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Abstract

The weight multiplicities of finite dimensional simple Lie algebras can be
computed individually using various methods. Still, it is hard to derive explicit
closed formulas. Similarly, explicit closed formulas for the multiplicities of maxi-
mal weights of affine Kac–Moody algebras are not known in most cases. In this
paper, we study weight multiplicities for both finite and affine cases of classical
types for certain infinite families of highest weights modules. We introduce new
classes of Young tableaux, called the pspinq rigid tableaux, and prove that they are
equinumerous to the weight multiplicities of the highest weight modules under our
consideration. These new classes of Young tableaux arise from crystal basis ele-
ments for dominant maximal weights of the integrable highest weight modules over
affine Kac–Moody algebras. By applying combinatorics of tableaux such as the
Robinson–Schensted algorithm and new insertion schemes, and using integrals over
orthogonal groups, we reveal hidden structures in the sets of weight multiplicities
and obtain explicit closed formulas for the weight multiplicities. In particular we
show that some special families of weight multiplicities form the Pascal, Catalan,
Motzkin, Riordan and Bessel triangles.
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Introduction

The irreducible representations Lpωq of finite dimensional complex simple Lie
algebras are fundamental objects in mathematics. We understand their structures
through the generating functions of weight multiplicities, i.e. the characters of
the representations, which can be computed by the celebrated Weyl’s character
formula. Individual weight multiplicities can be computed using Kostant’s formula
or Freudenthal’s recursive formula. One can also exploit the crystal basis theory,
initiated by Kashiwara [21], and its realizations such as Kashiwara–Nakashima
tableaux [22], Littelmann paths [31] and Mirkovic–Vilonen polytopes [17] to name
a few.

Nonetheless there are only a few explicit closed formulas in the literature for
weight multiplicities. Kostant’s formula involves a summation over the Weyl group
whose size becomes enormous as the rank increases, and Freudenthal’s formula is
recursive, and realizations of crystals convert computing weight multiplicities into
challenging combinatorial problems.

The theory of finite-dimensional simple Lie algebras was generalized to that of
Kac–Moody algebras in 1960’s, and the first family of infinite dimensional Lie alge-
bras is called affine Kac–Moody algebras. Representations of affine Kac–Moody al-
gebras have been studied extensively as their applications have been found through-
out mathematics and mathematical physics. In particular, weight multiplicities of
an integrable highest weight module V pΛq over an affine Kac–Moody algebra are of
great interests as they can be interpreted in several different ways such as general-
ized partition numbers [30], Fourier coefficients of certain modular forms [16], and
numbers of isomorphism classes of irreducible modules over Hecke-type algebras
[1,28]. However, our understanding of weight multiplicities is, in general, very lim-
ited though we can compute them individually through generalizations of classical
formulas and constructions, e.g. [23].

The set of weights of V pΛq can be divided into δ-strings and the first weight of
each string is called a maximal weight. Maximal weights and their multiplicities are
fundamental in understanding the structure of V pΛq. Since weight multiplicities are
invariant under the Weyl group action, it is enough to consider dominant maximal
weights, and it is well-known that the set of dominant maximal weights for each
highest weight Λ is finite. Nevertheless, we do not have any explicit description
of dominant maximal weights and their multiplicities in most cases. Except for

trivial cases, only level 2 maximal weights of type A
p1q
n and their multiplicities

are completely known [38], and recently, some maximal weights of V pkΛ0 ` Λsq,

k P Zą0, s “ 0, 1, . . . , n, of type A
p1q
n have been studied [13,14,39], where Λs are

the fundamental weights. Other than type A
p1q
n , little is known about descriptions

of dominant maximal weights and their multiplicities.

1
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In this paper, we study the multiplicities of dominant weights for finite types
and those of dominant maximal weights for affine types at the same time. We
introduce special classes of Young tableaux, called (spin) rigid Young tableaux,
which are equinumerous to the weight multiplicities of the certain highest weight
modules for finite and affine types simultaneously, and we derive explicit closed
formulas for the weight multiplicities when they are of level k ď 6 or k " 0. Our
closed formulas are practically computable, and related to binomial coefficients,
Catalan numbers, Motzkin numbers and their generalizations. We consider all
classical finite types and affine types, but more focus will be made on finite types

Bn and Dn and affine types B
p1q
n , D

p1q
n , A

p2q

2n´1, A
p2q

2n and D
p2q

n`1.
We summarize the results of this paper in three main parts as follows.
First, we consider some families of highest weights Λ over affine Kac–Moody

algebras of classical types, including all highest weights of levels 2 and 3, and
determine dominant maximal weights. See, e.g., Theorems 5.9, 5.14 and 5.24. We
observe that a majority of dominant maximal weights are essentially finite and can
be associated with pairs of staircase partitions. We will denote the set of level
k (essentially finite) maximal dominant weights, associated with pairs of staircase
partitions, by smax`

B
pΛ|kq or smax`

D
pΛ|kq, depending on the corresponding finite

types. Each η P smax`
B

pΛ|kq or smax`
D

pΛ|kq is given an index pm, sq recording the
sizes of the associated staircase partitions.

A simple, yet crucial fact we prove is that two essentially finite dominant max-
imal weights of the same finite type with the same index pm, sq have the same
weight multiplicity even when their affine types are different. This fact is related to
a classification of the zero nodes of affine Dynkin diagrams (cf. [29]). Furthermore,
for essentially finite weights, the weight multiplicities of affine Kac–Moody alge-
bras are actually the same as those of the corresponding finite dimensional simple
Lie algebras, and we may use the theory of finite dimensional simple Lie algebras.
However, as indicated at the beginning of this introduction, explicit closed formu-
las are not available even for weight multiplicities of finite dimensional simple Lie
algebras. Therefore, we utilize a realization of affine crystals to determine weight
multiplicities.

Second, the realization of affine crystals we use is Young walls introduced by
Kang [18] which are visualization of Kyoto paths. We first embed the crystals of
V pΛq into a tensor product of Young walls of level 1 fundamental representations
and investigate the sets of Young walls in the spaces of dominant maximal weights.
A careful analysis of the patterns of the Young walls leads to new classes of skew
standard Young tableaux that realize crystal basis elements of dominant maximal

weights in the tensor product of crystals. Namely, we define the set sB
pkq
m of rigid

Young tableaux and the set sD
pkq
m of spin rigid Young tableaux for any k ě 2 and

0 ď s ď m. Roughly speaking, a rigid Young tableau is a skew tableau for which a
shift of the last row to the right by 1 makes the tableaux violate column-strictness.
For example, the following are rigid tableaux:

¨ 7 5 4
¨ 3 1
6 2

,
¨ ¨ ¨ 1210 8 7
¨ ¨ ¨ 11 9 1
6 5 4 3 2

.

Here we are using reverse standard Young tableaux and so the rows and columns
are decreasing. Similarly, a spin rigid Young tableau is a skew tableau for which a
shift of the last row to the right by 2 makes the tableaux violate column-strictness
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and whose shape satisfies certain conditions. For example, the following are spin
rigid Young tableaux:

¨ ¨ 4 1
¨ ¨ 2
3

, ¨ ¨ 4 3 2
5 1

.

Using combinatorics of Young walls, we prove that the sets sB
pkq
m and sD

pkq
m are

equinumerous to the weight multiplicities of highest weight modules of finite and
affine types simultaneously (Theorems 6.8 and 6.14).

Theorem 0.1. Let k ě 2 and 0 ď s ď m ď n.
(1) For η P smax`

B
pΛ|kq of index pm, sq, we have

dimV pΛqη “ |sB
pkq
m | “ dimLppk ´ 2qωn ` ω̃n´sqpk´2qωn`ω̃n´m

,

where Lpωq is of type Bn, ωt are the fundamental weights, and ω̃t are defined by

ω̃t :“

#

2ωn if t “ n,

ωt otherwise.

(2) For η P smax`
D

pΛ|kq of index pm, s ´ 1q, we have

dimV pΛqη “ |sD
pkq
m | “ dimL

`

pk ´ 2qωn ` ω̃n´s

˘

μ
,

where Lpωq is of type Dn, and ω̃t are defined by

ω̃t “

$

’

&

’

%

ωt if 1 ď t ă n ´ 1,

ωn´1 ` ωn if t “ n ´ 1,

2ωn if t “ n,

and the weights μ are given by

μ “

#

pk ´ 2qωn ` ω̃n´m´1 if k “ 2, or k ě 3 and m ı2 s,

pk ´ 3qωn ` ωn´1 ` ω̃n´m´1 if k ě 3 and m ”2 s.

Our methods unexpectedly reveal hidden structures of weight multiplicities.
We consider highest weights in a family at the same time and form a triangular

array consisting of |sB
pkq
m | or |sD

pkq
m | as highest weights vary in the family. Inter-

estingly, the entries of the resulting triangular arrays count the number of certain
lattice paths and we construct bijections between the sets of lattice paths and the
corresponding sets of tableaux. These arrays are the Pascal, Catalan, Motzkin and
Riordan triangles for various families of highest weights. See the triangular arrays
in (4.3) and (4.6) for the Motzkin and Riordan triangles, respectively. See Example
8.23 for the case of generalized Motzkin paths. Moreover, the entries of the tri-
angular arrays also represent some decomposition multiplicities of tensor products
of sl2-modules, invoking Schur–Weyl type dualities ([2, 7]) into the structures of
weight multiplicities.

Third, we use various combinatorial methods to find explicit formulas for the

numbers |sB
pkq
m | and |sD

pkq
m | for k “ 2 (Theorems 7.10, 7.16), for k “ 3 (The-

orems 8.1, 8.2), and for the number |0D
pkq
m | for 2 ď k ď 5 (Theorem 10.2). In

particular, we use the Robinson–Schensted algorithm and a new insertion scheme
for the (spin) rigid tableaux, see Algorithm 8.18. We also use integrals over orthog-

onal groups to derive explicit formulas for |0B
pkq
m | (Theorem 10.9). The set 0B

pkq
m

is nothing but the set of (reverse) standard Young tableaux with m cells and at
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most k rows. In the literature an explicit formula for its cardinality is known only
for k ď 5 ([10,34]). We summarize our formulas as follows.

Theorem 0.2. For 0 ď s ď m, we have

|sB
p2q
m | “

ˆ

m

t
m´s
2 u

˙

, |sD
p2q

2u´1`s| “

ˆ

2u ` s ´ δs,0
u

˙

pu ě 0q,

|sB
p3q
m | “

ts{2u
ÿ

i“0

ˆ

m

2i ` m ´ s

˙ˆˆ

2i ` m ´ s

i

˙

´

ˆ

2i ` m ´ s

i ´ 1

˙˙

,

|sD
p3q
m | “

m`1´δs,0´s
ÿ

i“0

p´1q
i
´

|sB
p3q

m´δs,0´i| ` |s´1B
p3q

m´δs,0´i|

¯

,

|0D
p4q

2m´1| “

ˆ

Cm ` 1

2

˙

, |0D
p4q

2m| “ CmCm`1 ´ C2
m,

|0D
p5q

2m´1| “

m
ÿ

i“0

ˆ

2m

2i

˙

CiCi`1 ´

m´1
ÿ

i“0

ˆ

2m

2i ` 1

˙

C2
i`1,

|0D
p5q

2m| “

m
ÿ

i“0

2i

i ` 3

ˆ

2m

2i

˙

CiCi`1 ´

m´1
ÿ

i“0

2i

i ` 3

ˆ

2m

2i ` 1

˙

C2
i`1,

where Ci “
1

i`1

`

2i
i

˘

is the i-th Catalan number.
For integers k ě 1 and m ě 0, we have

|0B
p2kq
m | “

ÿ

t1`¨¨¨`tk“m

ˆ

m

t1, . . . , tk

˙

det

ˆˆ

ti ` 2k ´ i ´ j

t
ti`2k´i´j

2 u

˙˙k

i,j“1

,

|0B
p2k`1q
m | “

ÿ

t0`t1`¨¨¨`tk“m

ˆ

m

t0, t1, . . . , tk

˙

det

ˆ

C

ˆ

ti ` 2k ´ i ´ j

2

˙˙k

i,j“1

,

where Cpxq “ Cx “
1

x`1

`

2x
x

˘

if x is an integer and Cpxq “ 0 otherwise.

When k increases, the numbers |sB
pkq
m | and |sD

pkq
m | (and thus the weight multi-

plicities) stabilize and we find their closed formulas (Corollary 9.8 and Theorem 9.9).

In particular, from limkÑ8 |sD
pkq
m |, we obtain a triangular array of numbers, called

Bessel triangle, consisting of the coefficients of Bessel polynomials, see (9.4).
The organization of this paper is as follows. In chapter 1, we fix notations

and present basic definitions for affine Kac–Moody algebras and quantum affine
algebras. Throughout this paper we mainly use the notations of affine types, even
though we study finite types together. In chapter 2, after the theory of crystals is
reviewed briefly, we describe constructions of Young walls and explain embeddings
of highest weight crystals into tensor products of level 1 crystals. A connection
between affine types and finite types is pointed out in section 2.2. In chapter 3, we
explain a correspondence between Young walls and Young tableaux, and introduce
some families of Young tableaux that will be used later. Chapter 4 is devoted
to lattice paths and triangular arrays of numbers. The entries of the triangular
arrays are the numbers of certain types of lattice paths and also the decomposition
multiplicities of tensor products of sl2-modules. All the entries of the triangular
arrays are also to appear as weight multiplicities.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

ACKNOWLEDGMENTS 5

In chapter 5, we determine dominant maximal weights for certain families of
highest weight modules. These families include all highest weight modules of levels

2 and 3 except for types A
p1q
n and C

p1q
n . We classify staircase dominant maximal

weights according to their finite types. In chapter 6, we investigate the Young
walls of dominant maximal weights and define (spin) rigid Young tableaux. Using
combinatorics of Young walls, we prove that the sets of (spin) rigid tableaux count
weight multiplicities.

Chapter 7 is concerned about the level 2 cases. We prove that the weight
multiplicities form the Catalan triangle and the Pascal triangle. The main tool is
an insertion scheme for tableaux. We also construct bijections between the set of

lattice paths and the set of rigid Young tableaux in sB
p2q
m . In chapter 8, we consider

the level 3 cases and prove that the weight multiplicities form the Motzkin triangle
for rigid Young tableaux and the Riordan triangle for spin rigid Young tableaux. We
prove both cases using the Robinson–Schensted algorithm and provide a different
proof for the Motzkin case using an insertion scheme which naturally realizes the
Motzkin triangle through combinatorics of tableaux. An explicit bijection from the

set of rigid tableaux in sB
p3q
m to the set of generalized Motzkin paths is also given.

In chapter 9, we investigate the limits of weight multiplicities of level k as k
increases. We observe that the weight multiplicities given by the numbers of (spin)
rigid Young tableaux stabilize as k increases, and compute the limits explicitly. The
computation uses formulas for the numbers of involutions in the symmetric groups.

In the final chapter, we consider the set Spk,tq
m of standard Young tableaux with

m cells, at most k rows and exactly t rows of odd length. Both 0B
pkq
m and 0D

pkq
m

can be considered as special cases of the set Spk,tq
m . Using the Robinson–Schensted

algorithm, we find a relation between |Spk,0q
m |, |Spk,kq

m | and |0B
pk´1q
m |. Using this

relation and some known results, we find an explicit formula for |Spk,tq
m | for every

0 ď t ď k ď 5. We then express |0B
pkq
m | as an integral over the orthogonal group

Opkq. By evaluating this integral we obtain an explicit formula for |0B
pkq
m |.

Acknowledgments

We are grateful to Daniel Bump and Kailash Misra for stimulating discussions.
We thank Georgia Benkart, James Humphreys and Anne Schilling for helpful com-
ments on an earlier version of this paper. We also thank Ole Warnaar for his
helpful comments, which greatly improved Theorem 10.9. We are thankful to the
anonymous referee for making many useful comments. K.-H. L. would like to ac-
knowledges support from the Simons Center for Geometry and Physics at which
some of the research for this paper was performed. S.-j. O. gratefully acknowledges
hospitality of the University of Connecticut during his visits in 2016 and 2017.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 1

Affine Kac–Moody algebras

1.1. Preliminaries

Let I “ t0, 1, ..., nu be an index set. An affine Cartan datum pA, P_, P,Π_,Πq

consists of

(a) a matrix A “ paijqi,jPI of corank 1, called an affine Cartan matrix, satis-
fying, for all i, j P I,

piq aii “ 2, piiq aij P Zď0 for i ‰ j, piiiq aij “ 0 if aji “ 0,

(b) a free abelian group P_ “
Àn

i“0 Zhi ‘ Zd, the dual weight lattice, with
h :“ C bZ P_,

(c) a free abelian group P “
Àn

i“0 ZΛi ‘ Zδ Ă h˚, the weight lattice,
(d) a linearly independent set Π_ “ thi | i P Iu Ă P_, the set of simple

coroots,
(e) a linearly independent set Π “ tαi | i P Iu Ă P , the set of simple roots,

which satisfy, for all i, j P I,

(1.1)
xhi, αjy “ aij , xhi,Λjy “ δi,j , xhi, δy “ 0,

xd, αiy “ δi,0, xd,Λiy “ 0, xd, δy “ 1.

We call Λi the i-th fundamental weight, δ “
ř

iPI aiαi (ai P Zě1) the null root
and d the degree derivation.

Let c “
ř

iPI a
_
i hi be the unique element such that a_

i P Zě1 and

Zc “

#

h P
à

iPI

Zhi

ˇ

ˇ

ˇ

ˇ

ˇ

xh, αiy “ 0 for all i P I

+

.

We say that a weight Λ P P is of level k if xc,Λy “ k (see [15, Chapters 5 and 6]).
Note that, for Λ “

ř

iPI miΛi, we have

xc,Λy “

ÿ

iPI

mia
_
i .

For reader’s convenience, we list ai’s and a_
i ’s for classical affine types in Table 1.1.

Recall that A is symmetrizable in the sense that DA is symmetric where

D “ diagpdi :“ a_
i a

´1
i | i P Iq.

There exists a non-degenerate symmetric bilinear form p | q on h˚ ([15, (6.2.2)])
which is defined in terms of the basis tα0, α1, . . . , αn,Λ0u by

pαi|αjq “ diaij , pαi|Λ0q “ a´1
0 δi,0, pΛ0|Λ0q “ 0,(1.2)

7
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8 1. AFFINE KAC–MOODY ALGEBRAS

Type pa0, a1, . . . , anq pa_
0 , a

_
1 , . . . , a

_
n q

A
p1q
n p1, 1, . . . , 1q p1, 1, . . . , 1q

B
p1q
n p1, 1, 2, 2, . . . , 2q p1, 1, 2, 2, . . . , 2, 1q

C
p1q
n p1, 2, 2, . . . , 2, 1q p1, 1, . . . , 1q

D
p1q
n p1, 1, 2, 2, . . . , 2, 1, 1q p1, 1, 2, 2, . . . , 2, 1, 1q

A
p2q

2n´1 p1, 1, 2, 2, . . . , 2, 1q p1, 1, 2, 2, . . . , 2q

A
p2q

2n p2, 2, . . . , 2, 1q p1, 2, 2, . . . , 2q

D
p2q

n`1 p1, 1, . . . , 1q p1, 2, 2, . . . , 2, 1q

Table 1.1. ai’s and a_
i ’s for classical affine types

and which satisfies

xhi, αjy “ 2
pαi|αjq

pαi|αiq

for all i, j P I. In this paper, we choose p | q such that

pα|αq “ 2 for a long root α.

We denote by P` :“ tΛ P P | xhi,Λy P Zě0, i P Iu the set of dominant integral
weights. The free abelian group Q :“

À

iPI Zαi is called the root lattice and we
set Q` :“

À

iPI Zě0αi. For an element β “
ř

iPI kiαi P Q`, we define the integer
htpβq :“

ř

iPI ki, called the height of β, and a subset Supppβq “ ti P I | ki ‰ 0u of
I, called the support of β.

Definition 1.1. The affine Kac-Moody algebra g associated with an affine
Cartan datum pA, P_, P,Π_,Πq is the Lie algebra over C generated by ei, fi pi P Iq

and h P P_ satisfying following relations:

(1) rh, h1s “ 0, rh, eis “ αiphqei, rh, fis “ ´αiphqfi for all h, h1 P P_ and
i P I,

(2) rei, fjs “ δi,jhi for i, j P I,
(3) pad eiq

1´aij pejq “ pad fiq
1´aij pfjq “ 0 if i ‰ j, where pad xqpyq :“ rx, ys.

A g-module V is called a weight module if it admits a weight space decomposition

V “
à

μPP

Vμ

where Vμ “ tv P V | h ¨ v “ xh, μy v for all h P P_u. A weight module V over g is
integrable if all ei and fi (i P I) are locally nilpotent on V .

Definition 1.2. The category Oint consists of integrable g-modules V satisfy-
ing the following conditions:

(1) V admits a weight space decomposition V “
À

μPP Vμ and dimCpVμq ă 8

for each weight μ.
(2) There exist a finite number of elements λ1, . . . , λs P P such that

wtpV q Ă Dpλ1q Y ¨ ¨ ¨ Y Dpλsq.

Here wtpV q :“ tμ P P | Vμ ‰ 0u and Dpλq :“ tλ ´
ř

iPI kiαi | ki P Zě0u.
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It is well-known that the category Oint is a semisimple tensor category with
its irreducible objects being isomorphic to the highest weight modules V pΛq (Λ P

P`), each of which is generated by a highest weight vector vΛ. Recall, e.g. from
[15, Chapter 10], that if M , N P Oint, then

(a) M » N if and only if chpMq “ chpNq,
(b) chpV pΛqq “ e´tδchpV pΛ ` tδqq for Λ P P` and t P Z,

(1.3)

where chpMq :“
ř

μPP pdimC Mμqeμ is the character of M .

For η P wtpV pΛqq, we define

SuppΛpηq :“ SupppΛ ´ ηq.

The dimension of the μ-weight space V pΛqμ is called the multiplicity of μ in
V pΛq. A weight μ is maximal if μ ` δ R wtpV pΛqq. The set of all maximal weights
of V pΛq of level k is denoted by maxpΛ|kq.

Proposition 1.3. p[15, Chapter 12.6]q For each Λ P P` of level k, we have

wtpV pΛqq “

ğ

μPmaxpΛ|kq

tμ ´ sδ | s P Zě0u.

We denote by max`pΛ|kq the set of all dominant maximal weights of level k in
V pΛq, i.e.,

max`
pΛ|kq :“ maxpΛ|kq X P`.

It is well-known that

maxpΛ|kq “ W ¨ max`
pΛ|kq, where W is the Weyl group of g.

Let h0 be the C-vector space spanned by thi | i P I0u for I0 :“ Izt0u. Define the
orthogonal projection ¯: h˚ Ñ h˚

0 ([15, (6.2.7)]) by

μ ÞÝÑ μ “ μ ´ μpcqΛ0 ´ pμ|Λ0qδ.

We denote by Q the image of Q under the orthogonal projection .̄
For later use, we present the Dynkin diagrams of classical affine types.

(1.4)

�
A

p1q
n

:‚
0

‚
1

‚
2 n´1

‚
n
‚ ,�

B
p1q
n

:
‚ 0

‚
1

˝
2

˝
3 n´1

˝
n
��‚

,

�
C

p1q
n

:‚
0

��˝
1

˝
2 n´1

�̋�
n
‚ ,�

D
p1q
n

:
‚ 0 ‚ n

‚
1

˝
2

˝
3

˝
n´2

‚
n´1

,

�
A

p2q
2n´1

:
‚ 0

‚
1

˝
2

˝
3 n´1

�̋�
n
‚

,

�
A

p2q
2n

:‚��
0

˝
1

˝
2 n´1

�̋�
n
‚ ,�

D
p2q
n`1

: ‚��
0

˝
1

˝
2 n´1

˝
n
��‚ .

For an affine Dynkin diagram �g and a subset J Ĺ I, we denote by �g|J the
full-subdiagram of �g whose vertices are in J . We call a vertex s in �g extremal
if �g|Is for Is :“ Iztsu is a connected Dynkin diagram of finite type. For example,
every vertex in �

A
p1q
n

is extremal, while 0, 1 and n are all the extremal vertices of

�
B

p1q
n

. In (1.4), each solid dot ‚ denotes an extremal vertex.

