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Abstract In this paper we consider the hyperbolic Kac–Moody algebra F associ-

ated with the generalized Cartan matrix
( 2 −2 0

−2 2 −1
0 −1 2

)
. Its connection to Siegel modular

forms of genus 2 was first studied by A. Feingold and I. Frenkel. The denominator
function of F is not an automorphic form. However, Gritsenko and Nikulin extended
F to a generalized Kac–Moody algebra whose denominator function is a Siegel mod-
ular form. Using the Borcherds denominator identity, the denominator function can
be written as an infinite product. The exponents that appear in the product are given
by Fourier coefficients of a weak Jacobi form. P. Niemann also constructed a gen-
eralized Kac–Moody algebra which contains F and whose denominator function is
related to a product of Dedekind η-functions. In particular, root multiplicities of the
generalized Kac–Moody algebra are determined by Fourier coefficients of a mod-
ular form. As the main results of this paper, we compute asymptotic formulas for
these Fourier coefficients using the method of Hardy–Ramanujan–Rademacher, and
obtain an asymptotic bound for root multiplicities of the algebra F . Our method can
be applied to other hyperbolic Kac–Moody algebras and to other modular forms as
demonstrated in the later part of the paper.
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1 Introduction

After being introduced more than four decades ago, the Kac–Moody theory has been
a great success. However, it makes one surprised to notice that little is known be-
yond the affine case. In particular, we do not have any single closed formula for the
root multiplicities of a hyperbolic Kac–Moody algebra, even though hyperbolic Kac–
Moody algebras constitute the simplest indefinite case. On the other hand, Borcherds’
ingenious idea [1] was to consider generalized Kac–Moody algebras to extend some
Kac–Moody algebras so that we may obtain automorphic forms from the denomi-
nator functions of the generalized Kac–Moody algebras. Pursuing Borcherds’ idea,
Gritsenko–Nikulin and Niemann constructed generalized Kac–Moody algebras to ex-
tend some hyperbolic Kac–Moody algebras [7, 8, 20].

Gritsenko–Nikulin’s construction indeed produces Siegel modular forms as de-
nominator functions of their generalized Kac–Moody algebras. For the hyperbolic

Kac–Moody algebra F associated with the generalized Cartan matrix
( 2 −2 0

−2 2 −1
0 −1 2

)
,

they showed that there exists a generalized Kac–Moody algebra G which contains F
and whose denominator function is the weight 35 Siegel cusp form Δ35(Z), which
is called the Igusa modular form. As a byproduct, they obtained the infinite product
expression of Δ35(Z):

Δ35(Z) = q3rs2
∏

(n,l,m)∈D

(
1 − qnrlsm

)c2(4nm−l2)
,

where the integers c2(N) are defined using Fourier coefficients of a weak Jacobi form
of weight 0 and index 1. See (2.5) for the definition of D. As a result, we have

mult(F , α) ≤ mult(G, α) = c2
(−2(α,α)

)
,

where mult(F , α) (resp. mult(G, α)) is the multiplicity of a root α in F (resp. in G ).
There has been a great deal of effort to compute mult(F , α) (e.g. [5, 11, 12]),

using Kac–Peterson type formulas or Berman–Moody type formulas. However, the
complexity of these formulas grows fast as the length of a root becomes larger. In [6]
I. Frenkel conjectured

mult(F , α) ≤ p

(
1 − 1

2
(α,α)

)
, (1.1)

where p(n) is the usual partition function. This conjecture also appears in Exercise
13.37 of [10] as an open problem. (Note that the normalization of the standard form

Author's personal copy



Root multiplicities of hyperbolic Kac–Moody algebras 331

(·|·) in the exercise problem is different from ours.) For some other indefinite Kac–
Moody algebras, Frenkel’s conjecture turns out to be false (see e.g. [15]). However,
it is still a tantalizing challenge for the algebra F .

In his Ph.D. thesis [20], P. Niemann constructed a generalized Kac–Moody algebra
G23 which contains F . The denominator function of G23 is closely related to the
eta product η(z)η(23z), where η is the Dedekind η-function. If qη−1(z)η−1(23z) =∑∞

n=0 pσ (n)qn, q = e2πiz, he showed that

mult(F , α) ≤
⎧⎨
⎩

pσ (1 − 1
2 (α,α)) if α /∈ 23L∗,

pσ (1 − 1
2 (α,α)) + pσ (1 − 1

46 (α,α)) if α ∈ 23L∗,

where L is a certain lattice and L∗ is its dual. This bound is quite close to Frenkel’s
conjecture.

Now that root multiplicities of G and G23 are given by Fourier coefficients of au-
tomorphic forms, we can apply analytic tools to get asymptotic formulas for these
multiplicities; namely, we use the method of Hardy–Ramanujan–Rademacher to ob-
tain asymptotic formulas for c2(N) and pσ (1 + n). Since the space of weak Jacobi
forms of weight 0 and index 1 is isomorphic to the Kohnen plus-space M+

− 1
2
(Γ0(4)),

we will consider basis elements vd of the space M+
− 1

2
(Γ0(4)) and the information on

c2(N) will be obtained as a special case. We use the result of J. Lehner [17] on Fourier
coefficients of modular forms, which adopts the method of Hardy–Ramanujan–
Rademacher, and obtain Theorem 2.8 and Corollary 2.12.

As for Niemann’s bound, we consider f (z) = η(z)−1η(23z)−1, which is a weakly
holomorphic modular form of weight −1 with respect to Γ0(23). The method of
Hardy–Ramanujan–Rademacher can be applied to this case too, and we obtain The-
orem 3.5. Our result has an immediate implication on root multiplicities of the hy-
perbolic Kac–Moody algebra F . For example, if (α,α) = −56 then our asymptotic
formula gives 4578.99, while the actual value of the Fourier coefficient is 4576. The
exact value of mult(F , α) is 4557. In this way, we can calculate a sharp upper bound
for mult(F , α) even if |(α,α)| is big. (See Example 3.6.)

Our method can be applied to other hyperbolic Kac–Moody algebras and to other
modular forms. (See Sects. 5.3 and 5.4.)

