
KAC–MOODY EISENSTEIN SERIES

KYU-HWAN LEE?

Abstract. In this survey, we will present recent results on convergence and holomorphy of Kac–

Moody Eisenstein series.

1. Motivation and Past Developments

After being developed by Langlands [La1, La2] in great generality, the theory of Eisenstein series

has played fundamental roles in Langlands’ Program. In particular, meromorphic continuation of

Eisenstein series on reductive groups, established in the seminal work of Langlands [La2], has been

a foundational basis for the study of L-functions by means of the Langlands–Shahidi method (e.g.

[KimSh, Kim]), which exploits analytic properties of Eisenstein series together with the fact that

L-functions appear in the Fourier coefficients of Eisenstein series.

Eisenstein series also appear in many other places throughout number theory and representation

theory. The scope of applications extends to geometry and mathematical physics. For example,

Eisenstein series on exceptional Lie groups have been shown to occur explicitly as coefficients of

correction terms in certain maximally supersymmetric string theories [GRV, GMRV, GMV].

On the other hand, since we have seen many successful generalizations of finite dimensional

constructions to infinite dimensional Kac–Moody algebras and groups [K, Ku], it is a natural

question to ask whether one can generalize the theory of Eisenstein series to Kac–Moody groups.

Such an attempt is not merely for the sake of generalization. Even though it is conjectural at the

moment, a satisfactory theory of Eisenstein series on Kac–Moody groups would have huge impacts

on some of the central problems in number theory related to Ramanujan Conjecture, Lindelöf

Hypothesis and Langlands Functoriality [BFH, Sh].

It has also been discovered that discrete subgroups of Kac–Moody groups and their automorphic

forms appear as symmetries in high-energy theoretical physics. In particular, the group E10(Z) is

conjectured to be the discrete invariance group for certain functions that arise in 11-dimensional

supersymmetric string theory [DKN, Ga]. Automorphic forms on E10 and E11 are conjectured to

encode higher derivative corrections in string theory and M–theory [DN, DHH+, FGKP, W], and

Eisenstein series on these Kac–Moody groups appear as central objects [FK, FKP].

All of these potential applications require establishing analytic properties of Kac-Moody Eisen-

stein series, including convergence and meromorphic continuation.
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In his pioneering work [G99, G04, G06], Garland extended the classical theory of Eisenstein series

to arithmetic quotients GZ\GR/K of affine Kac–Moody groups G. In particular, he established

absolute convergence for spectral parameters in a Godement range, and then proved a meromorphic

continuation beyond it [GMS1, GMS2, GMS3, GMS4]. Absolute convergence has been generalized

to affine Kac–Moody groups over number fields by Liu [Li]. Garland, Miller, and Patnaik [GMP]

showed that affine Eisenstein series induced from cusp forms are entire functions of the spectral

parameter. In the function field case, analogous works were established in [BK, Ka, LL, P].

Beyond the affine case, Carbone, Lee, and Liu [CLL1] studied Eisenstein series on the rank

2 hyperbolic Kac–Moody groups with symmetric generalized Cartan matrices, and established

almost-everywhere convergence of the series. They also defined and calculated the degenerate

Fourier coefficients for the Eisenstein series and showed that the cuspidal Eisenstein series are

entire, extending the results on the affine Kac–Moody groups.

2. Recent Results

In this section, we will review recent results in [CGLLM] and [CLL2] for Eisenstein series on

more general Kac–Moody groups.

2.1. Convergence. In [CGLLM], Carbone, Garland, Lee, Liu and Miller studied the absolute

convergence of Eisenstein series on general Kac–Moody groups. Almost-everywhere convergence

is proven for an arbitrary symmetrizable Kac–Moody group, but everywhere convergence is estab-

lished under an assumption on the root system (Property 2.1 below).

Let G be a representation-theoretic Kac–Moody group, and let g be the corresponding real Kac–

Moody algebra with a fixed Cartan subalgebra h. We assume that g is infinite-dimensional and

non-affine. Let r = dim(h) denote the rank of G, I the index set {1, . . . , r}, and Φ+ (resp., Φ−)

the positive (resp., negative) roots of gC. Then GR has the Iwasawa decomposition GR = UA+K,

where U is a maximal pro-unipotent subgroup, A+ is the connected component of a maximal torus,

and K is a subgroup of G playing the role of the maximal compact subgroup.

Define the Borel Kac–Moody Eisenstein series Eλ(g) for g ∈ GR and λ ∈ h∗C by

(2.1) Eλ(g) =
∑

γ∈(Γ∩B)\Γ

a(γg)λ+ρ ,

where a(g) is the A+–component of the Iwasawa decomposition of g, ρ is the Weyl vector, Γ = GZ
is the arithmetic subgroup, and B ⊃ NA+ is a Borel subgroup. Let W be the Weyl group of g.

We denote by `(w) the length of w ∈W and define

(2.2) Φw := Φ+ ∩ w−1Φ−, w ∈W.

