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ABSTRACT
We take a data-scientific approach to study whether Kronecker coefficients are zero or not. Motivated
by principal component analysis and kernel methods, we define loadings of partitions and use them to
describe a sufficient condition for Kronecker coefficients to be nonzero. The results provide new methods
and perspectives for the study of these coefficients.

KEYWORDS
Kronecker coefficients;
principal component
analysis; kernel methods

1. Introduction

In recent years, there has been much discussion about the potential for AI and machine learning to change mathematics research
(e.g., [5, 7, 27]). Numerous examples demonstrate machine learning’s ability to discern patterns in mathematical datasets (e.g.,
[1, 6, 8, 12–15, 19]). The recent discovery [16] of a new phenomenon, called murmuration, illustrates the significant potential of
considering mathematical objects within the framework of data science. All these developments remind us of how fruitful it has been
to study datasets in modern mathematics—even long before the advent of machine learning. For instance, the prime number theorem,
conjectured at the end of the 18th century, and the Birch–Swinnerton-Dyer conjecture, formulated in the mid-20th century, are all
results of investigating certain datasets.

The goal of this paper is to apply this paradigm of mathematics research to representation theory. One of the primary objectives
in representation theory is to decompose a representation into its irreducible components, with algebraic combinatorics providing a
vital and practical method for describing this decomposition. A prototypical example is the decomposition of the tensor product of
two irreducible representations of the general linear group GLN(C), where the Littlewood–Richardson rule completely describes the
decomposition using skew semi-standard tableaux.

Surprisingly enough, there has been no similar success with the symmetric group until now. Let Sn be the symmetric group of
degree n. The irreducible representations Sλ of Sn over C are parameterized by partitions λ of n, written as λ � n. The tensor product
of two irreducible representations Sλ and Sμ (λ, μ � n) is decomposed into a sum of irreducible representations:

Sλ ⊗ Sμ =
⊕
ν�n

gν
λ,μSν (gν

λ,μ ∈ Z≥0). (1.1)

The decomposition multiplicities gν
λ,μ are called the Kronecker coefficients.

In stark contrast to the Littlewood–Richardson coefficients for GLN(C), no combinatorial description has been known for gν
λ,μ

since Murnaghan [21] initially posed the question in 1938, and it is still considered as one of the main problems in the combinatorial
representation theory. Only partial results are available due to Remmel [24], Ballantine–Orellana [2], Remmel–Whitehead [25],
Blasiak–Mulmuley–Sohoni [3], and Blasiak [4]. Recently, the coefficients gν

λ,μ have also been studied from the perspective of
computational complexity. Notably, Ikenmeyer, Mulmuley and Walter [17] demonstrated that determining whether a given Kronecker
coefficient is nonzero is NP-hard. Additionally, Pak and Panova [22, 23] have made other significant contributions to this topic.

In the previous article [20], we applied standard machine learning tools to datasets of the Kronecker coefficients, and observed that
the trained classifiers attained high accuracies (> 98%) in determining whether Kronecker coefficients are zero or not. The outcomes
clearly suggest that further data-scientific analysis may reveal new structures in the datasets of the Kronecker coefficients. In this
paper, we indeed find new structures; more precisely, we adopt ideas from principal component analysis (PCA) and kernel methods
to define the similitude matrix and the difference matrix for the setP(n) of partitions of n. Then we introduce loadings of the partitions
in terms of eigenvectors associated to the largest eigenvalues of these matrices, and use the loadings to describe a sufficient condition
for the Kronecker coefficients to be nonzero. This condition can be used very effectively. See equation (4.1) and Example 4.1 below it.

The observations made in this paper are purely data-scientific and experimental, and no attempts are undertaken to prove them
using representation theory. Also, it should be noted that our sufficient condition does not cover the middle part where loadings for
zero and nonzero Kronecker coefficients overlap. Since our method is a variation of PCA, it is essentially linear. In order to cover the
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middle part, it is likely that one needs to take a nonlinear approach. The aforementioned high accuracies reported in [20] indicate
that efficient strategies may be developed to go much deeper into the middle part.

After this introduction, in Section 2, we define the similitude and difference matrices and the loadings of partitions. In Section 3,
we investigate the probabilistic distributions of loadings. In the final section, we consider the minimum values of the loadings to
determine whether the Kronecker coefficients are zero or nonzero. In Appendix, we tabulate the loadings of partitions in P(n) for
6 ≤ n ≤ 12.

2. Similitude and difference matrices

Recall the definition of the Kronecker coefficient from (1.1). The coefficients satisfy natural symmetries, as described in the following
lemma.

Lemma 2.1. [9, p.61] Let λ, μ, ν � n. Then the Kronecker coefficients gν
λ,μ are invariant under the permutations of λ, μ, ν. That is,

we have
gν
λ,μ = gν

μ,λ = gμ
λ,ν = gμ

ν,λ = gλ
μ,ν = gλ

ν,μ.

For a partition λ = (λ1 ≥ λ2 ≥ · · · ) of n, define dλ := n − λ1, called the depth of λ. The following theorem provides a
necessary condition for the Kronecker coefficient gν

λ,μ to be nonzero. Other necessary conditions for gν
λ,μ �= 0, which generalize

Horn inequalities, can be found in [26]. We will describe a sufficient condition for for gν
λ,μ �= 0 in this paper.

Theorem 2.2. [18, Theorem 2.9.22] If gν
λ,μ �= 0 then

|dλ − dμ| ≤ dν ≤ dλ + dμ. (2.1)

Now, for n ∈ Z>0, let P(n) be the set of partitions of n as before. We identify each element λ of P(n) with a sequence of length n
by appending as many 0-entries as needed. We also consider P(n) as an ordered set by the lexicographic order.

Example 2.3. When n = 6, we have
P(6) = {(6, 0, 0, 0, 0, 0), (5, 1, 0, 0, 0, 0), (4, 2, 0, 0, 0, 0), (4, 1, 1, 0, 0, 0),

(3, 3, 0, 0, 0, 0), (3, 2, 1, 0, 0, 0), (3, 1, 1, 1, 0, 0), (2, 2, 2, 0, 0, 0),
(2, 2, 1, 1, 0, 0), (2, 1, 1, 1, 1, 0), (1, 1, 1, 1, 1, 1)}.