2 Some automorphic forms

2.1 Jacobi forms and Siegel modular forms

Let H be the upper half-plane. A Jacobi form φ of weight k and index m on SL2(Z)

is a holomorphic function on H × C satisfying

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

(
cmz2

cτ + d

)
φ(τ, z),

(
a b

c d

)
∈ SL2(Z),

φ(τ, z + λτ + μ) = e
(−mλ2τ − 2mλz

)
φ(τ, z), (λ,μ) ∈ Z

2,
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and having a Fourier expansion of the form

φ(τ, z) =
∞∑

n=0

∑
r∈Z

r2≤4nm

c(n, r)e(nτ + rz), (2.1)

where we write e(z) = e2πiz. If φ has a Fourier expansion of the form

φ(τ, z) =
∞∑

n=0

∑
r∈Z

c(n, r)e(nτ + rz), (2.2)

instead of (2.1), the function φ is called a weak Jacobi form.
For k ≥ 4 even, we define the Jacobi–Eisenstein series of weight k and index m

by

Ek,m(τ, z) = 1

2

∑
c,d∈Z

(c,d)=1

∑
λ∈Z

(cτ + d)−ke

(
mλ2 aτ + b

cτ + d
+ 2mλ

z

cτ + d
− cmz2

cτ + d

)
,

where a, b are chosen so that
(

a b
c d

) ∈ SL2(Z). Indeed, the series Ek,m(τ, z) is a Jacobi
form of weight k and index m for k ≥ 4, even. We also consider a Jacobi form of
weight 12 and index 1:

φ12,1(τ, z) = 1

144

(
E2

4(τ )E4,1(τ, z) − E6(τ )E6,1(τ, z)
)
,

where Ek(τ) are the usual Eisenstein series of weight k defined by

Ek(τ) = 1

2

∑
c,d∈Z

(c,d)=1

(cτ + d)−k.

Now we define a weak Jacobi form φ0,1(τ, z) of weight 0 and index 1 by

φ0,1(τ, z) = φ12,1(τ, z)

Δ12(τ )
=

∞∑
n=0

∑
r∈Z

c(n, r)e(nτ + rz), (2.3)

where Δ12(τ ) = e(τ )
∏

n≥1(1 − e(nτ))24 and c(n, r) are the Fourier coefficients.
Since φ0,1 is of weight 0, we have c(n, r) = c(n,−r) and c(n, r) depends only on
4n − r2 (see [4, Theorem 2.2]). Therefore the following function is well-defined:

c(N) =
{

c(n, r) if N = 4n − r2,

0 otherwise.

In particular, we have c(0) = 10, c(−1) = 1 and c(n) = 0 for n < −1. We use the
function c(N) to define

c2(N) = 8c(4N) + 2

((−N

2

)
− 1

)
c(N) + c

(
N

4

)
, (2.4)
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where we put

(
D

2

)
=

⎧⎪⎨
⎪⎩

1 for D ≡ 1 (mod 8),

−1 for D ≡ 5 (mod 8),

0 for D ≡ 0 (mod 2).

Let S2(C) (resp. S2(Z)) be the set of all symmetric 2 × 2 complex (resp. integer)
matrices. The Siegel upper half-plane H2 of genus 2 is defined by

H2 = {Z = X + iY ∈ S2(C) | Y is positive definite
}
.

We will use the coordinates z1, z2, z3 for H2 so that Z = ( z1 z2
z2 z3

) ∈ H2. A Siegel
modular form of weight k with respect to Sp4(Z) is a holomorphic function F(Z) on
the Siegel upper half-plane H2 such that

F
(
(AZ + B)(CZ + D)−1)= det(CZ + D)kF (Z)

for each M = (A B
C D

) ∈ Sp4(Z). We write q = e(z1), r = e(z2) and s = e(z3). In [7,
Theorem 1.5], Gritsenko and Nikulin proved that the following product represents a
Siegel modular form Δ35(Z) of weight 35:

Δ35(Z) = q3rs2
∏

(n,l,m)∈D

(
1 − qnrlsm

)c2(4nm−l2)
, (2.5)

where the integers c2(N) are defined in (2.4) and we denote by D the set of integer
triples (n, l,m) ∈ Z

3 such that (1) (n, l,m) = (−1,0,1) or (2) n ≥ 0,m ≥ 0 and
either n + m > 0 and l is arbitrary or n = m = 0 and l < 0.

Siegel modular forms and Jacobi forms are connected by the Fourier–Jacobi ex-
pansion:

Theorem 2.6 [4, Theorem 6.1] Let F be a Siegel modular form of weight k with
respect to Sp4(Z) and

F(Z) =
∞∑

m=0

φm(z1, z2)s
m

be the Fourier–Jacobi expansion. Then φm(z1, z2) is a Jacobi form of weight k and
index m.

2.2 Weakly holomorphic modular forms of weight − 1
2

We use the notations from [21]. If d is an odd prime, let ( c
d
) be the usual Legendre

symbol. For positive odd d , define ( c
d
) by multiplicativity. For negative odd d , let

(
c

d

)
=
{

( c
|d| ) if d < 0 and c > 0,

−( c
|d| ) if d < 0 and c < 0.
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We let ( 0
±1 ) = 1. Define εd , for odd d , by εd =

{
1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4.

Let M+
− 1

2
(Γ0(4)) be the Kohnen plus-space of weakly holomorphic modu-

lar forms with integer coefficients of weight − 1
2 with respect to Γ0(4), namely,

f ∈ M+
− 1

2
(Γ0(4)) if f is holomorphic on H, and meromorphic at the cusps of Γ0(4),

and

f

(
az + b

cz + d

)
=
(

c

d

)
εd(cz + d)−

1
2 f (z),

for all
(

a b
c d

) ∈ Γ0(4), and it has a Fourier expansion of the form

f (z) =
∑
n≥n0

n≡0,3 (mod 4)

a(n)qn,

where we put q = e(z) and let
√

z be the branch of the square root having argument

in (−π
2 , π

2 ]. So for z ∈ H, (−z)
1
2 = (− 1

z
)− 1

2 = −iz
1
2 . For each nonnegative integer

d ≡ 0,1 (mod 4), there exists a unique modular form vd(z) ∈ M+
− 1

2
(Γ0(4)) with a

Fourier expansion ([23], page 19)

vd(z) = q−d +
∑
n≥0

n≡0,3 (mod 4)

a(n)qn. (2.7)

Here vd(z)’s form a Z-basis for M+
− 1

2
(Γ0(4)). Some examples are:

v1(z) = q−1 + 10 − 64q3 + 108q4 − 513q7 + · · · ,

v4(z) = q−4 + 70 + 32384q3 + 131976q4 + 4451328q7 + · · · ,

v5(z) = q−5 + 48 − 131565q3 + 656800q4 − 35655680q7 + · · · ,

v8(z) = q−8 + 120 + 4257024q3 + 34867000q4 + 6275241984q7 + · · · .

We will prove the following using the method of Hardy–Ramanujan–Rademacher.

Theorem 2.8 In (2.7), suppose 4|d and d > 0. Then a(n) is positive for all n, and

a(n) = 2
(
d

1
2 n−1 cosh(π

√
dn)−π−1n− 3

2 sinh(π
√

dn)
)+O

(
d

3
2 log(4π

√
dn)e

π
√

dn
2
)
.

