Root multiplicities of hyperbolic Kac-
Moody algebras and Fourier coefficients of
modular forms

Henry H. Kim & Kyu-Hwan Lee

The Ramanujan Journal

An International Journal Devoted to

the Areas of Mathematics Influenced by s N eemersity e

Ramanujan g + Rl o
HE .2,

IPRNAS § » § Ve
ISSN 1382-4090 r A KA 5 A
Volume 32 R M NUJ

Number 3 JOURN AL

Ramanujan J (2013) 32:329-352 s
DOI 10.1007/511139-013-9474-2 =

/AN lmqmum)mz/ Journal? Dc‘\ bred to'tlie Aiaqs of
2874, i
Mathematics lnll iencel by Rumummm

= o = SR 1
v P J/ !

ey
7 5 & 1=
. (7) / 1 Tis e t 7, ) (272
Aot 2. ¢ (1 17)
.1/rr ' - : % S T
Mock 5+ £, { y S
Mot 7 s
(R } 2,4 -
l a-v00-4 %)
i) 2. O mn
= = 5 -
=% A-v5T>y +- ,'L%:-,} _—
&) (V=75 )k
) : o 77}@\7_, =5
"J/,+ @l =9) /"‘r,gy 14
Hive are ot polosnd PG5
e, e
E. P e,
Available 3 P %
online Ty
www.springerfink.com @ Spr inger

@ Springer



Your article is protected by copyright and all
rights are held exclusively by Springer Science
+Business Media New York. This e-offprint is
for personal use only and shall not be self-
archived in electronic repositories. If you wish
to self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication

and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer



Ramanujan J (2013) 32:329-352
DOI 10.1007/s11139-013-9474-2

Root multiplicities of hyperbolic Kac-Moody algebras
and Fourier coefficients of modular forms

Henry H. Kim - Kyu-Hwan Lee

Received: 5 June 2012 / Accepted: 20 February 2013 / Published online: 2 July 2013
© Springer Science+Business Media New York 2013

Abstract In this paper we consider the hyperbolic Kac—Moody algebra F associ-
220
ated with the generalized Cartan matrix (—2 2 -1 ) Its connection to Siegel modular

forms of genus 2 was first studied by A. Feingcz)ld and 1. Frenkel. The denominator
function of F is not an automorphic form. However, Gritsenko and Nikulin extended
JF to a generalized Kac—Moody algebra whose denominator function is a Siegel mod-
ular form. Using the Borcherds denominator identity, the denominator function can
be written as an infinite product. The exponents that appear in the product are given
by Fourier coefficients of a weak Jacobi form. P. Niemann also constructed a gen-
eralized Kac-Moody algebra which contains F and whose denominator function is
related to a product of Dedekind n-functions. In particular, root multiplicities of the
generalized Kac—Moody algebra are determined by Fourier coefficients of a mod-
ular form. As the main results of this paper, we compute asymptotic formulas for
these Fourier coefficients using the method of Hardy—Ramanujan—Rademacher, and
obtain an asymptotic bound for root multiplicities of the algebra 7. Our method can
be applied to other hyperbolic Kac—Moody algebras and to other modular forms as
demonstrated in the later part of the paper.
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1 Introduction

After being introduced more than four decades ago, the Kac—Moody theory has been
a great success. However, it makes one surprised to notice that little is known be-
yond the affine case. In particular, we do not have any single closed formula for the
root multiplicities of a hyperbolic Kac—-Moody algebra, even though hyperbolic Kac—
Moody algebras constitute the simplest indefinite case. On the other hand, Borcherds’
ingenious idea [1] was to consider generalized Kac—Moody algebras to extend some
Kac-Moody algebras so that we may obtain automorphic forms from the denomi-
nator functions of the generalized Kac—Moody algebras. Pursuing Borcherds’ idea,
Gritsenko—Nikulin and Niemann constructed generalized Kac—Moody algebras to ex-
tend some hyperbolic Kac—-Moody algebras [7, 8, 20].

Gritsenko—Nikulin’s construction indeed produces Siegel modular forms as de-
nominator functions of their generalized Kac-Moody algebras. For the hyperbolic
Kac—Moody algebra F associated with the generalized Cartan matrix (—22 22 —O 1 ),

0 -1 2
they showed that there exists a generalized Kac—Moody algebra G which contains F

and whose denominator function is the weight 35 Siegel cusp form A3s(Z), which
is called the Igusa modular form. As a byproduct, they obtained the infinite product
expression of Azs5(Z):

. 2
Ass(Z) = 613}’3‘2 l_[ (1 _ anlsm)cz(4nm l ),
(n,l,m)eD

where the integers ¢ (V) are defined using Fourier coefficients of a weak Jacobi form
of weight 0 and index 1. See (2.5) for the definition of D. As a result, we have

mult(F, @) < mult(G, ) =c» (—2(a, a)),

where mult(F, «) (resp. mult(G, «)) is the multiplicity of a root « in F (resp. in G).

There has been a great deal of effort to compute mult(F, ) (e.g. [5, 11, 12]),
using Kac—Peterson type formulas or Berman—Moody type formulas. However, the
complexity of these formulas grows fast as the length of a root becomes larger. In [6]
I. Frenkel conjectured

mult(}',oe)gp(]—%(oz,a)), (1.1)

where p(n) is the usual partition function. This conjecture also appears in Exercise
13.37 of [10] as an open problem. (Note that the normalization of the standard form
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(:|-) in the exercise problem is different from ours.) For some other indefinite Kac—
Moody algebras, Frenkel’s conjecture turns out to be false (see e.g. [15]). However,
it is still a tantalizing challenge for the algebra F.

In his Ph.D. thesis [20], P. Niemann constructed a generalized Kac—-Moody algebra
Go3 which contains F. The denominator function of G3 is closely related to the
eta product 7(z)n(23z), where 7 is the Dedekind n-function. If gn~'(z)n~'(232) =
3% o Po(n)q", ¢ = e*™'%, he showed that

W) < Po(l — (o, @) if o ¢ 23L%,
mu , ) =
po(1— 3o, @) + po(l — e (@, @) ifa €23L*,

where L is a certain lattice and L* is its dual. This bound is quite close to Frenkel’s
conjecture.