For notational simplicity, when the same part is repeated more than three times, we may abbreviate it into an exponent. For
example, (2, 1, 1, 1, 1, 1) may be written as (2, 15). The size of the set P(n) will be denoted by p(n), and the set of triples t = (λ, μ, ν)

of partitions of n will be denoted by P(n)3 := P(n) × P(n) × P(n). A partition is depicted by a collection of left-justified rows of

boxes. For example, partition (5, 4, 1) is depicted by . The conjugate or transpose of a partition is defined to be the flip of the

original diagram along the main diagonal. Hence the conjugate of (5, 4, 1) is (3, 2, 2, 2, 1) as you can see below:

←→

Let Pn be the p(n) × n matrix having elements of P(n) as rows, and define the p(n) × p(n) symmetric matrix
Yn := PnP


n .
The matrix Yn will be called the similitude matrix of P(n).

Example 2.4. When n = 6, we obtain

P6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 0 0
5 1 0 0 0 0
4 2 0 0 0 0
4 1 1 0 0 0
3 3 0 0 0 0
3 2 1 0 0 0
3 1 1 1 0 0
2 2 2 0 0 0
2 2 1 1 0 0
2 1 1 1 1 0
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Y6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

36 30 24 24 18 18 18 12 12 12 6
30 26 22 21 18 17 16 12 12 11 6
24 22 20 18 18 16 14 12 12 10 6
24 21 18 18 15 15 14 12 11 10 6
18 18 18 15 18 15 12 12 12 9 6
18 17 16 15 15 14 12 12 11 9 6
18 16 14 14 12 12 12 10 10 9 6
12 12 12 12 12 12 10 12 10 8 6
12 12 12 11 12 11 10 10 10 8 6
12 11 10 10 9 9 9 8 8 8 6
6 6 6 6 6 6 6 6 6 6 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that an entry yλ,μ of Yn = [yλ,μ] is indexed by λ, μ ∈ P(n).
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Since the matrix Yn is symmetric, all its eigenvalues are real. Moreover, the Perron–Frobenius theorem [10, Section III.2] tells us
that Yn has a unique eigenvalue of largest magnitude and that the corresponding eigenvector can be chosen to have strictly positive
components.

Definition 2.5. Let v = (vλ)λ∈P(n) be an eigenvector of the largest eigenvalue of Yn such that vλ > 0 for all λ ∈ P(n). Denote by
vmax (resp. vmin) a maximum (resp. minimum) of {vλ}λ∈P(n). Define

aλ := 100 × vλ − vmin
vmax − vmin

for λ ∈ P(n).

The value aλ is called the a-loading of partition λ ∈ P(n).

The above definition presents a novel concept in the exploration of Kronecker coefficients. However, when n is large, one
might wonder how to compute an eigenvector of the largest eigenvalue of Yn. The direct computation of eigenvalues can be
computationally intensive. For an N × N matrix, it is known that direct computations of eigenvalues have a time complexity
of O(N3).

An efficient algorithm to calculate an eigenvector v in Definition 2.5 is the power iteration: Let v0 = (1, 0, . . . , 0)
 be the first
standard column vector. Inductively, for k = 0, 1, 2, . . . , define

vk+1 = Ynvk
‖Ynvk‖2

,

where ‖(x1, x2, . . . , xn)
‖2 = (
∑n

i=1 x2
i )

1/2. Then the limit

v = lim
k→∞

vk

is an eigenvector of the largest eigenvalue of Yn.

Example 2.6. When n = 6, we have

v1 ≈ (0.5203, 0.4336, 0.3468, 0.3468, 0.2601, 0.2601, 0.2601, 0.1734, 0.1734, 0.1734, 0.0867)
 ,
v2 ≈ (0.4514, 0.4022, 0.3530, 0.3377, 0.3038, 0.2885, 0.2670, 0.2240, 0.2178, 0.1934, 0.1188)
 ,
v3 ≈ (0.4441, 0.3985, 0.3530, 0.3366, 0.3074, 0.2910, 0.2678, 0.2291, 0.2222, 0.1957, 0.1225)
 ,
v4 ≈ (0.4434, 0.3982, 0.3529, 0.3365, 0.3077, 0.2913, 0.2678, 0.2296, 0.2226, 0.1960, 0.1229)
 ,
v5 ≈ (0.4433, 0.3981, 0.3529, 0.3365, 0.3077, 0.2913, 0.2678, 0.2297, 0.2226, 0.1960, 0.1229)
 ,
v6 ≈ (0.4433, 0.3981, 0.3529, 0.3365, 0.3077, 0.2913, 0.2678, 0.2297, 0.2227, 0.1960, 0.1229)
 .

Thus we can take as an approximation

v ≈ (0.4433, 0.3981, 0.3529, 0.3365, 0.3077, 0.2913, 0.2678, 0.2297, 0.2227, 0.1960, 0.1229)
 ,

and the a-loadings are approximately given by

(aλ)λ∈P(n) ≈ (100.00, 85.89, 71.79, 66.66, 57.68, 52.55, 45.23, 33.32, 31.12, 22.81, 0.00).

In the above example of n = 6, we see that the a-loadings are compatible with the lexicographic order. In particular, the partition (6)

has a-loading 100 and (16) has a-loading 0. However, in general, the a-loadings are not completely compatible with the lexicographic
order though they are strongly correlated. For instance, when n = 9, the partition (5, 14) has a-loading 55.32, while (4, 4, 1) has 56.55.
See Appendix A for the values of a-loadings. On the other hand, we say that λ = (λ1 ≥ λ2 ≥ · · · ≥ λn) dominates μ = (μ1 ≥
μ2 ≥ · · · ≥ μn) in the dominance order if λ1 + · · · + λk ≥ μ1 + · · ·μk for all k ≥ 1. Now one can observe that the a-loadings are
compatible with the dominance order. 1

Define a p(n) × p(n) symmetric matrix Zn = [zλ,μ]λ,μ∈P(n) by

zλ,μ = ‖λ − μ‖1 :=
n∑

i=1
|λi − μi|

for λ = (λ1, λ2, . . . , λn) and μ = (μ1, μ2, . . . , μn) ∈ P(n). The matrix Zn will be called the difference matrix of P(n).