If d ≡ 1 (mod 4), (−1)na(n) is positive for all n, and

a(n) = 2(−1)n
(
d

1
2 n−1 cosh(π

√
dn) − π−1n− 3

2 sinh(π
√

dn)
)

+ O
(
d

3
2 log(4π

√
dn)e

π
√

dn
2
)
.
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In particular, if d = 1,

a(n) = (−1)n
eπ

√
n

n

(
1 − 1

π
√

n

)
+ O

(
log(4π

√
n)e

π
√

n
2
)
. (2.9)

Let J̃0,1 be the space of weak Jacobi forms of weight 0 and index 1. The following
theorem provides the connection of half-integral weakly holomorphic modular forms
to weak Jacobi forms and then to root multiplicities of the hyperbolic Kac–Moody
algebra F .

Theorem 2.10 [4, Theorem 5.4] The correspondence
∑
N≥n0

N≡0,3 (mod 4)

c(N)qN 	→
∑

n,r∈Z

c
(
4n − r2)e(nτ + rz)

gives an isomorphism between M+
− 1

2
(Γ0(4)) and J̃0,1.

Remark 2.11 In [4], the above theorem is proved only for holomorphic forms. It is
easy to extend the result to weakly holomorphic forms as stated above.

Under the above correspondence, the weak Jacobi form φ0,1(τ, z) in (2.3) corre-
sponds to v1 ∈ M+

− 1
2
(Γ0(4)). Therefore, we have, by (2.4) and (2.9), the asymptotic

formula for Fourier coefficients of φ0,1(τ, z):

Corollary 2.12

c(N) = (−1)N
eπ

√
N

N

(
1 − 1

π
√

N

)
+ O

(
log(4π

√
N)e

π
√

N
2
)
,

c2(N) = 2e2π
√

N

N

(
1 − 1

2π
√

N

)
+ O

(
log(8π

√
N)eπ

√
N
)
.

3 Hyperbolic Kac–Moody algebra F

Let F = g(A) be the hyperbolic Kac–Moody algebra associated to the generalized
Cartan matrix

A = (aij ) =
⎛
⎝

2 −2 0
−2 2 −1
0 −1 2

⎞
⎠ .

Let {α1, α2, α3} be the set of simple roots. The Weyl group W of F is isomorphic to
PGL2(Z) through the map given by

σ1 	→
(

1 0
0 −1

)
, σ2 	→

(−1 1
0 1

)
, σ3 	→

(
0 1
1 0

)
,

where σi (i = 1,2,3) are the simple reflections corresponding to αi .
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Let h be the Cartan subalgebra of F . We define a standard bilinear form on h∗ by
(αi, αj ) = aij . We choose another basis {γ1, γ2, γ3} for h∗ to be

γ1 = α1 + α2 + α3, γ2 = α1, γ3 = α1 + α2.

The dual basis of {γ1, γ2, γ3} with respect to (·, ·) is given by

γ ∗
1 = −α1 − α2, γ ∗

2 = 1

2
α1, γ ∗

3 = −α1 − α2 − α3.

The matrices ((γi, γj )) and ((γ ∗
i , γ ∗

j )) are

⎛
⎝

0 0 −1
0 2 0

−1 0 0

⎞
⎠ and

⎛
⎝

0 0 −1
0 1

2 0
−1 0 0

⎞
⎠ ,

respectively.
We define a C-linear map μ : h∗ → S2(C) by

μ
(
aγ ∗

1 + bγ ∗
2 + cγ ∗

3

)=
( −a −b/2

−b/2 −c

)
.

Then we have

μ(α1) =
(

0 −1
−1 0

)
, μ(α2) =

(
1 1
1 0

)
, μ(α3) =

(−1 0
0 1

)
.

The group PGL2(Z) acts on S2(C) by g(S) = gS(tg). Then the map μ is W -
equivariant and we can identify h∗ with S2(C). We also obtain

(α,α) = −2 detμ(α) (3.1)

for α ∈ h∗. (See Proposition 2.1 in [5].)
We write z ∈ h∗ as z = z1γ1 + z2γ2 + z3γ3. Then we define another map ν : h∗ →

S2(C) by

ν(z) =
(

z1 z2
z2 z3

)
.

For α = aγ ∗
1 + bγ ∗

2 + cγ ∗
3 ∈ h∗, we have

(α, z) = az1 + bz2 + cz3 = −Tr
(
μ(α)ν(z)

)
.

Let Δ+
re (resp. Δ+

im) be the set of positive real (resp. imaginary) roots of F and we
put Δ+ = Δ+

re ∪ Δ+
im.

Proposition 3.2 [5] We have

μ
(
Δ+

im

)= {N ∈ S2(Z) | N ≥ 0 (i.e. N is semi positive definite)
}

and

Author's personal copy



Root multiplicities of hyperbolic Kac–Moody algebras 337

μ
(
Δ+

re

)=
{
N =

(
n1 n2
n2 n3

)
∈ S2(Z)

∣∣∣∣

n1n3 − n2
2 = −1, n2 ≤ n1 + n3, 0 ≤ n1 + n3, 0 ≤ n3

}
.

We denote by mult(α) the multiplicity of α ∈ Δ+
im. In [6] I. Frenkel conjectured

mult(α) ≤ p

(
1 − 1

2
(α,α)

)
= p

(
1 + detμ(α)

)
for α ∈ Δ+

im, (3.3)

where p(n) is the usual partition function. This conjecture also appears in Exer-
cise 13.37 of [10] as an open problem.

We define pσ (n) to be the coefficients of qn in the expansion of qη−1(z)η−1(23z),
where η is the Dedekind η-function. Thus we have

∞∑
n=0

pσ (n)qn = (1 + q23 + 2q46 + · · · )
∞∏

n=1

(
1 − qn

)−1

= (1 + q23 + 2q46 + · · · )
∞∑

n=0

p(n)qn. (3.4)

In his Ph.D. thesis [20], P. Niemann studied root multiplicities of F and proved that

mult(α) ≤
{

pσ (1 − 1
2 (α,α)) if α /∈ 23L∗,

pσ (1 − 1
2 (α,α)) + pσ (1 − 1

46 (α,α)) if α ∈ 23L∗,

where L∗ is the dual of a certain lattice L.
We will prove the following asymptotics using the method of Hardy–Ramanujan–

Rademacher:

Theorem 3.5

pσ (n + 1) = 2π

n
√

23
I2

(
4π

√
n√

23

)
+ O

(
n− 1

2 I2

(
2π

√
n√

23

))
,

where I2 is the modified Bessel function of the first kind.