Now that root multiplicities of G and G»3 are given by Fourier coefficients of au-
tomorphic forms, we can apply analytic tools to get asymptotic formulas for these
multiplicities; namely, we use the method of Hardy—Ramanujan—Rademacher to ob-
tain asymptotic formulas for c2(N) and p, (1 4 n). Since the space of weak Jacobi
forms of weight 0 and index 1 is isomorphic to the Kohnen plus-space M ™, (I5(4)),

2

we will consider basis elements vy of the space /\/lJ_r 1 (I9(4)) and the information on

c2(N) will be obtained as a special case. We use the résult of J. Lehner [17] on Fourier
coefficients of modular forms, which adopts the method of Hardy—Ramanujan—
Rademacher, and obtain Theorem 2.8 and Corollary 2.12.

As for Niemann’s bound, we consider f(z) = 17(z)’1 n(23z)’1, which is a weakly
holomorphic modular form of weight —1 with respect to 1(23). The method of
Hardy—Ramanujan—Rademacher can be applied to this case too, and we obtain The-
orem 3.5. Our result has an immediate implication on root multiplicities of the hy-
perbolic Kac—-Moody algebra F. For example, if («, «) = —56 then our asymptotic
formula gives 4578.99, while the actual value of the Fourier coefficient is 4576. The
exact value of mult(F, «) is 4557. In this way, we can calculate a sharp upper bound
for mult(F, o) even if |(«, )| is big. (See Example 3.6.)

Our method can be applied to other hyperbolic Kac—Moody algebras and to other
modular forms. (See Sects. 5.3 and 5.4.)

2 Some automorphic forms

2.1 Jacobi forms and Siegel modular forms

Let H be the upper half-plane. A Jacobi form ¢ of weight k and index m on SLy(Z)
is a holomorphic function on H x C satisfying

at+b Z . [ cmz? a b
, = d _— ,2), SLy(Z),
¢<cr+d ct+d> (ct +d) e(cr—i—d)d)(T 2) (C d) € SLy(Z)

¢ (. 2+ AT+ p) = e(—mr*t —2mrz)p(z,2), (A, ) €Z?,
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332 H.H. Kim, K.-H. Lee

and having a Fourier expansion of the form

p(r.2)=)_ Y clrent+r), @.1)

n=0 rez
r2 <4nm

where we write e(z) = 272 If ¢ has a Fourier expansion of the form

$(r.0) =Y > cn.remt +rz), 2.2)

n=0reZ

instead of (2.1), the function ¢ is called a weak Jacobi form.
For k > 4 even, we define the Jacobi—Eisenstein series of weight k and index m
by
1 at+>b Z cmz?
Eim(t,2) == d) ke ma? 2m - ,
m (7, 2) 2 Z Z(CT+ ) e(m ct+d +em ct+d ct +d>

c,del \eZ
(c,d)=1

where a, b are chosen so that (‘Z Z) € SL,(Z). Indeed, the series Ex (7, z) is a Jacobi

form of weight k and index m for k > 4, even. We also consider a Jacobi form of
weight 12 and index 1:

1
P12,1(7,2) = m(1:1%<r>E4,1<r, 2) — Es(1) Ee,1(T. 2)),

where Ej(t) are the usual Eisenstein series of weight k defined by

1 _
Ex(t) =3 > (et
(ﬁl?il

Now we define a weak Jacobi form ¢y 1 (7, z) of weight 0 and index 1 by

b1 (0, 2) = 221D _SOSS  enr +r2), 2.3)

Alz(r) n=0reZ
where A1p(t) = e(1) ]_[nzl(l — e(n1))** and c(n,r) are the Fourier coefficients.
Since ¢p,1 is of weight 0, we have c(n,r) = c(n, —r) and c(n, r) depends only on

4n — r? (see [4, Theorem 2.2]). Therefore the following function is well-defined:

c(n,r) if N=4n—r?,
0 otherwise.

c(N) = {

In particular, we have ¢(0) = 10, c(—1) =1 and ¢(n) =0 for n < —1. We use the
function ¢(N) to define

ca(N) =8c(4N)+2((%) - l)c(N)—i-c(g), (2.4)
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Root multiplicities of hyperbolic Kac-Moody algebras 333

where we put

b 1 for D=1 (mod 8),
(E) — 11 forD=5(mods),
0 for D =0 (mod 2).

Let S3(C) (resp. S2(Z)) be the set of all symmetric 2 x 2 complex (resp. integer)
matrices. The Siegel upper half-plane H of genus 2 is defined by

Hy ={Z=X+iY € $2(C) | Y is positive definite}.

We will use the coordinates zi, 77, z3 for H, so that Z = (2 Z) € Hy. A Siegel

modular form of weight k with respect to Sp,(Z) is a holomorphic function F(Z) on
the Siegel upper half-plane H, such that

F((AZ+B)(CZ + D)™") =det(CZ + D) F(Z)

for each M = (2 g) € Sp4(Z). We write ¢ = e(z1), r = e(z2) and s = e(z3). In [7,
Theorem 1.5], Gritsenko and Nikulin proved that the following product represents a
Siegel modular form A3zs5(Z) of weight 35:

2
A35(Z) :q3rS2 1_[ (1 _anlsm)cz(4nm I ), (25)
(n,l,m)eD

where the integers c2(N) are defined in (2.4) and we denote by D the set of integer
triples (n,l,m) € 73 such that (1) (n,I,m)=(—1,0,1) or 2) n > 0,m >0 and
either n +m > 0 and [ is arbitrary orn =m =0and / <O.

Siegel modular forms and Jacobi forms are connected by the Fourier—Jacobi ex-
pansion:

Theorem 2.6 [4, Theorem 6.1] Let F be a Siegel modular form of weight k with
respect to Spy(Z) and

F(Z)=) ¢m(z1,22)s"

m=0
be the Fourier—Jacobi expansion. Then ¢, (21, z2) is a Jacobi form of weight k and
index m.

2.2 Weakly holomorphic modular forms of weight —%

We use the notations from [21]. If 4 is an odd prime, let (7) be the usual Legendre
symbol. For positive odd d, define () by multiplicativity. For negative odd d, let

<c>_ (%‘) ifd <0andc > 0,
N (1) ifd<Oande<0.
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334 H.H. Kim, K.-H. Lee

1 ifd=1mod4,

i ifd =3 mod4.

