinschmidt, and H. Nicolai, “Constraints and the E10 coset model,” Class. Quantum Grav. 24(23),

6097–6120 (2007).
14 A. J. Feingold, “A hyperbolic GCM Lie algebra and the Fibonacci numbers,” Proc. Am. Math. Soc. 80(3), 379–385

(1980).
15 A. J. Feingold and I. B. Frenkel, “A hyperbolic Kac-Moody algebra and the theory of Siegel modular forms of genus 2,”

Math. Ann. 263(1), 87–144 (1983).
16 A. J. Feingold, A. Kleinschmidt, and H. Nicolai, “Hyperbolic Weyl groups and the four normed division algebras,” J.

Algebra 322(4), 1295–1339 (2009).
17 V. A. Gritsenko and V. V. Nikulin, “Igusa modular forms and “the simplest” Lorentzian Kac-Moody algebras,” Mat. Sb.

187(11), 27–66 (1996); Sb. Math. 187(11), 1601–1641 (1996) (translation).
18 V. A. Gritsenko and V. V. Nikulin, “Siegel automorphic form corrections of some Lorentzian Kac-Moody Lie algebras,”

Am. J. Math. 119(1), 181–224 (1997).
19 V. A. Gritsenko and V. V. Nikulin, “On the classification of Lorentzian Kac-Moody algebras,” Russ. Math. Surveys 57(5),

921–979 (2002).
20 J. Harvey and G. Moore, “Algebras, BPS states, and strings,” Nucl. Phys. B 463(2–3), 315–368 (1996).
21 V. G. Kac, Infinite-Dimensional Lie algebras, 3rd ed. (Cambridge University Press, Cambridge, 1990).
22 V. G. Kac, “The idea of locality,” e-print arXiv:q-alg/9709008v1.
23 V. G. Kac, R. V. Moody, and M. Wakimoto, “On E10,” Differential Geometrical Methods in Theoretical Physics, Nato

Science Series C Vol. 250 (Kluwer Academic Publishers, Dordrecht, 1988), pp. 109–128.
24 S.-J. Kang and D. J. Melville, “Rank 2 symmetric hyperbolic Kac-Moody algebras,” Nagoya Math. J. 140, 41–75 (1995).
25 H. H. Kim and K.-H. Lee, “Root multiplicities of hyperbolic Kac-Moody algebras and Fourier coefficients of modular

forms,” Ramanujan J. (to be published).
26 H. H. Kim and K.-H. Lee, “Rank 2 symmetric hyperbolic Kac-Moody algebras and Hilbert modular forms,” preprint

arXiv:1209.1860.
27 A. Kleinschmidt and H. Nicolai, “E10 cosmology,” J. High Energy Phys. 01 (2006) 137.
28 J. Lepowsky and R. V. Moody, “Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular surfaces,” Math. Ann.

245(1), 63–88 (1979).
29 P. Niemann, “Some generalized Kac-Moody algebras with known root multiplicities,” Mem. Am. Math. Soc. 157, 746.
30 S. Viswanath, “Embeddings of hyperbolic Kac-Moody algebras into E10,” Lett. Math. Phys. 83(2), 139–148 (2008).

http://dx.doi.org/10.1007/s002200050378
http://dx.doi.org/10.1007/s002200050378
http://dx.doi.org/10.1016/S0550-3213(97)00583-X
http://dx.doi.org/10.1088/1126-6708/2009/01/020
http://dx.doi.org/10.1073/pnas.83.10.3068
http://dx.doi.org/10.1016/0001-8708(90)90067-W
http://dx.doi.org/10.1007/BF01232032
http://dx.doi.org/10.1007/BF01241126
http://dx.doi.org/10.1016/0040-9383(95)00036-4
http://dx.doi.org/10.1007/s002220050232
http://arxiv.org/abs/1210.4821
http://dx.doi.org/10.1023/A:1026222507219
http://dx.doi.org/10.1016/0021-8693(83)90025-X
http://dx.doi.org/10.1088/0264-9381/24/23/025
http://dx.doi.org/10.1090/S0002-9939-1980-0580988-6
http://dx.doi.org/10.1007/BF01457086
http://dx.doi.org/10.1016/j.jalgebra.2009.05.006
http://dx.doi.org/10.1016/j.jalgebra.2009.05.006
http://dx.doi.org/10.4213/sm171
http://dx.doi.org/10.1070/SM1996v187n11ABEH000171
http://dx.doi.org/10.1353/ajm.1997.0002
http://dx.doi.org/10.1070/RM2002v057n05ABEH000553
http://dx.doi.org/10.1016/0550-3213(95)00605-2
http://arxiv.org/abs/q-alg/9709008v1
http://dx.doi.org/10.1007/s11139-013-9474-2
http://arxiv.org/abs/1209.1860
http://dx.doi.org/10.1088/1126-6708/2006/01/137
http://dx.doi.org/10.1007/BF01420431
http://dx.doi.org/10.1007/s11005-007-0214-7