Let gs be the finite dimensional subalgebra of g corresponding to �g|Is for an
extremal vertex s. Then each finite dimensional simple Lie algebra gfin of classical
type appears as the subalgebra gs of an affine Lie algebra g as follows:
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gfin An Bn Cn Dn

g A
p1q
n B

p1q
n , A

p2q

2n , D
p2q

n`1 C
p1q
n , A

p2q

2n , A
p2q

2n´1 B
p1q
n , A

p2q

2n´1, D
p1q
n

Table 1.2. Relationship between gfin and g

By slightly abusing notations, we denote by Π0 “ tα1, . . . , αnu the set of simple
roots of g0 and ωi p1 ď i ď nq the fundamental dominant weights of g0. Then we
have

αi “

#

αi if i ‰ 0,

´a´1
0 θ if i “ 0,

Λi “

#

ωi “ Λi ´ a_
i Λ0 if i ‰ 0,

0 if i “ 0,
(1.5)

where θ “ a1α1 ` a2α2 ` ¨ ¨ ¨ ` anαn (see [15, §12]). Note that there exist bilinear
forms p | q and x , y associated to g0 which are induced by the projection s .

Define

kCaf “ tμ P h˚
0 | pμ|αiq ě 0 for i P I0, pμ|θq ď ku where θ :“ δ ´ a0α0.

Proposition 1.4. p[15, Proposition 12.6]q The map μ ÞÝÑ μ defines a bijection
from max`pΛ|kq onto kCaf X pΛ ` Qq where Λ is of level k. In particular, the set
max`pΛ|kq is finite.

Convention 1.5. We denote an arbitrary fundamental weight of level 1 by
boldfaced Λ to distinguish them from other (fundamental) weights.

1.2. Quantum affine algebras

We denote by γ the smallest positive integer such that γ pαi|αiq

2 P Z for all i P I.

Let q be an indeterminate and m,n P Zě0. For i P I, let qi “ qdi and

rnsi “
qni ´ q´n

i

qi ´ q´1
i

, rnsi! “

n
ź

k“1

rksi,

„

m
n

j

i

“
rmsi!

rm ´ nsi!rnsi!
.

Definition 1.6. The quantum affine algebra Uqpgq associated with an affine

Cartan datum pA, P_, P,Π_,Πq is the associative algebra over Qpq1{γq with 1,
generated by ei, fi pi P Iq and qh ph P γ´1P_q satisfying the following relations:

(1) q0 “ 1, qhqh
1

“ qh`h1
, qheiq

´h “ qxh,αiyei, qhfiq
´h “ q´xh,αiyfi for

h, h1 P γ´1P_,

(2) eifj ´ fjei “ δi,j
Ki ´ K´1

i

qi ´ q´1
i

, where Ki “ qhi
i ,

(3)

1´aij
ÿ

k“0

p´1q
ke

p1´aij´kq

i eje
pkq

i “

1´aij
ÿ

k“0

p´1q
kf

p1´aij´kq

i fjf
pkq

i “ 0 if i ‰ j.

Here we set
e

pnq

i :“ eni {rnsi! and f
pnq

i :“ fn
i {rnsi!.

We define integrable Uqpgq-modules, the category Oq
int, the character for M P

Oq
int and highest weight modules V qpΛq for Λ P P` in the standard way ([11]). It

is well-known that Oq
int is a semisimple tensor category with its irreducible object

being isomorphic to V qpΛq for some Λ P P` and

ch
`

V pΛq
˘

“ ch
`

V q
pΛq

˘

and hence dimQpV pΛqμq “ dimQpqqpV q
pΛqμq(1.6)

for any μ P P .
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CHAPTER 2

Crystals and Young walls

In this chapter, we briefly review the theory of crystals developed by Kashiwara
([20,21]). Then we recall the combinatorial realization of affine crystals, called the
Young walls, due to Kang ([18]).

2.1. Crystals

For an index i P I and M “
À

μPP Mμ P Oq
int, every element v P Mμ can be

uniquely expressed as

v “

ÿ

kě0

f
pkq

i vk,

where μphiq ` k ě 0 and vk P Ker ei XMμ`kαi
. The Kashiwara operators ẽi and f̃i

are defined by

ẽiv “
ÿ

kě1

f
pk´1q

i vk, f̃iv “
ÿ

kě0

f
pk`1q

i vk.(2.1)

Let A0 “ tf{g P Qpqq | f, g P Qrqs, gp0q ‰ 0u and M a weight Uqpgq-module.

Definition 2.1. A crystal basis of a Uqpgq-module M consists of a pair pL,Bq

with the Kashiwara operators ẽi and f̃i (i P I) as follows:

(1) L “
À

μ Lμ is a free A0-submodule of M such that

M » Qpqq bA0
L where Lμ “ L X Mμ,

(2) B “
Ů

μ Bμ is a basis of the Q-vector space L{qL, where Bμ “ B X

pLμ{qLμq,

(3) ẽi and f̃i (i P I) are defined on L, i.e., ẽiL, f̃iL Ă L,

(4) the induced maps ẽi and f̃i on L{qL satisfy

ẽiB, f̃iB Ă B \ t0u, and f̃ib “ b1 if and only if b “ ẽib
1 for b, b1

P B.

The set B has a colored oriented graph structure as follows:

b
i

ÝÑ b1 if and only if f̃ib “ b1.

The graph structure encodes information on the structure of M P Oq
int. For exam-

ple,

‚ |Bμ| “ dimQpqq Mμ for all μ P wtpMq,
‚ the graph of B is connected if and only if M is irreducible.

Theorem 2.2 ([21]). For Λ P P`, the module V qpΛq has a crystal basis
pLpΛq,BpΛqq given as follows:

(1) LpΛq is the A0-submodule generated by tf̃i1 ¨ ¨ ¨ f̃irvΛ | r ě 0, ik P Iu,

(2) BpΛq “ tf̃i1 ¨ ¨ ¨ f̃irvΛ ` qLpΛq | r ě 0, ik P Iuzt0u.

11
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By (1.3), (1.6) and the above theorem, we have that for k P Z, |BpΛqμ| “

|BpΛ ` kδqμ`kδ| and

chpV pΛqq “

ÿ

μPwtpV pΛqq

|BpΛqμ|eμ “

ÿ

μPwtpV pΛqq

|BpΛ ` kδqμ|eμ´kδ.(2.2)

Definition 2.3. An paffineq crystal associated to an affine Cartan datum
pA, P_, P,Π_,Πq is the set B together with maps

wt : B Ñ P, εi, ϕi : B Ñ Z \ t´8u and ẽi, f̃i : B Ñ B \ t0u pi P Iq

satisfying the following conditions:

(i) For i P I, b P B, we have

ϕipbq“εipbq`xhi,wtpbqy,wtpẽibq“wtpbq`αi if ẽib‰0,wtpf̃ibq“wtpbq´αi if f̃ib‰0,

(ii) if ẽib P B, then εipẽibq “ εipbq ´ 1 and ϕipẽibq “ ϕipbq ` 1,

(iii) if f̃ib P B, then εipf̃ibq “ εipbq ` 1 and ϕipf̃ibq “ ϕipbq ´ 1,

(iv) f̃ib “ b1 if and only if b “ ẽib
1 for all i P I, b, b1 P B,

(v) if εipbq “ ´8, then ẽib “ f̃ib “ 0.

Definition 2.4. The tensor product B1 b B2 of crystals B1 and B2 is defined
to be the set B1 ˆ B2 whose crystal structure is given by

(i) wtpb1 b b2q “ wtpb1q ` wtpb2q,
(ii) εipb1 b b2q “ maxpεipb1q, εipb2q ´ xhi,wtpb1qyq, ϕipb1 b b2q “ max

pϕipb2q, ϕipb1q ` xhi,wtpb2qyq,

(iii) ẽipb1 b b2q “

#

ẽib1 b b2 if ϕipb1q ě εipb2q,

b1 b ẽib2 if ϕipb1q ă εipb2q,

f̃ipb1 b b2q “

#

f̃ib1 b b2 if ϕipb1q ą εipb2q,

b1 b f̃ib2 if ϕipb1q ď εipb2q.

Theorem 2.5. [20,21] For M and N P Oq
int with crystals BM and BN , the

tensor product BM b BN is the crystal of M b N P Oq
int.

2.2. Connection to finite type

This section is important in understanding the results of this paper. We would
like to make an emphasis on the fact that the formulas in this paper simultaneously
cover the weight multiplicities of affine types and those of finite types. Further-
more, many of the formulas cover not merely one affine type but multiple affine
types at the same time. Though these observations can easily be made from the
graph structure (Theorem 2.6) of an affine crystal, they do not seem to be widely
recognized in the literature. Therefore, we list the observations as two separate
theorems (Theorems 2.7 and 2.9) below.

Recall that BpΛq can be understood as a colored oriented graph. For an ex-
tremal vertex s P I, we denoted by BpΛq|Is the graph obtained by removing the

arrows
s

ÝÑ of color s. Throughout this section, s denotes an extremal vertex in I.

Theorem 2.6 ([21]). As gs-crystals, we have

BpΛq|Is “
ğ

ω1

Bpω1
q,
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where each Bpω1q is a connected component of BpΛq|Is , which is a crystal of some
irreducible module Lpω1q over Uqpgsq.

For an extremal s P I and a highest weight Λ “
ř

iPI miΛi P P`, we denote by
B0pΛq|Is the connected component of BpΛq|Is originated from the highest weight el-
ement vΛ in BpΛq. Then, by Theorem 2.6, B0pΛq|Is “ Bpωq for ω “

ř

iPIztsu
miωi,

where ωi are the fundamental weights of gs. Then the following theorem is obvious.

Theorem 2.7. Let Λ “
ř

iPI miΛi P P` be a dominant integral weight for g

and ω “
ř

iPIztsu
miωi for gs. Then, for μ “ Λ ´

ř

iPI kiαi P wtpV pΛqq such that

ks “ 0 and η “ ω ´
ř

iPIztsu
kiαi, we have

(2.3) BpΛqμ “ Bpωqη and dimpV pΛqμq “ dimpLpωqηq.

Motivated by this theorem, we make a definition that will be useful later.

Definition 2.8. Let Λ “
ř

iPI miΛi P P`. A weight μ “ Λ ´
ř

iPI kiαi P

wtpV pΛqq is called essentially finite of type Xn if there is an s P I such that ks “ 0
and gs is of finite type Xn with X “ A,B,C or D.

In chapter 5, we will see that most of the dominant maximal weights of affine
Kac–Moody algebras are essentially finite.

Let g and g1 be two different affine Kac–Moody algebras, and consider their
integrable highest weight modules V pΛq and V pΛ1q, respectively. If η P wtpV pΛqq

and μ P wtpV pΛ1qq are essentially finite of the same type Xn, then it is clear from
Theorem 2.7 that the weight multiplicities of η and μ are determined by the finite
type Xn without regard to the difference in their affine types. We make it precise
in the theorem below whose proof is immediate from Theorem 2.7.

Theorem 2.9. We assume the following:

(1) For V pΛq over an affine g and η P wtpV pΛqq, there exists an extremal
s R SuppΛpηq such that �g|Is is of finite type Xn.

(2) For V pΛ1q over another affine g1 and μ P wtpV pΛ1qq, there exists an ex-
tremal s1 R SuppΛ1 pμq such that �g1 |Is1 is of the same finite type Xn.

(3) There exists a bijection σ : Is Ñ Is1 which induces a diagram isomorphism
�g|Is » �g1 |Is1 and a crystal isomorphism BpΛq0|Is » BpΛ1q0|Is1 so that

η “ Λ ´

ÿ

iPIs

miαi and μ “ Λ1
´

ÿ

iPIs

mσpiqασpiq.

Then we have

dimV pΛqη “ dimV pΛ1
qμ.

2.3. Young walls for level 1 representations

In [18], Kang constructed realizations of level 1 highest weight crystals BpΛq

for all classical quantum affine algebras except C
p1q
n in terms of reduced Young walls.

For the rest of this section, we assume that g is an affine Kac-Moody algebra of

type A
p2q

2n´1, A
p2q

2n , B
p1q
n , D

p1q
n or D

p2q

n`1.
Young walls are built from colored blocks. There are three types of blocks

whose shapes are different and which appear depending on affine Cartan types as
follows:
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Shape Width Thickness Height Type
�� ��

��
“ 1 1 1 all types

�� ���� “ 1 1 1/2 A
p2q

2n , B
p1q
n , D

p2q

n`1

�� ��

��
“

�����

�� ��

��
“

�����
1 1/2 1 A

p2q

2n´1, B
p1q
n , D

p1q
n

The walls are built on the ground-state wall Λ , which is given below as the
shaded part in (2.4), by the following rules:

(1) Blocks should be built in the pattern given below in (2.5), (2.6) or (2.7).
(2) No block can be placed on top of a column of half-unit thickness.
(3) There should be no free space to the right of any block except the right-

most column.

Ground-state Young walls Λ corresponding to Λ are given as follows:

(2.4)

Λ
�����

1 :“
�� ��

��
0

�� ��
1

�� ��
0

�� ��
1

����������

, Λ
�����

0 :“
�� ��

��
1

�� ��
0

�� ��
1

�� ��
0

����������

,

Λ
�����

n´1 :“
�� ��

��
n

�� ��
n´1

�� ��
n

�� ��
n´1

����������

, Λ
�����

n :“
�� ��

��
n´1

�� ��
n

�� ��
n´1

�� ��
n

����������

,

Λ0 :“ ��� ������0

��� ���
0

��� ���
0

��� ���
0

, Λn :“ ��� ������n

��� ���
n

��� ���
n

��� ���
n

.

Now we give the patterns mentioned above:

000000
0

1

...

n

...

1

0
0

1

2

0

1

...

n

...

1

0
0

1

2

0

1

...

n

...

1

0
0

1

2

0

1

...

n

...

1

0
0

1

2

0

1

...

n

...

1

0
0

1

2

A
p2q

2n , Λ0

00000
0

1

...

n´1

n
n

n´1

...

1

0
0

1

0

1

...

n´1

n
n

n´1

...

1

0
0

1

0

1

...

n´1

n
n

n´1

...

1

0
0

1

0

1

...

n´1

n
n

n´1

...

1

0
0

1

0

1

...

n´1

n
n

n´1

...

1

0
0

1

D
p2q

n`1, Λ0

nnnnn
n

n´1

...

1

0
0

1

...

n´1

n
n

n´1

n

n´1

...

1

0
0

1

...

n´1

n
n

n´1

n

n´1

...

1

0
0

1

...

n´1

n
n

n´1

n

n´1

...

1

0
0

1

...

n´1

n
n

n´1

n

n´1

...

1

0
0

1

...

n´1

n
n

n´1

D
p2q

n`1, Λn

�����

�����

�����

�����

�����

nnnnn
n

n´1

...

2

0
1

2

...

n´1

n
n

n´1

n

n´1

...

2

1
0

2

...

n´1

n
n

n´1

n

n´1

...

2

0
1

2

...

n´1

n
n

n´1

n

n´1

...

2

1
0

2

...

n´1

n
n

n´1

n

n´1

...

2

0
1

2

...

n´1

n
n

n´1

B
p1q
n , Λn

(2.5)
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�����

�����

�����

�����

�����

�����

�����

�����

�����

�����

01010
1

2

...

n´1

n
n

n´1

...

2

0
1

2

0

2

...

n´1

n
n

n´1

...

2

1
0

2

1

2

...

n´1

n
n

n´1

...

2

0
1

2

0

2

...

n´1

n
n

n´1

...

2

1
0

2

1

2
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According to the ground-state Young walls in (2.4), we classify the fundamental
weights Λ of level 1 into two types:

‚ Type B : those Λ whose ground-state Young wall consists of half-height
blocks,

‚ TypeD : thoseΛ whose ground-state Young wall consists of half-thickness
blocks.

Remark 2.10. For classifying fundamental weights Λi of level 1, we use B and
D by the following reason:

‚ When Λi consists of half-height blocks, the vertex i in the affine Dynkin

diagram is an extremal vertex incident on a doubly-laced incoming arrow,
which can be identified with the extremal vertex n in the Dynkin diagram
�Bn

.

‚ When Λi consists of half-thickness blocks, the vertex i in the affine

Dynkin diagram is an extremal vertex incident on a simply-laced edge,
which can be identified with an extremal vertex n or n ´ 1 in the Dynkin
diagram �Dn

.

Later, we will see that this classification is closely related to finite simple Lie
algebras of type Bn and Dn.
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Remark 2.11. For g “ B
p1q
n or A

p2q

2n´1, the patterns of Young walls based on
Λ0 and Λ1 are the same up to one column; that is, if we ignore the first column of
the pattern for Λ1, then we get the pattern for Λ0 (see (2.6) and (2.7)).

We denote by YΛ a Young wall stacked on Λ whose type will be clear from
the context. For a Young wall YΛ, we write YΛ “ pykq8

k“1 “ p. . . , y2, y1q as a
sequence of its columns from the right. For u P Zě1, we define Young walls pYΛqěu

and pYΛqďu as follows:

pYΛqěu “ p. . . , yu`2, yu`1, yuq, pYΛqďu “ pyu, yu´1, yu´2, . . . , y1q.

Example 2.12. For g “ B
p1q

3 and Λ0, the following is an example of a Young
wall YΛ0

:

���

���

�������
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0
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2
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1
0

(2.8)

Definition 2.13.

(1) A column of a Young wall is called a full column if its height is a multiple
of the unit length and its top is of unit thickness.

(2) A Young wall is said to be proper if none of the full columns have the
same heights.

(3) An i-block of a proper Young wall YΛ is called a removable i-block if YΛ

remains a proper Young wall after removing the block.
(4) A place in a proper Young wall YΛ is called an admissible or addable i-slot

if YΛ remains a proper Young wall after adding an i-block at the place.

A partition λ of m is a weakly decreasing sequence of positive integers pλ1 ě

λ2 ě ¨ ¨ ¨ ě λk ą 0q such that }λ} :“
řk

i“1 λi “ m, and we write λ $ m. Each
integer λi is called a part of λ. For a given partition λ “ pλ1, λ2, . . . , λkq, we say
that the integer pλq :“ k is the length of λ. We denote by H the empty partition.
We say that a partition λ is strict if λi ą λi`1 for 1 ď i ď pλq ´ 1. We set λi “ 0
when i ą pλq.

For a partition λ “ pλ1, λ2, . . . , λkq and 1 ď u ď k, we define partitions λěu

and λďu as follows:

λěu “ pλu, λu`1, . . . , λkq, λďu “ pλ1, λ2, . . . , λuq.

Definition 2.14.

(a) For a given proper Young wall YΛ “ pyiq
8
i“1, define |YΛ| “ p|y1|, |y2|, . . .q

to be the sequence of nonnegative integers, where the |yi| is the number

of blocks in the i-th column of YΛ above the ground-state wall Λ , and
call |YΛ| the partition associated to YΛ.

(b) For a strict partition λ and a fundamental weight Λ of level 1, we denote

by Yλ
Λ the Young wall with ground-state wall Λ if it is the unique Young

wall whose associated partition |Yλ
Λ| is equal to λ.
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Example 2.15. For the proper Young wall given in Example 2.12, the as-
sociated partition is λ “ p6, 3, 1q. However, there are two proper Young walls
corresponding to the partition p6, 3, 1q:
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1
0

.

Thus Y
p6,3,1q

Λ0
is not uniquely determined. On the other hand, for the partition

p5, 3, 1q, one can easily see that Y
p5,3,1q

Λ0
is well-defined (see [33] also).

For the rest of this paper, we will always deal with partitions λ such that the
Young walls Yλ

Λ are uniquely determined, unless otherwise stated.

We denote by ZpΛq the set of all proper Young walls on Λ , and define the

Kashiwara operators ẽi and f̃i on ZpΛq as follows: Fix i P I and let YΛ “ pyuq8
u“1

be a proper Young wall.

(a) To each column yu of YΛ, assign

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

´´ if yu is twice i-removable,

´ if yu is once i-removable,

´` if yu is once i-removable and once i-addable,

` if yu is once i-addable,

`` if yu is twice i-addable,

¨ otherwise.

(b) From this sequence of `’s and ´’s, we cancel out every p`,´q-pair to
obtain a finite sequence of ´’s followed by `’s, reading from left to right.
This finite sequence p´ ¨ ¨ ¨ ´,` ¨ ¨ ¨ `q is called the i-signature of YΛ and
is denoted by sigipYΛq.

(c) We define ẽiYΛ to be the proper Young wall obtained from YΛ by removing
the i-block corresponding to the right-most ´ in the i-signature of YΛ.
We define ẽiYΛ “ 0 if there is no ´ in the i-signature of YΛ.

(d) We define f̃iYΛ to be the proper Young wall obtained from YΛ by adding
an i-block to the column corresponding to the left-most ` in the i-
signature of YΛ. We define f̃iYΛ “ 0 if there is no ` in the i-signature of
YΛ.

For the YΛ0
in Example 2.12, one can compute that

sig0pYΛ0
q“p´, ¨,`q, sig1pYΛ0

q“p¨, ¨,´q, sig2pYΛ0
q“p`, ¨, ¨q, sig3pYΛ0

q“p¨,´`, ¨q.

We define

(a) wtpYΛq “ Λ ´
ř

iPI miαi,
(b) εipYΛq(resp. ϕipYΛq) “ the number of ´’s (resp `’s) in sigipYΛq,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

18 2. CRYSTALS AND YOUNG WALLS

where mi is the number of i-blocks that have been added to the ground-state wall

Λ . We also define

contpYΛq “ Λ ´ wtpYΛq “
ÿ

iPI

miαi

and call it the content of YΛ.
For the Young wall YΛ0

in Example 2.12, we have

wtpYΛ0
q “ Λ0 ´ p2α0 ` 2α1 ` 3α2 ` 3α3q and contpYΛ0

q “ 2α0 ` 2α1 ` 3α2 ` 3α3.

Definition 2.16. Let YΛ “ p. . . , y2, y1q and YΛ1 “ p. . . , y1
2, y

1
1q be Young walls

of the same affine type. For t, u P Zě1, we write

pYΛqět Ą pYΛ1 qěu

if the following two conditions hold for each s P Zě0:

(a) the ground patterns for yt`s and y1
u`s coincide with each other,

(b) contpyt`sq ´ contpy1
u`sq P Q`.

Here, for a column y of a Young wall YΛ, we define contpyq “
ř

iPI miαi, where mi

is the number of i-blocks in the column y that have been added to the ground-state

wall Λ .

Recall we denote the null root by δ “ a0α0 ` a1α1 ` ¨ ¨ ¨ ` anαn.

Definition 2.17. Set d “ 2 if g “ D
p2q

n`1 and d “ 1, otherwise.

(i) A connected part of a column in a proper Young wall is called a δ-column if
it contains da0-many 0-blocks, da1-many 1-blocks, . . . , dan-many n-blocks
(see Table 1.1 for ai’s).

(ii) A δ-column in a proper Young wall YΛ is removable if one can remove the
δ-column from YΛ and the result is still a proper Young wall.

(iii) A proper Young wall is said to be reduced if it has no removable δ-column.

We denote by YpΛq the set of all reduced proper Young walls on Λ .

Theorem 2.18 ([18,19]).

(1) The set ZpΛq with ẽi, f̃i,wt, εi and ϕi is an affine crystal.
(2) The set YpΛq is an affine subcrystal which is isomorphic to BpΛq, where

BpΛq is the crystal of the highest weight module V qpΛq.
(3) As crystals,

ZpΛq “

$

’

&

’

%

À

mě0
BpΛ ´ mδq‘ppmq if g ‰ D

p2q

n`1,

À

mě0
BpΛ ´ 2mδq‘ppmq if g “ D

p2q

n`1,

where ppmq denotes the number of partitions of m.

2.4. Higher level representations

In this section, we will realize the crystal BpΛq for xc,Λy ě 2 in terms of tensor
products of Young walls. We will see that a crystal BpΛq of level k P Zě1 (up to
Zδ) appears in a connected component of bBpΛpiqqbki (

ř

ki “ k) for some Λpiq’s
of level 1.
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To begin with, we consider the crystal BpkΛq of level k and see that BpkΛq is
realized as

(2.9)

the subcrystal of YpΛqbk whose graph is the connected component

of the k-fold tensor of ground-state Young walls, denoted by kΛ :“

Λ b ¨ ¨ ¨ b Λ
loooooooomoooooooon

k-times

.