Let M™, (I')(4)) be the Kohnen plus-space of weakly holomorphic modu-
2

We let (%) = 1. Define ¢4, for odd d, by ¢4 = {

lar forms with integer coefficients of weight —% with respect to Ij(4), namely,
fem + , (Iv(4)) if f is holomorphic on H, and meromorphic at the cusps of I(4),
-2

b 1
f(ifid) = G)ed(cz +d) 1 f(2),

for all ( ‘: Z) € I'y(4), and it has a Fourier expansion of the form

and

f@= ) amgq",

nzno

n=0,3 (mod4)

where we put ¢ = e(z) and let ,/z be the branch of the square root having argument
in (=%, 7. So for z € H, (—z)% = (—%)_% = —iz%. For each nonnegative integer
d =0,1 (mod 4), there exists a unique modular form v;(z) € /\/lir 1 (To(4)) with a
Fourier expansion ([23], page 19) :

vi@=q""+ Y  amq". 2.7)
nzo,gz(r?md@

Here v;(z)’s form a Z-basis for /\/lJ_r 1 (I9(4)). Some examples are:
2

v1(z) =q ' +10—64¢° +108¢* — 513" + - - -,

v4(z) = g4 + 70+ 323844° 4 131976¢* + 445132847 + - - - ,

v5(2) = ¢ +48 — 131565¢° + 656800¢* — 35655680¢" + - - - ,

vg(z) = g~ ° + 120+ 425702447 + 34867000g" + 6275241984¢" + - - - .

We will prove the following using the method of Hardy—Ramanujan—Rademacher.

Theorem 2.8 In (2.7), suppose 4|d and d > 0. Then a(n) is positive for all n, and

a(n) =2(d*n~" cosh(r/dm)—x '3 sinh(rv/dn)) + 0 (d3 log(dmv/dm)e ™).

Ifd =1 (mod 4), (—1)*a(n) is positive for all n, and

a(n) =2(—1)"(d2n"" cosh(x~/dn) — n~'n"7 sinh(z/dn))

3 x/dn
+ 0(d? log(dmvdn)e™").
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Root multiplicities of hyperbolic Kac-Moody algebras 335

In particular, ifd = 1,

en’ﬁ

a(n) = (—1)”7 ) + 0(10g(47r\/ﬁ)e#). (2.9)

1
1 — ——
< T/n
Let jO,] be the space of weak Jacobi forms of weight 0 and index 1. The following
theorem provides the connection of half-integral weakly holomorphic modular forms

to weak Jacobi forms and then to root multiplicities of the hyperbolic Kac—Moody
algebra F.

Theorem 2.10 [4, Theorem 5.4] The correspondence
Z c(N)qN — Z C(4n — r2)e(nr +rz)

N=ng n,rez
N=0,3 (mod 4)

gives an isomorphism between Mfl (Iv4)) and J~0’1.
)

Remark 2.11 In [4], the above theorem is proved only for holomorphic forms. It is
easy to extend the result to weakly holomorphic forms as stated above.

Under the above correspondence, the weak Jacobi form ¢ 1 (7, z) in (2.3) corre-
sponds to vy € MJ: 1 (Io(4)). Therefore, we have, by (2.4) and (2.9), the asymptotic

2
formula for Fourier coefficients of ¢ 1 (7, z):

Corollary 2.12
7N B
c(N) = (=N N (1 — ﬂ\l/ﬁ) + 0(10g(4n\/ﬁ)e#),
2e27VN 1 o
ea(N) = = (1 —~ 2m/ﬁ> + O (log(8nv/N)e™ V).

3 Hyperbolic Kac—-Moody algebra F

Let F = g(A) be the hyperbolic Kac-Moody algebra associated to the generalized
Cartan matrix

2 -2 0
A=@j)=|-2 2 -1
0 -1 2

Let {a1, @2, a3} be the set of simple roots. The Weyl group W of F is isomorphic to
PGL;(Z) through the map given by

o 1 0 -1 1 o 0 1
a~N\o -1)0 227\ o 1) 27l o)
where o; (i = 1, 2, 3) are the simple reflections corresponding to ;.

@ Springer



336 H.H. Kim, K.-H. Lee

Let h be the Cartan subalgebra of F. We define a standard bilinear form on h* by
(@i, aj) = a;;. We choose another basis {y1, y2, y3} for h* to be

Y=o +oy+as, V2 =0, V3 =ay + .

The dual basis of {y1, y2, y3} with respect to (-, -) is given by

1

Yl =—a1 — o, vy = 5o Y3 = —o — o — as.

The matrices ((y;, y;)) and ((y/*, J/f)) are

0 0 —1 0 0 -1
0 2 0| ad [0 1 0],
-10 0 -1 0 0

respectively.
We define a C-linear map u : h* — S, (C) by

—a —b/2
wlayi +bys +eyi) = (-b/2 / )

—C

Then we have

nen= (0 ) mea=(1 o) men=(% 9.

The group PGLy(Z) acts on S»(C) by g(S) = gS(*g). Then the map u is W-
equivariant and we can identify h* with S(C). We also obtain

(o, ) = —2det u(@) 3.1

for a € h*. (See Proposition 2.1 in [5].)
We write z € h* as z = z1y1 + 2272 + z3¥3. Then we define another map v : h* —

52(C) by
0= 5)

For o = ay" + by, + cy; € b*, we have
(a,2) =azi +bza +cz3 = —Tr(u(@)v(2)).

+ .. . .
Let A (resp. A be the set of positive real (resp. imaginary) roots of F and we
put At =AfU AT

Proposition 3.2 [5] We have

M(Alfn) = {N € $2(Z) | N =0 (i.e. N is semi positive deﬁnite)} and
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Root multiplicities of hyperbolic Kac-Moody algebras 337
ny n»
wa = v =1 ) es|

n1n3—n§=—1, ny <ny+n3, 0<ny+n3, Osns}-

We denote by mult(e) the multiplicity of o € A;’n. In [6] I. Frenkel conjectured

mult(x) < p<1 - %(a, a)) = p(l + detu(a)) fora € Ajr'n, 3.3)

where p(n) is the usual partition function. This conjecture also appears in Exer-
cise 13.37 of [10] as an open problem.