Using the fact I2(x) ∼ ex√
2πx

, we can see pσ (n + 1) ∼ e

4π
√

n√
23

n
5
4 23

1
4
√

2
. Compare it with

p(n) ∼ e
π

√
2n
3

4n
√

3
. Using this result, we can calculate an upper bound for mult(α) effi-

ciently when |(α,α)| is big.

Example 3.6 If α = 10α1 + 10α2 + 5α3 = (10,10,5) then − 1
2 (α,α) = 25 and we

have mult(α) = 2434, and the main term of the asymptotics is 2437.16. We calculate
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more cases and make a table:

α − 1
2 (α,α) mult(α) main term

(7,7,2) 10 56 56.65
(8,10,4) 20 792 793.19
(11,11,5) 30 6826 6867.52
(11,14,7) 40 44258 44975.14

(3.7)

(A table of mult(α) can be found in [10, p. 205].)

Remark 3.8 In [5], Feingold and Frenkel proved that for the level one roots,
mult(α) = p(1 − 1

2 (α,α)), i.e., (3.3) holds with the equality. They also obtained the
generating function of the multiplicities of the level 2 roots:

∞∑
n=0

M(n − 1)qn = q−3

2

( ∞∑
n=0

p(n)qn

) ∞∏
j=1

(
1 − q4j−2)

×
( ∞∏

j=1

(
1 + q2j−1)−

∞∏
j=1

(
1 − q2j−1)− 2q

)

= (1 − q20 + q22 − q24 + q26 − 2q28 + · · · )
∞∑

n=0

p(n)qn,

where M(2m) = multμ−1
(

m 0
0 2

)
and M(2m − 1) = multμ−1

(
m 1
1 2

)
. Comparing with

(3.4), we see more clearly the difference between actual multiplicities and bounds for
these roots.

4 Automorphic correction for the Kac–Moody algebra F

Let M = Zγ1 + Zγ2 + Zγ3 ⊂ h∗ and M∗ = Zγ ∗
1 + Zγ ∗

2 + Zγ ∗
3 ⊂ h∗. The lattice M

has signature (2,1). We obtain the cone

V (M) = {y ∈ M ⊗ R ⊂ h
∗ | (y|y) < 0

}
,

which is a union of two half cones. We choose one of these half cones as follows and
denote it by V +(M):

V +(M) = {y1γ1 + y2γ2 + y3γ3 ∈ V (M) | y1 > 0
}
.

We consider the complexified cone Ω(V +(M)) = M ⊗ R + iV +(M) ⊂ h∗. Let
H2 be the Siegel upper half-plane as before. By restricting the map ν : h∗ → S2(C)

to Ω(V +(M)), we have a biholomorphic map ν : Ω(V +(M)) → H2 and identify
z = z1γ1 + z2γ2 + z3γ3 ∈ Ω(V +(M)) with the point Z = ( z1 z2

z2 z3

) ∈ H2. With this
identification, Siegel automorphic forms on H2 can be considered as automorphic
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forms on Ω(V +(M)). See [7, 8] for more details. We will write Φ(z) = Φ(ν(z)) =
Φ(Z) for a Siegel modular form Φ(Z).

A lattice Weyl vector is given by

ρ = 2γ1 − 1

2
γ2 + 3γ3 = 9

2
α1 + 5α2 + 2α3 ∈ M ⊗ Q.

The vector ρ satisfies (ρ,αi) = −1 for i = 1,2,3. We define

M = {x ∈ V +(M) | (x,αi) ≤ 0, i = 1,2,3
}
.

Remark 4.1 In [10], the notation ρ denotes the vector whose paring with each simple
(co)root is 1. Notice that our definition of ρ is the negative of that in [10].

In what follows, we will consider more than one generalized Kac–Moody algebra
and we modify our notation to show which algebra it is attached to. Assume that G is
a generalized Kac–Moody algebra. Let Δ(G)+re (resp. Δ(G)+im) be the set of positive
real (resp. imaginary) roots of G and we put Δ(G)+ = Δ(G)+re ∪ Δ(G)+im. We denote
by mult(G, α) the multiplicity of α ∈ Δ(G)+ in the algebra G .

The notion of an automorphic correction originated from an idea of Borcherds [1]
and was further developed by Gritsenko and Nikulin [7, 8]. An automorphic correc-
tion for the Kac–Moody algebra F is defined to be an automorphic form Φ(z) on
Ω(V +(M)) with Fourier expansion

Φ(z) =
∑
w∈W

det(w)

(
e
(−(w(ρ), z

))−
∑

a∈M∗∩M
m(a) e

(−(w(ρ + a), z
)))

,

where m(a) ∈ Z for all a ∈ M∗ ∩ M and e(x) = e2πix as before. If Φ(z) is an au-
tomorphic correction for F , we can construct a generalized Kac–Moody algebra G
such that F ⊂ G and the denominator function of G is Φ(z). Moreover, we obtain
from the Weyl–Kac–Borcherds denominator identity

Φ(z) = e
(−(ρ, z)

) ∏
α∈Δ(G)+

(
1 − e

(−(α, z)
))mult(G,α)

,

where Δ(G)+re = Δ(F )+re and Δ(G)+im = V +(M) ∩ M∗ ⊃ Δ(F )+im.

Theorem 4.2 [7, Theorem 3.1] The Siegel modular form Δ35(z) given in (2.5) is an
automorphic correction for the hyperbolic Kac–Moody algebra F .

Let us look closely at the correspondence between Δ(G)+ and the set D in (2.5).
If α ∈ Δ(G)+ and μ(α) = ( n l/2

l/2 m

)
, then we have

μ(α) ←→ (n, l,m) ∈ D.

Using Proposition 3.2, one can check that the set D indeed contains all the elements
corresponding to the positive roots in Δ(F )+. Moreover, we obtain from (3.1)

4nm − l2 = 4 detμ(α) = −2(α,α). (4.3)
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Corollary 4.4 For each α ∈ Δ(F )+ ⊂ Δ(G)+, we have

mult(F , α) ≤ mult(G, α) = c2
(−2(α,α)

)
,

where the function c2(N) is defined in (2.4) with the asymptotic formula in Corol-
lary 2.12.

Remark 4.5 Automorphic correction of certain rank 2 symmetric hyperbolic Kac–
Moody algebras has been constructed in [14] using Hilbert modular forms. The first
connection between rank 2 hyperbolic Kac–Moody algebras and the theory of Hilbert
modular forms was made by Lepowsky and Moody in [19].