1This was noticed by David Anderson after the first version of this paper was posted on the arXiv.
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Example 2.7. When n = 6, we obtain

Z6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 4 4 6 6 6 8 8 8 10
2 0 2 2 4 4 4 6 6 6 8
4 2 0 2 2 2 4 4 4 6 8
4 2 2 0 4 2 2 4 4 4 6
6 4 2 4 0 2 4 4 4 6 8
6 4 2 2 2 0 2 2 2 4 6
6 4 4 2 4 2 0 4 2 2 4
8 6 4 4 4 2 4 0 2 4 6
8 6 4 4 4 2 2 2 0 2 4
8 6 6 4 6 4 2 4 2 0 2

10 8 8 6 8 6 4 6 4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly to Yn, all the eigenvalues of Zn are real. It is easy to see that Zn is irreducible, and hence the Perron–Frobenius theorem
for matrices with nonnegative entries [10, Section III.2] tells us that Zn has a unique eigenvalue of largest magnitude and that the
corresponding eigenvector can be chosen to have strictly positive components.

Definition 2.8. Let w = (wλ)λ∈P(n) be an eigenvector of the largest eigenvalue of Zn such that wλ > 0 for all λ ∈ P(n). Denote by
wmax (resp. wmin) a maximum (resp. minimum) of {wλ}λ∈P(n). Define

bλ := 100 × wλ − wmin
wmax − wmin

for λ ∈ P(n).

The value bλ is called the b-loading of partition λ ∈ P(n).

Like Definition 2.5, the above definition introduces a new concept into the study of Kronecker coefficients. We will show its
usefulness in Section 4. The power iteration works equally well to compute w: Let w0 = (1, 0, . . . , 0)
 and define

wk+1 = Znwk
‖Znwk‖2

.

Then the limit
w = lim

k→∞
wk

is an eigenvector of the largest eigenvalue of Zn.

Example 2.9. When n = 6, we have
w1 ≈ (0.0000, 0.0958, 0.1916, 0.1916, 0.2873, 0.2873, 0.2873, 0.3831, 0.3831, 0.3831, 0.4789)
 ,
w2 ≈ (0.5177, 0.3705, 0.2992, 0.2565, 0.3087, 0.2042, 0.2042, 0.2517, 0.1947, 0.2280, 0.3277)
 ,

...
w10 ≈ (0.4046, 0.2962, 0.2662, 0.2394, 0.3061, 0.2318, 0.2393, 0.3060, 0.2662, 0.2961, 0.4044)
 ,
w11 ≈ (0.4045, 0.2961, 0.2662, 0.2393, 0.3061, 0.2318, 0.2393, 0.3061, 0.2662, 0.2962, 0.4045)
 ,
w12 ≈ (0.4045, 0.2961, 0.2662, 0.2393, 0.3061, 0.2318, 0.2393, 0.3061, 0.2662, 0.2961, 0.4045)
 .

Thus we can take as an approximation
w ≈ (0.4045, 0.2961, 0.2662, 0.2393, 0.3061, 0.2318, 0.2393, 0.3061, 0.2662, 0.2961, 0.4045)
 ,

and the b-loadings are approximately given by
(bλ)λ∈P(n) ≈ (100.00, 37.25, 19.93, 4.36, 43.01, 0.00, 4.36, 43.01, 19.93, 37.25, 100.00).

Remark 2.10. In the above example, we notice that the partitions (6) and (16) both have b-loading 100 and the partition (3, 2, 1) has
b-loading 0. In general, we observe that if λ and μ are conjugate in P(n), then their b-loadings are the same, i.e., bλ = bμ.

Remark 2.11. It would be interesting to combinatorially characterize the loadings of λ ∈ P(n).

For t = (λ, μ, ν) ∈ P(n)3, we will write
g(t) := gν

λ,μ.

Definition 2.12. Let t = (λ, μ, ν) ∈ P(n)3. Define the a-loading (resp. b-loading) of t, denoted by a(t) (resp. b(t)), to be the sum of
the a-loadings (resp. b-loadings) of λ, μ, and ν, i.e.,

a(t) := aλ + aμ + aν (resp. b(t) := bλ + bμ + bν).
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2.1. Connections to PCA and kernel methods

The definitions of similitude and difference matrices are closely related to PCA and kernel methods (see, e.g., [11, Sections 3.5 and
12.3]), respectively. Indeed, we look at the matrix P


n as a data matrix.

Example 2.13. When n = 6, we get

P

6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

6 5 4 4 3 3 3 2 2 2 1
0 1 2 1 3 2 1 2 2 1 1
0 0 0 1 0 1 1 2 1 1 1
0 0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and consider this as a data matrix of 6 data points with 11 features.

Since the average of each column is 1 for P

n , the covariance matrix of the data matrix P


n is (Pn−1)(Pn−1)
, where1 is the matrix
with all entries equal to 1. As there are no significant differences in the largest eigenvalues or the directions of their eigenvectors, we
use the similitude matrix Yn = PnP


n as a substitute for the covariance matrix. Then an eigenvector of the largest eigenvalue of Yn
provides a good approximation to a weight vector of the first principal component, leading to the definition of a-loadings.

The idea of a kernel method is to embed a dataset into a different space of (usually) higher dimension. In order to utilize this idea,
we consider the matrix Pn as a data matrix with p(n) data points and n features. Then we map a partition λ, which is an n-dimensional
row vector of Pn, onto the p(n)-dimensional vector (‖λ − μ‖1)μ∈P(n), and the resulting new matrix is exactly the difference matrix
Zn.

Example 2.14. When n = 6, we obtain

P6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 0 0 0 0 0
5 1 0 0 0 0
4 2 0 0 0 0
4 1 1 0 0 0
3 3 0 0 0 0
3 2 1 0 0 0
3 1 1 1 0 0
2 2 2 0 0 0
2 2 1 1 0 0
2 1 1 1 1 0
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�→ Z6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 4 4 6 6 6 8 8 8 10
2 0 2 2 4 4 4 6 6 6 8
4 2 0 2 2 2 4 4 4 6 8
4 2 2 0 4 2 2 4 4 4 6
6 4 2 4 0 2 4 4 4 6 8
6 4 2 2 2 0 2 2 2 4 6
6 4 4 2 4 2 0 4 2 2 4
8 6 4 4 4 2 4 0 2 4 6
8 6 4 4 4 2 2 2 0 2 4
8 6 6 4 6 4 2 4 2 0 2

10 8 8 6 8 6 4 6 4 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the difference matrix Zn is a symmetric matrix, we consider an eigenvector of the largest eigenvalue of Zn to obtain the
direction of largest variations in the differences. This leads to the definition of b-loadings.