Next we consider BpΛsq where Λs is a fundamental weight of level 2. In order to
embed BpΛsq (up to Zδ, see (2.2)) into a tensor product YpΛ1q bYpΛ2q of crystals
YpΛ1q and YpΛ2q (see (3) in Theorem 2.18) for some Λ1 and Λ2 of level 1, we first
need equations of the form

Λs ´ mδ “ Λ1
` Λ2

´

ÿ

iPI

tiαi for some m P Z and ti P Zě0, i P I.(2.10)

For each g and a fundamental weight Λs of level 2, an equation of the form (2.10)
is explicitly given in what follows according to whether Λ1 and Λ2 are of type D

or B. Using (1.2) with the basis tα0, α1, . . . , αn,Λ0u, one can check that equations
in the below hold:
(2.11)

Type D: Λ2u ´ uδ “ 2Λ0 ´

˜

uα0 ` pu ´ 1qα1 `

2u´1
ÿ

i“2

p2u ´ iqαi

¸

,

Λ2u`1 ´ uδ “ Λ1 ` Λ0 ´

˜

uα0 ` uα1 `

2u
ÿ

i“2

p2u ` 1 ´ iqαi

¸

,

Λn´2u “2Λn ´

˜

uαn ` pu ´ 1qαn´1 `

n´2u`1
ÿ

i“n´2

pi ´ pn ´ 2uqqαi

¸

,

Λn´2u´1 “Λn´1`Λn ´

˜

uαn`uαn´1`

n´2u
ÿ

i“n´2

pi ´ pn ´ 2u ´ 1qqαi

¸

.

(2.12)

Type B: Λu “ 2Λn ´

n
ÿ

i“u`1

pi ´ uqαi, Λu ´ uδ “ 2Λ0 ´

u´1
ÿ

i“0

pu ´ iqαi.

Here Λ‚ denotes a fundamental weight of level 2 and hence the range of u is de-
termined by the affine type of given Young walls (see Table 1.1). We observe that
what is subtracted in the right-hand side of each of the formulas in (2.11) and (2.12)
corresponds to a specific type of partitions. To be precise, we need the following
definition.

Definition 2.19. For a positive integer m, we denote by λpmq the strict par-
tition given by

λpmq “ pm,m ´ 1, . . . , 2, 1q,

and call λpmq the m-th staircase partition. We also set λpmq “ H for any non-
positive integer m.

Now, for each Λs of level 2, the crystal BpΛsq is realized up to a weight shift by
an element of Zδ as the subcrystal of YpΛ1q bYpΛ2q generated by a highest weight

crystal Λ1
b Y

λpsq

Λ2 for some staircase partition λpsq. Concretely, we associate a
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tensor product of Young walls to a fundamental weight Λs of level 2 using (2.11)
and (2.12).

piq For type D,Λ2u ´ uδ “ 2Λ0 ´

¨

˝uα0 ` pu ´ 1qα1 `
2u´1

ÿ

i“2

p2u ´ iqαi

˛

‚ ÐÑ Λ
0,0
2u

:“ Λ0 b Y
λp2u´1q
Λ0

,

Λ2u`1 ´ uδ “ Λ1 ` Λ0 ´

¨

˝uα0 ` uα1 `
2u
ÿ

i“2

p2u ` 1 ´ iqαi

˛

‚ ÐÑ Λ
1,0
2u`1

:“ Λ1 b Y
λp2uq
Λ0

,

or Λ
0,1
2u`1

:“ Λ0 b Y
λp2uq
Λ1

,

Λn´2u “ 2Λn ´

¨

˝uαn ` pu ´ 1qαn´1 `
n´2u`1

ÿ

i“n´2

pi ´ pn ´ 2uqqαi

˛

‚ ÐÑ Λ
n,n
n´2u

:“ Λn b Y
λp2u´1q
Λn

,

Λn´2u´1 “ Λn´1 ` Λn ´

¨

˝uαn ` uαn´1 `
n´2u

ÿ

i“n´2

pi ´ pn ´ 2u ´ 1qqαi

˛

‚ ÐÑ Λ
n,n´1
n´2u´1

:“ Λn b Y
λp2uq
Λn´1

,

or Λ
n´1,n
n´2u´1

:“ Λn´1 b Y
λp2uq
Λn

.

Example 2.20. For g “ D
p1q

7 , we describe Λ0,0
4 and Λ6,7

2 :

Λ0,0
4 “ Λ0 b

��
��
�

��
��
�

��
��
�

1
0

2

3

0
1

2

1
0

, Λ6,7
2 “ Λ6 b
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��
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��
��
�

6
7

5

4

3

7
6

5

4

6
7

5

7
6

.

piiq For type B, Λu “ 2Λn ´

˜

n
ÿ

i“u`1

pi ´ uqαi

¸

ÐÑ Λn,n
u :“ Λn b Y

λpn´uq

Λn
,

Λu ´ uδ “ 2Λ0 ´

˜

u´1
ÿ

i“0

pu ´ iqαi

¸

ÐÑ Λ0,0
u :“ Λ0 b Y

λpu´1q

Λ0
.

Note that all Λ of level 2 are contained in YpΛq b YpΛ1q for some Λ and Λ1.

Example 2.21. For g “ B
p1q

7 , we have

Λ7,7
5 “ Λ7 b

7
7

6

7
7 .

The tensor products of Young walls given above will be denoted by Λs without

superscripts if there is no possible confusion. One can see that the crystal BpΛsq is

realized as the subcrystal of YpΛ1qbYpΛ2q generated by Λs for each fundamental

weight Λs of level 2.

(2.13)

Next, the crystalBppk´2qΛ`Λsq of level k is realized as the subcrystal
of YpΛqbk´2bYpΛ1qbYpΛ2q generated by the highest weight crystal

pk ´ 2qΛ b Λs whose weight is pk ´ 2qΛ ` Λs up to Zδ (see (2.2)).

Here, kΛ “ Λ
bk

as defined in (2.9).

Remark 2.22.
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(1) There are several other possible realizations of Bppk´2qΛ`Λsq depending
on the choice of highest weight crystals. For example, the connected
component originated from

aΛ b Λs b bΛ Ă YpΛq
ba

b YpΛ1
q b YpΛ2

q b YpΛq
bb

pa ` b “ k ´ 2q

is also a realization of Bppk ´ 2qΛ`Λsq, and we can also choose different
highest weight crystals for Λs.

(2) For each Λ P P` of level k with Λ “
řn

i“0 miΛi, the crystal BpΛq can
be realized as the subcrystal of YpΛi1q b YpΛi2q b ¨ ¨ ¨ b YpΛikq for some

pi1, i2, . . . , ikq, which is generated by bn
i“0 Λi

bmi

. (Here we abuse nota-

tions a little bit and write Λi “ Λi even when Λi is of level 1.)

Throughout this paper we will use the following notational convention.

Convention 2.23. For a statement P , the number δpP q is equal to 1 if P is
true and 0 if P is false. Sometimes, we will write δP for δpP q.
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CHAPTER 3

Young tableaux and almost even tableaux

In this chapter we make connections between tensor products of Young walls
and Young tableaux.

3.1. Young tableaux

For partitions λp1q and λp2q, we define the partition λp1q ˚ λp2q by rearranging
the parts of λp1q and λp2q in a weakly decreasing way. As an obvious generalization,
for partitions λp1q, λp2q, . . . , λpk´1q, λpkq, we set

k
˚

t“1
λptq :“ λp1q

˚ λp2q
˚ ¨ ¨ ¨ ˚ λpk´1q

˚ λpkq.(3.1)

Example 3.1. For partitions λp1q “ p7, 3, 1q, λp2q “ p8, 6, 6, 3q and λp3q “

p7, 5, 4, 1q, we have
3
˚

t“1
λptq

“ p8, 7, 7, 6, 6, 5, 4, 3, 3, 1, 1q.

The Young diagram Y λ associated to a partition λ “ pλ1, λ2, . . . , λkq is a finite
collection of cells arranged in left-justified rows, with the i-th row length given by
λi.

We also define a partial order Ă on the set of all partitions, called the inclusion
order, in the following way:

μ Ă λ if and only if Y μ
Ă Y λ.

A skew partition, denoted by λ{μ, is a pair of two partitions λ and μ satisfying
μ Ă λ. For a skew partition λ{μ, the skew Young diagram Y λ{μ is the diagram
obtained by removing cells corresponding to Y μ from Y λ. The notation λ{μ $ m
means that the number of cells in Y λ{μ is m.

We will identify a usual partition λ with the skew partition λ{H. In this iden-
tification, every definition on the skew partitions in this section induces a definition
on the usual partitions.

Definition 3.2.

(1) A tableau T is a filling of the cells in the skew Young diagram Y λ{μ with
integers 1, 2, . . . ,m for some skew partition λ{μ $ m such that every
integer 1 ď i ď m appears exactly once. In this case we say that the
shape ShpT q of the tableau T is λ{μ.

(2) A standard Young tableau is a tableau in which the entries in each row
and each column are increasing. We denote by Sλ{μ the set of standard
Young tableaux of shape λ{μ.

(3) A reverse standard Young tableau is a tableau in which the entries in each
row and each column are decreasing. We denote by Rλ{μ the set of reverse
standard Young tableaux of shape λ{μ.

23
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Example 3.3. The following tableaux are a reverse standard Young tableau of
shape p4, 3, 1q and a standard Young tableau of shape p4, 3, 1q:

T “

8 6 4 3
7 2 1
5

P Rp4,3,1q, T 1
“

1 3 5 6
2 7 8
4

P Sp4,3,1q.

Note that there is an obvious bijection between Rλ{μ and Sλ{μ that replaces
each integer i by m ` 1 ´ i, where λ{μ $ m. The two tableaux in Example 3.3
correspond to each other under this bijection. Thus we have |Rλ{μ| “ |Sλ{μ|.
We will sometimes identify reverse standard Young tableaux and standard Young
tableaux using this bijection. We denote by fλ “ |Rλ| “ |Sλ|. Recall that there is
a well known formula for fλ called the hook-length formula.

In this paper, we only consider reverse standard Young tableaux except the last
3 sections. Hence, for simplicity, we call a reverse standard Young tableau just a
Young tableau.

For later use, we define another notation related to a tableau.

Definition 3.4. For a Young tableau T with m cells, we denote by Tąs for
1 ď s ď m the tableau which is obtained by removing all cells filled with t such
that t ď s and replacing u ą s with u ´ s for all u ą s.

For T in Example 3.3,

Tą1 “

7 5 3 2
6 1
4

.

Let B
pkq
m denote the set of Young tableaux with m cells and at most k rows.

It is well known that the cardinality of B
pkq
m is equinumerous to the number of

pk ` 1, k, . . . , 1q-avoiding involutions in the symmetric group Sm.

In the literature an explicit formula for |B
pkq
m | is known only for k ď 5 as follows.

Theorem 3.5. [10,34] We have

|B
p2q
m | “

ˆ

m
t
m
2 u

˙

, |B
p3q
m | “

t m
2 u
ÿ

i“0

Ci

ˆ

m

2i

˙

,

|B
p4q
m | “ C

r
m`1

2 s
C

t
m`1

2 u
, |B

p5q
m | “ 6

t m
2 u
ÿ

i“0

ˆ

m

2i

˙

p2i ` 2q!Ci

pi ` 2q!pi ` 3q!
,

where Cm “
1

m`1

`

2m
m

˘

is the m-th Catalan number.

Note that each element T in B
pkq
m can be identified with a sequence λT “

pλp1q, . . . , λpkqq of strict partitions, where λpiq is the partition obtained by reading
the ith row of T . Using this identification we have

B
pkq
m “

!

λ“pλp1q, . . . , λp	q
q |ďk, λpiq

Ąλpì 1q
p1ďiăq and λp1q

˚ ¨ ¨ ¨˚ λp	q
“λpmq

)

.
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In Example 3.3, the tableau T can be identified with pp8, 6, 4, 3q Ą p7, 2, 1q Ą p5qq P

B
p3q

8 :

8 6 4 3
7 2 1
5

ÐÑ

¨

˚

˝
Ą Ą

˛

‹

‚

3.2. Tensor products of Young walls

As we have seen in Definition 2.14, we can construct a Young wall when we
have a partition λ and a fundamental weight Λ of level 1. As before, for a given
skew shape ρ{μ with k rows, we will identify a (skew) Young tableau T of shape
ρ{μ with the sequence λT “ pλp1q, . . . , λpkqq of strict partitions, where λpiq is the
partition obtained by reading the ith row of T . Then we can make a correspondence
between a (skew) Young tableau T of shape ρ{μ with k rows and a k-fold tensor
product of Young walls,

YT
Λ or Y

λ
Λ :“ Yλp1q

Λi1
b Yλp2q

Λi2
b ¨ ¨ ¨ b Yλpkq

Λik
with λ “ λT ,

for a fixed sequence Λ “ pΛi1 ,Λi2 , . . . ,Λikq of fundamental weights of level 1.

Example 3.6. For g “ D
p1q

7 , let Λ “ pΛ0,Λ0q and consider the Young wall

Λ0,0
4 in Example 2.20. Then we have the correspondence

T “
¨ ¨ ¨

3 2 1
ÐÑ Y

pH,λp3qq

pΛ0,Λ0q
“ Λ0 b Y

λp3q

Λ0
“ Λ0,0

4 .

For g “ B
p1q

7 , consider T “
¨ 4 3 2
5 1

of shape p4, 2q{p1q and Λ “ pΛ0,Λ1q. Then

the corresponding Young wall YT
Λ is given by

��
��
�

��
��
�

��
��
�

1
0

2

3

4

0
1

2

3

1
0

2
b

��
��
�

��
��
�

0
1

2

3

4

5

1
0

.

3.3. Some families of Young tableaux

In this section, we shall introduce special families of Young tableaux and study
the cardinalities of them.

A composition λ of m is a sequence pλ1, . . . , λkq of nonnegative integers such

that
řk

i“1 λi “ m.

Definition 3.7. We say that a composition λ of m is almost even if there
are exactly one or two odd parts. We write λ ,0 m to denote an almost even
composition λ of m.

We denote by D
pkq
m pk ď mq the subset of B

pkq
m consisting of the tableaux T

such that ShpT q ,0 m and call T P D
pkq
m an almost even tableau of m with at most

k rows.
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Example 3.8. For m “ 5, 6 and k “ 2, we have

5 3 2
4 1

P D
p2q

5 , 5 4 3 2
1

P D
p2q

5 and 6 5 3 2
4 1

R D
p2q

6 , 6 5 4 3 2
1

P D
p2q

6 .

For ε P t0, 1u and k ď m, we denote by εP
pkq
m the subset of B

pkq
m consisting of

the tableaux T satisfying

λ :“ ShpT q $ m and λi ” ε pmod 2q for all 1 ď i ď k.

We say that T P εP
pkq
m is an ε-parity tableau for ε P t0, 1u. We set P

pkq
m “ 0P

pkq
m \

1P
pkq
m and call it the set of parity tableaux of m cells with at most k rows.

Example 3.9. The following are examples of parity tableaux:

5 3 2
4
1

P
1
P

p3q

5 , 6 5 2 1
4 3

P
0
P

p2q

6 .

On the other hand, we have

4 3 2
1

R P
p3q

4 “
0
P

p3q

4

ğ

1
P

p3q

4 (note that λ3 “ 0 ı 1 mod 2), 5 3 2
4 1

R P
p2q

5 .

Remark 3.10. Note that D
p2q

2m´1 “ B
p2q

2m´1 pm ě 1q, and by Theorem 3.5, we
have

|D
p2q

2m´1| “ |B
p2q

2m´1| “

ˆ

2m ´ 1

m

˙

.

Furthermore, one can observe that, for each m ě 1,

‚ B
p2q

2m “ D
p2q

2m \ 0P
p2q

2m and D
p2q

2m “ 1P
p2q

2m,

‚ there exists a bijection ψ : D
p2q

2m Ñ 0P
p2q

2m such that ψpT q is the tableau
which is obtained by moving the cell filled with 1 from its row in T to the
other row.

Since |B
p2q

2m| “
`

2m
m

˘

by Theorem 3.5, we have

|D
p2q

2m| “ |
0
P

p2q

2m| “ |
1
P

p2q

2m| “
1

2

ˆ

2m

m

˙

“

ˆ

2m ´ 1

m

˙

“ |B
p2q

2m´1|.(3.2)
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CHAPTER 4

Lattice paths and triangular arrays

In this chapter, we find an interesting relationship among Young tableaux with
at most k “ 2 or 3 rows, triangular arrays related to lattice paths and composition
multiplicities of m-fold tensor products of irreducible sl2-modules.

4.1. Motzkin triangle

Definition 4.1. A Motzkin path is a path on the lattice Z2 starting from p0, 0q,
having three kinds of steps called an up step U “ p1, 1q, a horizontal step H “ p1, 0q,
and a down step D “ p1,´1q, and not going below the x-axis.

Example 4.2. The following path is a Motzkin path from p0, 0q to p10, 1q:

p0, 0q p2, 0q p4, 0q p6, 0q p8, 0q p10, 0q

(4.1)

We also express the above path as a sequence of steps by UHHUUDDDHU .

Definition 4.3. A generalized Motzkin number Mpm,sq for m ě s ě 0 is the
number of all Motzkin paths ending at the lattice point pm, sq. In particular, we
write Mm “ Mpm,0q and call it the m-th Motzkin number.

Interestingly, the Motzkin number Mm is also equal to the number of all Young
tableaux with m cells and at most 3 rows, see [4]. That is, we have

Mm “ |B
p3q
m | “

t m
2 u
ÿ

i“0

Ci

ˆ

m

2i

˙

.

A recursive formula and a closed formula for Mpm,sq are known and easy to derive:

Mpm,sq “ Mpm´1,sq ` Mpm´1,s´1q ` Mpm´1,s`1q(4.2)

“

tpm´sq{2u
ÿ

i“0

ˆ

m

2i ` s

˙ˆˆ

2i ` s

i

˙

´

ˆ

2i ` s

i ´ 1

˙˙

.

27
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Consider the following triangular array consisting of Mpm,sq and reflecting the
recursive relation (4.2).

(4.3)

. .
.

1
���

���

�������
¨ ¨ ¨

1
���

���

�������
6

���
���

������
¨ ¨ ¨

1
���

���

������� 5
���

���

������� 20
���

���

������
¨ ¨ ¨

1
			

			








4

���
���

������� 14
���

���

������
44

���
���

������
¨ ¨ ¨

1
���

���

������
3

			
			








9

���
���

������
25

���
���

������
69

���
���

������
¨ ¨ ¨

1
���

���

������
2

���
���

������
5

			
			








12

���
���

������
30

���
���

������
76

���
���

������
¨ ¨ ¨

1

������
1

������
2

������
4








9

������ 21

������
51

������
¨ ¨ ¨

Here a solid line represents the contribution of a number to the number connected
by the line in the next column. For example, we obtain 76 as 25` 30` 21 from the
previous column. We call this triangular array the Motzkin triangle.

Remark 4.4. For m P Zě0, let Vm be the pm ` 1q-dimensional irreducible
module over sl2. In particular, the standard module V is (isomorphic to) V1 and
the adjoint module V is V2. The Clebsch–Gordan formula yields

Vm b V » Vm´2 ‘ Vm ‘ Vm`2 for m ě 2.

Using (4.2), one can show that Mpm,sq is equal to the multiplicity of V2s`1 in

V b Vbm. The same observation holds for V :“ V1 ‘ V0 (see [2]); that is, one can
check that Mpm,sq is equal to the multiplicity of Vs in Vbm. Thus we have

3m “

m
ÿ

s“0

ps ` 1qMpm,sq.

4.2. Riordan triangle

Definition 4.5. A Riordan path is a Motzkin path without horizontal steps
on the x-axis.

Example 4.6. The following path is a Riordan path:

p0, 0q p2, 0q p4, 0q p6, 0q p8, 0q p10, 0q

(4.4)

Note that the path in (4.1) is not a Riordan path.

Definition 4.7. A generalized Riordan number Rpm,sq for m ě s ě 0 is the
number of all Riordan paths ending at the lattice point pm, sq. In particular, we
write Rm “ Rpm,0q and call it the m-th Riordan number.

The Riordan number Rm has a closed formula: R0 “ 1, R1 “ 0 and

Rm “
1

m ` 1

tm{2u
ÿ

i“1

ˆ

m ` 1

i

˙ˆ

m ´ i ´ 1

i ´ 1

˙

for m ě 2.
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We see that Rpm,sq has a recursive formula

Rpm,sq “

#

Rpm´1,sq ` Rpm´1,s´1q ` Rpm´1,s`1q if s ě 1,

Rpm´1,1q if s “ 0.
(4.5)

Consider the following triangular array consisting of Rpm,sq and reflecting the
recursive formula (4.5).

(4.6)

. .
.

1
���

����

�������
¨ ¨ ¨

1
���

���
�

������� 6
����

���

�������
¨ ¨ ¨

1
���

���

������� 5
���

���
�

������� 21
���

���

������
¨ ¨ ¨

1
			

			








4

���
���

������� 15
���

���

������
49

���
���

������
¨ ¨ ¨

1
���

���

������
3

			
			








10

���
���

������
29

����
��

������
84

���
���

������
¨ ¨ ¨

1
���

���

������
2

���
���

������
6

			
			








15

���
���

������
40

���
���

������
105

����
��

������
¨ ¨ ¨

1
���

���

������
1

���
���

������
3

���
���

������
6

			
			








15

���
���

������
36

���
���

������
91

���
���

������
¨ ¨ ¨

1

������
0

������
1

������
1

������
3








6

������ 15

������
36

������
¨ ¨ ¨

We call this triangular array the Riordan triangle.

Remark 4.8. Let V be the adjoint representation of sl2 as before. By the same
argument as in Remark 4.4, the number Rpm,sq is equal to the multiplicity of V2s

in the decomposition of Vbm. Then we have the identity

3m “

m
ÿ

s“0

p2s ` 1qRpm,sq.

Let Rpm,sq “ Mpm,sq ´ Rpm,sq. In other words, Rpm,sq is the number of Motzkin
paths ending at pm, sq which have at least one horizontal step on the x-axis.

Lemma 4.9. For m ě s ě 1, we have

Rpm,sq “ Rpm,s´1q.

Proof. We prove this by constructing a bijection φ : A Ñ B, where A is the
set of Motzkin paths ending at pm, s ´ 1q with at least one horizontal step on the
x-axis and B is the set of Riordan paths ending at pm, sq so that |A| “ Rpm,s´1q

and |B| “ Rpm,sq. Let T “ t1t2 . . . tm P A, where t1, t2, . . . , tm are the steps of
T in this order. Let ti be the first horizontal step on the x-axis. Then we define
φpT q “ t1 . . . ti´1p1, 1qti`1 . . . tm. It is easy to see that φ is a bijection from A to
B. �

There is a simple relation between Motzkin numbers and Riordan numbers.

Lemma 4.10. For m ě 0, we have

Mm “ Rm ` Rm`1.

Proof. By definition, we have Mm “ Rm ` Rm. By Lemma 4.9, we have

Rm “ Rpm,0q “ Rpm,1q “ Rpm`1,0q “ Rm`1. �

Note that Rpm,sq “ Mpm,sq “ 0 if m ă s.
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Proposition 4.11. For m, s ě 1, we have

Rpm,sq “ Mpm´1,sq ` Mpm´1,s´1q ´ Rpm´1,sq,

and

Rpm,sq “

m´s
ÿ

i“0

p´1q
i
pMpm`1´i,sq ` Mpm`1´i,s´1qq.

Proof. The left side of the first equation is

Rpm,sq “ Rpm´1,s´1q ` Rpm´1,sq ` Rpm´1,s`1q.

The right side is

Rpm´1,sq ` Rpm´1,sq ` Rpm´1,s´1q ` Rpm´1,s´1q ´ Rpm´1,sq.

By Lemma 4.9, these two quantities are equal.
Using the first identity iteratively, we obtain the second identity. �

Proposition 4.12. For m ě 1, we have

Rm “ |D
p3q

m´1| “ |Pp3q
m |.

Proof. One can see that B
p3q
m “ P

p3q
m

Ů

D
p3q
m . Consider the map φ : P

p3q
m Ñ

D
p3q

m´1 given by

T ÞÝÑ Tą1,

where Tą1 is defined in Definition 3.4. Then it is easy to check that the map φ is

a bijection. Thus we have |P
p3q
m | “ |D

p3q

m´1|. Now we use an induction on m. If

m “ 1, then |P
p3q

1 | “ R1 “ 0. Assume that |P
p3q
m | “ Rm. Since Mm “ |B

p3q
m |, we

have

|P
p3q

m`1| “ |Dp3q
m | “ Mm ´ |Pp3q

m |

“ Mm ´ Rm “ Rm`1 by Lemma 4.10. �

Remark 4.13. The set of parity tableaux P
p3q
m and the set of almost even

tableaux D
p3q

m´1 can be taken as tableaux models for the Riordan number Rm, so

much as the set B
p3q
m can be used to realize the Motzkin number Mm.