We define p, (1) to be the coefficients of ¢” in the expansion of g~ (z)n ™' (232),
where 7 is the Dedekind n-function. Thus we have

an(n)q 1+q ~|—2q46+.._)1_[(1_qn)—1

= (1447424 +--) > pn)g". (3.4)
=0

In his Ph.D. thesis [20], P. Niemann studied root multiplicities of F and proved that

po(1— 3(e, ) if o ¢ 23L%,

mult(x) < 1 1 . *
po(1 —5(0, @) + po(1 — o, )  if € 2317,
where L* is the dual of a certain lattice L.
We will prove the following asymptotics using the method of Hardy—Ramanujan—
Rademacher:

Theorem 3.5
71 4r | 2r/n
Poln+1)= ( f>+0(n—712<—f)>,
n/23 V2 23
where I is the modified Bessel function of the first kind.
4 /n

e V3
5 1
nd234./2

Using the fact I5(x) ~ Jt we can see py(n + 1) ~ . Compare it with

n 2)1
p(n) ~ 4 f Using this result, we can calculate an upper bound for mult(«) effi-

ciently when |(«, )| is big.

Example 3.6 If o = 10«1 + 100 + Sz = (10, 10, 5) then ——(oc o) =25 and we
have mult(«) = 2434, and the main term of the asymptotics is 2437 16. We calculate
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338 H.H. Kim, K.-H. Lee

more cases and make a table:

o — % (o, ) mult(e)  main term

(1,7,2) 10 56 56.65

8,10,4) 20 792 793.19 (.7
(11,11,5) 30 6826 6867.52

(11,14,7) 40 44258  44975.14

(A table of mult(«) can be found in [10, p. 205].)

Remark 3.8 In [5], Feingold and Frenkel proved that for the level one roots,
mult(e) = p(1 — %(a, a)), i.e., (3.3) holds with the equality. They also obtained the
generating function of the multiplicities of the level 2 roots:

00 3 /o 00
Y M@n—1)g" = qT (Z p(n)q”) [J(1-4"2)
n=0 j=1

n=0

o0 o0
x (1_[(1 +q* ) =TT =4%) —24)
j=1 j=1
o0
— (1 _q2()+q22_q24+q26_2q28+._.)2p(n)qn,
n=0

where M (2m) = mult ! (’(’)’ (2)) and M(2m — 1) = mult ! (”1’ ;) Comparing with
(3.4), we see more clearly the difference between actual multiplicities and bounds for
these roots.

4 Automorphic correction for the Kac—-Moody algebra F

Let M = Zyy + Zy, + Zys C b* and M* = Zy[ + Zy; + Zy; C b*. The lattice M
has signature (2, 1). We obtain the cone

ViM)={yeM®RCH*|(yly) <0},

which is a union of two half cones. We choose one of these half cones as follows and
denote it by V1 (M):

Vi) ={yivi +y2v2+y3v3 € VM) | y1 > 0}

We consider the complexified cone (VT (M)) =M R+ iV (M) C h*. Let
H, be the Siegel upper half-plane as before. By restricting the map v : h* — S,(C)
to 2(V*(M)), we have a biholomorphic map v : 2(V*(M)) — H, and identify
z=z1y1 + 2272 + 2373 € (VT (M) with the point Z = (7} 2) € Hy. With this
identification, Siegel automorphic forms on H, can be considered as automorphic
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Root multiplicities of hyperbolic Kac-Moody algebras 339

forms on £2(VT(M)). See [7, 8] for more details. We will write @ (z) = @ (v(z)) =
@ (Z) for a Siegel modular form @ (Z).
A lattice Weyl vector is given by

1 9
,0=27/1—§V2+3)/3=§011+5a2+2a3€M®Q-

The vector p satisfies (p, ;) = —1 fori =1, 2, 3. We define
M={xe V(M) |(x,a) <0, i=123}

Remark 4.1 In [10], the notation p denotes the vector whose paring with each simple
(co)root is 1. Notice that our definition of p is the negative of that in [10].

In what follows, we will consider more than one generalized Kac—Moody algebra
and we modify our notation to show which algebra it is attached to. Assume that G is
a generalized Kac-Moody algebra. Let A(G);% (resp. A(g);;n) be the set of positive
real (resp. imaginary) roots of G and we put A(G)T = A(G);L U A(Q’)In. We denote
by mult(G, a) the multiplicity of @ € A(G)™ in the algebra G.

The notion of an automorphic correction originated from an idea of Borcherds [1]
and was further developed by Gritsenko and Nikulin [7, 8]. An automorphic correc-
tion for the Kac—Moody algebra F is defined to be an automorphic form & (z) on
£(V*(M)) with Fourier expansion

@(z)=Zdet(w)(e(—(ww),z))— > m(a)e(—(w<p+a),z))>,

weW aeM*NM

where m(a) € Z for all a € M* N M and e(x) = €2™* as before. If @ (z) is an au-
tomorphic correction for F, we can construct a generalized Kac—-Moody algebra G
such that 7 C G and the denominator function of G is @ (z). Moreover, we obtain
from the Weyl-Kac—Borcherds denominator identity

o) =e(—(p.2) [] (1= e(~ (e 2)))™" G,

acA(G)T

where A(G)f = A(F)f and A(G); =VH(M)NM* D> AF)}.

Theorem 4.2 [7, Theorem 3.1] The Siegel modular form Ass(z) given in (2.5) is an
automorphic correction for the hyperbolic Kac—Moody algebra F.

Let us look closely at the correspondence between A(G)™ and the set D in (2.5).
Ifa e AG)T and p(a) = (z;lz ln/f), then we have
w(a) «<— (n,l,m)eD.

Using Proposition 3.2, one can check that the set D indeed contains all the elements
corresponding to the positive roots in A(F)*. Moreover, we obtain from (3.1)

dnm — 1> = 4det (o) = —2(, ). 4.3)
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340 H.H. Kim, K.-H. Lee

Corollary 4.4 For each o € A(F)4+ C A(G) 4, we have
mult(F, @) <mult(G, o) =2 (—2(0{, a)),

where the function ca(N) is defined in (2.4) with the asymptotic formula in Corol-
lary 2.12.

Remark 4.5 Automorphic correction of certain rank 2 symmetric hyperbolic Kac—
Moody algebras has been constructed in [14] using Hilbert modular forms. The first
connection between rank 2 hyperbolic Kac—-Moody algebras and the theory of Hilbert
modular forms was made by Lepowsky and Moody in [19].