Consider the following property:

Property 2.1. Every nontrivial w ∈ W can be written as w = vwβ for some v ∈ W , where

`(v) < `(w), wβ is the reflection associated to a positive simple root β, and α − β is never a real

root for any α ∈ Φv.

The main result in [CGLLM] is as follows:
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Theorem 2.2 ([CGLLM]). Assume that λ ∈ h∗C satisfies Re(〈λ, α∨i 〉) > 1 for each simple coroot

α∨i , i ∈ I, and that Property 2.1 holds. Then the Kac–Moody Eisenstein series Eλ(g) converges

absolutely for g ∈ ΓUACK, where AC ⊂ A+ is the image of the Tits cone C under the exponential

map exp : h→ A+.

The condition on λ is precisely the Godement range, and appears in the classical theory [La2].

Property 2.1 holds when G is of rank 2 or when the Cartan matrix is symmetric and has sufficiently

large entries. However, Property 2.1 is not true for all Kac–Moody root systems – it even fails in

finite-dimensional groups.

In order to prove Theorem 2.2 we consider the constant term E]λ(g) of the series Eλ(g), which

is computed by the Gindikin–Karpelevich formula, and establish its absolute convergence. Unlike

Theorem 2.2, which assumes Property 2.1, convergence of the constant term E]λ(g) holds for all

symmetrizable G. As a consequence, almost-everywhere convergence of Eλ(g) is also true for all

symmetrizable G. When we compare E]λ(g) with Eλ(g) to prove everywhere convergence, we need

Property 2.1. Though Theorem 2.2 is stated only for Borel Eisenstein series, its conclusions hold

for cuspidally induced Eisenstein series as well, at least for parabolics with finite-dimensional Levi

components. This fact was used in [CLL2].

2.2. Entirety. In the process of these developments, a striking difference between the finite-

dimensional case and the affine case was observed in [BK, GMP], where the affine Eisenstein

series induced from cusp forms on finite-dimensional Levi subgroups were shown to be entire and

not just meromorphic as they are in the finite-dimensional case. This phenomenon is not restricted

to the affine case, and it was shown in [CLL1] that cuspidal Eisenstein series on rank 2 symmetric

hyperbolic Kac–Moody groups are also entire.

To understand the analytic properties of cuspidal Eisenstein series on Kac–Moody groups, one

may naturally ask which parabolic subgroups of a Kac–Moody group make cuspidal Eisenstein

series entire. To answer this question, a natural condition on parabolic subgroups (Property RD)

is introduced in [CLL2], and it was shown that cuspidal Eisenstein series attached to a parabolic

subgroup satisfying Property RD is holomorphic on the full complex plane.

More precisely, let P be a maximal parabolic subgroup of GR with fixed Levi decomposition and

associated finite-dimensional Levi subgroup M , which is associated with a subset θ ⊆ I. We denote

by αP the simple root associated to the one element index in I\θ. Let L be the derived subgroup

of M . For a cusp form f on (L ∩ Γ)\L, we recall that f is unramified if f is right invariant under

the action of L ∩K.

For such an f , we define the Eisenstein series Ef (s, g), s ∈ C, g ∈ GR, in analogy with the

classical case. We use the reduction mechanism of [Bo, MW] to obtain absolute convergence of the

cuspidal Eisenstein series Ef (s, g) from that of Borel Eisenstein series established in [CGLLM].

Denote by $P the fundamental weight associated to αP , and by ρM the Weyl vector of M . Let

W θ = {w ∈W : w−1αi > 0, i ∈ θ}.

Property 2.3. A parabolic group P is said to satisfy Property RD if there exists a constant D > 0,

such that for every nontrivial element w ∈W θ we have

〈D$P + ρM , α
∨〉 ≤ 0
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for any positive root α such that w−1α < 0.

Property RD states that the coefficient of the simple root αP grows faster than the coefficients

of the simple roots in the subset θ. This property allows us to make use of the rapid decay of cusp

forms on parabolic subgroups.

The main theorem in [CLL2] can be stated as follows:

Theorem 2.4 ([CLL2]). Let f be an unramified cusp form on (L∩Γ)\L. If the maximal parabolic

subgroup P satisfies Property RD, then for any compact subset S of AC, there exists a measure zero

subset S0 of (Γ∩U)\US such that Ef (s, g) is an entire function of s ∈ C for g ∈ (Γ∩U)\USK −
S0K.

Here a measure zero set appears because absolute convergence is only established almost every-

where for the Eisenstein series in general. In the setting of everywhere convergence established in

[CGLLM], the measure zero set is not needed.

The main idea of the proof is to exploit rapid decay of a cusp form on the maximal parabolic

subgroup, guaranteed by Property RD. It turns out that a large class of Kac–Moody groups have

parabolic subgroups satisfying Property RD, including the Kac–Moody group G associated with the

Feingold–Frenkel rank 3 hyperbolic Kac–Moody algebra [FF]. It would be an interesting question

for future investigation to characterize the full class of Kac–Moody groups that admit parabolic

subgroups satisfying Property RD.
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