4.3. Catalan triangle

Definition 4.14. A Dyck path is a Motzkin path without horizontal steps.

Example 4.15. The following path is a Dyck path:

p0, 0q p2, 0q p4, 0q p6, 0q p8, 0q p10, 0q

Note that the path in (4.4) is not a Dyck path.

Definition 4.16. A generalized Catalan number Cpm,sq for m ě s ě 0 is the
number of all Dyck paths ending at the lattice point pm, sq. In particular, we write
Cm “ Cp2m,0q which is known as the m-th Catalan number.
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A recursive formula and a closed formula for Cpm,sq are also well-known:

(4.7) Cpm,sq “ δpm ”2 sq
m!ps ` 1q

p
m`s`2

2 q!pm´s
2 q!

, Cpm,sq “ Cpm´1,s`1q ` Cpm´1,s´1q,

where we write m ”2 s for m ” s pmod 2q.
We have the following triangular array consisting of Cpm,sq and reflecting the

recursive relation (4.7).

. .
.

1
���

���

�������
¨ ¨ ¨

1
			

			








0 ¨ ¨ ¨

1
���

���

������
0 6

���
���

������
¨ ¨ ¨

1
���

���
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0 5

			
			








0 ¨ ¨ ¨

1
���

���

������
0 4

���
���

������
0 14

���
���

������
¨ ¨ ¨

1
���

���

������
0 3

���
���

������
0 9

			
			








0 ¨ ¨ ¨

1
���

���

������
0 2

���
���

������
0 5

���
���

������
0 14

���
���

������
¨ ¨ ¨

1

������
0 1

������
0 2

������
0 5








0 ¨ ¨ ¨

By the same argument as in Remark 4.4, the number Cpm,sq is equal to the multi-

plicity of Vs in the decomposition of Vbm.

Remark 4.17. Using the well known bijection [37, Exercise 6.19.xx] between
the standard tableaux of shape pn, nq and the Dyck paths from p0, 0q to p2n, 0q,
one can easily see that the number of standard tableaux of shape λ “ pm ` s,mq

coincides with the number Cp2m`s,sq.

4.4. Pascal Triangle

If we consider lattice paths from p0, 0q to pm, sq form ě s ě 0, having U “ p1, 1q

and D “ p1,´1q, that may go below the x-axis, then the number Bpm,sq of such
paths is given by

Bpm,sq “ δpm ”2 sq

ˆ

m
m´s
2

˙

.

Clearly, we have Bpm,sq “ Bpm´1,s`1q `Bpm´1,s´1q and the corresponding triangular
array is the (half of the) Pascal triangle. The number Bpm,sq is also equal to the
multiplicity of Vm`s in the composition series of VmbVbm where V is the standard
module over sl2 as before.

We present the following triangular array consisting of Bpm,sq for reference.

(4.8)

. .
.

1
���

���

�������
¨ ¨ ¨

1
���

���
�

�������
0 ¨ ¨ ¨

1
���

���
�

�������
0 7

���
���

������
¨ ¨ ¨

1
			

			








0 6

���
���

������� 0 ¨ ¨ ¨

1
���

���

������
0 5

���
���

������� 0 21
���

���

������
¨ ¨ ¨

1
���

���

������
0 4

			
			








0 15

���
���

������
0 ¨ ¨ ¨

1
���

���

������
0 3

���
���

������
0 10

���
���

������
0 35

���
���

������
¨ ¨ ¨
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������
0 2

������
0 6








0 20

������
0 ¨ ¨ ¨



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

CHAPTER 5

Dominant maximal weights

In this chapter, we investigate the set of dominant maximal weights of highest
weight modules V pΛq over affine Kac–Moody algebras of classical types. We will see
that most of the dominant maximal weights of levels 2 and 3 are essentially finite,
and will classify them into the corresponding finite types. Then, by Theorem 2.9,
the multiplicities of distinct dominant maximal weights of the same finite type can
be determined simultaneously even though they appear in highest weight modules
over different affine Kac–Moody algebras. In other words, the multiplicities of
essentially finite dominant maximal weights depend only on their finite types.

Another goal of this chapter is to determine certain families of dominant maxi-
mal weights of all levels, which can be associated with pairs pλpmq, λpsqq of staircase
partitions and are essentially finite of type Bn or Dn. Again, applying Theorem
2.9, we see the following:

(5.1)
For two essentially finite dominant maximal weights of the same finite
type, which are associated with the same pλpmq, λpsqq, their multiplicities
coincide with each other, even when their affine types are different.

Throughout this chapter, the (fundamental) weights Λ of level 1 will be written
in boldface; the weights Λ of level 2 in regular; the weights Λ of level ě 3 in upright.
As arguments and techniques are similar, some details are omitted for other types

after we consider type B
p1q
n thoroughly.

5.1. Type A
p1q

n´1

This case was studied in [13, 14, 38, 39]. In this section, we briefly review
their results and show that the dominant maximal weights obtained in [38,39] are
essentially finite. Hence we can reduce them as dominant weights for some Lpωq

over An´1.

For 0 ď s ă n and 1 ď  ď

Z

n ´ s

2

^

and 1 ď u ď

Ys

2

]

, we define Λ :“ Λ0 ` Λs

and

λn
	,s :“

n´1
ÿ

k“n´	`1

pk ´ n ` qαk ` 
s
ÿ

i“0

αi `

	`s´1
ÿ

j“s`1

p ´ j ` sqαj ,

μn
u,s :“

s´1
ÿ

k“s´u`1

pk ´ s ` uqαk ` u
n´1
ÿ

i“s

αi `

u´1
ÿ

j“0

pu ´ jqαj .

Lemma 5.1. [38, Theorem 1.4 (i)] For V pΛq over A
p1q

n´1,

max`
pΛ|2q “ tΛu

ğ

"

Λ ´ λn
	,s

ˇ

ˇ

ˇ

ˇ

1 ď  ď

Z

n ´ s

2

^*

ğ

!

Λ ´ μn
u,s

ˇ

ˇ

ˇ
1 ď u ď

Ys

2

])

.

33
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The above lemma tells us that every element in max`pΛ|2q is essentially finite,
since

 ` s ă n ´  ` 1 and u ă s ´ u ` 1.(5.2)

Now we show that we obtain all the dominant weights of Lpωt ` ωt`sq from

max`pΛ|2q, where t :“

Z

n ´ s

2

^

. Since

J “ r0,  ` s ´ 1s

ğ

rn ´  ` 1, n ´ 1s :“ Supppλn
	,sq Ĺ I :“ r0, n ´ 1s

and ` s ă n´ ` 1 for all , we can choose s` t as an extremal vertex (see (1.4)).
Thus

Ω1 :“ tΛu
ğ

�

Λ ´ λn
	,s

ˇ

ˇ 1 ď  ď t
(

can be considered as a subset of dominant maximal weights of Lpωt ` ωt`sq over
An´1 via the embedding

r0, t`s´1s\rt`s`1, n´1s ãÑ t1, 2, . . . , n´1u such that x ÞÝÑ a ” s`t´x pmod nq.

Hence Ω1 can be identified with

tωt´r ` ωt`s`r | 0 ď r ď tu(5.3)

which is a subset of dominant weights of Lpωt ` ωt`sq. (Here we set ω0 :“ 0.) By
[12, §13], Lpωt ` ωt`sq has pt ` 1q-many dominant weights and hence the set in
(5.3) indeed coincides with the set of dominant weights of Lpωt ` ωt`sq.

By a similar argument, the set

Ω2 :“ tΛu

ğ

!

Λ ´ μn
u,s

ˇ

ˇ

ˇ
1 ď u ď

Ys

2

])

can be identified with the dominant weights

tωt1´r ` ωn´s`t1´r | 0 ď r ď t1
u(5.4)

of Lpωt1 ` ωn´s`t1 q over An´1, where t1 :“
Ys

2

]

.

5.2. Type B
p1q
n

Assume that g “ B
p1q
n . If Λ “ Λ0 ` Λn, one can check that there are only

two maximal weights Λ and Λ1 ` Λn ´ δ, and their multiplicities are 1 and n,
respectively. When Λ “ Λ1 ` Λn, the same is true with Λ0 replaced by Λ1.

Assume that Λ is of level 2, other than Λ0 ` Λn and Λ1 ` Λn; that is, for
0 ď s ď n,

Λ “ pδs,0 ` δs,1qΛ0 ` δs,nΛn ` Λs “

$

’

’

’

&

’

’

’

%

2Λ0 if s “ 0,

Λ0 ` Λ1 if s “ 1,

2Λn if s “ n,

Λs otherwise.

Recall that

δ “ α0 ` α1 ` 2pα2 ` ¨ ¨ ¨ ` αnq and c “ h0 ` h1 ` 2ph2 ` ¨ ¨ ¨ ` hn´1q ` hn,

and we have

(5.5) 2Caf X pΛ ` Qq “

#

λ “ Λ `

n
ÿ

i“1

miαi

ˇ

ˇ

ˇ

ˇ

ˇ

xhi, λy ě 0 p1 ď i ď nq, pλ|θq ď 2

+

,

where θ “ α1 ` 2pα2 ` ¨ ¨ ¨ ` αnq.
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Lemma 5.2. Let Λ “ pδs,0 ` δs,1qΛ0 ` Λs p0 ď s ď n ´ 1q. Then the following
weights are in max`pΛ|2q, i.e., they are dominant maximal weights of V pΛq :

p1 ` δ2u´1`s,nqΛ2u´1`s ´ uδ “

Λ ´ cont
´

Y
pnq˚λp2u´2`sq

Λ0

¯

` cont
´

Y
λps´1q

Λ0

¯

(5.6a)

for 1 ` δs,0 ď u ď tpn ´ s ` 1q{2u,

p1 ` δ2u`s,nqΛ2u`s ´ uδ “ Λ ´ cont
´

Y
λp2u´1`sq

Λ0

¯

` cont
´

Y
λps´1q

Λ0

¯

(5.6b)

for 1 ď u ď tpn ´ sq{2u.

For Λ “ 2Λ0, we have Λ0 `Λ1 ´ δ P max`pΛ|2q, which is not of the form in (5.6).

Proof. The equalities in (5.6a) and (5.6b) can be checked by direct compu-
tations. In each equation in (5.6a) and (5.6b), the RHS shows that the image of
the weight under the orthogonal projection is in Λ ` Q, and the LHS shows that
the image of the orthogonal projection belongs to 2Caf . Thus the weights are in
max`pΛ|2q by Proposition 1.4 �

Let gn be the finite dimensional subalgebra of g, generated by ei, hi, fi for
i P In :“ Iztnu, as in Section 1.1. Then gn is of type Dn. For each dominant
maximal weight μ “ Λ´

ř

iPI kiαi in (5.6b), we have kn “ 0 and so μ is essentially
finite of type Dn. Denote by ω the dominant integral weight of gn corresponding
to Λ and consider the highest weight module Lpωq of gn with highest weight ω.

Proposition 5.3. Let Λ “ pδs,0 ` δs,1qΛ0 ` Λs p0 ď s ď n ´ 1q, and consider
the correspondences

Λ ÞÝÑ ω :“ pδs,0 ` δs,1qωn ` ωn´s and Λ ´

ÿ

iPIn

kiαi ÞÝÑ ω ´

ÿ

iPIn

kiαn´i.

Then all the dominant weights of Lpωq over gn of type Dn are obtained from Λ and
the weights in (5.6b).

Proof. Since

n R Supp
´

cont
´

Y
λp2u´1`sq

Λ0

¯

´ cont
´

Y
λps´1q

Λ0

¯¯

,

we can take n as an extremal vertex. Thus we can identify the weights in (5.6b)
with

tωn´s´2k | 1 ď k ď tpn ´ sq{2uu
ğ

tpδs,0 ` δs,1qωn ` ωn´su,

which is the subset of dominant weights of Lppδs,0 ` δs,1qωn ` ωn´sq over gn via
the embedding

In “ r0, n ´ 1s Ñ r1, ns such that i ÞÝÑ n ´ i.

By [27, Lemma 2.6], Lppδs,0 ` δs,1qωn `ωn´sq has ptpn´ sq{2u `1q-many dominant
weights and hence the weights in (5.6b) along with Λ coincides with the set of
dominant weight of Lppδs,0 ` δs,1qωn ` ωn´sq. �

Remark 5.4. The above proposition shows that the weights in (5.6b) are es-
sentially finite of type Dn. In Proposition 6.7, we will show that dimV pΛqμ for
μ “ Λ2u´1`s ´uδ in (5.6a) is equal to dimV pΛqμ1 for μ1 “ p1` δ2u`s,nqΛ2u`s ´uδ
in (5.6b). Thus they coincide with the multiplicity of Lpωqη for some ω and
η P wtpLpωqq.
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Example 5.5. For g “ B
p1q

9 and Λ “ Λ3, the dominant maximal weight Λ7 ´

2δ P max`pΛ|2q can be written as follows:

Λ7 ´ 2δ “ Λ ´

#

3α0 ` 3α1 `

6
ÿ

i“2

p7 ´ iqαi

+

` tα0 ` α1 ` α2u

“ Λ ´ cont

¨

˚

˚

˚

˚

˚

˚

˚

˝

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

��
��
�

1
0

2

3

4

5

6

0
1

2

3

4

5

1
0

2

3

4

0
1

2

3

1
0

2

0
1

˛

‹

‹

‹

‹

‹

‹

‹

‚

` cont

¨

˝

��
��
�

��
��
�

0
1

2

1
0

˛

‚

Define Y
λεpnq

Λn
pε “ 0, 1q to be the Young wall determined by the staircase

partition λpnq such that the top of the first column is the half-thickness block with
color ε.

Example 5.6. The Y
λ0pnq

Λn
and Y

λ1pnq

Λn
for B

p1q

3 are given as follows:

Y
λ0p3q

Λ3
“

��
��
�

3
3

2

0

3
3

2

3
3

and Y
λ1p3q

Λ3
“

�����

3
3

2

1

3
3

2

3
3

.

Lemma 5.7. Let Λ “ p1 ` δs,nqΛs ` δs,1Λ0 p1 ď s ď nq. Then the following
weights are in max`pΛ|2q:

p1 ` δu,nqΛu “ Λ ´ cont
´

Y
λpn´uq

Λn

¯

` cont
´

Y
λpn´sq

Λn

¯

p2 ď u ď sq,(5.7a)

Λ0 ` Λ1 “ Λ ´ cont
´

Y
λpn´1q

Λn

¯

` cont
´

Y
λpn´sq

Λn

¯

,(5.7b)

2Λ1 ´ δ “ Λ ´ cont
´

Y
λ0pnq

Λn

¯

` cont
´

Y
λpn´sq

Λn

¯

,(5.7c)

2Λ0 “ Λ ´ cont
´

Y
λ1pnq

Λn

¯

` cont
´

Y
λpn´sq

Λn

¯

.(5.7d)

For Λ “ 2Λ0, we have 2Λ0 P max`pΛ|2q and

(5.8) 2Λ1 ´ 2δ “ 2Λ0 ´ 2

˜

α0 `

n
ÿ

i“2

αi

¸

P max`
pΛ|2q,

which is not of the form in (5.7).

Proof. One can use the same argument as in Lemma 5.2. �
Let g1 (resp. g0) be the finite dimensional subalgebra of g, generated by ei, hi, fi

for i P I1 :“ Izt1u (resp. i P I0 :“ Izt0u). Then g1 and g0 are of type Bn. One
can see that each dominant maximal weight μ “ Λ ´

ř

iPI kiαi in Lemma 5.7 is
essentially finite of type Bn.

Proposition 5.8. For 0 ď s ď n, through the correspondences

Λ “ p1 ` δs,nqΛs ` pδs,0 ` δs,1qΛ0 ÞÝÑ ω :“ pδs,nqωn ` p1 ` δs,0qωs`δs,0 and

Λ ´

ÿ

iPIε

kiαi ÞÝÑ ω ´

ÿ

iPIε

ki`δi`ε,1
αipε “ 0, 1q,
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all the dominant weights of Lpωq over Bn are obtained from the weights in Lemma
5.7.

Proof. One can easily check that 0 (resp. 1) does not appear as an element
of support for weights in (5.7a), (5.7b) and (5.7d) (resp. (5.7a), (5.7b), (5.7c) and
(5.8)). Hence we can take 0 (resp. 1) as an extremal vertex. Thus we can identify
the weights in (5.7a), (5.7b) and (5.7d) (resp. (5.7a), (5.7b), (5.7c) and (5.8)) with

tωk | 0 ď k ď su ,

which is the subset of dominant weights of Lppδs,nqωn ` p1 ` δs,0qωs`δs,0q over Bn

via the natural embedding

I0 “ r1, ns Ñ r1, ns presp. r0s \ r2, ns Ñ r1, nsq.

By [27, Lemma 2.4], Lppδs,nqωn`p1`δs,0qωs`δs,0q has ps`1`δs,0q-many dominant
weights and hence the weights in (5.7a), (5.7b) and (5.7d) (resp. (5.7a), (5.7b),
(5.7c) and (5.8)) coincides with the set of dominant weight of Lppδs,nqωn ` p1 `

δs,0qωs`δs,0q. �

Let max`
i pΛ|2q be the set of the dominant maximal weights in Lemma 5.2 and

max`
iipΛ|2q be the set of those in Lemma 5.7. Combining these two sets, we obtain

the whole set of dominant maximal weights as stated in the following theorem.

Theorem 5.9. Assume that g “ B
p1q
n and Λ “ pδs,0 ` δs,1qΛ0 ` δs,nΛn ` Λs

p0 ď s ď nq is of level 2. Then we have

max`
pΛ|2q “ max`

i pΛ|2q

ğ

max`
iipΛ|2q,

and the number of elements in max`pΛ|2q is equal to n ` 2, since

|max`
i pΛ|2q| “ n ´ s and |max`

iipΛ|2q| “ s ` 2.

Before we begin the proof of Theorem 5.9, we make some preparation. Recall
that for a statement P , the number δpP q is equal to 1 if P is true and 0 if P is
false. Sometimes, we will write δP for δpP q.

Now we consider the conditions on max`pΛ|2q for Λ “ pδs,0`δs,1qΛ0`δs,nΛn`

Λs p0 ď s ď nq. For η “ Λ `
řn

i“1 xiαi P 2Caf X pΛ ` Qq (see (1.5)), the condition
(5.5) tells us that

(1) ηph1q “ 2x1 ´ x2 ě ´δ1,s,
(i) ηphiq “ ´xi´1 ` 2xi ´ xi`1 ě ´δi,s p2 ď i ď n ´ 1q,
(n) ηphnq “ ´2xn´1 ` 2xn ě ´2δn,s,

and

pη|θq “ x2 ` p2 ´ δs,1 ´ 2δs,0q ď 2.

Then by summing inequalities (2)„(n´1) and 1
2 ˆ pnq, we have

´x1 ` x2 ě ´δps ą 1q.(5.9)

We also have that

(a) for s ď i ď n ´ 1,

xi`1 ě xi and xi “ xi`1 imply xi “ xi`1 “ xi`2 “ ¨ ¨ ¨ “ xn;

(b) for 1 ď i ď s ´ 1,

´xi ` xi`1 ě ´δp1 ď i ă sq;
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(c) for all 2 ď i ď n,

x1 ` xi ě xi`1 ´ δpi ě sq ˆ δps ě 1q.

With the inequality (1), the inequality (5.9) implies that

x1 ě ´δps ě 1q and x2 ě ´2δps ě 1q.

Proof of Theorem 5.9. (a) Assume that Λ “ 2Λ0. Then we have the in-
equalities

0 ď x1 ď x2 ď 2 and 2x1 ´ x2 ě 0.

Then px1, x2q “ p0, 0q, p1, 1q, p1, 2q, or p2, 2q. Now one can prove that, for η “
řn

i“1 xiαi P 2Caf X Q such that η ‰ 0, we have

η “

$

’

’

’

&

’

’

’

%

u
ÿ

i“1

i αi ` u
n
ÿ

t“u

αt for some 1 ď u ď n, or

2
n
ÿ

i“1

αi “ 2Λ1 ´ 2δ.

Here t
řu

i“1 i αi ` u
řn

t“u αtu contributes to (5.6a) and (5.6b).

(b) Assume that Λ “ Λ0 ` Λ1. Then we have the inequalities

x1 ě ´1, 1 ě x2 ě ´2, 2x1´x2 ě ´1, ´x1`2x2´x3 ě 0 and xn ě ¨ ¨ ¨ ě x2 ě x1.

Then px1, x2q “ p0, 0q, p0, 1q, p1, 1q, or p´1,´1q. Now one can prove that, for
η “ Λ1 `

řn
i“1 xiαi P 2Caf X Q such that η ‰ Λ1, we have

η “

$

’

’

’

&

’

’

’

%

u
ÿ

i“1

pi ´ 1q αi ` pu ´ 1q

n
ÿ

t“u

αt for 2 ď u ď n,

n
ÿ

i“1

αi “ 2Λ1 ´ δ or ´

n
ÿ

i“1

αi “ 2Λ0.

Here t
řu

i“1pi ´ 1q αi ` pu ´ 1q
řn

t“u αtu contributes to (5.6a) and (5.6b).

(c) Assume that Λ “ Λs p2 ď s ď n ´ 1q or 2Λn. Then we have inequalities

x1 ě ´1, 0 ě x2 ě ´2, ´x1 ` x2 ě ´1, xn ě xn´1 ě ¨ ¨ ¨ ě xs`1 ě xs,

´ xi´1 ` 2xi ´ xi`1 ě 0 for i ă s, 2x1 ´ x2 ě 0,

x1 ` xi ě xi`1 for i ď s and x1 ` xi ě xi`1 ´ 1 for i ą s.

Then px1, x2q “ p0, 0q, p1, 0q, p´1,´2q, or p0,´1q.
(1) Assume x1 “ 0. Then, for 2 ď i ď s ´ 1, we have

xi ě xi`1 ě xi ´ 1.(5.10)

(1-1) If there exists 1 ď u ď s ´ 1 such that xi`1 “ xi ´ 1, take t the smallest
one; that is xt`1 “ ´1. Since

´xt ´ 2xt`1 ´ xt`2 ě 0,

the inequality (5.10) implies xt`2 “ ´2. Repeating this process, we obtain xh`1 “

xh ´ 1 for t ď h ď s ´ 1. Since

´xs´1 ´ 2xs ´ xs`1 ě ´1,
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we have xs “ xs`1 and hence xs “ xs`1 “ ¨ ¨ ¨ “ xn. Thus η is of the following
form

s
ÿ

i“t

pi ´ t ` 1q αi ` ps ´ t ` 1q

n
ÿ

t“s

αt for 1 ď t ď s ´ 1,

which contributes to (5.7a) and (5.7b).
(1-2) Now we assume that x1 “ x2 “ ¨ ¨ ¨ “ xs “ 0. Then we have, for u ą s,

xu´1 ď xu ď xu´1 ` 1.

Then, by applying the same method as in (a), we see that η is of the following form:
u
ÿ

i“s`1

pi ´ sq αi ` pu ´ sq

n
ÿ

t“u

αt for s ` 1 ď u ď n,

which contributes to (5.6a) and (5.6b).
(2) Assume px1, x2q “ p1, 0q. As in (1-1), we can conclude that

η “ α1 ´

s
ÿ

i“3

pi ´ 2qαi ´ ps ´ 2q

n
ÿ

j“s`1

αj “ 2Λ1 ´ δ.

(3) Assume px1, x2q “ p´1,´2q. As in (1-1), we can conclude that

η “ ´

s
ÿ

i“1

i αi ´ s
n
ÿ

j“s`1

αj “ 2Λ0.

�
Definition 5.10. Let Λ “ pδs,0 ` δs,1qΛ0 ` δs,nΛn `Λs p0 ď s ď nq be of level

2. Suppose that η P max`pΛ|2qztΛu is of the form

η “ Λ´cont
´

Y
λpmq

Λ

¯

`cont
´

Y
λpuq

Λ

¯

or Λ´cont
´

Y
pnq˚λpm´1q

Λ

¯

`cont
´

Y
λpuq

Λ

¯

,

where u ě 0 if Λ ‰ 2Λ0 and u “ ´1 if Λ “ 2Λ0. Then we define the index of the
maximal weight η to be pm,uq. Similarly, if η P max`pΛ|2q is of the form

η “ Λ ´ cont
´

Y
λεpnq

Λ

¯

` cont
´

Y
λpuq

Λ

¯

, ε “ 0, 1,

then define the index of the maximal weight η to be pn, uq.