5 Method of Hardy—Ramanujan—-Rademacher

We recall the result of J. Lehner [17] on Fourier coefficients of modular forms using
the method of Hardy—Ramanujan—Rademacher. We refer to [17, 18] for unexplained
notations. Let f(z) be a weakly holomorphic modular form of weight r < 0 with
respect to a congruence subgroup I". Then we have the multiplier system v such that
f(Mz) =v(M)(cz+d) f(z) for M= (“") eI Let pg=00, p1..... ps_1 be the
cusps of I, and

A0:<(1) ?) Aj=<(1) __pl/), l<j<s—1.

For0§jss—l,wewriteM*zAjMz(?Z) for M € I" and set

(; j)eA,r}, Dcz{d'(; é)eAjF,0<d§c}.

Choose the generator P; (1 < j <s —1) of the cyclic subgroup of I" which fixes p;,
such that

Cjo= {c

1 A
-1 .
AijAj :<0 1]>, )\,j>0,1§]§S—1.

This also defines A ;. Let v be a multiplier system belonging to I". Define «; (1 <
J<s—1)bye(k;)=v(P;),0=<k; <1.It can be shown ([17], page 313) that given
c € Cjo,d € D, there is a unique a such that —cA; <a <0.Fork=1,...,s — 1,
we have the expansion

o0

A A
(Z_pk)re(_Kk)L—k:)f(Z) = D amYq, Qk=e(k—k]f).

n=—pi
By replacing Az by z, this can be written as

1 L 2
f(pk—;>=<—z)’q*?» Y am®q’x. CR)

n=—pu
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We assume that Ag = 1, kg = 0 for I". For k = 0, we have the usual Fourier expansion:

o]

f@= ) amq".

n=—po

We have the following formula for a(n) ([17], page 313).

Theorem 5.2 Forn > 0,

s—1 Hj
a(n) =2mi~" Z Za(—v)(j) Z ¢ YA(e,n,vj)L(c,n,vj, —r), (5.3)
j=0v=1 ceCjo

c>0

where vj = —U;;(-/, M*=A;M= (?Z) and

Ale,n,vj) = Z v—l(M)e<nd_#>,

deD,

r+l

S\ 2 4 /nv;
L(C,n,vj,r)=<‘;—J) 1r+1(fj),

where 1,41 is the modified Bessel function of the first kind. It has the asymptotic
e)C

expansion Iry1(x) = m(] + 0(%))_

5.1 Asymptotics of Fourier coefficients of modular forms of weight — %; proof of
Theorem 2.8

Now we apply the theorem to vy € /\/lJ_r 1 (T9(4)). Recall that I'h(4) has three cusps:
2

po =00, p1 =0, p =73 ([16], page 108).
First, po = oco. In this case, Ao =1, k9 =0, and Ag = ((1) ?) If ¢ € Cyp, then 4|c,

and the smallest ¢ € Cqp is 4, and we have M = M* = (_43 _11), (;l }1) for the set

Dy. Because of (2.7), we only need to consider vy = pg. In our case, v(M) = (Z,—/,)ed/

/

for M = (¢ b;), and

cd
3 3
A(4,n,/L0):e<n+ Mo) —ie( n—:Mo)

4

So if d = 4k then puog =4k and A(4,n, no) =1 — i for any n = 0,3 (mod 4). If
d=4k + 1then uo=4k+1and A4, n, o) = (—1D"(1 —i) if n =0, 3 (mod 4).
Second, p; = 0. In this case, Ay =4,x1 =0, and A = ((1) Bl). The smallest ¢ €

Ciois 1, and M* = (_14 _15), M = (i;).Hence

A(l,n,vp)=emn+v)=1, v=1,...,us.
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The Fourier expansion at O is

o]

1 1 n
— i} M, 4
Vgl —— ) =1z 2 a 4.
( ) S atm Vg
n=—pi
Third, pzzé.ln this case, A» =4, Kg:%,and A2=(1:1).The smallest ¢ €
2

Cyois 1, and M* = (_14 _;) M= (3 2). Hence

43
. (n 3 .
A(l,n,vz)z—le<5+v—z)=e’””=(—l)”, v=1,..., u>.

The Fourier expansion at % is

LD cicted 3 ao®qd
v - — | =1 an .
d .2 < °q q

n=—p

Combining all these calculations, we write (5.3) for vy (z) as follows:
] 1\ <« . 1
2mi2 | AG, d)L(4, n,d, 5) + X;a(—v)( )L<l, n,vi, 5)
V=

M2
1 1
+ Z(_l)na(_v)(z)l‘<lvnv V2, E) + Z C_IA(C’ n, d)L(C, n, d7 E)

v=1 ceCpp
c>4,4|c
2 M j 1
+ a(—) P Ae, n, v-)L(c,n, Vi, —) ) (5.4)
; Z 2 j i3

c>1

Let us consider va(z). Suppose var(z) = g~ + Yoo ja(m)g™. Tt follows
from (5.1) that Fourier expansions at the other cusps are of the forms

v4k<_l)=iz% ZOO a(m)Mg*
Z b

n=—p

A
V. _— — ] =1 an .
4k 22 < “q q

n=—pi3

Now we prove the following by imitating the proof of Lemma 14.2 in [2], and deter-
mine the principal parts of Fourier expansions at the other cusps.

Lemma 5.5
1 1 k as
z7v4k<——) =21 -i-l')(f]Z +Za(4n)q1>,
< n=1
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1 1 1 W3 > n
v ==+ 5 | =201+i)gT Y adn+3)q4.
< 2 n=0

Proof Let
o o0 3
ho@=q "+ a@ng",  h(@)=) a(n+3)q"".
n=1 n=0
Then vax (2) = ho(42) + h1(4z). Since vy € M| (Ip(4)),
2
) = @2+ D (@)
V4k il Z V44(2).

By replacing 4z 4+ 1 by z, and noting that ho(z £ 1) = ho(2), h1(z + 1) = —ih1(2),
and h1(z — 1) =ih(2), we have

1 . 1 _1 .
ho(—;) +ih (-2) =z 2 (hO(Z) - lhl(Z))’

Now let z =iy and note that #¢(iy) and k1 (iy) are real. Then

AV . N L
hO(;) = E(ho(ly) +h1(l)’))7 hl(;) = m(ho(l)’) hl(ly))-

Since hg and /| are meromorphic functions, the above equalities are true by replacing
iy by z with Im(z) > 0. Hence

1 1414 1 1+
ho(—;) = @+ @), A (—;) = e (ho@) — ().