5 Method of Hardy–Ramanujan–Rademacher

We recall the result of J. Lehner [17] on Fourier coefficients of modular forms using
the method of Hardy–Ramanujan–Rademacher. We refer to [17, 18] for unexplained
notations. Let f (z) be a weakly holomorphic modular form of weight r < 0 with
respect to a congruence subgroup Γ . Then we have the multiplier system v such that
f (Mz) = v(M)(cz + d)rf (z) for M = ( a b

c d

) ∈ Γ . Let p0 = ∞, p1, . . . , ps−1 be the
cusps of Γ , and

A0 =
(

1 0
0 1

)
, Aj =

(
0 −1
1 −pj

)
, 1 ≤ j ≤ s − 1.

For 0 ≤ j ≤ s − 1, we write M∗ = AjM = ( a b
c d

)
for M ∈ Γ and set

Cj0 =
{
c

∣∣∣∣
( · ·

c ·
)

∈ AjΓ

}
, Dc =

{
d

∣∣∣∣
( · ·

c d

)
∈ AjΓ, 0 < d ≤ c

}
.

Choose the generator Pj (1 ≤ j ≤ s − 1) of the cyclic subgroup of Γ which fixes pj ,
such that

AjPjA
−1
j =

(
1 λj

0 1

)
, λj > 0, 1 ≤ j ≤ s − 1.

This also defines λj . Let v be a multiplier system belonging to Γ . Define κj (1 ≤
j ≤ s − 1) by e(κj ) = v(Pj ), 0 ≤ κj < 1. It can be shown ([17], page 313) that given
c ∈ Cj0, d ∈ Dc, there is a unique a such that −cλj ≤ a < 0. For k = 1, . . . , s − 1,
we have the expansion

(z − pk)
re

(
−κk

Akz

λk

)
f (z) =

∞∑
n=−μk

a(n)(k)qn
k , qk = e

(
Akz

λk

)
.

By replacing Akz by z, this can be written as

f

(
pk − 1

z

)
= (−z)rq

κk
λk

∞∑
n=−μk

a(n)(k)q
n
λk . (5.1)
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We assume that λ0 = 1, κ0 = 0 for Γ . For k = 0, we have the usual Fourier expansion:

f (z) =
∞∑

n=−μ0

a(n)qn.

We have the following formula for a(n) ([17], page 313).

Theorem 5.2 For n > 0,

a(n) = 2πi−r
s−1∑
j=0

μj∑
ν=1

a(−ν)(j)
∑
c∈Cj0
c>0

c−1A(c,n, νj )L(c,n, νj ,−r), (5.3)

where νj = ν−κj

λj
, M∗ = AjM = ( a b

c d

)
and

A(c,n, νj ) =
∑
d∈Dc

v−1(M)e

(
nd − νja

c

)
,

L(c,n, νj , r) =
(

νj

n

) r+1
2

Ir+1

(
4π

√
nνj

c

)
,

where Ir+1 is the modified Bessel function of the first kind. It has the asymptotic
expansion Ir+1(x) = ex√

2πx
(1 + O( 1

x
)).

5.1 Asymptotics of Fourier coefficients of modular forms of weight − 1
2 ; proof of

Theorem 2.8

Now we apply the theorem to vd ∈ M+
− 1

2
(Γ0(4)). Recall that Γ0(4) has three cusps:

p0 = ∞, p1 = 0, p2 = 1
2 ([16], page 108).

First, p0 = ∞. In this case, λ0 = 1, κ0 = 0, and A0 = ( 1 0
0 1

)
. If c ∈ C00, then 4|c,

and the smallest c ∈ C00 is 4, and we have M = M∗ = (−3 −1
4 1

)
,
(−1 −1

4 3

)
for the set

D4. Because of (2.7), we only need to consider ν0 = μ0. In our case, v(M) = ( c′
d ′ )εd ′

for M = ( a′ b′
c′ d ′

)
, and

A(4, n,μ0) = e

(
n + 3μ0

4

)
− ie

(
3n + μ0

4

)
.

So if d = 4k then μ0 = 4k and A(4, n,μ0) = 1 − i for any n ≡ 0,3 (mod 4). If
d = 4k + 1 then μ0 = 4k + 1 and A(4, n,μ0) = (−1)n(1 − i) if n ≡ 0,3 (mod 4).

Second, p1 = 0. In this case, λ1 = 4, κ1 = 0, and A1 = ( 0 −1
1 0

)
. The smallest c ∈

C10 is 1, and M∗ = (−4 −5
1 1

)
, M = ( 1 1

4 5

)
. Hence

A(1, n, ν1) = e(n + ν) = 1, ν = 1, . . . ,μ1.
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The Fourier expansion at 0 is

vd

(
−1

z

)
= iz− 1

2

∞∑
n=−μ1

a(n)(1)q
n
4 .

Third, p2 = 1
2 . In this case, λ2 = 4, κ2 = 3

4 , and A2 = ( 0 −1
1 − 1

2

)
. The smallest c ∈

C20 is 1, and M∗ = (−4 −3
1 1

2

)
, M = ( 3 2

4 3

)
. Hence

A(1, n, ν2) = −i e

(
n

2
+ ν − 3

4

)
= eπin = (−1)n, ν = 1, . . . ,μ2.

The Fourier expansion at 1
2 is

vd

(
−1

z
+ 1

2

)
= iz− 1

2 q
3
16

∞∑
n=−μ2

a(n)(2)q
n
4 .

Combining all these calculations, we write (5.3) for vd(z) as follows:

2πi
1
2

{
1

4
A(4, n, d)L

(
4, n, d,

1

2

)
+

μ1∑
ν=1

a(−ν)(1)L

(
1, n, ν1,

1

2

)

+
μ2∑
ν=1

(−1)na(−ν)(2)L

(
1, n, ν2,

1

2

)
+
∑
c∈C00
c>4,4|c

c−1A(c,n, d)L

(
c,n, d,

1

2

)

+
2∑

j=1

∑
c∈Cj0
c>1

μj∑
ν=1

a(−ν)(j)c−1A(c,n, νj )L

(
c,n, νj ,

1

2

)}
. (5.4)

Let us consider v4k(z). Suppose v4k(z) = q−4k + ∑∞
n=1 a(n)qn. It follows

from (5.1) that Fourier expansions at the other cusps are of the forms

v4k

(
−1

z

)
= iz− 1

2

∞∑
n=−μ1

a(n)(1)q
n
4 ,

v4k

(
−1

z
+ 1

2

)
= iz− 1

2 q
3
16

∞∑
n=−μ2

a(n)(2)q
n
4 .

Now we prove the following by imitating the proof of Lemma 14.2 in [2], and deter-
mine the principal parts of Fourier expansions at the other cusps.