Remark 5.11. Though we have λp0q “ λp´1q “ H, we use λp´1q when Λ “

2Λ0.

Now we consider Λ of level ě 3. The following lemma is useful:

Lemma 5.12. For any Λ1,Λ2 P P` with xc,Λ1y “ k and xc,Λ2y “ k1, we have

Λ2
` max`

pΛ1
|kq Ă max`

pΛ2
` Λ1

|k ` k1
q.

Proof. Recall that θ “ δ ´ a0α0. For η P max`pΛ1|kq and Λ2 P P` of level
k1, we have

‚ pη|θq ď k and pη|αiq ě 0 for i “ 1, . . . , n,
‚ pΛ2|θq “

řn
i“1

`

ai ˆ a´1
i a_

i xhi,Λ2y
˘

ď xΛ2, cy “ k1,

‚ pΛ2|αiq ě 0 for i “ 1, . . . , n.

Hence our assertion follows from Proposition 1.4. �
In the following lemma, we obtain maximal weights of level 3 that do not come

from those of level 2.
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Lemma 5.13. Let Λ “ p1 ` δs,0 ` δs,1qΛ0 ` Λs p0 ď s ď n ´ 1q. Then the
following weights are in max`pΛ|3q:

Λ1 ` p1 ` δ2u`s,nqΛ2u`s ´ pu ` 1qδ “ Λ ´ cont
´

Y
pnq˚λp2u´1`sq

Λ1

¯

` pα1 ´ α0q

(5.11a)

` cont
´

Y
λps´1q

Λ0

¯

for δs,0 ` δs,1 ďuď tpn ´ sq{2u,

Λ1 ` p1 ` δ2u`1`s,nqΛ2u`1`s ´ pu ` 1qδ “ Λ ´ cont
´

Y
λp2u`sq

Λ1

¯

` pα1 ´ α0q

(5.11b)

` cont
´

Y
λps´1q

Λ0

¯

for δs,0 ď u ď tpn ´ 1 ´ sq{2u,

3Λ1 ´ p2 ` δ0,sqδ “ Λ ´

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

˜

3α0 ` 3
n
ÿ

i“2

αi

¸

if s “ 0,

˜

2α0 ` 2
n
ÿ

i“2

αi

¸

if s “ 1,

˜

2α0 `

s
ÿ

i“2

pi ` 1qαi ` ps ` 1q

n
ÿ

j“s`1

αj

¸

if 2 ď s ď n ´ 1,

(5.11c)

Λ1`Λu ´ δ“Λ ´

˜

u
ÿ

i“0

αi`

s
ÿ

j“u`1

pj ` 1 ´ uqαj`ps`1 ´ uq

n
ÿ

t“s`1

αt

¸

(5.11d)

p2ďuďs ´ 1q.

(5.11e)

Proof. The equalities can be checked through direct computations. Then, as
in the proof of Lemma 5.2, we use Proposition 1.4 to show that the weights are
dominant maximal. �

We denote the set of weights in Lemma 5.13 by max`
iiipΛ|3q. By Lemma 5.12,

we also have

Λ0 `max`
pΛ|2q Ă max`

pΛ0 `Λ|3q and Λn `max`
pΛ|2q Ă max`

pΛn `Λ|3q,

where Λ is of level 2.

Theorem 5.14. We have

max`
pΛ0 ` Λ|3q “ pΛ0 ` max`

pΛ|2qq

ğ

max`
iiipΛ0 ` Λ|3q

for Λ “ pδs,0 ` δs,1qΛ0 ` Λs p0 ď s ď n ´ 1q, and

max`
pΛn ` Λ|3q “ Λn ` max`

pΛ|2q
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for Λ “ p1` δs,nqΛs ` δs,1Λ0 p1 ď s ď nq. In particular, the number of elements in
max`pΛ0`Λ|3q is equal to 2pn`1q, and the number of elements in max`pΛn`Λ|3q

is equal to n ` 2.

Proof. One can prove by applying a similar argument to that of the proof of
Theorem 5.9. �

Proposition 5.15. For Λ :“ p1 ` δs,nqΛs ` δs,1Λ0 p1 ď s ď nq, the set
Λn ` max`

iipΛ|2q of dominant maximal weights corresponds to the set of dominant
weights of Lpp1 ` δs,nqωn ` ωsq over Bn.

Proof. As in Proposition 5.8, one can show that the set Λn ` max`
iipΛ|2q

corresponds to

tωn ` ωk | 1 ď k ď su

ğ

tp1 ` δs,nqωn ` ωsu,

which is a subset of dominant weights of Lpp1 ` δs,nqωn ` ωsq over Bn. By [27,
Lemma 2.4], Lpp1 ` δs,nqωn ` ωsq has ps ` 1q-many dominant weights and hence
our assertion follows. �

Define

ω̃s “

$

’

&

’

%

ωs if 1 ď s ă n ´ 1,

ωn´1 ` ωn if s “ n ´ 1,

2ωn if s “ n.

(5.12)

Proposition 5.16. Let a be the set of dominant weights in (5.11c) and b those
in (5.6b). Then the union of a and Λ0 ` b corresponds to the set of dominant
weights of Lpωq over Dn, where ω :“ ωn ` ω̃n´s for 0 ď s ď n ´ 1.

Proof. Clearly, the sets a and Λ0 ` b are disjoint. As in Proposition 5.3, one
can show that the union of a and Λ0 ` b corresponds to

#

tω̃s´i ` ωn´δi | i “ 0, 1, . . . , su if s ď n ´ 1,

tω̃n´i ` ωn´δi | i “ 0, 2, 3, . . . , su if s “ n,
(5.13)

which is a subset of dominant weights of Lpωq. Here ω̃0 is to be understood as 0 and
δi “ 1 if i is an odd integer and δi “ 0 otherwise. By [27, Lemma 2.6], Lpωq over
Dn has pn´ s` δs‰0q-many dominant weights and hence our assertion follows. �

Definition 5.17. Assume that η P max`pΛ ` Λ|3q, and set Λ “ Λ ` Λ.
(1) If η “ Λ ` μ with μ P max`pΛ|2q of index pm,uq, then we define the index

of η to be pm,uq.
(2) Assume that η is of the form

(5.14)
η “ Λ ´ cont

´

Y
λpmq

Λ

¯

` pα1 ´ α0q ` cont
´

Y
λpuq

Λ1

¯

or Λ ´ cont
´

Y
pnq˚λpm´1q

Λ

¯

` pα1 ´ α0q ` cont
´

Y
λpuq

Λ1

¯

for some Λ1, where u ě 0 if Λ ‰ 3Λ0 and u “ ´1 if Λ “ 3Λ0. (cf. Remark 5.11)
Then we define the index of the maximal weight η to be pm,uq.

We will explain in Remark 6.18 (2) why the index pm,uq is well-defined. We
generalize Definition 5.17 to higher levels.
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Definition 5.18. Assume that η P pk ´ 1qΛ ` max`pΛ ` Λ|3q for k ě 1, and
write η “ pk ´ 1qΛ ` μ with μ P max`pΛ ` Λ|3q. If μ is of index pm,uq, then we
define the index of η to be pm,uq.

Whenever the index is defined for a maximal weight η P max`pkΛ ` Λ|k ` 2q,
k ě 0, the weight η will be called a staircase dominant maximal weight. The set of
staircase dominant maximal weights will be denoted by smax`pkΛ ` Λ|k ` 2q.

We close this section with a conjecture on the number of the dominant maximal
weights.

Conjecture 5.19. Assume that g “ B
p1q
n , and let  ě 2.

(1) The number of elements in max`pp ´ 2qΛ0 ` Λ|q is equal to
ˆ

n ` t{2u

t{2u

˙

`

ˆ

n ` tp ´ 1q{2u

tp ´ 1q{2u

˙

.

(2) The number of elements in max`pp ´ 2qΛn ` Λ|q is equal to
ˆ

n ` t{2u

t{2u

˙

`

ˆ

n ` t{2u ´ 1

t{2u ´ 1

˙

.

Remark 5.20. The above conjecture is proved by the referee of this paper using
computations similar to the proof of Theorem 5.9 in the referee’s report. In [26],
the cardinalities of maximal dominant weights for every Λ of level k ě 1 of the affine
Kac-Moody algebras are studied in connection with cyclic sieving phenomena.

5.3. Type C
p1q
n

Unlike other affine types, the set max`pΛs|1q is not trivial for any fundamental

weight Λs of type C
p1q
n , 0 ď s ď n.

For 0 ď s ď n, we define

ζn	,s “α0 ` 2
s
ÿ

i“1

αi `

2	´1
ÿ

j“1

p2 ´ jqαs`j p1 ď  ď tpn ´ sq{2uq,

ξnu,s “

2u
ÿ

i“1

iαs´2u`i ` 2u
n´s´1
ÿ

j“1

αs`j ` uαn p1 ď u ď ts{2uq.

Using a similar argument to that of the proof of Theorem 5.9, one can prove
the following theorem:

Theorem 5.21. For 0 ď s ď n, we have

max`
pΛs|1q

“ tΛsu

ğ

�

Λs ´ ζn	,s
ˇ

ˇ 1 ď  ď tpn ´ sq{2u
(

ğ

�

Λs ´ ξnu,s
ˇ

ˇ 1 ď u ď ts{2u
(

.

Now we show that every element in max`pΛs|1q is essentially finite. Since

Supppζn	,sq “ r0, 2 ´ 1 ` ss Ĺ r0, ns,

we can choose n as an extremal vertex. Then the set

Ω1 :“ tΛsu

ğ

�

Λs ´ ζn	,s
ˇ

ˇ 1 ď  ď tpn ´ sq{2u
(
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can be considered as a subset of dominant maximal weights of Lpωn´sq over Cn via
the embedding

r0, n ´ 1s ãÑ r1, ns given by i ÞÑ n ´ i.

Hence Ω1 can be identified with

tωn´s´2k | 0 ď k ď tpn ´ sq{2uu(5.15)

which is a subset of dominant weights of Lpωn´sq (Here we set ω0 :“ 0). By
[27, Lemma 2.5], Lpωn´sq has ptpn´ sq{2u `1q-many dominant weights and the set
in (5.15) coincides with the set of dominant weights of Lpωn´sq indeed.

In a similar way, the set

Ω2 :“ tΛsu
ğ

�

Λs ´ ξnu,s
ˇ

ˇ 1 ď u ď ts{2u
(

can be identified with the set of dominant weights

tωs´2k | 0 ď k ď ts{2uu

of Lpωsq over Cn (Here, again, we set ω0 :“ 0).

5.4. Type D
p1q
n

Recall that the affine type D
p1q
n has fundamental weights Λ0,Λ1,Λn´1,Λn of

level 1. If Λ “ Λ0 ` Λn´1, one can check that there are only two maximal weights
Λ and Λ1 ` Λn ´ δ, and their multiplicities are 1 and n ´ 1, respectively. When
Λ “ Λ1 ` Λn´1 (resp. Λ0 ` Λn´1, Λ1 ` Λn) , the same is true with Λ0 (resp.
Λn´1) replaced by Λ1 (resp. Λn).

Since pΛ0,Λ1q and pΛn´1,Λnq are symmetric, we only consider the case when

Λ “ pδs,0 ` δs,1qΛ0 ` Λs p0 ď s ď n ´ 2q.

Lemma 5.22.
(1) If s is odd, we have

Λ0 ` Λ1, Λ2u`1 P max`
pΛ|2q for 1 ď u ď

s´1
2 ,

and if s is even,

2Λ0, 2Λ1 ´ p1 ` δs,0qδ, Λ2u P max`
pΛ|2q for 1 ď u ď

s
2 .

(2) For 1 ď u ď tpn ´ 2 ´ sq{2u, the following weights are in max`pΛ|2q :

Λs`2u ´ uδ “ Λ ´ cont
´

Y
λp2u´1`sq

Λ0

¯

` cont
´

Y
λps´1q

Λ0

¯

.

(3) Assume n ´ s is an even integer. Then the following weights are in
max`pΛ|2q :

2Λn ´
n ´ s

2
δ “ Λ ´ cont

´

Y
λn´1pn´1q

Λ0

¯

` cont
´

Y
λps´1q

Λ0

¯

,

2Λn´1 ´
n ´ s

2
δ “ Λ ´ cont

´

Y
λnpn´1q

Λ0

¯

` cont
´

Y
λps´1q

Λ0

¯

,

where Y
λεpn´1q

Λ0
pε “ n´ 1, nq is the Young wall whose top of the first column is the

half-thickness block with color ε.
(4) Assume n´s is an odd integer. Then the following weight is in max`pΛ|2q :

Λn´1 ` Λn ´
n ´ 1 ´ s

2
δ “ Λ ´ cont

´

Y
λpn´2q

Λ0

¯

` cont
´

Y
λps´1q

Λ0

¯

.
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Proof. The lemma can be prove using direct computation as in Lemma 5.2,
and we omit the details. �

Remark 5.23. We see that all the weights in Lemma 5.22 (2)-(4) are essentially
finite of type Dn.

Theorem 5.24. For Λ “ pδs,0 ` δs,1qΛ0 ` Λs p0 ď s ď n ´ 2q of level 2,
the set max`pΛ|2q is completely given by the maximal weights in Lemma 5.22. In
particular, we have

|max`
pΛ|2q| “

$

’

&

’

%

n`3
2 if n is odd,

n
2 ` 3 if n is even and s is even,
n
2 otherwise.

Proof. One can prove the theorem by applying a similar strategy as in The-
orem 5.9. �

We define the index of a maximal dominant weight in a similar way to Definition
5.10.

Definition 5.25. Assume that η P max`pΛ|2qztΛu is of the form

η “ Λ ´ cont
´

Y
λpmq

Λ

¯

` cont
´

Y
λpuq

Λ

¯

,

where u ě 0 if Λ ‰ 2Λ0 and u “ ´1 if Λ “ 2Λ0 (see Remark 5.11). Then we
define the index of the maximal weight η to be pm,uq. Similarly, assume that
η P max`pΛ|2q is of the form

η “ Λ ´ cont
´

Y
λεpn´1q

Λ

¯

` cont
´

Y
λpuq

Λ

¯

, ε “ n ´ 1, n,

where u ě 0 if Λ ‰ 2Λ0 and u “ ´1 if Λ “ 2Λ0. Then define the index of the
maximal weight η to be pn ´ 1, uq.

Now we consider highest weights of level 3.

Lemma 5.26.
(1) The following weights are in max`pΛ0 `Λ|3q : For 0 ď u ď tpn´3´sq{2u,

Λ1 ` Λs`2u`1 ´ pu ` 1qδ

“ Λ0 ` Λ ´ cont
´

Y
λp2u`sq

Λ1

¯

` pα1 ´ α0q ` cont
´

Y
λps´1q

Λ0

¯

.

(2) Assume n´s is an even integer. Then the following weight is in max`pΛ0`

Λ|3q :

Λ1 ` Λn´1 ` Λn ´
n ´ s

2
δ

“ Λ0 ` Λ ´ cont
´

Y
λpn´2q

Λ0

¯

` pα1 ´ α0q ` cont
´

Y
λps´1q

Λ0

¯

.

(3) Assume n´s is an odd integer. Then the following weights are in max`pΛ0`

Λ|3q : t P tn ´ 1, nu

Λ1 ` 2Λt ´
n ´ s ` 1

2
δ

“ Λ0 ` Λ ´ cont
´

Y
λtpn´1q

Λ0

¯

` δs”20pα1 ´ α0q ` cont
´

Y
λps´1q

Λ0

¯

,

where we write s ”2 0 for s ” 0 pmod 2q.
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Remark 5.27. We see that all the weights in Lemma 5.26 are essentially finite
of type Dn.

The following definition is an analogue of Definition 5.17.

Definition 5.28. Assume that η P max`pΛ0 ` Λ|3q, and set Λ “ Λ0 ` Λ.

(1) If η “ Λ0 ` μ with μ P max`pΛ|2q of index pm,uq, then we define the
index of η to be pm,uq.

(2) Assume that η is of the form

η “ Λ ´ cont
´

Y
λpmq

Λ0

¯

` pα1 ´ α0q ` cont
´

Y
λpuq

Λ0

¯

,

where u ě 0 if Λ ‰ 3Λ0 and u “ ´1 if Λ “ 3Λ0. Then define the index
of the maximal weight η to be pm,uq.

(3) Assume that η is of the form

η “ Λ ´ cont
´

Y
λεpn´1q

Λ0

¯

` δs”20pα1 ´ α0q ` cont
´

Y
λpuq

Λ0

¯

, ε “ n ´ 1, n,

where u ě 0 if Λ ‰ 3Λ0 and u “ ´1 if Λ “ 3Λ0. We define the index of
the maximal weight η to be pn ´ 1, uq.

Similarly, we consider higher levels to make the following definition.

Definition 5.29. Assume that η P pk ´ 1qΛ ` max`pΛ ` Λ|3q for k ě 1, and
write η “ pk ´ 1qΛ ` μ with μ P max`pΛ ` Λ|3q. If μ is of index pm,uq, then we
define the index of η to be pm,uq.

Whenever the index is defined for a maximal weight η P max`pkΛ ` Λ|k ` 2q,
k ě 0, the weight η will be called a staircase dominant maximal weight. The set of
staircase dominant maximal weights will be denoted by smax`pkΛ ` Λ|k ` 2q.

5.5. Type A
p2q

2n´1

Recall that the affine type A
p2q

2n´1 has the fundamental weights Λ0 and Λ1 of
level 1. Let us take a level 2 dominant integral weight Λ of the form

Λ “ pδs,0 ` δs,1qΛ0 ` Λs p0 ď s ď nq.

Lemma 5.30.
(1) For 0 ď u ď tpn ´ sq{2u, we have

(5.16)
pδs,0 ` δs,1qΛ0 ` Λs`2u ´ uδ

“ Λ ´ cont
´

Y
λp2u´1`sq

Λ0

¯

` cont
´

Y
λps´1q

Λ0

¯

P max`
pΛ|2q.

(2) For 1 ď u ď

Ys

2

]

, we have

(5.17)
p1 ` δs´2u,0qΛs´2u ` δs´2u,1Λ1

“ Λs ´

¨

˝

maxps,n´1q
ÿ

i“s´2u`1

pi ´ s ` 2uqαi ` 2u
n´1
ÿ

j“s`1

αj ` uαn

˛

‚P max`
pΛ|2q.
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(3) If s ě 2 is even, then we have

2Λ1 ´ δ “ Λs ´

¨

˝

maxps,n´1q
ÿ

i“2

i αi ` α0 ` s
n´1
ÿ

j“s`1

αj `
s

2
αn

˛

‚P max`
pΛ|2q.(5.18)

(4) When s “ 0, we have

2Λ1 ´ 2δ “ Λs ´

˜

2
n´1
ÿ

i“2

αi ` 2α0 ` αn

¸

P max`
pΛ|2q.(5.19)

Remark 5.31. We see that the weights in (5.16) are essentially finite of type
Dn, and that those in (5.17), (5.18) and (5.19) are essentially finite of type Cn.

Theorem 5.32. For Λ “ pδs,0`δs,1qΛ0`Λs p0 ď s ď nq of level 2, the maximal
weights in Lemma 5.30 exhaust the whole set max`pΛ|2q. Hence the number of
elements in max`pΛ|2q is tn{2u ` 2 if s is even, and tpn ´ 1q{2u ` 1 if s is odd.

Proof. One can prove the theorem by applying a similar argument as in The-
orem 5.9. �

Now we consider highest weights of level 3. Recall Λ :“ pδs,0 ` δs,1qΛ0 `Λs for
0 ď s ď n.

Lemma 5.33. The following weights are in max`pΛ0 ` Λ|3q : For 0 ď u ď

tpn ´ sq{2u,

(5.20)
Λ1 ` Λs`2u`1 ´ pu ` 1qδ

“ Λ0 ` Λ ´ cont
´

Y
λp2u`sq

Λ1

¯

` pα1 ´ α0q ` cont
´

Y
λps´1q

Λ0

¯

.

We define the index of the weights in (5.16) and (5.20) as we did in Definition
5.10 and 5.17, respectively, and we extend it to higher levels as in Definition 5.18.
Similarly, whenever the index is defined for a maximal weight η P max`pkΛ`Λ|k`

2q, k ě 0, the weight η will be called a staircase dominant maximal weight. The set
of staircase dominant maximal weights will be denoted by smax`pkΛ ` Λ|k ` 2q.

5.6. Type A
p2q

2n

Recall that the affine type A
p2q

2n has the only fundamental weight Λ0 of level 1.
Let us take level 2 dominant integral weights Λ as follows:

Λ “ δs,0Λ0 ` Λs p0 ď s ď nq.

Lemma 5.34.
(1) For 0 ď u ď tpn ´ sq{2u, we have

(5.21)

p1 ` δs`2u,0qΛs`2u ´ 2uδ “ Λ ´ cont
´

Y
λp2u´1`sq

Λ0

¯

` cont
´

Y
λpsq

Λ0

¯

P max`
pΛ|2q.

(2) For 1 ď u ď

Ys

2

]

, we have

(5.22)
p1 ` δs´2u,0qΛs´2u

“ Λs ´

¨

˝

maxps,n´1q
ÿ

i“s´2u`1

pi ´ s ` 2uqαi ` 2u
n´1
ÿ

j“s`1

αj ` uαn

˛

‚P max`
pΛ|2q.
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Remark 5.35. We see that the weights in (5.21) are essentially finite of type
Bn, and that those in (5.22) are essentially finite of type Cn.

Theorem 5.36. For Λ “ δs,0Λ0 ` Λs p0 ď s ď nq of level 2, the maximal
weights in Lemma 5.34 exhaust the whole set max`pΛ|2q. Hence the number of
elements in max`pΛ|2q is pn ` 1q{2 if n is odd and n{2 ` δs”20 if n is even.

Proof. A similar argument as in Theorem 5.9 can be used. �

Definition 5.37. Assume that η P max`pΛ|2q is of the form

η “ Λ ´ cont
´

Y
λpmq

Λ0

¯

` cont
´

Y
λpuq

Λ0

¯

,

where s ě 0. Then we define the index of the maximal weight η to be pm,uq.

In the case of type A
p2q

2n , one can easily check the following:

‚ every level 3 dominant integral weight Λ is of the form Λ0 ` Λ,
‚ |max`pΛ|2q| “ |max`pΛ0 ` Λ|3q|,
‚ max`pΛ0 ` Λ|3q “ tΛ0 ` η | η is of the form (5.21) or (5.22) u.

We extend the above definition to higher levels as before. Whenever the index
is defined for a maximal weight η P max`pkΛ0 ` Λ|k ` 2q, k ě 0, the weight η
will be called a staircase dominant maximal weight. The set of staircase dominant
maximal weights will be denoted by smax`pkΛ0 ` Λ|k ` 2q.

5.7. Type D
p2q

n`1

Recall that the affine type D
p2q

n`1 has the fundamental weights Λ0,Λn of level
1. If Λ “ Λ0 ` Λn, one can check that there are only one maximal weights Λ itself
and hence its multiplicity are 1.

Let us consider level 2 dominant integral weights Λ:

Λ “ pδs,0 ` δs,nqΛ0 ` Λs p0 ď s ď n ´ 1q.(5.23)

Lemma 5.38. The following weights are in max`pΛ|2q :

p1 ` δs`u,nqΛs`u ´ uδ “ Λ ´ cont
´

Y
λpu´1`sq

Λ0

¯

` cont
´

Y
λpsq

Λ0

¯

p0 ď u ď n ´ sq,

(5.24)

p1 ` δu,0qΛu “ Λ ´ cont
´

Y
λpn´uq

Λn

¯

` cont
´

Y
λpn´sq

Λn

¯

p1 ď u ď sq.(5.25)

Remark 5.39. We see that the weights in (5.24) and (5.25) are essentially finite
of type Bn.

Theorem 5.40. For Λ “ pδs,0 ` δs,nqΛ0 ` Λs p0 ď s ď n ´ 1q of level 2, the
maximal weights in Lemma 5.38 exhaust the whole set max`pΛ|2q. The number of
elements in max`pΛ|2q is n ` 1.