3. Distributions of loadings

In this section, we present the histograms of loadings and describe the corresponding distributions. First, we consider all the triples
of t ∈ P(n)3, and after that, separate them according to whether g(t) �= 0 or = 0. All the histograms in this section have a bin size of
100.

Figure 1 (resp. Figure 2) has the histograms of a-loadings (resp. b-loadings) of t ∈ P(n)3 for n = 14, 15, 16. According to what
the histograms suggest, we propose a conjecture:

Conjecture 3.1. Consider P(n)3 as a sample space. Then the sequence of random variables Xa
n (resp. Xb

n) defined by the a-loadings (resp.
b-loadings) of t converges in distribution to a normal (resp. gamma) random variable as n → ∞.

Figure 1. Histograms of a-loadings of t ∈ P(n)3 for n = 14, 15, 16 from left to right along with curves (red) of normal distributions.
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Figure 2. Histograms of b-loadings of t ∈ P(n)3 for n = 14, 15, 16 from left to right along with curves (red) of gamma distributions.

Figure 3. Histograms of a-loadings of λ ∈ P(n) (top-left) and t ∈ P(n)3 (top-right) and histograms of b-loadings of λ (bottom-left) and t (bottom-right) when n = 20.

We sketch the curves of normal distributions on the histograms in Figure 1. Here we note that the mean is not exactly 150. Actually,
the mean values of the a-loadings are approximately 148.86, 148.15, 147.65 for n = 14, 15, 16, respectively. Similarly, we draw the
curves of gamma distributions in Figure 2. The mean values of the b-loadings are approximately 72.07, 66.71, 63.48 for n = 14, 15, 16,
respectively. When n = 14, 15, 16, the histograms of the loadings of partitions λ ∈ P(n), in contrast to triples t ∈ P(n)3, lack
sufficient data points to ascertain their underlying distributions. (Note that p(16) = 231.) Nonetheless, since aλ, aμ and aν are
computed independently for a(t) = aλ + aμ + aν , and the sum of normal random variables is itself normal, it seems reasonable to
expect that the a-loadings of λ follow a normal distribution. By the same reasoning, we conjecture that the b-loadings of λ follow a
gamma distribution. If the conjectures are true, the loadings of t ∈ P(n)3 will naturally have the distribution given as a sum of three
independent distributions. (Recall Definition 2.12.) Figure 3 has the histograms of loadings of λ and t when n = 20, which seem to
be consistent with this expectation.

4. Separation of g(t) �= 0 from g(t) = 0

In this section, we consider the distributions of loadings according to whether the Kronecker coefficients g(t) are zero or nonzero.
Using minimum values of loadings in each case, we will obtain vertical lines which separate the distributions of these two cases.

In Figures 4–7, we present the ranges and histograms of loadings of t ∈ P(n)3 for n = 10, 11, 12, 13 according to whether g(t) �= 0
(red) or = 0 (blue). In Figure 4, the y-values 0 and 1 represent the cases g(t) = 0 and g(t) �= 0, respectively, while the x-value is
the a-loading of t. The same convention applies to Figure 6 with b-loadings. As one can see, the ranges and histograms do not vary
much as n varies. The separation between the regions corresponding to g(t) �= 0 (red) and = 0 (blue) is more distinctive in the case
of b-loadings. It is clear that we may use the minimum values of loadings to obtain vertical lines that separate the red regions from
the blue ones.
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Figure 4. Ranges of a-loadings for n = 10, 11, 12, 13 from top to bottom. A red (resp. blue) dot at (x, 1) (resp. (x, 0)) corresponds to t ∈ P(n)3 with a(t) = x and g(t) �= 0
(resp. g(t) = 0).

Figure 5. Histograms of a-loadings for n = 10 (top-left), 11 (top-right), 12 (bottom-left), and 13 (bottom-right). The red (resp. blue) region represents the numbers of t such
that g(t) �= 0 (resp. g(t) = 0).

With this in mind, define

a� := min{a(t) : g(t) �= 0, t ∈ P(n)3},
b� := min{b(t) : g(t) = 0, t ∈ P(n)3}.

Then, for t ∈ P(n)3,

if a(t) < a� then g(t) = 0 and if b(t) < b� then g(t) �= 0 . (4.1)

This provides sufficient conditions for g(t) = 0 and g(t) �= 0, respectively, once we know the values of a� and b�.
In this way, the values of b� can be used quite effectively in distinguishing g(t) �= 0 from g(t) = 0. When n = 20, the percentage of

t satisfying b(t) < b� is about 31.8%. In contrast, the values a� do not turn out to be very useful for bigger n in distinguishing g(t) = 0
from g(t) �= 0. When n = 20, the percentage of t satisfying a(t) < a� is only 0.37%. See Example 4.1 (2) below for more details.
Nonetheless, the values of a� are interesting in their own right and can be valuable for analyzing the distribution of the a-loadings in
relation to the Kronecker coefficients.
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Figure 6. Ranges of b-loadings for n = 10, 11, 12, 13 from top to bottom. A red (resp. blue) dot at (x, 1) (resp. (x, 0)) corresponds to t ∈ P(n)3 with b(t) = x and g(t) �= 0
(resp. g(t) = 0).

Figure 7. Histograms of b-loadings for n = 10 (top-left), 11 (top-right), 12 (bottom-left) and 13 (bottom-right). The red (resp. blue) region represents the numbers of t such
that g(t) �= 0 (resp. g(t) = 0).

Example 4.1.

1. When n = 18, we obtain b� ≈ 44.18. Now that the b-loading of

t = ((12, 4, 2), (8, 4, 2, 2, 1, 1), (5, 4, 3, 3, 1, 1, 1))

is readily computed to be approximately 41.07 < b�, we immediately conclude that g(t) �= 0 by (4.1).
2. When n = 20, there are 246, 491, 883 triples t ∈ P(20). Among them, 78, 382, 890 triples satisfy b(t) < b� ≈ 43.74 so that

g(t) �= 0. The percentage of these triples is about 31.8%. On the other hand, 909, 200 triples satisfy a(t) < a� ≈ 70.88 and the
percentage is only 0.37%.