Lemma 5.5

z
1
2 v4k

(
−1

z

)
= 2(1 + i)

(
q− k

4 +
∞∑

n=1

a(4n)q
n
4

)
,
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z
1
2 v4k

(
−1

z
+ 1

2

)
= 2(1 + i)q

3
16

∞∑
n=0

a(4n + 3)q
n
4 .

Proof Let

h0(z) = q−k +
∞∑

n=1

a(4n)qn, h1(z) =
∞∑

n=0

a(4n + 3)qn+ 3
4 .

Then v4k(z) = h0(4z) + h1(4z). Since v4k ∈ M+
− 1

2
(Γ0(4)),

v4k

(
z

4z + 1

)
= (4z + 1)−

1
2 v4k(z).

By replacing 4z + 1 by z, and noting that h0(z ± 1) = h0(z), h1(z + 1) = −ih1(z),
and h1(z − 1) = ih1(z), we have

h0

(
−1

z

)
+ ih1

(
−1

z

)
= z− 1

2
(
h0(z) − ih1(z)

)
.

Now let z = iy and note that h0(iy) and h1(iy) are real. Then

h0

(
i

y

)
= 1√

2y

(
h0(iy) + h1(iy)

)
, h1

(
i

y

)
= 1√

2y

(
h0(iy) − h1(iy)

)
.

Since h0 and h1 are meromorphic functions, the above equalities are true by replacing
iy by z with Im(z) > 0. Hence

h0

(
−1

z

)
= 1 + i

2
z− 1

2
(
h0(z) + h1(z)

)
, h1

(
−1

z

)
= 1 + i

2
z− 1

2
(
h0(z) − h1(z)

)
.

Therefore,

v4k

(
−1

z

)
= h0

(
−4

z

)
+ h1

(
−4

z

)
= 2(1 + i)z− 1

2 h0

(
z

4

)
.

For v4k(− 1
z

+ 1
2 ), note that h1(z + 2) = −h1(z). Then

v4k

(
−1

z
+ 1

2

)
= h0

(
−4

z

)
− h1

(
−4

z

)
= 2(1 + i)z− 1

2 h1

(
z

4

)
. �

By Lemma 5.5, we obtain A(4, n, d) = 1 − i for μ0 = d = 4k and the main term
in (5.3) is

2πi
1
2

(
1 − i

4

(
4k

n

) 3
4

I 3
2
(π

√
4nk) + 2(1 − i)

(
k

4n

) 3
4

I 3
2
(2π

√
nk)

)

= 4π

(
k

n

) 3
4

I 3
2
(2π

√
nk). (5.6)
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Since I 3
2
(z) =

√
2
π

z cosh(z)−sinh(z)

z
3
2

, the above term is equal to

4k
1
2 n−1 cosh(π

√
4kn) − 2

π
n− 3

2 sinh(π
√

4kn).

We consider the other terms:

2πi
1
2

( ∑
c∈C00
c>4,4|c

c−1A(c,n,4k)L

(
c,n,4k,

1

2

)

+ 1 + i

2

∑
c∈C10
c>1

c−1A

(
c,n,

k

4

)
L

(
c,n,

k

4
,

1

2

))

= 2πi
1
2

( ∑
4c∈C00
c>4,4|c

c−1A(c,n,4k)

(
4k

n

) 3
4

I 3
2

(
4π

√
4kn

c

)

+ 1 + i

2

∑
c∈C10
c>1

c−1A

(
c,n,

k

4

)(
k

4n

) 3
4

I 3
2

(
π

√
4kn

c

))
.

We will prove that the above sum is smaller than the main term (5.6). We only deal
with the first sum. The second sum is similar.

We divide the first sum into two regions: 4 < c ≤ 4π
√

4kn and c > 4π
√

4kn. By

Weil’s bound (cf. [22], page 26 and [9], page 403), |A(c,n,4k)| ≤ (4k,n, c)
1
2 c

1
2 τ(c),

where τ(c) is the number of positive divisors of c and (4k,n, c) is the g.c.d. of 4k, n

and c. (Similarly, (4k,n) will denote the g.c.d. of 4k and n.)

In the region c ≤ 4π
√

4kn, using the fact that (4k,n, c) ≤ (4k,n) ≤ (4kn)
1
2 , the

first sum is less than

4
√

2kn− 1
2

∑

4<c≤4π
√

4kn,4|c
τ (c) cosh

(
4π

√
4kn

c

)

≤ 4
√

2kn− 1
2 cosh

(
π

√
4kn

2

) ∑

c≤4π
√

4kn

τ (c).

By using the fact that
∑

c≤x τ (c) ≤ 2x logx, it is less than

32
√

2πk
3
2 log(4π

√
4kn) cosh

(
π

√
4kn

2

)
.
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In the region c > 4π
√

4kn, we use the fact that for 0 < z < 1, I 3
2
(z) ≤

√
2
π
z

3
2 . We

use the trivial bound |A(c,n,4k)| ≤ c. Then
∣∣∣∣2πi

1
2

( ∑
c∈C00

c>4π
√

4kn

c−1A(c,n,4k)L

(
c,n,4k,

1

2

))∣∣∣∣

≤ 16
√

2π2k
3
2

∑

c>4π
√

4kn

c− 3
2 ≤ 16π

3
2 k

5
4 n− 1

4 .

Hence, the first sum is less than

16π
3
2 k

5
4 n− 1

4 + 32
√

2πk
3
2 log(4π

√
4kn) cosh

(
π

√
4kn

2

)
.

Similarly, the second sum is less than

4π
3
2 k

5
4 n− 1

4 + 32π
3
2 k

3
2 log(4π

√
4kn) cosh

(
π

√
4kn

2

)
.

We can show easily that the sum of the above two terms is less than the main term
(5.6) for kn ≥ 8. Hence a(n) is positive if kn ≥ 8. When kn < 8, by looking at the
tables, we see that a(n) is positive. Therefore, we have shown that a(n) is positive
for all n. Also we have the following formula with error term:

a(n) = 2
(
(4k)

1
2 n−1 cosh(π

√
4kn) − π−1n− 3

2 sinh(π
√

4kn)
)

+ O
(
(4k)

3
2 log(4π

√
4kn)eπ

√
kn
)
.

In the same way, we now consider v4k+1 and suppose v4k+1(z) = q−4k−1 +∑∞
n=0 a(n)qn. Then we can show as in Lemma 5.5:

Lemma 5.7

z
1
2 v4k+1

(
−1

z

)
= 2(1 + i)

∞∑
n=1

a(4n)q
n
4 ,

z
1
2 v4k+1

(
−1

z
+ 1

2

)
= 2(1 + i)q

3
16

(
q− k+1

4 +
∞∑

n=0

a(4n + 3)q
n
4

)
.