1)4/((—1) :h()(—i) +h1<—i) =2(1 +i)Z_é/’lo<£>.
F4 b4 Z 4

For v4k(—% + %), note that i1 (z + 2) = —h(z). Then

Lo DY ono(=2) = (= 2) =201 4y
=2 g)=m(=2)-m(F) =200t (3) o

By Lemma 5.5, we obtain A(4,n,d) =1 —i for o = d = 4k and the main term
in (5.3) is

Therefore,

2m%<1 i <ﬁ>41§(n«/4nk) +231 —i)(£>41;(2m/ﬁ)>
4 n 2 4n 2

3
=47 5>41% Q2 /nk). (5.6)
n
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Since I3 (z) =,/ % 2eosh(@)=sinh(@) ' the above term is equal to
2 R

2
4k n~" cosh(rv/akn) — =n=3 sinh(zr v/4kn).
T

‘We consider the other terms:

1
27”'%( Z c‘lA(c,n,4k)L<c,n,4k, 5)

ceCqy
c>4,4|c
1 +i . k ko1
+ ) L; c A(C,I’l, Z)L(C,ﬂ, Z, 5))
C>]10
3
4k\F  [4nJAk
zzmi( 3 clA(c,n,4k)<—> 1§<u)
4ceCqy n : ¢
c>4,4|c

3
1+i . k\ ([ k\3 (7/4kn
P A(en3)(5) 1 (52))

c>1

We will prove that the above sum is smaller than the main term (5.6). We only deal
with the first sum. The second sum is similar.

We divide the first sum into two regions: 4 < ¢ < 4n\/m and ¢ > 4 /4kn. By
Weil’s bound (cf. [22], page 26 and [9], page 403), |A(c, n, 4k)| < (4k, n, ¢)2 2 7(c),
where t(c) is the number of positive divisors of ¢ and (4k, n, c) is the g.c.d. of 4k, n
and c. (Similarly, (4k, n) will denote the g.c.d. of 4k and n.)

In the region ¢ < 4w +/4kn, using the fact that (4k,n, c) < (4k,n) < (4kn)%, the
first sum is less than

4x/§kn*% Z 7(c) cosh(w)
c

d<c<dm~/dkn,4|c

4k
§4x/§knécosh<n 5 n) Z 7(c).
c<4m/4kn

By using the fact that chx 7(c) <2xlogx,itis less than

e
32ﬁnkilog(4n¢4kn)cosh<” . ")
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In the region ¢ > 4w «/4kn, we use the fact that for0 <z < 1, I3 (z) <,/ %z% We
2
use the trivial bound |A(c, n, 4k)| < c. Then

1
2711'%< Z c_lA(c,n,4k)L(c,n,4k,5))‘

ceCyy
c>4m/4kn

< 16\/§n2k% Z c_% < 16n%k%n_ .
c>4m/4kn

FSE

Hence, the first sum is less than

3 4k
16n%k%n_% +32\/§nk% log(4nv4kn)cosh(n 7 n)

Similarly, the second sum is less than

> : 4%
4n%k%n—%+32n%k%1og(4n«/4kn)cosh<” . ”)

We can show easily that the sum of the above two terms is less than the main term
(5.6) for kn > 8. Hence a(n) is positive if kn > 8. When kn < 8, by looking at the
tables, we see that a(n) is positive. Therefore, we have shown that a(n) is positive
for all n. Also we have the following formula with error term:

a(n) = 2((4k)*n~" cosh(rrv/&kn) — = ~"n~7 sinh(rr v/4kn))
+ O((4k)? log(47 ~/Aen)e™ 1)

In the same way, we now consider vg 1 and suppose vgri1(z) = g~ %=1 +
Y o2 pa(n)q™. Then we can show as in Lemma 5.5:

Lemma 5.7
1 1 >
zzv4k+1<——) =2(1+i) ) a(n)g?,
z
n=1
1 I 1 o e S n
cvgepr( =2+ 5 ) =20 +DgT | g7 + ) a(n +3)g% ).
z 2
n=0
Proof Let

o 00
ho) = a(@nq",  hi() =gt s Za(4n+3)q"+%,
n=0 n=0

Then v4x41(2) = ho(4z) + h1(4z), and we follow the proof of Lemma 5.5. O
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By Theorem 5.2 and Lemma 5.7, the main term of a(n) is

1 1
27’ (ZA(4,n,4k + l)L<4, n, 4k + 1, E)

k+ 1 k+3 1
+2(1—i)A(1,n, 44>L<1,n, 44,5))

Since A(4,n,4k + 1) = (—1)", it is equal to

(—1)”71\/5(4]{T+l> ZI% (+/(4k + Dn)
=2(=1)"((4k + 1)2n " cosh(rry/(@k + n) — 7 ~'n ™2 sinh(z /(4 + Dn)).

For example, when k =2,n =7, a(n) ~ —27774695413.6.... The actual value is
—27774693612.

As in the case of vg4x, we can show that (—1)"a(n) is positive for all n, and we
have the following formula with error term:

a(n) = 2(=1)"((4k + 1)2n~" cosh(r y/(4k + D)n) — 7 ~'n~ sinh(r /(4k + Dn))

7/@k+Dn

+ O((4k + D)7 log(dmy/@k + Dn)e ™7 ).

In particular, we have:

Corollary 5.8 When k =0,

e2m/n

1
_ o /n
a(dn) = 4n <1 Znﬁ) + O(logBrv/me™).

5.2 Asymptotics of Niemann’s bound; proof of Theorem 3.5

Recall that Niemann’s bound for root multiplicities of F comes from f(z) :=
n(z)*ln(23z)’1 (see [20], pages 23-27). By [21], page 18, the function f(z) is a
weakly holomorphic modular form of weight —1 with respect to 1(23), namely,

b -23
f(“Z+ )=x<d>(cz+d)1f<z>, x<d>=(—), (j Z>€F0(23)~

cz+d d

We write

f@=q"+) amq".

n=0

Here I(23) has two cusps ([16], page 108): pp = oo and p; = 0. We will use
Theorem 5.2. In this case, Ag = 1,k90 =0, and A1 = 23, x; = 0. Since n(—%) =
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(—iz)% n(z), we can see that
. o0
f(——) =iv23z” (q_ﬁ + Za(n)qﬁ)
n=0
Then by Theorem 5.2, we obtain

a(n) =2mi <Z(23C)IA(23c, n,1)L(23¢,n,1,1)

c=1

-3 Y a(enfefan )