Remark 4.2. It appears that the b-loadings of t with g(t) �= 0 is a gamma distribution by itself. See the histogram and the curve of a
gamma distribution when n = 13 in Figure 8.

In the rest of this section, computational results of the values of a� and b� for 6 ≤ n ≤ 20 will be presented along with some
conjectures.
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Figure 8. Histogram and curve (red) of a gamma distribution when n = 13.

Table 1. Values of a� and t = (λ, μ, ν) such that a� = a(t) and λ ≥ μ ≥ ν lexicographically.

n a� λ μ ν

6 90.9986 (3, 3) (2, 2, 2) (16)

7 85.0932 (2, 2, 2, 1) (2, 2, 2, 1) (2, 2, 2, 1)

8 79.1637 (24) (24) (24)

9 84.5605 (3, 2, 2, 2) (24, 1) (24, 1)

10 82.5959 (3, 3, 2, 2) (25) (24, 1)

11 78.1018 (3, 3, 3, 2) (25, 1) (25, 1)

12 74.6018 (34) (26) (26)

13 78.1813 (4, 3, 3, 3) (26, 1) (26, 1)

14 77.3651 (4, 4, 3, 3) (27) (26, 1, 1)

15 74.8437 (4, 4, 4, 3) (27, 1) (27, 1)

16 72.1837 (44) (28) (28)

17 71.2716 (35, 2) (35, 2) (28, 1)

18 68.9559 (36) (36) (29)

19 71.9678 (4, 35) (36, 1) (29, 1)

20 70.8806 (54) (210) (210)

When n = 8, 12, 16, 20, the partitions λ, μ, ν are highlighted in blue to emphasize a pattern leading to Conjecture 4.3.

Table 2. Under Conjecture 4.3, values of a� and t = ((k4), (22k), (22k)) for n = 4k such that a� = a(t).

n a� t

24 70.0772 ((64), (212), (212))

28 69.5351 ((74), (214), (214))

32 69.1732 ((84), (216), (216))

36 68.9254 ((94), (218), (218))

40 68.7518 ((104), (220), (220))

44 68.6334 ((114), (222), (222))

48 68.5549 ((124), (224), (224))

4.1. Results on a-loadings

We compute and record a� and t = (λ, μ, ν) such that a� = a(t) and λ ≥ μ ≥ ν lexicographically, for 6 ≤ n ≤ 20 in Table 1. We do
not consider n ≤ 5 because they seem to be too small for statistical analysis.

Based on the results of n = 8, 12, 16, 20 as written in blue in Table 1, we make the following conjecture.

Conjecture 4.3. Recall a� := min{a(t) : g(t) �= 0, t ∈ P(n)3}, where a(t) := aλ +aμ +aν and g(t) := gν
λ,μ for t = (λ, μ, ν) ∈ P(n)3.

When n = 4k (k ≥ 2), the values a� are attained by t = ((k4), (22k), (22k)).

As an exhaustive computation for all possible triples becomes exponentially expensive, we assume that Conjecture 4.3 is true and
continue computation. The results are in Table 2. Since we know t exactly under Conjecture 4.3, we could calculate a� for n much
bigger than those n in the case of b� that will be presented in Table 4.

Remark 4.4. The values of a� seem to keep decreasing though slowly. However, it is not clear whether a� converges to a limit as
n → ∞.
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Figure 9. Ranges of a-loadings where a black dot at (x, 1
2 ) corresponds to t ∈ P(12)3 satisfying the condition in (4.2) with a(t) = x and g(t) = 0 and histograms of

a-loadings where the dark brown region represents the numbers of t satisfying the condition in (4.2) and g(t) = 0.

Table 3. Values of b� and t = (λ, μ, ν) such that b� = b(t).

n b� λ μ ν

6 59.7812 (2, 2, 1, 1) (2, 2, 1, 1) (2, 2, 1, 1)

7 47.9477 (3, 3, 1) (3, 14) (3, 14)

8 54.6650 (3, 2, 1, 1, 1) (3, 2, 1, 1, 1) (2, 2, 14)

9 39.8213 (3, 2, 14) (3, 2, 14) (3, 2, 14)

10 46.6592 (4, 2, 14) (3, 2, 15) (3, 2, 15)

11 44.4953 (6, 15) (6, 15) (4, 3, 3, 1)

12 47.3571 (3, 3, 2, 14) (3, 3, 2, 14) (3, 3, 2, 14)

13 45.1104 (4, 3, 2, 14) (3, 3, 2, 15) (3, 3, 2, 15)

14 44.9312 (4, 3, 2, 15) (4, 3, 2, 15) (3, 3, 2, 16)

15 40.3916 (4, 3, 2, 16) (4, 3, 2, 16) (4, 3, 2, 16)

16 41.7064 (5, 3, 2, 16) (4, 3, 2, 17) (4, 3, 2, 17)

17 43.4181 (5, 3, 2, 17) (4, 3, 2, 2, 16) (4, 3, 2, 2, 16)

18 44.1817 (4, 4, 2, 2, 16) (4, 4, 2, 2, 16) (4, 4, 2, 2, 16)

19 44.3797 (5, 4, 2, 2, 16) (4, 4, 2, 2, 17) (4, 4, 2, 2, 17)

20 43.7424 (5, 4, 2, 2, 17) (4, 4, 3, 2, 17) (4, 4, 3, 2, 17)

When n = 6, 9, 12, 15, 18, the partitions λ, μ, ν are highlighted in blue to emphasize the pattern λ = μ = ν leading to Conjecture 4.6.

Notice that we have a sufficient condition for g(t) = 0 by taking the contrapositive of (2.1):

dν < |dλ − dμ| or dν > dλ + dμ �⇒ g(t) = 0. (4.2)

As a� provides another sufficient condition for g(t) = 0 in (4.1), one may be curious about their relationship. As a matter of fact, we
observe that

a� < a(t) for any t satisfying the condition in (4.2).