Proof Let

h0(z) =
∞∑

n=0

a(4n)qn, h1(z) = q−k− 1
4

∞∑
n=0

a(4n + 3)qn+ 3
4 .

Then v4k+1(z) = h0(4z) + h1(4z), and we follow the proof of Lemma 5.5. �
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By Theorem 5.2 and Lemma 5.7, the main term of a(n) is

2πi
1
2

(
1

4
A(4, n,4k + 1)L

(
4, n,4k + 1,

1

2

)

+ 2(1 − i)A

(
1, n,

k + 1
4

4

)
L

(
1, n,

k + 1
4

4
,

1

2

))
.

Since A(4, n,4k + 1) = (−1)n, it is equal to

(−1)nπ
√

2

(
4k + 1

n

) 3
4

I 3
2

(
π
√

(4k + 1)n
)

= 2(−1)n
(
(4k + 1)

1
2 n−1 cosh

(
π
√

(4k + 1)n
)− π−1n− 3

2 sinh
(
π
√

(4k + 1)n
))

.

For example, when k = 2, n = 7, a(n) ∼ −27774695413.6 . . . . The actual value is
−27774693612.

As in the case of v4k , we can show that (−1)na(n) is positive for all n, and we
have the following formula with error term:

a(n) = 2(−1)n
(
(4k + 1)

1
2 n−1 cosh

(
π
√

(4k + 1)n
)− π−1n− 3

2 sinh
(
π
√

(4k + 1)n
))

+ O
(
(4k + 1)

3
2 log

(
4π
√

(4k + 1)n
)
e

π
√

(4k+1)n
2

)
.

In particular, we have:

Corollary 5.8 When k = 0,

a(4n) = e2π
√

n

4n

(
1 − 1

2π
√

n

)
+ O

(
log(8π

√
n)eπ

√
n
)
.

5.2 Asymptotics of Niemann’s bound; proof of Theorem 3.5

Recall that Niemann’s bound for root multiplicities of F comes from f (z) :=
η(z)−1η(23z)−1 (see [20], pages 23–27). By [21], page 18, the function f (z) is a
weakly holomorphic modular form of weight −1 with respect to Γ0(23), namely,

f

(
az + b

cz + d

)
= χ(d)(cz + d)−1f (z), χ(d) =

(−23

d

)
,

(
a b

c d

)
∈ Γ0(23).

We write

f (z) = q−1 +
∞∑

n=0

a(n)qn.

Here Γ0(23) has two cusps ([16], page 108): p0 = ∞ and p1 = 0. We will use
Theorem 5.2. In this case, λ0 = 1, κ0 = 0, and λ1 = 23, κ1 = 0. Since η(− 1

z
) =
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(−iz)
1
2 η(z), we can see that

f

(
−1

z

)
= i

√
23z−1

(
q− 1

23 +
∞∑

n=0

a(n)q
n
23

)
.

Then by Theorem 5.2, we obtain

a(n) = 2πi

( ∞∑
c=1

(23c)−1A(23c,n,1)L(23c,n,1,1)

− i
√

23
∑

c∈C10

c−1A

(
c,n,

1

23

)
L

(
c,n,

1

23
,1

))
,

where L(23c,n,1,1) = n−1I2(
4π

√
n

23c
), L(c,n, 1

23 ,1) = (23n)−1I2(
4π
c

√
n
23 ), and

A

(
1, n,

1

23

)
= 1, A(23, n,1) =

∑
d (mod 23)

(−23

d

)
e

(
nd − a

23

)
,

where da ≡ 1 (mod 23). Here the second sum is the Salié sum T (n,−1,23) ([9],
page 323):

T (n,−1,23) = −i
√

23
∑

v2≡−n(mod 23)

e

(
2v

23

)
.

In Niemann’s notation [20], a(n) = pσ (1 + n). Therefore, using the trivial bound for
the Kloosterman sums, we have

pσ (n + 1) = 2π

n
√

23
I2

(
4π

√
n√

23

)
+ O

(
n− 1

2 I2

(
2π

√
n√

23

))
.

For example, when n = 28, we obtain 2π√
23n

I2(
4π

√
n√

23
) = 4578.99. The actual value of

pσ (29) is 4576 and the exact multiplicity of α in F is 4557 when − 1
2 (α,α) = 28.

5.3 Other hyperbolic Kac–Moody algebras

Niemann [20] obtained upper bounds for root multiplicities of other hyperbolic Kac–
Moody algebras, and our method can be applied to produce asymptotic formulas for
those bounds, too. We will consider two more hyperbolic Kac–Moody algebras F1
and F2 whose Cartan matrices are

⎛
⎜⎜⎝

2 −1 −1 0
−1 2 −1 0
−1 −1 2 −1
0 0 −1 2

⎞
⎟⎟⎠ and

⎛
⎜⎜⎜⎜⎝

2 −1 0 0 0
−1 2 −1 −1 0
0 −1 2 0 −1
0 −1 0 2 −1
0 0 −1 −1 2

⎞
⎟⎟⎟⎟⎠

, respectively.
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In Niemann’s notation [20], F1 is the case when N = 11 and F2 is when
N = 7. We first consider F1, and set f (z) = η(z)−2η(11z)−2 and

∑∞
n=0 pσ (n)qn =

qη(z)−2η(11z)−2. By [21], page 18, the function f (z) is a weakly holomorphic mod-
ular form of weight −2 with respect to Γ0(11), namely,

f

(
az + b

cz + d

)
= (cz + d)−2f (z),

(
a b

c d

)
∈ Γ0(11).

We write

f (z) = q−1 +
∞∑

n=0

a(n)qn.

Note that Γ0(11) has two cusps ([16], page 108): p0 = ∞ and p1 = 0. In this case,
λ0 = 1, κ0 = 0, and λ1 = 11, κ1 = 0. Then

f

(
−1

z

)
= −11z−2f

(
z

11

)
= −11z−2

(
q− 1

11 +
∞∑

n=0

a(n)q
n
11

)
.

Then by Theorem 5.2, we obtain

a(n) = 2πi2

( ∞∑
c=1

(11c)−1A(11c,n,1)L(11c,n,1,1)

− 11
∑

c∈C10

c−1A

(
c,n,

1

11

)
L

(
c,n,

1

11
,1

))
,

where L(11c,n,1,1) = n− 3
2 I3(

4π
√

n
11c

), L(c,n, 1
11 ,1) = (11n)− 3

2 I3(
4π
c

√
n
11 ), and

A

(
1, n,

1

11

)
= 1, A(11, n,1) =

∑
d (mod 11)

e

(
nd − a

11

)
,

where da ≡ 1 (mod 11). Here the second sum is the Kloosterman sum.
Therefore, when N = 11, a(n) = pσ (1 + n), and

a(n) ∼ 2π√
11n

3
2

I3

(
4π

√
n

11

)
.