CEC10

where L(23¢,n, 1, 1) =n~ (%), Lic,n, &, 1) = (23n) 12(4”\/7) and

1 —-23 nd —a
A<1n 23):1, A(23,n,1) = Z (T)e( R )

d (mod 23)

where da = 1 (mod 23). Here the second sum is the Salié sum T (n, —1,23) ([9],
page 323):

2v
Tn,—1,23)=—iv2 — .
(n,—1,23) iv23 Z 6(23>
v2=—n (mod 23)

In Niemann’s notation [20], a(n) = ps (1 4+ n). Therefore, using the trivial bound for
the Kloosterman sums, we have

e 25 oo ()

For example, when n = 28, we obtain %I (4”f) =4578.99. The actual value of
Po(29) is 4576 and the exact multiplicity of « in .7-" is 4557 when —3 L, a) =

5.3 Other hyperbolic Kac-Moody algebras

Niemann [20] obtained upper bounds for root multiplicities of other hyperbolic Kac—
Moody algebras, and our method can be applied to produce asymptotic formulas for
those bounds, too. We will consider two more hyperbolic Kac—Moody algebras F;
and J, whose Cartan matrices are

2 -1 -1 0
-1 2 -1 0
-1 -1 2 -1
0 o -1 2

0 -1 2 0 -—1], respectively.
o -1 0o 2 -1
0

@ Springer



348 H.H. Kim, K.-H. Lee

In Niemann’s notation [20], F; is the case when N = 11 and F, is when
N = 7. We first consider F, and set f(z) = n(z) " 2n(11z)~2 and Yoo o Po(n)g" =
gn(z)"n(11z)~2. By [21], page 18, the function f(z) is a weakly holomorphic mod-
ular form of weight —2 with respect to I'p(11), namely,

f(az+b>=(cz+d)_2f(z), (i’, Z)erom).

cz+d

We write
o0
f@=q""+) amq".
n=0

Note that IH(11) has two cusps ([16], page 108): pg = oo and p; = 0. In this case,
M =1,k90=0,and A1 =11, k1 =0. Then

f(—%) = —11z—2f<f—1) = —11z—2<q‘ﬁ + Za(n)ql"‘l)
n=0

Then by Theorem 5.2, we obtain

o0

a(n) = 2mi? (Z(llc)_lA(llc, n,)L(11c,n,1,1)

c=1

1 1
—11 | — L —1
D¢ (C’”’u) (“”’11’ ))

CGC]Q

where L(11e,n,1,1) =n~ 3 () L(e,n, 4, 1) = (11n) 2 [(3Z /24, and

1 nd —a
A(l,n,ﬁ>=1, A(lln, )= > e< = )

d(mod 11)

where da =1 (mod 11). Here the second sum is the Kloosterman sum.
Therefore, when N =11, a(n) = ps (1 +n), and

2 n
3 13<47'L' —)
V112 11

Whenn = 15, ﬁ 7 13(4m ./ 17) = 5892.28. The actual value of p, (16) is 5894, and
11n2
the corresponding root multiplicity of Fj is 5812.

Similarly, we consider N =7, i.e., f(z) = n(2)3n(72)73 in [20]. It satisfies

az+b _ 3 _ 7 a b
f<C2+d)_X(d)(CZ+d) f@, x@= (7> (c d> e ().

a(n) ~

@ Springer



Root multiplicities of hyperbolic Kac-Moody algebras 349

‘We write

f@=q""+) amq".

n=0

Then f(—1) = —i73273 £ (%), and we get

a(n)'vz—nl (471\/E>
Sz 1)

Even more, we can consider N = 5,3,2, and let ay = N2—il and f(z) =
n(z) "N n(Nz)~? asin [20]. It satisfies

az+b —ay a b
f(cz+d)=(cz+d) f(@), (c d)eFO(N).

If we write
o
f@=q""+) amq",
n=0

then f(—1) = (=) %27 £(£), and

- 21 ! <4 n)
am)~ ———lgy+1| 4/ — ).
N VN

There are two hyperbolic Kac-Moody algebras when N =5 for which a(n) gives a
reasonable bound for root multiplicities. The cases N = 3,2 do not seem to provide
any good bounds for root multiplicities of a hyperbolic Kac—Moody algebra. See
[20], Sect. 6.2, for more details.

5.4 Other modular forms

We can apply the same technique to other modular forms. We first consider the func-
tion j,,(z) in [21], page 23. It is defined as jo(z) = 1, j1(z) = j(z) — 744, and for
m>2,

& (az+b
jm(z):jl(znTo(m):ZZjl( . )

dlm  p=0

ad=m

It has the g-expansion
[o)0]
Jm (z) = qu + Z Cm (n)qn
n=1
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From the definition, it is clear that ¢, (n) are all positive integers. We have the fol-
lowing series expression for ¢, (rn) ([17], page 314):

0o 1
en(m) =27y we) I (L km") + On (D),
k=1

where

Atk,n,m) = Z e(—@).

h (modk), (h.k)=1,
hi'=—1 (modk)

Hence we have
1
ma e47n/mn
—
na \/E

Next, we consider elements of the Kohnen plus-space M _';(Fo (4)). For each pos-
2

cp(n) ~

itive integer D = 0, 1(mod 4), let gp(z) € M;(I" 0(4)) be the unique modular form

2
with a Fourier expansion of the form ([21], page 72)

gp@=q"+ Y B(D.d)q".

d>0
d=0,3 (mod4)

We can get an asymptotic expression for B(D,d). In this case, we have the
following formula with an error term. For g(z) € M;r(f'o(4)), we write g(z) =

2
Z;ﬁf 1o a(n)q™ and keep the notations in the beginning of Sect. 4.

Theorem 5.9 [18] Forn > 0,

s—1 Hj

a(n)=2ni_%22a(—v)(j) Z c_lA(c,n, vj)M<c,n, vj,§> + E(n),

j=0v=1 ceCjg
O<c</n
(5.10)

V—K;
where v; = —L, and
J iy

d_ .
Aconvy =3 v_l(M)e(w>, M=A7'M*
&
deD,

1
3 4 4w /nv;
(enn3) = () 5(55)
\)j C

Here E(n) = O(n%), where the implied constant is independent of n.
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We apply the above theorem to gsx(z) = q_‘”‘ + Z?’o:() a(n)q". In this case, k] =
0,6 = %. So it has Fourier expansions at the other cusps of the following forms:

1 3 i l 1 3 N o
g4k(_g> =iz Z a(m)Vq1, g4k<__ + 2) iz2q1s Z a(m)@q.
=i n=—u3
Let
o0 00 ,
hO(Z)Zq_k+Za(4”)qn, h1(Z)=Za(4n+3)q"+7‘.

n=0 n=0

Then gax(z) = ho(4z) + h1(4z). In the same way as in Lemma 5.5 for vgx, we can

show
1 _l+i %h Z 1+1 14 h
84k Z =73 i2ho 2) 84k p 3 3 z2ny 4

We have g =4k and A(4,n, uo) =1 —i in (5.10). Hence we obtain

a(n)~2m'—%(:<ﬁ> 11(271\/_)+f(1 ”(—) I (271«/_))

42 8

1

7

= —n<f) I Qr/nk).
k 2
Since 1 1 () = S"i?y ). we have
2 sinh(;r +/4kn)
an) ~——— =
Jak

We can also show that a(n) is negative for all sufficiently large n. However, due to
the error term E (n), we cannot show it for all . In order to show that a(n) is negative
for all n, a different approach needs to be taken. See Remark 5.11 below.

Now we consider gax,1(z) =g %1 + Y o2 pa(n)g™. In the same way as we did
for g4y, we can show that

a(n) ~ (— 1y 1 2sinh(m /(4k + l)n)
Vak +1

For example, when k =2,n =7, a(n) ~ 22505067826.5.... The actual value is
22505066244.

Remark 5.11 Zagier [23] proved that B(D, d) = —A(D, d), where

v =q""+ ) AD.d)g"” € M} (I).
D>0
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In [13], we showed that if 4|d, A(D, d) is a positive integer for all D > 0, using the
explicit formula (without error term) in [3]. Hence if 4| D, the coefficient B(D, d) is
a negative integer for all d. We can also prove it directly, using the explicit formula
in [3].
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References

1. Borcherds, R.E.: Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109(2), 405—
444 (1992)

2. Borcherds, R.E.: Automorphic forms on Oz 7 (R) and infinite products. Invent. Math. 120(1), 161—
213 (1995)

3. Bringmann, K., Ono, K.: Arithmetic properties of coefficients of half-integral weight Maass—Poincare
series. Math. Ann. 337, 591-612 (2007)

4. Eichler, M., Zagier, D.: The Theory of Jacobi Forms. Progress in Mathematics, vol. 55. Birkhduser
Boston, Inc., Boston (1985)

5. Feingold, A.J., Frenkel, I.B.: A hyperbolic Kac—-Moody algebra and the theory of Siegel modular
forms of genus 2. Math. Ann. 263(1), 87-144 (1983)

6. Frenkel, I.B.: Representations of Kac—Moody algebras and dual resonance models. In: Applications of
Group Theory in Physics and Mathematical Physics, Chicago, 1982. Lectures in Appl. Math., vol. 21,
pp. 325-353. Amer. Math. Soc., Providence (1985)

7. Gritsenko, V.A., Nikulin, V.V.: Igusa modular forms and “the simplest” Lorentzian Kac—-Moody alge-
bras. Mat. Sb. 187(11), 27-66 (1996); translation in Sb. Math. 187(11), 1601-1641 (1996)

8. Gritsenko, V.A., Nikulin, V.V.: Siegel automorphic form corrections of some Lorentzian Kac—-Moody
Lie algebras. Am. J. Math. 119(1), 181-224 (1997)

9. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society Colloquium
Publications, vol. 53 (2004)

10. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge
(1990)

11. Kang, S.-J.: Root multiplicities of the hyperbolic Kac—Moody Lie algebra H Agl). J. Algebra 160(2),
492-523 (1993)

12. Kang, S.-J.: On the hyperbolic Kac-Moody Lie algebra H A(ll). Trans. Am. Math. Soc. 341(2), 623—
638 (1994)

13. Kim, H.H., Lee, K.-H.: A family of generalized Kac-Moody algebras and deformation of modular
forms. Int. J. Number Theory 8(5), 1107-1131 (2012)

14. Kim, H.H., Lee, K.-H.: Rank 2 symmetric hyperbolic Kac—-Moody algebras and Hilbert modular
forms. Preprint, arXiv:1209.1860

15. Klima, V.W., Misra, K.C.: Root multiplicities of the indefinite Kac-Moody algebras of symplectic
type. Commun. Algebra 36(2), 764-782 (2008)

16. Koblitz, N.: Introduction to Elliptic Curves and Modular Forms. Springer, Berlin (1984)

17. Lehner, J.: Discontinuous Groups and Automorphic Functions. Mathematical Surveys, No. VIIIL.
American Mathematical Society, Providence (1964)

18. Lehner, J.: On automorphic forms of negative dimension. Ill. J. Math. 8, 395-407 (1964)

19. Lepowsky, J., Moody, R.V.: Hyperbolic Lie algebras and quasiregular cusps on Hilbert modular sur-
faces. Math. Ann. 245(1), 63-88 (1979)

20. Niemann, P.: Some generalized Kac—Moody algebras with known root multiplicities. Mem. Amer.
Math. Soc. 157(746) (2002)

21. Ono, K.: The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and g-Series.
CBMS Regional Conference Series in Mathematics, vol. 102. American Mathematical Society, Prov-
idence (2004)

22. Sarnak, P.: Some Applications of Modular Forms. Cambridge University Press, Cambridge (1990)

23. Zagier, D.: Traces of singular moduli. In: Bogomolov, F., Katzarkov, L. (eds.) Motives, Polyloga-
rithms, and Hodge Theory, pp. 211-244. Intl. Press, Somerville (2003)

@ Springer


http://arxiv.org/abs/arXiv:1209.1860

	Root multiplicities of hyperbolic Kac-Moody algebras and Fourier coefficients of modular forms
	Abstract
	Introduction
	Some automorphic forms
	Jacobi forms and Siegel modular forms
	Weakly holomorphic modular forms of weight -1/2

	Hyperbolic Kac-Moody algebra F
	Automorphic correction for the Kac-Moody algebra F
	Method of Hardy-Ramanujan-Rademacher
	Asymptotics of Fourier coefficients of modular forms of weight -1/2; proof of Theorem 2.8
	Asymptotics of Niemann's bound; proof of Theorem 3.5
	Other hyperbolic Kac-Moody algebras
	Other modular forms

	Acknowledgements
	References