Thus conditions in (4.1) and (4.2) for g(t) = 0 do not have overlaps. Let us look at pictures when n = 12. In the top graph of Figure 9,
red dots and blue dots are the same as in Figure 4, while a black dot at (x, 1

2 ) corresponds to t ∈ P(12)3 satisfying the condition in
(4.2) with a(t) = x and g(t) = 0. In the bottom histograms of Figure 9, the red region and blue region are the same as in Figure 5,
while the dark brown region represents the numbers of t satisfying the condition in (4.2) and g(t) = 0.

4.2. Results on b-loadings

In Table 3, we list b� and t = (λ, μ, ν) such that b� = b(t) and λ ≥ μ ≥ ν in lexicographic order for 6 ≤ n ≤ 20. When there are
more than one t such that b� = b(t), we only record the lexicographically smallest one. (Recall Remark 2.10.)

Example 4.5. When n = 16, we get b� = b(t1) = b(t2) = b(t3) with

t1 = [(10, 3, 2, 1), (10, 3, 2, 1), (5, 3, 2, 16)],
t2 = [(10, 3, 2, 1), (9, 3, 2, 1, 1), (4, 3, 2, 17)],
t3 = [(5, 3, 2, 16), (4, 3, 2, 17), (4, 3, 2, 17)],

and only t3 is recorded in the table.
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Table 4. Under Conjecture 4.6, values of b� and t = (λ, λ, λ) for n = 3k such that b� = b(t).

n b� λ = μ = ν

21 45.0545 (5, 4, 2, 2, 18)

24 43.7126 (5, 4, 3, 2, 2, 18)

27 44.0699 (5, 5, 3, 3, 2, 19)

30 45.0141 (5, 5, 4, 3, 2, 2, 19)

33 44.7615 (6, 6, 4, 3, 2, 112)

36 44.3350 (6, 6, 4, 3, 23, 111)

Drawing from the results in Table 3—particularly those for n = 6, 9, 12, 15, 18 highlighted in blue—we propose the following
conjecture.

Conjecture 4.6. Recall b� := min{b(t) : g(t) = 0, t ∈ P(n)3}, where b(t) := bλ + bμ + bν and g(t) := gν
λ,μ for t = (λ, μ, ν) ∈ P(n)3.

For n ≥ 6, the values b� are attained by t = (λ, μ, ν) such that λ = μ or μ = ν. Moreover, when n = 3k, k ≥ 2, the values b� are
attained by t = (λ, μ, ν) such that λ = μ = ν.

Analogous to the case of a�, we assume Conjecture 4.6 holds for n = 3k and proceed with the computation. The results are
presented in Table 4.

Remark 4.7. The values of b� appear to fluctuate with diminishing amplitudes as n increases. However, it remains unclear whether
b� converges as n → ∞.
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Appendix A: Table of loadings

We tabulate the a-loading aλ and b-loading bλ of each partition λ ∈ P(n) for 6 ≤ n ≤ 12.

λ aλ bλ

(6, 0, 0, 0, 0, 0) 100.0 100.0
(5, 1, 0, 0, 0, 0) 85.8934 37.252
(4, 2, 0, 0, 0, 0) 71.7868 19.9271
(4, 1, 1, 0, 0, 0) 66.6591 4.363
(3, 3, 0, 0, 0, 0) 57.6803 43.005
(3, 2, 1, 0, 0, 0) 52.5526 0.0
(3, 1, 1, 1, 0, 0) 45.2311 4.363
(2, 2, 2, 0, 0, 0) 33.3183 43.005
(2, 2, 1, 1, 0, 0) 31.1245 19.9271
(2, 1, 1, 1, 1, 0) 22.8133 37.252
(1, 1, 1, 1, 1, 1) 0.0 100.0

(7, 0, 0, 0, 0, 0, 0) 100.0 100.0
(6, 1, 0, 0, 0, 0, 0) 88.302 47.507
(5, 2, 0, 0, 0, 0, 0) 76.604 26.483
(5, 1, 1, 0, 0, 0, 0) 72.8338 13.1061
(4, 3, 0, 0, 0, 0, 0) 64.906 36.928
(4, 2, 1, 0, 0, 0, 0) 61.1358 0.0
(4, 1, 1, 1, 0, 0, 0) 55.5306 1.81
(3, 3, 1, 0, 0, 0, 0) 49.4378 21.735
(3, 2, 2, 0, 0, 0, 0) 45.6676 21.735
(3, 2, 1, 1, 0, 0, 0) 43.8326 0.0
(3, 1, 1, 1, 1, 0, 0) 37.3978 13.1061
(2, 2, 2, 1, 0, 0, 0) 28.3644 36.928
(2, 2, 1, 1, 1, 0, 0) 25.6998 26.483
(2, 1, 1, 1, 1, 1, 0) 18.7933 47.507
(1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(8, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0
(7, 1, 0, 0, 0, 0, 0, 0) 90.5921 58.055
(6, 2, 0, 0, 0, 0, 0, 0) 81.1842 35.198
(6, 1, 1, 0, 0, 0, 0, 0) 77.6539 28.246
(5, 3, 0, 0, 0, 0, 0, 0) 71.7763 34.854
(5, 2, 1, 0, 0, 0, 0, 0) 68.2461 9.7331
(5, 1, 1, 1, 0, 0, 0, 0) 63.194 12.637
(4, 4, 0, 0, 0, 0, 0, 0) 62.3685 48.552
(4, 3, 1, 0, 0, 0, 0, 0) 58.8382 15.265
(4, 2, 2, 0, 0, 0, 0, 0) 55.3079 15.265
(4, 2, 1, 1, 0, 0, 0, 0) 53.7861 0.0
(4, 1, 1, 1, 1, 0, 0, 0) 47.8449 12.637
(3, 3, 2, 0, 0, 0, 0, 0) 45.9 30.531
(3, 3, 1, 1, 0, 0, 0, 0) 44.3782 15.265
(3, 2, 2, 1, 0, 0, 0, 0) 40.8479 15.265
(3, 2, 1, 1, 1, 0, 0, 0) 38.437 9.7331
(3, 1, 1, 1, 1, 1, 0, 0) 32.0837 28.246
(2, 2, 2, 2, 0, 0, 0, 0) 26.3879 48.552
(2, 2, 2, 1, 1, 0, 0, 0) 25.4988 34.854
(2, 2, 1, 1, 1, 1, 0, 0) 22.6758 35.198
(2, 1, 1, 1, 1, 1, 1, 0) 16.0886 58.055
(1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(9, 0, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0
(8, 1, 0, 0, 0, 0, 0, 0, 0) 91.876 62.802
(7, 2, 0, 0, 0, 0, 0, 0, 0) 83.7521 39.559
(7, 1, 1, 0, 0, 0, 0, 0, 0) 80.9205 33.587
(6, 3, 0, 0, 0, 0, 0, 0, 0) 75.6281 34.591
(6, 2, 1, 0, 0, 0, 0, 0, 0) 72.7965 13.273
(6, 1, 1, 1, 0, 0, 0, 0, 0) 68.4825 16.425
(5, 4, 0, 0, 0, 0, 0, 0, 0) 67.5041 42.455
(5, 3, 1, 0, 0, 0, 0, 0, 0) 64.6726 12.1941
(5, 2, 2, 0, 0, 0, 0, 0, 0) 61.841 12.1941