Definition 5.41. Assume that η P max`pΛ|2q is of the form

η “ Λ ´ cont
´

Y
λpmq

Λ

¯

` cont
´

Y
λpuq

Λ

¯

, Λ “ Λ0,Λn,

where u ě 0. Then we define the index of the maximal weight η to be pm,uq.

As in the case of type A
p2q

2n , one can easily check the following for D
p2q

n`1:
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‚ every level 3 dominant integral weight Λ is of the form Λ0 `Λ or Λn `Λ
for a Λ of the form (5.23),

‚ |max`pΛ|2q| “ |max`pΛε ` Λ|3q| pε “ 0, nq,
‚ max`pΛε ` Λ|3q “ tΛε ` η | η is of the form (5.24) or (5.25) u.

We extend the above definition to higher levels as before. The set of staircase
dominant maximal weights is defined in a similar way as in the previous sections.

5.8. Classification of staircase dominant maximal weights

As we have observed in the previous sections, the staircase maximal weights in
smax`pΛq are essentially finite of type Bn or Dn. Hence we classify the staircase
dominant maximal weights into two classes according to their finite types, and make
the following definition.

Definition 5.42. Define smax`
B

pΛ|kq (resp. smax`
D

pΛ|kq) to be the set of
staircase dominant maximal weights of Λ of level k ě 2 that are essentially finite
of type Bn (resp. Dn).

Note that the staircase dominant maximal weights of Λ do not exhaust the set
max`pΛ|kq in general.

Remark 5.43 (Indices for smax`
B

pΛ|kq and smax`
D

pΛ|kq).

(1) For k ě 2, the indices for smax`
B

pΛ|kq are given as follows (see Lemma
5.7):

tpm, sq | n ě m ě s ě 0u.

(2) For k ě 2, the indices for smax`
D

pΛ|kq are given as follows (see Lemma
5.2, 5.13 and (5.13)):
#

tpm, s ´ 1q | s ě 0, n ě m ě s ´ 1 and m ı2 suztp0,´1qu if k “ 2,

tpm, s ´ 1q | s ě 0 and n ě m ě s ´ 1uztp0,´1qu if k ě 3.
(5.26)

The following table shows which affine types are related to each type of staircase
dominant maximal weights.

Staircase Type smax`
B

pΛ|kq smax`
D

pΛ|kq

Affine Types B
p1q
n , A

p2q

2n , D
p2q

n`1 B
p1q
n , D

p1q
n , A

p2q

2n´1
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CHAPTER 6

Weight multiplicities and (spin) rigid Young
tableaux

In this chapter, we will introduce the notion of pspinq rigid Young tableaux,
and show that the set of these tableaux is equinumerous to the set of crystal basis
elements in BpΛqη for a dominant integral weight Λ “ pk ´ 2qΛ ` Λ of level k and
its staircase dominant maximal weights η P smax`pΛ|kq, k ě 2. As noted in (5.1),
it suffices to consider their finite types. Hence, in this chapter we only consider

affine type B
p1q
n and the sets smax`

B
pΛ|kq and smax`

D
pΛ|kq.

Considering the crystal rules for Young walls, one can prove the following
lemma.

Lemma 6.1. For strict partitions λp1q, . . . , λpkq with maxtλ
p1q

1 , . . . , λ
pkq

1 u ď n,

if the Young wall Y
pλp1q,...,λpkq

q

pΛp1q,...,Λpkqq
corresponds to a highest weight crystal vector then

λp1q “ H and λp2q “ λpsq for some s P Zě0.

Proof. The tensor product rule of crystals in Definition 2.4 implies that, for
crystals BpΛq and B, every highest weight crystal in BpΛq b B is uΛ b b for some
b P B where uΛ is the highest weight crystal of BpΛq. Thus λp1q “ H. By the

assumption that λ
piq
1 ď n, λp2q must be λpsq for some s P Zě0 from the ground-

state pattern of the Young wall and the tensor product rule. �

Definition 6.2. For strict partitions λp1q and λp2q, Λ and Λ1 of the same type,
we define sΛ,Λ1 pλp1q, λp2qq to be the smallest nonnegative integer s satisfying

(6.1) pYλp1q

Λ qě1 Ą pYλp2q

Λ1 qěs`1,

where the containment in (6.1) is defined in Definition 2.16.

The following lemma implies that the quantity sΛ,Λ1 pλp1q, λp2qq is invariant
under application of ẽi’s.

Proposition 6.3. For strict partitions λp1q, λp2q with maxtλ
p1q

1 , λ
p2q

1 u ď n and
i P I, suppose that

ẽipY
pλp1q,λp2q

q

pΛ,Λ1q q “ Y
pλ1,λ2

q

pΛ,Λ1q .

Then sΛ,Λ1 pλp1q, λp2qq “ sΛ,Λ1 pλ1, λ2q ď n.

Proof. Obviously, sΛ,Λ1 pλp1q, λp2qq, sΛ,Λ1 pλ1, λ2q ď n. Let s “ sΛ,Λ1 pλp1q, λp2qq

and s1 “ sΛ,Λ1 pλ1, λ2q. Let ε “ 0 if Λp1q and Λp2q are of type B, and ε “ 1 if they
are of type D. The assumption implies that we have either

(1) λ1 “ λp1q and }λp2q{λ2} “ 1 or
(2) λ2 “ λp2q and }λp1q{λ1} “ 1.

49
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Since the second case can be proved similarly, we will only consider the first

case. Since λ1 “ λp1q Ą λ
p2q

ěs`1 Ą λ2
ěs`1, if s ď ε, then it is the smallest possible

and we have s1 “ s. Now assume that s ě 1 ` ε. Let j be the unique integer such

that λ
p2q

j “ λ2
j ` 1. In order to show s “ s1, it suffices to show λ1 Č λ2

ěs´ε. For

a contradiction, suppose that λ1 Ą λ2
ěs´ε. Then we have λp1q “ λ1 Ą λ2

ěs´ε and

λp1q Č λ
p2q

ěs´ε. Since λp2q and λ2 differ by only one part, we obtain that λp1q must

have a part equal to t ´ 1, where t :“ λ
p2q

j “ λ2
j ` 1. Moreover, by considering

the Young diagrams of λp1q, λ
p2q

ěs´ε, and λ2
ěs´ε, one can see that the position of the

part t´ 1 in λp1q is equal to the position of the part t in λ
p2q

ěs´ε. Therefore, we have
j ě s ´ ε and

λ
p1q

j´s`ε`1 “ pλ
p2q

ěs´εqj´s`ε`1 ´ 1 “ λ
p2q

j ´ 1 “ t ´ 1.

If j “ s ´ ε, then λ
p1q

1 “ t ´ 1 and sigipY
λp1q

Λ q “ p`q. If j ě s ´ ε ` 1, then by the

assumption λp1q “ λ1 Ą λ2
ěs´ε, we have

λ
p1q

j´s`ε ě pλ2
ěs´εqj´s`ε “ λ2

j´1 “ λ
p2q

j´1 ą λ
p2q

j “ t.

Thus we also have sigipY
λp1q

Λ q “ p`q. This means that

ẽipY
pλp1q,λp2q

q

pΛ,Λ1q q “ ẽipY
λp1q

Λ q b Yλp2q

Λ1 “ 0,

which is a contradiction. Therefore, we must have λ1 Č λ2
ěs´ε, which implies

s “ s1. �

6.1. Case smax`
B

pΛ|kq

In this section, we assume that η is an element of smax`
B

pΛ|kq and that Λ is
of type B.

Let k P Zě1 and s P Zě0. A skew Young tableau T of shape μ{psk´1q with m
cells for a partition μ of length k is naturally identified with a sequence of strict
partitions

pλp1q, λp2q, . . . , λpk´1q, λpkq
q

such that λpkq ‰ H, λp1q ˚ λp2q ˚ ¨ ¨ ¨ ˚ λpk´1q ˚ λpkq “ λpmq, λpiq Ą λpi`1q for

1 ď i ď k ´ 2 and λpk´1q Ą λ
pkq

ěs`1. For example, take k “ 3 and s “ 1 and
we identify the following skew Young tableau with the corresponding sequence of
partitions

¨ 7 5 4
¨ 3 1
6 2

ÐÑ pp7, 5, 4q, p3, 1q, p6, 2qq .

From now on, we will freely use this identification of skew tableaux and sequences
of strict partitions.

Definition 6.4. For k P Zě1 and s,m P Zě0, let T “ pλp1q, λp2q, . . . , λpk´1q,
λpkqq be a skew Young tableau of shape μ{psk´1q with m cells for a partition μ of
length at most k. Then T is called a rigid Young tableau of index pm, sq with k
rows if s “ 0, or s ě 1 and

λpk´1q
Č λ

pkq

ěs .(6.2)
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We denote by sB
pkq
m the set of all rigid Young tableaux of index pm, sq with k rows.

In particular, we have 0B
pkq
m “ B

pkq
m .

Note that if T “ pλp1q, λp2q, . . . , λpk´1q, λpkqq is a rigid tableau of index pm, sq,
then pλpkqq ě s. The condition (6.2) says that a shift of the last row to the right
by 1 makes the tableau violate the column-strictness.

Example 6.5.

(1) T “ pp432q, p51qq P 1B
p2q

5 since

¨ 4 3 2
5 1

is a skew Young tableau but 4 3 2
5 1

is not a Young tableau.

On the other hand, pp532q, p41qq R 1B
p2q

5 since

¨ 5 3 2
4 1

is a skew Young tableau and 5 3 2
4 1

is also a Young tableau.

(2)
¨ ¨ ¨ 1210 8 7
¨ ¨ ¨ 11 9 1
6 5 4 3 2

P 3B
p3q

12 since
¨ ¨ 1210 8 7
¨ ¨ 11 9 1
6 5 4 3 2

is not a skew Young

tableau.

(3) We also have T “ pH,H, p2, 1qq ÐÑ

¨ ¨

¨ ¨

2 1
P 2B

p3q

2 .

Proposition 6.6. For strict partitions λp1q and λp2q with maxtλ
p1q

1 , λ
p2q

1 u ď n,

the Young wall Y
pλp1q,λp2q

q

pΛ,Λq
is connected to Λ bY

λpsq

Λ for a unique integer s and we

have s “ sΛ,Λpλp1q, λp2qq.

Proof. If we apply ẽi’s to Y
pλp1q,λp2q

q

pΛ,Λq
until no longer possible, we obtain a

Young wall corresponding to a highest weight vector. By Lemma 6.1, the resulting

Young wall is of the form Λ b Y
λprq

Λ for some r ě 0. By Proposition 6.3, we have

s “ sΛ,Λpλp1q, λp2q
q “ sΛ,ΛpH, λprqq “ r.

Therefore r “ s and such an integer is unique. �
As in Introduction, define

ω̃s :“

#

2ωn if s “ n,

ωs otherwise.
(6.3)

Let Lpωq be the highest weight module with highest weight ω over the finite di-
mensional Lie algebra of type Bn.

We have the following result:

Proposition 6.7. For η P smax`
B

pΛ|2q of index pm, sq, we have

dimpV pΛqηq “ |sB
p2q
m | “ dim

`

Lpω̃n´sqω̃n´m

˘

.

Proof. Recall from Definition 5.10 that
(6.4)

η “ Λ´cont
´

Y
λpmq

Λ

¯

`cont
´

Y
λpsq

Λ

¯

or Λ´cont
´

Y
pnq˚λpm´1q

Λ

¯

`cont
´

Y
λpsq

Λ

¯

.

Note that
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(i) contpYT
pΛ,Λq

q “ contpY
λpmq

Λ q for any T P sB
p2q
m ,

(ii) contpYT 1

pΛ,Λq
q “ contpY

pnq˚λpm´1q

Λ q for the tableau T 1 obtained by replacing

m by n in the filling of T P sB
p2q
m (see Remark 5.4).

By Proposition 6.6, the set tYT
pΛ,Λq

| T P sB
p2q
m u or tYT 1

pΛ,Λq
| T P sB

p2q
m u (depending

on η in (6.4)) forms the crystal basis for V pΛqη, which implies our assertion. The
last equality follows from Proposition 5.8 and Theorem 2.7. �

Now, we obtain the main theorem of this section:

Theorem 6.8. Assume that k ě 2 and 0 ď s ď m. Then, for η P smax`
B

pΛ|kq

of index pm, sq, we have

dimV pΛqη “ |sB
pkq
m | “ dimLppk ´ 2qωn ` ω̃n´sqpk´2qωn`ω̃n´m

.(6.5)

Proof. Since the case k “ 2 is proved in Proposition 6.7, we may assume

k ě 3. Since s ď m ď n, a Young wall Y P BpΛqη connected to Λ :“ pk ´ 1qΛ b

Y
λpsq

Λ cannot contain a removable δ. Thus, for each Y P BpΛqη connected to Λ ,

there exists a sequence of strict partitions λ “ pλp1q, λp2q, . . . , λpk´1q, λpkqq satisfying

λp1q ˚ λp2q ˚ ¨ ¨ ¨ ˚ λpk´1q ˚ λpkq “ λpmq and Y “ Y
λ
Λ.

Let t be the smallest integer such that t ă k and λptq Č λpt`1q. If there is no
such integer, we let t “ k. If t ă k, we also define u to be the smallest nonnegative
integer satisfying

λptq
Ą λ

pt`1q

ěu`1.

If t ă k ´ 1, the argument in Proposition 6.6 implies that Y cannot be connected

to Λ . More precisely, if t ă k ´ 1, then Y is connected to tΛ bY
λprq

Λ bYλpt`2q

Λ b

¨ ¨ ¨ b Yλpkq

Λ for some r ą 0, which implies that ẽi is not applicable to the pt ` 1qst

component Y
λprq

Λ for any i P I and hence Y cannot be connected to Λ .
Thus, if t ă k,

Y is connected to pk ´ 1qΛ b Y
λpsq

Λ ðñ t “ k ´ 1 and u “ s ðñ λ P sB
pkq
m ,

and if t “ k,

Y is connected to kΛ ðñ t “ k ðñ λ P sB
pkq
m (s “ 0).

The last equality in (6.5) follows from Proposition 5.8 and Theorem 2.7. �

As a special case, when s “ 0, the numbers |B
pkq
m | for m ď n are the multiplic-

ities of maximal weights of V pkΛq. Explicit formulas for the numbers |B
pkq
m | are

given in Theorem 3.5 for 1 ď k ď 5. We will obtain a closed formula for |B
p6q
m | in

Corollary 10.10. In [39], Tsuchioka and Watanabe studied the case Λ “ kΛ0 for

types A
p2q

2n and D
p2q

n`1.

6.2. Case smax`
D

pΛ|kq

In this section, we will deal with η in smax`
D

pΛ|kq. Throughout this section,
we assume that Λ is of type D.

Proposition 6.9.

(1) Let λp1q, λp2q be strict partitions satisfying the following conditions:
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(i) maxtλ
p1q

1 , λ
p2q

1 u ď n,

(ii) λp1q Ą λ
p2q

ě2s, and (ii-1) s “ 1 or (ii-11) λp1q Č λ
p2q

ě2s´2 for some s ě 2.

Then the Young wall Yλp1q

Λ0
b Yλp2q

Λ1
is connected to Λ2s´1 :“ Λ0 b

Y
λp2s´2q

Λ1
.

(2) Let λp1q, λp2q be strict partitions satisfying the following conditions:

(i) maxtλ
p1q

1 , λ
p2q

1 u ď n,

(ii) λp1q Ą λ
p2q

ě2s`1 and λp1q Č λ
p2q

ě2s´1 for some s ě 1.

Then the Young wall Yλp1q

Λ0
bYλp2q

Λ0
is connected to Λ2s :“ Λ0 bY

λp2s´1q

Λ0
.

Proof. By Remark 2.11, the patterns appearing in Yλp1q

Λ0
and pYλp2q

Λ1
qě2s coin-

cide with each other. By applying ẽi’s until no longer possible, we obtain a Young
wall corresponding to its highest weight vector. By Proposition 6.3, its highest

weight vector is of the form Λ0 b Y
λp2tq
Λ1

for some t ě 0. By Lemma 6.1,

2s ´ 2 “ sΛ0,Λ1
pλp1q, λp2q

q “ sΛ0,Λ1
pH, λp2tqq “ 2t.

This proves the first statement.
The second statement follows similarly with the consideration on patterns. �

Recall that each η P smax`
D

pΛ|2q is of index p2m ´ 1 ` s, s ´ 1q (see (5.6b)).

Theorem 6.10. For η P smax`
D

pΛ|2q of index p2m ´ 1 ` s, s ´ 1q, set ε “ 0 if
s is even and ε “ 1 otherwise. Then

Y P Bppδs,0 ` δs,1qΛ0 ` Λsqη p1 ď s ă nq if and only if Y “ Yλp1q

Λ0
b Yλp2q

Λε
satisfies

(a) λp1q ˚ λp2q “ λp2m ´ 1 ` sq,

(b)

$

’

&

’

%

λp1q Ą λ
p2q

ěs`1 and λp1q Č λ
p2q

ěs´1 if s ě 2,

λp1q Ą λ
p2q

ě2 if s “ 1,

λp1q Ą λp2q if s “ 0.

(6.6)

Proof. The “if” part follows from Proposition 6.9. Now it suffices to prove
the “only if” part. Since η corresponds to pλp2m´1`sq, λps´1qq for 2m´1`s ď n,

Y should be of the form Yλp1q

Λ0
b Yλp2q

Λε
for some pair of strict partitions pλp1q, λp2qq.

Note that any pair of strict partitions pλp1q, λp2qq has the largest t satisfying one of

the three conditions in (b) of (6.6). One can also check that maxtλ
p1q

1 , λ
p2q

1 u ď n.
Then the “only if” part follows from the form of weight η and Proposition 6.9 again;
that is, s “ t and λp1q ˚ λp2q “ λp2m ´ 1 ` sq by (5.6b). �

Let k P Zě1 and s P Zě0. Recall that a skew Young tableau T of shape
μ{psk´1q with m cells for a partition μ of length k is identified with a sequence of
strict partitions

pλp1q, λp2q, . . . , λpk´1q, λpkq
q

such that λpkq ‰ H, λp1q ˚ λp2q ˚ ¨ ¨ ¨ ˚ λpk´1q ˚ λpkq “ λpmq, λpiq Ą λpi`1q for

1 ď i ď k ´ 2 and λpk´1q Ą λ
pkq

ěs`1.
Now we define a family of tableaux which will play an important role for type

D constructions.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

54 6. WEIGHT MULTIPLICITIES AND (SPIN) RIGID YOUNG TABLEAUX

Definition 6.11. For s,m P Zě0 with m ě s ´ 1, let T be a skew Young
tableau of shape μ{psk´1q with m cells for a partition μ of at most length k, which
is identified with the sequence of strict partitions

λ “ pλp1q, λp2q, . . . , λpk´1q, λpkq
q with λi :“ pλpiq

q, i “ 1, . . . , k.

Then T is called a spin rigid Young tableau of index pm, sq with k rows if it satisfies
the following conditions:

(a) pλ1, λ2, . . . , λk´1, λk ` sq ,0 m ` s,

(b) if s ě 2, then λpk´1q Č λ
pkq

ěs´1.

We denote by sD
pkq
m the set of all spin rigid Young tableaux of index pm, sq with

k rows. In particular, 0D
pkq
m “ D

pkq
m and hence 0D

p2q

2m´1 “ B
p2q

2m´1. (See Remark
3.10.)

Note that the condition (b) implies pλpkqq ě maxt0, s ´ 1u. The condition
(b) says that a shift of the last row to the right by 2 makes the tableau violate
the column-strictness. The condition (a) naturally arises when we connect a spin
rigid tableau with a staircase dominant maximal weight through a tensor product
of Young walls. See Lemma 6.13 below.

We will color the columns of a spin rigid Young tableau in white and gray as
follows to indicate the corresponding columns of Young walls starting from 0-blocks
and 1-blocks.

The first column of spin rigid Young tableaux T P 2sD
pkq
m is colored in white

while the first column of spin rigid Young tableaux T P 2s`1D
pkq
m is colored in gray.

Example 6.12.
(1) We have

T “ ¨ ¨ 4 2 1
¨ ¨

3

P 2D
p3q

4 , since ¨ ¨ 4 2 1
¨ ¨

¨ ¨ 3

is not a skew tableau.

Here T corresponds to λ “ pp4, 2, 1q,H, p3qq.

The set 2D
p3q

4 consists of the following 15 spin rigid Young tableaux:

¨ ¨ 3 2 1
¨ ¨

4

, ¨ ¨ 4 2 1
¨ ¨

3

, ¨ ¨ 4 3 1
¨ ¨

2

, ¨ ¨ 4 3 2
¨ ¨

1

, ¨ ¨ 3 1
¨ ¨ 2
4

, ¨ ¨ 4 2
¨ ¨ 1
3

, ¨ ¨ 4 3
¨ ¨ 1
2

,

¨ ¨ 3 2
¨ ¨ 1
4

, ¨ ¨ 4 1
¨ ¨ 2
3

, ¨ ¨ 4
¨ ¨ 3
2 1

, ¨ ¨ 4
¨ ¨ 2
3 1

, ¨ ¨ 3
¨ ¨ 2
4 1

, ¨ ¨ 2
¨ ¨ 1
4 3

, ¨ ¨ 4
¨ ¨ 1
3 2

, ¨ ¨ 3
¨ ¨ 1
4 2

.

(2) The set 3D
p3q

4 consists of the following 10 spin rigid Young tableaux:

¨ ¨ ¨ 2 1
¨ ¨ ¨

4 3

, ¨ ¨ ¨ 3 2
¨ ¨ ¨

4 1

, ¨ ¨ ¨ 3 1
¨ ¨ ¨

4 2

, ¨ ¨ ¨ 4 1
¨ ¨ ¨

3 2

, ¨ ¨ ¨ 4 3
¨ ¨ ¨

2 1

¨ ¨ ¨ 4 2
¨ ¨ ¨

3 1

, ¨ ¨ ¨ 1
¨ ¨ ¨

4 3 2

, ¨ ¨ ¨ 2
¨ ¨ ¨

4 3 1

, ¨ ¨ ¨ 3
¨ ¨ ¨

4 2 1

, ¨ ¨ ¨ 4
¨ ¨ ¨

3 2 1

.

When Λ “ pk ´ 2 ` δs,1qΛ0 ` Λ2s´1, the crystal BpΛq is embedded into
YpΛ0qbk´1 b YpΛ1q, and when Λ “ pk ´ 2qΛ0 ` p1 ` δs,0qΛ2s, the crystal BpΛq

is embedded into YpΛ0qbk. Hence we use gray color to distinguish the columns of
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Young walls starting with 1-blocks with those starting with 0-blocks. For example,
we have

��
��
�

��
��
�

��
��
�

1
0

2

3

4

0
1

2

3

1
0

2
b

��
��
�

��
��
�

0
1

2

3

4

5

1
0

ÐÑ Y
p4,3,2q

Λ0
b Y

p5,1q

Λ1
ÐÑ ¨ 4 3 2

5 1
P 1D

p2q

5 ,(6.7)

��
��
�

��
��
�

��
��
�

1
0

2

3

4

0
1

2

3

1
0

2
b

��
��
�

��
��
�

1
0

2

3

4

5

0
1

ÐÑ Y
p4,3,2q

Λ0
b Y

p5,1q

Λ0
ÐÑ ¨ ¨ 4 3 2

5 1
P 2D

p2q

5 .(6.8)

Note that the cells filled with white (resp. gray) color represent the columns starting
with 0-blocks (resp. 1-blocks). In (6.8), we use

¨ ¨ 4 3 2
5 1

instead of ¨ 4 3 2
5 1

so that each column of the tableau has the same color.
Let

Λ “

#

pΛ0, . . . ,Λ0,Λ0q if s is even,

pΛ0, . . . ,Λ0,Λ1q if s is odd.

The following lemma follows from the definitions of sD
pkq
m and smax`

D
pΛ|kq:

Lemma 6.13. Let s,m P Zě0 with n ě m ě s ´ 1, and Λ “ pk ´ 2 ` δs,0 `

δs,1qΛ0 ` Λs, k ě 2. Then, for T P sD
pkq
m , we have

contpYT
Λq “

#

contpY
λpmq

Λ1
q ´ pα1 ´ α0q if s ”2 m,

contpY
λpmq

Λ0
q otherwise,

and the tableau T is associated with η P smax`
D

pΛ|kq of index pm, s ´ 1q such that

contpYT
Λq ´ contpY

λps´1q

Λ0
q “ Λ ´ η.