When n = 15, 2π√
11n

3
2
I3(4π

√
n
11 ) = 5892.28. The actual value of pσ (16) is 5894, and

the corresponding root multiplicity of F1 is 5812.
Similarly, we consider N = 7, i.e., f (z) = η(z)−3η(7z)−3 in [20]. It satisfies

f

(
az + b

cz + d

)
= χ(d)(cz + d)−3f (z), χ(d) =

(−7

d

)
,

(
a b

c d

)
∈ Γ0(7).
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We write

f (z) = q−1 +
∞∑

n=0

a(n)qn.

Then f (− 1
z
) = −i7

3
2 z−3f ( z

7 ), and we get

a(n) ∼ 2π√
7n2

I4

(
4π

√
n

7

)
.

Even more, we can consider N = 5,3,2, and let aN = 24
N+1 and f (z) =

η(z)−aN η(Nz)−aN as in [20]. It satisfies

f

(
az + b

cz + d

)
= (cz + d)−aN f (z),

(
a b

c d

)
∈ Γ0(N).

If we write

f (z) = q−1 +
∞∑

n=0

a(n)qn,

then f (− 1
z
) = (−N)

aN
2 z−aN f ( z

N
), and

a(n) ∼ 2π
√

Nn
aN +1

2

IaN+1

(
4π

√
n

N

)
.

There are two hyperbolic Kac–Moody algebras when N = 5 for which a(n) gives a
reasonable bound for root multiplicities. The cases N = 3,2 do not seem to provide
any good bounds for root multiplicities of a hyperbolic Kac–Moody algebra. See
[20], Sect. 6.2, for more details.

5.4 Other modular forms

We can apply the same technique to other modular forms. We first consider the func-
tion jm(z) in [21], page 23. It is defined as j0(z) = 1, j1(z) = j (z) − 744, and for
m ≥ 2,

jm(z) = j1(z)|T0(m) =
∑
d|m

ad=m

d−1∑
b=0

j1

(
az + b

d

)
.

It has the q-expansion

jm(z) = q−m +
∞∑

n=1

cm(n)qn.
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From the definition, it is clear that cm(n) are all positive integers. We have the fol-
lowing series expression for cm(n) ([17], page 314):

cm(n) = 2π

∞∑
k=1

A(k,n,m)

k

(
m

n

) 1
2

I1

(
4π

√
mn

k

)
+ Om(1),

where

A(k,n,m) =
∑

h (mod k), (h,k)=1,

hh′≡−1 (modk)

e

(
−nh + mh′

k

)
.

Hence we have

cm(n) ∼ m
1
4 e4π

√
mn

n
3
4
√

2
.

Next, we consider elements of the Kohnen plus-space M+
3
2
(Γ0(4)). For each pos-

itive integer D ≡ 0,1(mod 4), let gD(z) ∈ M+
3
2
(Γ0(4)) be the unique modular form

with a Fourier expansion of the form ([21], page 72)

gD(z) = q−D +
∑
d≥0

d≡0,3 (mod 4)

B(D,d)qd .

We can get an asymptotic expression for B(D,d). In this case, we have the
following formula with an error term. For g(z) ∈ M+

3
2
(Γ0(4)), we write g(z) =

∑∞
n=−μ0

a(n)qn and keep the notations in the beginning of Sect. 4.

Theorem 5.9 [18] For n > 0,

a(n) = 2πi−
3
2

s−1∑
j=0

μj∑
ν=1

a(−ν)(j)
∑
c∈Cj0

0<c<
√

n

c−1A(c,n, νj )M

(
c,n, νj ,

3

2

)
+ E(n),

(5.10)
where νj = ν−κj

λj
, and

A(c,n, νj ) =
∑
d∈Dc

v−1(M)e

(
nd − νja

c

)
, M = A−1

j M∗

M

(
c,n, νj ,

3

2

)
=
(

n

νj

) 1
4

I 1
2

(
4π

√
nνj

c

)
.

Here E(n) = O(n
3
4 ), where the implied constant is independent of n.
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We apply the above theorem to g4k(z) = q−4k +∑∞
n=0 a(n)qn. In this case, κ1 =

0, κ2 = 3
4 . So it has Fourier expansions at the other cusps of the following forms:

g4k

(
−1

z

)
= iz

3
2

∞∑
n=−μ1

a(n)(1)q
n
4 , g4k

(
−1

z
+ 1

2

)
= iz

3
2 q

3
16

∞∑
n=−μ2

a(n)(2)q
n
4 .

Let

h0(z) = q−k +
∞∑

n=0

a(4n)qn, h1(z) =
∞∑

n=0

a(4n + 3)qn+ 3
4 .

Then g4k(z) = h0(4z) + h1(4z). In the same way as in Lemma 5.5 for v4k , we can
show

g4k

(
−1

z

)
= 1 + i

8
z

3
2 h0

(
z

4

)
, g4k

(
−1

z
+ 1

2

)
= 1 + i

8
z

3
2 h1

(
z

4

)
.

We have μ0 = 4k and A(4, n,μ0) = 1 − i in (5.10). Hence we obtain

a(n) ∼ 2πi−
3
2

(
1 − i

4
√

2

(
n

k

) 1
4

I 1
2
(2π

√
nk) +

√
2(1 − i)

8

(
n

k

) 1
4

I 1
2
(2π

√
nk)

)

= −π

(
n

k

) 1
4

I 1
2
(2π

√
nk).

Since I 1
2
(z) =

√
2
π

sinh(z)√
z

, we have

a(n) ∼ −2 sinh(π
√

4kn)√
4k

.

We can also show that a(n) is negative for all sufficiently large n. However, due to
the error term E(n), we cannot show it for all n. In order to show that a(n) is negative
for all n, a different approach needs to be taken. See Remark 5.11 below.

Now we consider g4k+1(z) = q−4k−1 +∑∞
n=0 a(n)qn. In the same way as we did

for g4k , we can show that

a(n) ∼ (−1)n−1 2 sinh(π
√

(4k + 1)n)√
4k + 1

.

For example, when k = 2, n = 7, a(n) ∼ 22505067826.5 . . . . The actual value is
22505066244.

Remark 5.11 Zagier [23] proved that B(D,d) = −A(D,d), where

vd(z) = q−d +
∑
D>0

A(D,d)qD ∈ M+
1
2

(
Γ0(4)

)
.
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In [13], we showed that if 4|d , A(D,d) is a positive integer for all D > 0, using the
explicit formula (without error term) in [3]. Hence if 4|D, the coefficient B(D,d) is
a negative integer for all d . We can also prove it directly, using the explicit formula
in [3].
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