λ aλ bλ

(5, 2, 1, 1, 0, 0, 0, 0, 0) 60.3586 0.0
(5, 1, 1, 1, 1, 0, 0, 0, 0) 55.3152 10.278
(4, 4, 1, 0, 0, 0, 0, 0, 0) 56.5486 26.205
(4, 3, 2, 0, 0, 0, 0, 0, 0) 53.7171 17.261
(4, 3, 1, 1, 0, 0, 0, 0, 0) 52.2346 5.067
(4, 2, 2, 1, 0, 0, 0, 0, 0) 49.4031 5.067
(4, 2, 1, 1, 1, 0, 0, 0, 0) 47.1912 0.0
(4, 1, 1, 1, 1, 1, 0, 0, 0) 41.7289 16.425
(3, 3, 3, 0, 0, 0, 0, 0, 0) 42.7616 39.778
(3, 3, 2, 1, 0, 0, 0, 0, 0) 41.2791 17.261
(3, 3, 1, 1, 1, 0, 0, 0, 0) 39.0672 12.1941
(3, 2, 2, 2, 0, 0, 0, 0, 0) 36.9651 26.205
(3, 2, 2, 1, 1, 0, 0, 0, 0) 36.2357 12.1941
(3, 2, 1, 1, 1, 1, 0, 0, 0) 33.6049 13.273
(3, 1, 1, 1, 1, 1, 1, 0, 0) 27.9202 33.587
(2, 2, 2, 2, 1, 0, 0, 0, 0) 23.7977 42.455
(2, 2, 2, 1, 1, 1, 0, 0, 0) 22.6494 34.591
(2, 2, 1, 1, 1, 1, 1, 0, 0) 19.7962 39.559
(2, 1, 1, 1, 1, 1, 1, 1, 0) 13.9854 62.802
(1, 1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(10, 0, 0, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0
(9, 1, 0, 0, 0, 0, 0, 0, 0, 0) 93.0766 67.7441
(8, 2, 0, 0, 0, 0, 0, 0, 0, 0) 86.1532 45.12
(8, 1, 1, 0, 0, 0, 0, 0, 0, 0) 83.5036 41.476
(7, 3, 0, 0, 0, 0, 0, 0, 0, 0) 79.2298 36.947
(7, 2, 1, 0, 0, 0, 0, 0, 0, 0) 76.5802 20.739
(7, 1, 1, 1, 0, 0, 0, 0, 0, 0) 72.6788 23.437
(6, 4, 0, 0, 0, 0, 0, 0, 0, 0) 72.3065 39.542
(6, 3, 1, 0, 0, 0, 0, 0, 0, 0) 69.6568 15.044
(6, 2, 2, 0, 0, 0, 0, 0, 0, 0) 67.0072 15.044
(6, 2, 1, 1, 0, 0, 0, 0, 0, 0) 65.7554 5.179
(6, 1, 1, 1, 1, 0, 0, 0, 0, 0) 61.1395 14.455
(5, 5, 0, 0, 0, 0, 0, 0, 0, 0) 65.3831 49.1901
(5, 4, 1, 0, 0, 0, 0, 0, 0, 0) 62.7334 21.441
(5, 3, 2, 0, 0, 0, 0, 0, 0, 0) 60.0838 13.151
(5, 3, 1, 1, 0, 0, 0, 0, 0, 0) 58.832 3.286
(5, 2, 2, 1, 0, 0, 0, 0, 0, 0) 56.1824 3.286
(5, 2, 1, 1, 1, 0, 0, 0, 0, 0) 54.2161 0.0
(5, 1, 1, 1, 1, 1, 0, 0, 0, 0) 49.2041 14.455
(4, 4, 2, 0, 0, 0, 0, 0, 0, 0) 53.1604 24.72
(4, 4, 1, 1, 0, 0, 0, 0, 0, 0) 51.9086 14.862
(4, 3, 3, 0, 0, 0, 0, 0, 0, 0) 50.5108 27.307
(4, 3, 2, 1, 0, 0, 0, 0, 0, 0) 49.259 6.572
(4, 3, 1, 1, 1, 0, 0, 0, 0, 0) 47.2927 3.286
(4, 2, 2, 2, 0, 0, 0, 0, 0, 0) 45.3575 14.862
(4, 2, 2, 1, 1, 0, 0, 0, 0, 0) 44.6431 3.286
(4, 2, 1, 1, 1, 1, 0, 0, 0, 0) 42.2807 5.179
(4, 1, 1, 1, 1, 1, 1, 0, 0, 0) 37.0369 23.437
(3, 3, 3, 1, 0, 0, 0, 0, 0, 0) 39.686 27.307
(3, 3, 2, 2, 0, 0, 0, 0, 0, 0) 38.4341 24.72
(3, 3, 2, 1, 1, 0, 0, 0, 0, 0) 37.7197 13.151
(3, 3, 1, 1, 1, 1, 0, 0, 0, 0) 35.3573 15.044
(3, 2, 2, 2, 1, 0, 0, 0, 0, 0) 33.8182 21.441
(3, 2, 2, 1, 1, 1, 0, 0, 0, 0) 32.7077 15.044
(3, 2, 1, 1, 1, 1, 1, 0, 0, 0) 30.1135 20.739
(3, 1, 1, 1, 1, 1, 1, 1, 0, 0) 24.747 41.476
(2, 2, 2, 2, 2, 0, 0, 0, 0, 0) 22.2789 49.1901
(2, 2, 2, 2, 1, 1, 0, 0, 0, 0) 21.8828 39.542
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λ aλ bλ