Recall the set of indices for smax`
D

pΛ|kq in (5.26). The following is the main
theorem of this section:

Theorem 6.14. Assume that k ě 2. Then, for η P smax`
D

pΛ|kq of index
pm, s ´ 1q, we have

dimV pΛqη “ |sD
pkq
m | “ dimL

`

pk ´ 2qωn ` ω̃n´s

˘

μ
,

where the definition of ω̃s is given in (5.12) and the weights μ are given by

μ “

#

pk ´ 2qωn ` ω̃n´m´1 if k “ 2, or k ě 3 and m ı2 s,

pk ´ 3qωn ` ωn´1 ` ω̃n´m´1 if k ě 3 and m ”2 s.
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Proof. Let η, η1 P smax`
D

pΛ|kq be of index pm, s ´ 1q. If η is associated
with pλpmq, λps ´ 1qq and η1 with ppnq ˚ λpm ´ 1q, λps ´ 1qq, one can see that
dimV pΛqη “ dimV pΛqη1 by replacing the role of pnq ˚ λpm ´ 1q with that of
λpmq to construct a one-to-one correspondence between the corresponding sets of
tensor products of Young walls. Thus we only need to consider η associated with
pλpmq, λps ´ 1qq.

Set

Λ :“

$

&

%

pk ´ 1qΛ0 b Y
λps´1q

Λ0
if s is even,

pk ´ 1qΛ0 b Y
λps´1q

Λ1
if s is odd.

Since m ď n, a Young wall Y P BpΛqη connected to Λ cannot contain a removable
δ. Hence Lemma 6.13 tells us that Y P BpΛqη corresponds to a sequence of strict

partitions λ “ pλp1q, λp2q, . . . , λpk´1q, λpkqq satisfying the condition (a) in Definition
6.11:

Y “ Y
λ
Λ where Λ “

#

pΛ0, . . . ,Λ0,Λ0q if s is even,

pΛ0, . . . ,Λ0,Λ1q if s is odd.

Note that if pλpkqq ă maxt0, s ´ 1u, then Y cannot be connected to Λ . Now the
condition (b) in Definition 6.11 follows to represent the columns of Young walls
starting with 1-blocks from Proposition 6.9 and Theorem 6.10.

The last equality follows from Proposition 5.3 and Theorem 2.7. �

We record the special case s “ 0 as a corollary for future reference.

Corollary 6.15. The numbers |D
pkq
m | of almost even tableaux of m with at

most k rows are the multiplicities of dominant maximal weights for V pkΛq and
hence the multiplicities of dominant weights for V pkωnq.

For the rest of this section, we investigate the relationship between 0D
pkq
m and

1D
pkq

m´1, which will be used in chapter 8. Set Λ “ pk ´ 1qΛ0 ` Λ1 for k ě 3.

The crystal BpΛq can also be realized by the subcrystal of YpΛ1q b YpΛ0qbk´1

(as opposed to YpΛ0qbk´1 bYpΛ1q) connected to Λ1 b pk ´ 1qΛ0 . By applying

the argument in this section, one can prove that the crystal basis of V pΛqη for
η P smax`

D
ppk ´ 1qΛ0 ` Λ1|kq is realized by

0D
pkq
m zm :“ tT zm | T P 0D

pkq
m u,

where η P smax`pΛ|kq is of index pm ´ 1, 0q and T zm is the tableau obtained by
removing the cell m located in the position p1, 1q. For example, when m “ 6 and
k “ 3,

��
��
�

��
��
�

0
1

2

3

4

1
0

2

3
b

��
��
�

��
��
�

1
0

2

3

4

5

0
1

2
b

��
��
�
1

0 ÐÑ T z 6 “ ¨ 4 3
5 2
1

where T “ 6 4 3
5 2
1

P 0D
p3q

6 .

On the other hand, by Theorem 6.14, the crystal basis of V pΛqη is also realized by

the set 1D
pkq

m´1 of spin rigid Young tableaux.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

6.2. CASE smax`
D

pΛ|kq 57

Hence we can conclude that

|0D
pkq
m | “ |0D

pkq
m zm | “ |1D

pkq

m´1|,

which will explain the correspondence with the equation Rpm,0q “ Rpm´1,1q in (4.5)
(see chapter 8 below).

Example 6.16. The set 0D
p3q

4 z 4 is given as follows:

¨ 3
2
1

, ¨ 2
3
1

, ¨ 1
3
2

, ¨ 2 1
3

, ¨ 3 1
2

, ¨ 3 2
1

.

On the other hand, the set 1D
p3q

3 is given as follows:

¨ 3 1
¨ 2

, ¨ 3 2
¨ 1

, ¨ 3 2 1 , ¨ 3
¨ 2
1

, ¨ 3
¨ 1
2

, ¨ 2
¨ 1
3

.

The following corollary summarizes the above observations.

Corollary 6.17. Set Λ “ pk ´ 1qΛ0 ` Λ1 for k ě 2. Then the number of the
almost even tableaux of m ě 1 with at most k rows appears as the multiplicity of a
maximal weight η P smax`pΛ|kq of index pm ´ 1, 0q. That is, we have

|0D
pkq
m | “ |1D

pkq

m´1| “ dimpV pΛqηq.

Remark 6.18.

(1) Explicit formulas for the numbers |D
pkq
m | for 1 ď k ď 5 will be given in

Theorem 10.2. Thus we have explicit formulas for the multiplicities of
η P smax`pΛ|kq of indices pm,´1q and pm ´ 1, 0q for 1 ď k ď 5.

(2) All the results in this section still hold when we replace the filling m by
n in each tableau, since it does not affect the proofs and only affects the
weight of a tableau (see (5.14)). This fact explains that the index pm, sq

in Definition 5.17 is well-defined.
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CHAPTER 7

Level 2 weight multiplicities: Catalan and Pascal
triangles

In this chapter, we prove that all the multiplicities of the (staircase) dominant
maximal weights of level 2 are generalized Catalan numbers or binomial coefficients.
As will be indicated in Section 7.1, the results can be obtained through classical
constructions. We will provide a different proof, which utilizes a new insertion
scheme for (spin) rigid Young tableaux and makes the Catalan and Pascal triangles
compatible with the insertion scheme. This insertion scheme will naturally gener-
alize in the next chapter to the case of level 3 weights, where classical constructions
do not easily generalize.

7.1. Classical realizations

Now we restate and give an alternative proof for [38, Theorem 1.4 (ii)], which

was on the affine type A
p1q

n´1:

Theorem 7.1. pcf. [38, Theorem 1.4 (ii)]q For finite type An´1, we have

dimLpωt ` ωt`sqωt´k`ωt`s`k
“ Cps`2k,sq for 0 ď k ď t,

where Cpm,sq are the generalized Catalan numbers.

Proof. By Kashiwara–Nakashima’s realization ([22]) of the crystal basis for
Bpωt ` ωt`sq via semi-standard tableaux filled with 1, 2, . . . , n, the dimension
dimLpωt`ωt`sqωt´k`ωt`s`k

is the same as the number of semi-standard tableaux T
(the convention for semi-standard tableaux in [22] is different from ours) satisfying
the following conditions:

‚ ShpT q “ p2t, 1sq,
‚ for every 1 ď i ď t ´ k, the two cells in the i-th row are filled with i,
‚ the remaining 2k`s cells are filled with the distinct numbers t´k`1, t´

k ` 2, . . . , t ` k ` s.

Hence Remark 4.17 implies our assertion. �

In Section 5.1, we showed that every dominant maximal weight of a highest
weight Λ of level 2 is essentially finite of type An´1. Thus we obtain the following
corollary:

Corollary 7.2. For finite type An´1, assume that η P max`pΛ|2q. Then the
multiplicity of η is a generalized Catalan number.

Generalized Catalan numbers also appear for type Cn as one can see in the
following theorem.

59
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Theorem 7.3. For finite type Cn, 1 ď s ď n and 0 ď i ď t
s
2 u, we have

dimLpωsqωs´2i
“ Cpn´s`2i,n´sq.

Proof. This is a consequence of the exterior power realization of the funda-
mental representation (see [8, Theorem 17.5]) since

Cpn´s`2i,n´sq “

ˆ

n ´ ps ´ 2iq

i

˙

´

ˆ

n ´ ps ´ 2iq

i ´ 1

˙

. �

In Section 5.3, we showed that every dominant maximal weight of a highest

weight Λs of level 1 over type C
p1q
n is essentially finite of type Cn. For types A

p2q

2n´1

and A
p2q

2n , we determined dominant maximal weights which are essentially finite of
type Cn. See Remarks 5.31 and 5.35. Thus we obtain the following corollary:

Corollary 7.4. Assume that η is a dominant maximal weight which is es-

sentially finite of type Cn for a highest weight Λ of level 1 over type C
p1q
n or of

level 2 over type A
p2q

2n´1 or A
p2q

2n . Then the multiplicity of η is a generalized Catalan
number.

The following theorem shows that binomial coefficients appear as weight mul-
tiplicities for finite types Bn and Dn.

Theorem 7.5. For 1 ď s ď n, we have
$

’

’

’

’

’

&

’

’

’

’

’

%

dimLpω̃sqω̃k
“

˜

n ´ k

t
s´k
2 u

¸

if Lpω̃sq is over Bn,

dimLpω̃sqω̃k
“

˜

n ´ k ´ δn,s
s´k
2

¸

if Lpω̃sq is over Dn and s ”2 k.

Proof. By the exterior power realization of the fundamental representation
in [8, Theorem 19.2, Theorem 19.14], one can prove this assertion. �

We remark here that it seems difficult in general to prove the above results
using the Kashiwara–Nakashima realization for finite types Bn and Dn.

Though we can use Theorem 7.5 to describe the multiplicities of maximal
weights in smax`

B
pΛ|2q and smax`

D
pΛ|2q, we will develop a new method in the

next sections for the reason mentioned at the beginning of this chapter.

7.2. Insertion of a box

Definition 7.6. Let λ “ pλp1q, . . . , λpkqq be a sequence of strict partitions with
k
˚

j“1
λpjq “ λpm ´ 1q. For 1 ď u ď k, we define the insertion of pmq into the u-th

partition by

λ ˚
u

pmq “ pλ1p1q
, . . . , λ1pkq

q

where
#

λ1pjq
“ λpjq if j ‰ u,

λ1puq
“ pmq ˚ λpuq if j “ u.

Then λ˚
u

pmq “ pλ1p1q
, . . . , λ1pkq

q is a new sequence of strict partitions with
k
˚

j“1
λ1pjq

“

λpmq.
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The operation ˚
u
pmq is to be understood as an insertion of the box m into the

u-th row of a skew-tableaux. For example, we have

7 5 4 2
6 3 1

˚
1

p8q “
8 7 5 4 2
6 3 1

7.3. Case smax`
B

pΛ|2q

We start with a simple observation. For T “ pλp1q, . . . , λpkqq P sB
pkq
m , the

number m can only appear as the first part of the first partition or as the first part
of the last partition. That is, we have

(7.1) m “

#

λ
p1q

1 or λ
pkq

1 if s ě 1,

λ
p1q

1 if s “ 0.

Example 7.7.
(1) 1B

p2q

5 consists of the following 10 rigid Young tableaux:

¨ 4 3 2 1
5

, ¨ 4 2 1
5 3

, ¨ 4 3 1
5 2

, ¨ 4 3 2
5 1

, ¨ 5 2 1
4 3

,

¨ 4 3
5 2 1

, ¨ 5 3
4 2 1

, ¨ 4 2
5 3 1

, ¨ 5 4
3 2 1

, ¨ 5 2
4 3 1

.

(2) 3B
p2q

5 consists of the following 5 rigid Young tableaux:

¨ ¨ ¨ 2 1
5 4 3

, ¨ ¨ ¨ 5
4 3 2 1

, ¨ ¨ ¨ 4
5 3 2 1

, ¨ ¨ ¨ 3
5 4 2 1

, ¨ ¨ ¨ 2
5 4 3 1

,

Lemma 7.8. For T “ pλ, μq P sB
p2q

m´1, we have

T ˚
1

pmq P s´1B
p2q
m and T ˚

2
pmq P s`1B

p2q
m .

Proof. Recall that pλ, μq P sB
p2q

m´1 for s ě 1 implies

piq λi ă μs`i´1 and λi ą μs`i for some 1 ď i ď pλq or piiq pμq ´ s “ pλq.

Since ppmq ˚λq1 “ m, ppmq ˚λqi`1 “ λi and ppmq ˚λq “ pλq ` 1, we can conclude
that

T ˚
1

pmq P s´1B
p2q
m .

Similarly, the facts that ppmq ˚μq1 “ m, ppmq ˚μqi`1 “ μi and ppmq ˚μq “ pμq `1
implies

T ˚
2

pmq P s`1B
p2q
m . �

Remark 7.9. For m P Zě1, the sets mB
p2q
m and mB

p2q

m`1 are described as
follows:

mBp2q
m “ tpH, λpmqqu and mB

p2q

m`1 “ tpp1q, pm ` 1,m, . . . , 2qqu.(7.2)

Hence |mB
p2q
m | “ |mB

p2q

m`1| “ 1.

Let Lpωq be the highest weight module with highest weight ω over the finite
dimensional Lie algebra of type Bn. Recall the definition of ω̃s in (6.3).

Theorem 7.10. Let η P smax`
B

pΛ|2q of index pm, sq. For every s ď m,

|sB
p2q
m | “

ˆ

m
X

m´s
2

\

˙

“ dimV pΛqη “ dimLpω̃n´sqω̃n´m
.
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Proof. By (7.1), for each T “ pλ, μq P sB
p2q
m with s ě 1, we have

λ1 “ m or μ1 “ m.

Thus

T “ T1 ˚
1

pmq or T “ T2 ˚
2

pmq

for some T1 P s`1B
p2q

m´1 or T2 P s´1B
p2q

m´1 respectively. Particularly, T P B
p2q
m is of

the form T 1 ˚
1

pmq for some T 1 P B
p2q

m´1 \ 1B
p1q

m´1. Since the sets
`

s`1B
p2q

m´1

˘

˚
1

pmq

and
`

s´1B
p2q

m´1

˘

˚
2

pmq are distinct, our assertion follows from

|B
p2q
m | “ |0B

p2q
m | “

ˆ

m

t
m
2 u

˙

, |mB
p2q
m | “

ˆ

m

t
m´m

2 u

˙

“ 1 “

ˆ

m

t
m`1´m

2 u

˙

“ |mB
p2q

m`1|

and
´

s´1B
p2q

m´1 ˚
2

pmq

¯

ğ

´

s`1B
p2q

m´1 ˚
1

pmq

¯

“ sB
p2q
m

corresponding to
`

n
k

˘

“
`

n´1
k

˘

`
`

n´1
k´1

˘

.
The last equality follows from Proposition 5.8 and Theorem 2.7. �

The following lattice diagram illustrates the above theorem and realizes the
Pascal triangle:

¨ ¨ ¨

¨ ¨ ¨

3 2 1

��


�����
����

��

¨ ¨

2 1
�����

���

������������
����������

�����
��� ¨ ¨ ¨

¨

1

��














				
			

¨ 2
3 1

¨ 2 1
3

¨ 3
2 1



����� �����

�����
���

H

�������
�����

����
���

�
2
1

2 1

������� �����

�����
�� ¨ ¨ ¨

1

	
			

		
			

			

��




 3 2
1

3 2 1
3 1
2

����
��� ����

�

��������

¨ 1
2

����
����

����

����
����

��

��������

����
����

����

����
����

��

��������
¨ ¨ ¨

¨ ¨ 1
3 2

	����
�����

�
�����

����

�����������

¨ ¨ ¨

(7.3)

Here ñ denotes insertion ˚
2
into the second row (or partition) and Ñ denotes

insertion ˚
1
into the first one. By taking the cardinality of the tableaux at each

position, we obtain the Pascal triangle.

Example 7.11. In Example 7.7, we can see that

|1B
p2q

5 | “

ˆ

5
X

5´1
2

\

˙

“

ˆ

5

2

˙

“ 10 and |3B
p2q

5 | “

ˆ

5
X

5´3
2

\

˙

“

ˆ

5

1

˙

“ 5.
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Furthermore, we get |2B
p2q

6 | “ 10 ` 5 “
`

6
t
6´2
2 u

˘

from the insertion scheme:

¨ ¨ 4 3 2 1
6 5

, ¨ ¨ 4 2 1
6 5 3

, ¨ ¨ 4 3 1
6 5 2

, ¨ ¨ 4 3 2
6 5 1

, ¨ ¨ 5 2 1
6 4 3

,

¨ ¨ 4 3
6 5 2 1

, ¨ ¨ 5 3
6 4 2 1

, ¨ ¨ 4 2
6 5 3 1

, ¨ ¨ 5 4
6 3 2 1

, ¨ ¨ 5 2
6 4 3 1

,

¨ ¨ 6 2 1
5 4 3

, ¨ ¨ 6 5
4 3 2 1

, ¨ ¨ 6 4
5 3 2 1

, ¨ ¨ 6 3
5 4 2 1

, ¨ ¨ 6 2
5 4 3 1

.

Corollary 7.12. For m ě s ě 0, set

a “ tpm ´ sq{2u and b “ m ´ a.

We have a bijective map between

sB
p2q
m and Lpa, bq,

where Lpa, bq denotes the set of paths in the Pascal triangle (4.8) starting from p0, 0q

to pm, b ´ aq using the vectors p1, 1q and p1,´1q.

Proof. For T P sB
p2q
m , we first assume that s ”2 m. Then we record the

vector vm as

‚ p1, 1q if

$

&

%

T “ T 1 ˚
2

pmq for some T 1 P s´1B
p2q

m´1 with s ě 1, or

T “ T 1 ˚
1

pmq for some T 1 P B
p2q

m´1,

‚ p1,´1q if T “ T 1 ˚
1

pmq for some T 1 P s`1B
p2q

m´1.

Now we assume that s ´ 1 ”2 m. Then we record the vector vm as

‚ p1,´1q if

$

&

%

T “ T 1 ˚
2

pmq for some T 1 P s´1B
p2q

m´1 with s ě 1, or

T “ T 1 ˚
1

pmq for some T 1 P B
p2q

m´1,

‚ p1, 1q if T “ T 1 ˚
1

pmq for some T 1 P s`1B
p2q

m´1.

Then, by induction on m, we obtain the sequence of vectors pv1, v2, . . . , vmq corre-
sponding to a path in the Pascal triangle. �

Example 7.13. For

T “
¨ ¨ 6 5 3 2
8 7 4 1

P 2B
p2q

8 ,

we have a “ 3 and b “ 5. Then the tableau T corresponds to the following lattice
path:

p0, 0q p2, 0q p4, 0q p6, 0q p8, 0q

7.4. Case smax`
D

pΛ|2q

By Theorem 2.9, we may assume that g “ B
p1q
n and

Λ “ pδs,0 ` δs,1qΛ0 ` Λs p0 ď s ď n ´ 1q

throughout this section.
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As in (7.1), the same property holds for T “ pλp1q, . . . , λpkqq P sD
pkq
m to have

m “

#

λ
p1q

1 or λ
pkq

1 if s ě 1,

λ
p1q

1 if s “ 0.

Example 7.14.
(1) The set 1D

p2q

4 consists of the following 10 spin rigid Young tableaux:

¨ 4 3 2 1 , ¨ 3 2 1
4

, ¨ 4 2 1
3

, ¨ 4 3 1
2

, ¨ 4 3 2
1

,

¨ 4 3
2 1

, ¨ 4 2
3 1

, ¨ 3 2
4 1

, ¨ 4 1
3 2

, ¨ 3 1
4 2

.

(2) The set 3D
p2q

4 consists of the following 5 spin rigid Young tableaux:

¨ ¨ ¨ 2 1
4 3

, ¨ ¨ ¨ 1
4 3 2

, ¨ ¨ ¨ 2
4 3 1

, ¨ ¨ ¨ 3
4 2 1

, ¨ ¨ ¨ 4
3 2 1

.

Lemma 7.15. For any pλ, μq P sD
p2q

m´1, we have

pλ, μq ˚
1

pmq P s´1D
p2q
m and pλ, μq ˚

2
pmq P s`1D

p2q
m .

Proof. Recall Definition 6.11. In particular, since k “ 2, we have m ı2 s.
Then one can use a similar argument to that of the proof of Lemma 7.8. �

Let Lpωq be the highest weight module with highest weight ω over the finite
dimensional Lie algebra of type Dn. Recall the definition of ω̃s in (5.12).

Theorem 7.16. Let η P smax`
D

pΛ|2q of index p2u ´ 1 ` s, s ´ 1q. For s ě 0
and u ě 0,

|sD
p2q

2u´1`s| “

ˆ

2u ` s ´ δs,0
u

˙

“ dimV pΛqη “ dimLpω̃n´sqω̃n´s´2u
.

Proof. With Corollary 6.17 and the fact that

|sD
p2q

s´1| “ |
�`

H, λps ´ 1qq
(

| “ 1,

one can apply a similar argument to that of the proof of Theorem 7.10. The last
equality follows from Proposition 5.3 and Theorem 2.7. �

Example 7.17. From Example 7.14, we see that

|1D
p2q

4 | “

ˆ

4 ` 1

2

˙

“

ˆ

5

2

˙

“ 10 and |3D
p2q

4 | “

ˆ

2 ` 3

1

˙

“

ˆ

5

1

˙

“ 5.

Furthermore, we get |2D
p2q

5 | “ 10 ` 5 “
`

4`2
2

˘

from the insertion scheme:

¨ ¨ 4 3 2 1
5

, ¨ ¨ 3 2 1
5 4

, ¨ ¨ 4 2 1
5 3

, ¨ ¨ 4 3 1
5 2

, ¨ ¨ 4 3 2
5 1

,

¨ ¨ 4 3
5 2 1

, ¨ ¨ 4 2
5 3 1

, ¨ ¨ 3 2
5 4 1

, ¨ ¨ 4 1
5 3 2

, ¨ ¨ 3 1
5 4 2

,

¨ ¨ 5 2 1
4 3

, ¨ ¨ 5 1
4 3 2

, ¨ ¨ 5 2
4 3 1

, ¨ ¨ 5 3
4 2 1

, ¨ ¨ 5 4
3 2 1

.
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CHAPTER 8

Level 3 weight multiplicities: Motzkin and
Riordan triangles

As a special case k “ 3 in Theorems 6.8 and 6.14, the multiplicity of η P

smax`
B

pΛ|3q of index pm, sq is equal to the number of rigid Young tableaux

dimpV pΛqηq “ |sB
p3q
m | “ dim

`

Lpωn ` ω̃n´sqωn`ω̃n´m

˘

,

and the multiplicity of η P smax`
D

pΛ|3q of index pm, s ´ 1q is equal to the number
of spin rigid Young tableaux

dimpV pΛqηq “ |sD
pkq
m | “ dim pLpωn ` ω̃n´sqμq ,

where μ “ ωn ` ω̃n´m´1 if m ı2 s and μ “ ωn´1 ` ω̃n´m´1 if m ”2 s.
In this chapter, we will prove that these multiplicities are equal to the general-

ized Motzkin numbers and the generalized Riordan numbers respectively.

Theorem 8.1. For m ě s ě 0, we have

|sB
p3q
m | “ Mpm,sq.

Theorem 8.2. For m ě s ě 0, we have

|sD
p3q
m | “ Rpm`1,sq.

Remark 8.3.

(1) Note that |0D
p3q

0 | “ 0 “ Rp1,0q. For m ě 1, we have proved in Corol-
lary 6.17 that

|0D
p3q
m | “ |1D

p3q

m´1|.

Hence

|1D
p3q
m | “ Rpm`1,1q “ Rpm`2,0q “ |0D

p3q

m`1|.

Thus, for Theorem 8.2, it is enough to prove when s ě 1.
(2) Note that dimLp3ωnq3ωn

“ 1 “ Rp0,0q. In (5.13), we saw that ω̃n´1`ωn´1

is not a dominant weight of Lp3ωnq. Then Theorem 8.2 can be restated
as

Rpm,sq “ dimLpωn ` ω̃n´sqω̃n´m`ωn´δpmı2sq for any m ě s ě 0,

which explains the relationship with Riordan triangle better.

In Section 8.1, we show Theorems 8.1 and 8.2 using the Robinson–Schensted
algorithm. In Section 8.2 we prove Theorem 8.1 using a generalization of the
insertion scheme in chapter 7.

65
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8.1. Proof by the RS algorithm

Up until now, in this paper, we have used reverse standard Young tableaux.
However, in this section we will consider standard Young tableaux (or SYTs for
short), which are more suitable for the usual Robinson–Schensted algorithm.