(2, 2, 2, 1, 1, 1, 1, 0, 0, 0) 20.5405 36.947
(2, 2, 1, 1, 1, 1, 1, 1, 0, 0) 17.8237 45.12
(2, 1, 1, 1, 1, 1, 1, 1, 1, 0) 12.3875 67.7441
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0
(10, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 93.8295 71.265
(9, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 87.6591 49.697
(9, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 85.397 46.624
(8, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0) 81.4886 39.924
(8, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0) 79.2265 26.3731
(8, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 75.8034 28.711
(7, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0) 75.3182 39.780
(7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0) 73.0561 18.329
(7, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0) 70.794 18.329
(7, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0) 69.6329 10.1901
(7, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 65.58 17.872
(6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0) 69.1477 45.913
(6, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0) 66.8856 20.801
(6, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0) 64.6236 12.90
(6, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0) 63.4625 4.762
(6, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0) 61.2004 4.762
(6, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0) 59.4095 1.967
(6, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) 54.969 14.412
(5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0) 60.7152 30.394
(5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0) 58.4531 18.834
(5, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0) 57.292 10.694
(5, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0) 56.191 21.014
(5, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0) 55.0299 2.795
(5, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0) 53.2391 0.0
(5, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0) 51.6068 10.694
(5, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0) 50.977 0.0
(5, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0) 48.7986 1.967
(5, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) 44.1465 17.872
(4, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0) 50.0206 31.70
(4, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0) 48.8595 13.4
(4, 4, 1, 1, 1, 0, 0, 0, 0, 0, 0) 47.0686 10.694
(4, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0) 46.5974 15.6
(4, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0) 45.4363 13.4
(4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0) 44.8065 2.795
(4, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0) 42.6281 4.762
(4, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0) 41.3834 10.694
(4, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0) 40.366 4.762
(4, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0) 37.9761 10.1901
(4, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 33.1883 28.711
(3, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0) 37.0038 31.70
(3, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0) 36.374 21.014
(3, 3, 2, 2, 1, 0, 0, 0, 0, 0, 0) 35.2129 18.834
(3, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0) 34.1956 12.90
(3, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0) 31.8056 18.329
(3, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0) 31.1599 30.394
(3, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0) 30.7724 20.801
(3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0) 29.5435 18.329
(3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0) 27.0179 26.3731
(3, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 22.1582 46.624
(2, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0) 20.549 45.913
(2, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0) 19.9499 39.780
(2, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0) 18.5853 39.924
(2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0) 15.9878 49.697
(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 11.0873 71.265
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0

(12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 100.0 100.0
(11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 94.5958 74.832
(10, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 89.1916 54.707

λ aλ bλ

(10, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 87.0838 52.743
(9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 83.7874 43.844
(9, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 81.6796 33.490
(9, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 78.5079 35.703
(8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 78.3831 41.257
(8, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 76.2754 23.775
(8, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 74.1676 23.775
(8, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 73.1037 17.598
(8, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 69.3148 24.48
(7, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 72.9789 44.246
(7, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 70.8711 22.913
(7, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 68.7634 15.785
(7, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 67.6995 9.608
(7, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0) 65.5917 9.608
(7, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 63.9106 8.104
(7, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 59.7695 18.845
(6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 67.5747 50.894
(6, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 65.4669 28.138
(6, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 63.3591 17.15
(6, 4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 62.2953 10.981
(6, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0) 61.2514 19.530
(6, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0) 60.1875 3.854
(6, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 58.5064 2.350
(6, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0) 57.0159 10.981
(6, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0) 56.3986 2.350
(6, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 54.3653 4.700
(6, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) 49.9969 18.845
(5, 5, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0) 57.9549 25.7881
(5, 5, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0) 56.8911 19.6111
(5, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0) 55.8471 24.3081
(5, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0) 54.7833 8.631
(5, 4, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0) 53.1022 7.127
(5, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0) 52.6755 11.003
(5, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0) 51.6117 8.631
(5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0) 50.9944 0.0
(5, 3, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 48.9611 2.350
(5, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0) 47.8227 7.127
(5, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0) 46.8533 2.350
(5, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) 44.5927 8.104
(5, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) 40.099 24.48
(4, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0) 48.3351 38.25
(4, 4, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0) 47.2713 19.634
(4, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0) 46.2074 17.2631
(4, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0) 45.5902 8.631
(4, 4, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0) 43.5569 10.981
(4, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0) 44.0997 19.634
(4, 3, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0) 43.4824 11.003
(4, 3, 2, 2, 1, 0, 0, 0, 0, 0, 0, 0) 42.4185 8.631
(4, 3, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0) 41.4491 3.854
(4, 3, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0) 39.1885 9.608
(4, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0) 38.6296 19.6111
(4, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0) 38.2774 10.981
(4, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0) 37.0807 9.608
(4, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) 34.6948 17.598
(4, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 30.1207 35.703
(3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0) 35.5238 38.25
(3, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0) 34.9065 24.3081
(3, 3, 3, 1, 1, 1, 0, 0, 0, 0, 0, 0) 33.9371 19.530
(3, 3, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0) 33.2254 25.7881
(3, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0) 32.8732 17.15
(3, 3, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0) 31.6765 15.785
(3, 3, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) 29.2906 23.775
(3, 2, 2, 2, 2, 1, 0, 0, 0, 0, 0, 0) 29.0843 28.138
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λ aλ bλ

(3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 0) 28.5049 22.913
(3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0) 27.1828 23.775
(3, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0) 24.7165 33.490
(3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 20.0998 52.743
(2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0) 19.539 50.894
(2, 2, 2, 2, 2, 1, 1, 0, 0, 0, 0, 0) 19.3117 44.246
(2, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0) 18.6069 41.257
(2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0) 17.2045 43.844
(2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0) 14.6956 54.707
(2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0) 10.0548 74.832
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 0.0 100.0
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