Recall that a composition λ “ pλ1, . . . , λkq is called almost-even if the number
of odd parts is exactly 1 or 2. Note that for an almost-even composition λ of m, the
number of odd parts is 1 if m is odd, and 2 if m is even. An almost-even partition
is a partition that is almost-even when considered as a composition.

Let λ “ pλ1, . . . , λkq be a partition. We say that λ is a parity partition if
λi ”2 λj for all 1 ď i, j ď k.

Definition 8.4.

(1) Let Spkq
m be the set of SYTs of shape λ $ m for some partition λ “

pλ1, . . . , λkq.

(2) Let sSpkq
m be the set of SYTs of shape λ{psk´1q $ m for some partition

λ “ pλ1, . . . , λkq of size pm ` spk ´ 1qq.

(3) Let sPpkq
m be the set of SYTs of shape λ{psk´1q $ m for some parity

partition λ “ pλ1, . . . , λkq of size pm ` spk ´ 1qq.

(4) Let sAEpkq
m be the set of SYTs of shape λ{psk´1q $ m for some partition

λ “ pλ1, . . . , λkq of size pm`spk´1qq such that pλ1´s, . . . , λk´1´s, λk`sq

is almost-even.

Using the obvious bijection between the SYTs and the reverse standard Young
tableaux, we obtain the following lemma.

Lemma 8.5. We have

|sB
pkq
m | “ |sSpkq

m | ´ |s´1Spkq
m |,(8.1)

|sD
pkq
m | “ |sAEpkq

m | ´ |s´2AEpkq
m |,(8.2)

where we define tSpkq
m “ tAEpkq

m “ H if t ă 0.

In order to prove Theorems 8.1 and 8.2, we will find formulas for |sSp3q
m | and

|sAEp3q
m |. We need the following lemma which can be taken as an equivalent defini-

tion of sAEp3q
m . Notice that this lemma is not true for sAEpkq

m in general.

Lemma 8.6. The set sAEp3q
m consists of the SYTs of shape λ{ps, sq $ m for

some almost-even partition λ “ pλ1, λ2, λ3q of size m ` 2s.

Proof. It is sufficient to show that pλ1, λ2, λ3q is almost-even if and only if
pλ1 ´ s, λ2 ´ s, λ3 ` sq is almost-even. This is trivial if s is even. Suppose that s
is odd. Let t be the number of odd parts in pλ1, λ2, λ3q. Then the number of odd
parts in pλ1 ´ s, λ2 ´ s, λ3 ` sq is 3 ´ t. Since t P t1, 2u if and only if 3 ´ t P t1, 2u,
we have that pλ1, λ2, λ3q is almost-even if and only if pλ1 ´ s, λ2 ´ s, λ3 ` sq is
almost-even. �

Our main tool is the Robinson–Schensted algorithm. Let us first fix some nota-
tions. A permutation of t1, 2, . . . , nu is a bijection π : t1, 2, . . . , nu Ñ t1, 2, . . . , nu.
We denote by Sn the set of permutations of t1, 2, . . . , nu. As usual, we will also
write a permutation π P Sn as a word π “ π1π2 . . . πn, where πi “ πpiq.
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Definition 8.7. An involution is a permutation π P Sn such that π2 is the
identity permutation 12 . . . n. We denote by In the set of involutions in Sn. Let
π P In. Then for every 1 ď i ď n, we have either πpiq “ i or πpiq “ j and πpjq “ i
for some j ‰ i. If πpiq “ i, we call i a fixed point of π. If πpiq “ j for i ‰ j, we
say that i and j are connected in π. If there are no four integers a ă b ă c ă d
such that a and d are connected and b and c are connected in π, we say that π is
non-nesting. We denote by NIn the set of non-nesting involutions in In.

Definition 8.8. For a permutation π P Sn and an integer 0 ď k ď n, we
denote by πďk the permutation in Sk obtained from π by removing every integer
greater than k. Similarly, for a SYT T with n cells and an integer 0 ď k ď n, we
denote by Tďk the SYT with k cells obtained from T by removing every cell with
entry greater than k.

For a permutation π P Sn, let P pπq and Qpπq be the insertion tableau and
the recording tableau respectively via the Robinson–Schensted algorithm. The
following properties of the Robinson–Schensted algorithm are well known, see [35].

‚ The map π ÞÑ pP pπq, Qpπqq is a bijection from Sn to the set of pairs
pP,Qq of SYTs of the same shape with n cells.

‚ For π P Sn, we have P pπ´1q “ Qpπq. Therefore, the map π ÞÑ P pπq gives
a bijection from In to the set of SYTs with n cells.

‚ For π P Sn and 1 ď k ď n, we have P pπďkq “ P pπqďk.
‚ For π “ π1 . . . πn P Sn, the number of rows of P pπq is equal to the length
of a longest decreasing subsequence of π1 . . . πn.

These properties implies the following proposition.

Proposition 8.9. The map π ÞÑ P pπq is a bijection from NIn to Sp3q
n .

The following lemma is the main lemma in this section.

Lemma 8.10. Let sNIm be the set of elements π P NI2s`m satisfying the
following condition: there exists an integer 0 ď t ď s such that

‚ 2i ´ 1 and 2i are connected in π for all 1 ď i ď t,
‚ 2j ´ 1 is connected to an integer greater than 2s and 2j is a fixed point
for all t ` 1 ď j ď s.

Let sS
p3q

m be the set of elements T P Sp3q

2s`m satisfying the following condition:
Tď2s is the SYT of shape ps, sq such that the ith column consists of 2i ´ 1 and 2i
for all 1 ď i ď s.

Then the map π ÞÑ P pπq is a bijection from sNIm to sS
p3q

m .

Proof. Let π P I2s`m and T “ P pπq P S2s`m. It is sufficient to show that

π P sNIm if and only if T P sS
p3q

m .
Suppose that π P sNIm. Then we have

Tď2s “ P pπqď2s “ P pπď2sq.

Since π P I2s`m, we obtain that

πď2s “ 2, 1, 4, 3, . . . , 2t ´ 1, 2t, 2t ` 2, 2t ` 4, . . . , 2s, 2t ` 1, 2t ` 3, . . . , 2s ´ 1.

Then Tď2s “ P pπqď2s “ P pπď2sq is the desired SYT of shape ps, sq and we obtain

T P sS
p3q

m .
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Now suppose that T P sS
p3q

m . Let t be the largest integer such that 2i ´ 1 and
2i are connected in π for all 1 ď i ď t. If there is no such integer, we set t “ 0. If
t ě s, we are done. Assume that t ă s. By the definition of t, we have that 2t ` 1
is connected to some integer j ą 2t ` 2 in π. We claim that 2t ` 2 is a fixed point.
For a contradiction, suppose that 2t ` 2 is connected to some integer r ą 2t ` 2 in
π. If r ă j, then the four integers 2t ` 1 ă 2t ` 2 ă r ă j violate the condition for
a non-nesting involution, which is a contradiction. If r ą j, then

πď2t`2 “ 2, 1, 4, 3, . . . , 2t, 2t ´ 1, 2t ` 1, 2t ` 2.

The insertion tableau of this permutation is not equal to Tď2t`2, which is a con-
tradiction to

P pπď2t`2q “ P pπqď2t`2 “ Tď2t`2.

Therefore, 2t ` 2 must be a fixed point of π. Moreover, 2t ` 1 is connected to an
integer greater than 2s. To see this suppose that 2t ` 1 is connected to an integer
j ď 2s. Then πď2s has a decreasing sequence j, 2t ` 2, 2t ` 1 of length 3. Then
the insertion tableau of πď2s would have at least 3 rows and it cannot be Tď2s.
Therefore, 2t ` 1 must be connected to an integer greater than 2s. By the same
argument, we can show that 2i ´ 1 is connected to an integer greater than 2s and
2i is a fixed point for all t ď i ď s. This finishes the proof. �

Now we recall a well-known bijection between the non-nesting involutions and
the Motzkin paths. For π P NIn, let φpπq be the Motzkin path L constructed as
follows. If i is a fixed point of π, the ith step of L is a horizontal step. If i and j
are connected in π for i ă j, the ith step of L is an up step and the jth step of L is
a down step. It is easy to see that φ is a bijection from NIn to the set of Motzkin
paths of length n.

Proposition 8.11. We have

|sSp3q
m | “

s
ÿ

t“0

Mpm,tq.

Proof. First, observe that there is a natural bijection from sSp3q
m to the set

sS
p3q

m in Lemma 8.10. Such a bijection can be constructed as follows. For T P sSp3q
m ,

let T 1 be the SYT obtained from T by increasing every entry in T by 2s and filling
the two empty cells in the ith column with 2i ´ 1 and 2i for all 1 ď i ď s. Thus,
by Lemma 8.10, we have

|sSp3q
m | “ |sS

p3q

m | “ |sNIm|.

Now consider π P sNIm and the corresponding Motzkin path φpπq from p0, 0q

to p2s`m, 0q. By definition of sNIm in Lemma 8.10, there is an integer 0 ď t ď s
such that the first 2s steps of φpπq are pUDqtpUHqs´t. Therefore if we take L to
be the path consisting of the first m steps of the reverse path of φpπq, then L is
a Motzkin path from p0, 0q to pm, tq. It is easy to see that the map π ÞÑ L is a
bijection from sNIm to the set of all Motzkin paths from p0, 0q to pm, tq for some
0 ď t ď m. Thus we have

|sNIm| “

s
ÿ

t“0

Mpm,tq,

which completes the proof. �
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Now we have all the ingredients to prove Theorem 8.1.

Proof of Theorem 8.1. By (8.1) and Proposition 8.11, we have

|sB
p3q
m | “ |sSp3q

m | ´ |s´1Sp3q
m | “ Mpm,sq. �

In order to prove Theorem 8.2 we need two lemmas.

Lemma 8.12. For integers m ě 0 and s ě 0, we have

|sSp3q
m | “ |sPp3q

m | ` |sAEp3q
m |, |sAEp3q

m | “ |sPp3q

m`1| and |sSp3q
m | “ |sPp3q

m | ` |sPp3q

m`1|.

Proof. For the first identity, consider a tableau T P sSp3q
m . Then the shape of

T is λ “ pλ1, λ2, λ3q with λ{ps, sq $ m. It is easy to see that λ is either a parity
partition or an almost-even partition. Thus we obtain the first identity.

For the second identity, consider a tableau T P sAEp3q
m . Then the shape of T is

an almost-even partition λ “ pλ1, λ2, λ3q with λ{ps, sq $ m. If m is even, then only
one of λ1, λ2, λ3 is even, and if m is odd, only one of them is odd. Thus, in any
case, one of λ1, λ2, λ3 has a different parity than the others. Suppose that λi is the
one with the different parity. Let T 1 be the tableau obtained from T by increasing

every entry by 1 and add a new cell at the end of λi. Then T 1 P sPp3q

m`1. The

map T ÞÑ T 1 gives a bijection from sAEp3q
m to sPp3q

m`1. Thus we obtain the second
identity.

The third identity follows from the first two identities. �

Lemma 8.13. For integers m ě 0 and s ě 1, we have

|sPp3q
m | ´ |s´2Pp3q

m | “ Rpm,sq.

Proof. We will prove this by induction on m when s ě 1 is fixed. If m “ 0,
then both sides are zero. Now suppose that the statement

(8.3) |sPp3q
m | ´ |s´2Pp3q

m | “ Rpm,sq

is true for m ě 0. By Lemma 8.12, we have

|sSp3q
m | ´ |s´2Sp3q

m | “ |sPp3q
m | ` |sPp3q

m`1| ´ |s´2Pp3q
m | ´ |s´2Pp3q

m`1|.

By Proposition 8.11 and Proposition 4.11, we have

|sSp3q
m | ´ |s´2Sp3q

m | “ Mpm,sq ` Mpm,s´1q “ Rpm,sq ` Rpm`1,sq.

Thus,

(8.4) p|sPp3q
m | ´ |s´2Pp3q

m |q ` p|sPp3q

m`1| ´ |s´2Pp3q

m`1|q “ Rpm,sq ` Rpm`1,sq.

By (8.3) and (8.4), we obtain that

|sPp3q

m`1| ´ |s´2Pp3q

m`1| “ Rpm`1,sq.

Thus, by induction, the statement is true for all m ě 0. �

Now we give a proof of Theorem 8.2.

Proof of Theorem 8.2. By (8.2), Lemmas 8.12 and 8.13, we have

|sD
p3q
m | “ |sAEp3q

m | ´ |s´2AEp3q
m | “ |sPp3q

m`1| ´ |s´2Pp3q

m`1| “ Rpm`1,sq.

Thus, we have |sD
p3q
m | “ Rpm`1,sq. Our assertion for s “ 0 follows from Corollary

6.17. �
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8.2. Proof by insertion scheme

In this section, we will prove that all the multiplicities of η P smax`
B

pΛ|3q are
generalized Motzkin numbers Mpm,sq using an insertion scheme which generalizes
the one in chapter 7. Namely, we will introduce a new kind of jeu du taquin which
realizes the recursive formula (4.2):

Mpm,sq “ Mpm´1,sq ` Mpm´1,s´1q ` Mpm´1,s`1q.

As its corollary, we have a bijective map between tsB
p3q
m | 0 ď s ď mu and the set

of all Motzkin paths.

Note that, for T “ pλ, μ, νq P sB
p3q
m ,

#

λ1 “ m or ν1 “ m if s ą 0,

λ1 “ m if s “ 0.

Lemma 8.14. For T “ pλ, μ, νq P sB
p3q

m´1, we have

T ˚
1

pmq P sB
p3q
m and T ˚

3
pmq P s`1B

p3q
m .

Proof. In the definition of sB
p3q

m´1 (Definition 6.4), the conditions are relevant

only with μ and ν. Hence T ˚
1

pmq P sB
p3q
m , since pmq˚λ Ą μ and nothing happens to

μ and ν. The second assertion follows from the second assertion of Lemma 7.8. �

Example 8.15. The set 0B
p3q

3 consists of four tableaux

3 2 1 , 3 2
1

, 3 1
2

,
3
2
1
,

and the set 1B
p3q

3 has five elements

¨ 2
¨ 1
3

,
¨ 3
¨ 1
2

,
¨ 2 1
¨

3
,

¨ 3 1
¨

2
,

¨ 3 2
¨

1
.

Using the operations ˚
3
p4q and ˚

1
p4q, we get the elements in 1B

p3q

4 from 0B
p3q

3 and

1B
p3q

3 as follows:

¨ 3 2 1
¨

4
,

¨ 3 2
¨ 1
4

,
¨ 3 1
¨ 2
4

,
¨ 3
¨ 2
4 1

,
¨ 4 2
¨ 1
3

,

¨ 4 3
¨ 1
2

,
¨ 4 2 1
¨

3
,

¨ 4 3 1
¨

2
,

¨ 4 3 2
¨

1
.

Remark 8.16. One can observe that an element pλ, μ, νq P sB
p3q
m obtained

from sB
p3q

m´1 in the above way can be distinguished from others by the following
characterization:

λ1 “ m and pλě2, μ, νq P sB
p3q

m´1.

Similarly, an element pλ, μ, νq P sB
p3q
m obtained from s´1B

p3q

m´1 can be distinguished
from others by the following characterization:

ν1 “ m and pλ, μ, νě2q P s´1B
p3q

m´1.
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But there are elements in sB
p3q
m which cannot be obtained from sB

p3q

m´1 or s´1B
p3q

m´1.

For example, there are elements in 1B
p3q

4 which do not appear in Example 8.15:

¨ 4
¨ 3
2 1

,
¨ 4
¨ 2
3 1

,
¨ 4 1
¨ 2
3

.

Lemma 8.17. Let T “ pλ, μ, νq P sB
p3q
m with m ě 1. If ν1 “ m, then

s ě 1 and T “ T 1
˚
3

pmq for some T 1
P s´1B

p3q

m´1.

Proof. This assertion follows from the definition of sB
pkq
m directly. �

Now we will construct an algorithm to get elements pλ, μ, νq of sB
p3q
m from

s`1B
p3q

m´1. By Remark 8.16 and Lemma 8.17, such an element in sB
p3q
m should

satisfy the following conditions:

λ1 “ m and pλě2, μ, νq R sB
p3q

m´1 p or equivalently λě2 Č μq.(8.5)

In tableau notation, the construction of T “ pλ, μ, νq P sB
p3q
m from T 1 “ pλ1, μ1, ν 1q P

s`1B
p3q

m´1 can be understood as filling the top-rightmost empty cell with m and
performing jeu de taquin to fill the empty cell right below. For example, for given

T 1
“ ¨ ¨ ¨ 12 10 8 7

¨ ¨ ¨ 11 9 1
6 5 4 3 2

P 3B
p3q

12 ,

we put 13 in the top blue cell

¨ ¨ 13 12 10 8 7
¨ ¨ ¨ 11 9 1
6 5 4 3 2

.(8.6)

Now we explain the jeu de taquin to fill the remaining blue cell.

Algorithm 8.18 (Rigid jeu de taquin). Assume that T 1 is given, and fill the
top-rightmost empty cell with m as described above. Take the reference point to
be the empty cell in the second row.

(1) Perform Ö1 on the north-east cell in the first row and Ð1 on the other
cells in the first row. If the resulting tableau is standard, terminate the
process; otherwise (recover the original tableau and) go to (2).

(2) Perform Ò
3
on the south cell in the third row and Ð3 on the other cells in

the third row. If the resulting tableau is standard, terminate the process;
otherwise (recover the original tableau and) go to (3).

(3) Perform Ð2 on the east cell to switch the position of the empty cell and
go to (1).

Denote the resulting tableau by T . We call this process the rigid jeu de taquin pof
level 3q.

By applying the operation (1) of Algorithm 8.18 to (8.6), we have

¨ ¨ 13 10 8 7
¨ ¨ 12 11 9 1
6 5 4 3 2

.
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The cell 12 moves from the first row to second row Ö1 and the cells 10 8 7 located
on the right hand side of 12 are shifted by 1 to the left Ð1. Thus we shall denote
the operation (1) by Ö1 Ð1. Clearly, the resulting tableau is not standard.

We apply the operation (2) in Algorithm 8.18 to (8.6) to obtain

¨ ¨ 13 12 10 8 7
¨ ¨ 4 11 9 1
6 5 3 2

.

The cell 4 moves from the third row to second row Ò
3
and the cells 3 2 located

on the right hand side of 4 are shifted by 1 to the left Ð3. Thus we shall denote
the operation (2) by Ò

3
Ð3. The resulting tableau is not standard either.

Now perform the operation (3) in Algorithm 8.18 to (8.6) and obtain

(8.7) ¨ ¨ 13 12 10 8 7
¨ ¨ ¨ 11 9 1
6 5 4 3 2

� ¨ ¨ 13 12 10 8 7
¨ ¨ 11 ¨ 9 1
6 5 4 3 2

.

One can easily see that neither of the operations (1) and (2) performed on the
new tableau in (8.7) produces a standard tableau. Thus we perform the operation
(3) to obtain

(8.8) ¨ ¨ 13 12 10 8 7
¨ ¨ 11 9 ¨ 1
6 5 4 3 2

.

Now we perform the operation (1) on the tableau (8.8) and obtain

¨ ¨ 13 12 10 7
¨ ¨ 11 9 8 1
6 5 4 3 2

P 2B
p3q

13 ,

which is standard. In this way, we have obtained a tableau T P 2B
p3q

13 from T 1 P

3B
p3q

12 .
Clearly, the process terminates in finite steps, and one can check that the re-

sulting tableau T in Algorithm 8.18 satisfies the conditions in (8.5) and is contained

in sB
p3q
m . Furthermore, we can construct the reverse of the rigid jeu de taquin easily.

Algorithm 8.19 (Reverse rigid jeu de taquin). Assume that T “ pλ, μ, νq P

sB
p3q
m satisfies (8.5). Remove m from its cell. Take the reference point to be the

leftmost non-empty cell, say c, in the second row.

(1) Perform Ñ3 on the cells in the third row from the rightmost cell all the

way to the south cell of c, and
2

Ó on the cell c, and Ñ2 on the cells, if
any, which were at the left-side of c. If the resulting tableau is standard,
terminate the process; otherwise (recover the original tableau and) go to
(2).

(2) Perform Ñ1 on the cells in the first row from the rightmost cell all the
way to the northeast cell of c, and Õ2 on the cell c, and Ñ2 on the cells, if
any, which were at the left-side of c. If the resulting tableau is standard,
terminate the process; otherwise (recover the original tableau and) go to
(3).
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(3) Take the east cell to be new c for the next round, and make it the reference
point, and go to (1).

Denote the resulting tableau by T 1. We call this process the reverse rigid jeu de
taquin pof level 3q.

One can check that the resulting tableau T 1 in Algorithm 8.19 is contained

in s`1B
p3q

m´1. It is also easy to see that Algorithm 8.19 is an inverse process of
Algorithm 8.18.

Example 8.20. For a given

T “ ¨ 13 12 10 7 5
¨ 11 9 8 1
6 4 3 2

P 1B
p3q

13 ,

one can check that it satisfies the conditions in (8.5). Now we delete 13.

¨ ¨ 12 10 7 5
¨ 11 9 8 1
6 4 3 2

Since ν1 “ 6 ă 11 “ μ1, (1) in Algorithm 8.19 fails, and since μ1 “ 11 ă 12 “ λ1,
(2) fails. Hence we apply (3) to change the reference point (in blue color):

¨ ¨ 12 10 7 5
¨ 11 9 8 1
6 4 3 2

As (1) and (2) fail again, we apply (3) to obtain

¨ ¨ 12 10 7 5
¨ 11 9 8 1
6 4 3 2

Now (2) works to produce a standard tableau:

T 1
“ ¨ ¨ 12 10 8 7 5

¨ ¨ 11 9 1
6 4 3 2

P 2B
p3q

12 .

To check that it is an inverse process, we add 13 again and see:

¨ 13 12 10 8 7 5
¨ ¨ 11 9 1
6 4 3 2

� ¨ 13 12 10 8 7 5
¨ 11 9 ¨ 1
6 4 3 2

� ¨ 13 12 10 7 5
¨ 11 9 8 1
6 4 3 2

“ T.

Theorem 8.21. The rigid-type jeu de taquin gives a bijection between

s`1B
p3q

m´1 and sB
p3q
m z

´

sB
p3q

m´1 ˚
1

pmq
ğ

s´1B
p3q

m´1 ˚
3

pmq

¯

.

Proof. Our assertion follows from Algorithm 8.18 and Algorithm 8.19 which
are inverses to each other. �

Now we give another proof of Theorem 8.1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

74 8. LEVEL 3 WEIGHT MULTIPLICITIES: MOTZKIN AND RIORDAN TRIANGLES

Proof of Theorem 8.1. From Theorem 8.21, we have

|s`1B
p3q

m´1| ` |sB
p3q

m´1| ` |s´1B
p3q

m´1| “ |sB
p3q
m |,

which is the same as (4.2). Since we have |mB
p3q
m | “ 1, we are done. �

Corollary 8.22. We have a bijective map between sB
p3q
m and Mpm,sq where

Mpm,sq is the set of Motzkin paths ending at pm, sq

Proof. Assume that we have T P sB
p3q
m . For each step of the reverse rigid jeu

de taquin (removing the cell m ), we record the vector vm as

‚ p1, 0q if T “ T 1 ˚
1

pmq for some T 1 P sB
p3q

m´1,

‚ p1, 1q if T “ T 1 ˚
3

pmq for some T 1 P s´1B
p3q

m´1,

‚ p1,´1q if T can be obtained from T 1 P s`1B
p3q

m´1.

Then, by induction on m, we obtain the sequence of vectors corresponding to a
Motzkin path. �

Example 8.23. For

T “ pλ, μ, νq “ ¨ ¨ ¨ 1210 8 7
¨ ¨ ¨ 11 9 1
6 5 4 3 2

P 3B
p3q

12

we see ν1 ‰ 12 and
¨ ¨ ¨ 10 8 7
¨ ¨ ¨ 11 9 1
6 5 4 3 2

R 3B
p3q

11 .

Hence v12 “ p1,´1q and T can be obtained from

T 1
“ ¨ ¨ ¨ ¨ 1110 8 7

¨ ¨ ¨ ¨ 9 1
6 5 4 3 2

P 4B
p3q

11 .

Now we have

Ð
p1,0q

¨ ¨ ¨ ¨ 10 8 7
¨ ¨ ¨ ¨ 9 1
6 5 4 3 2

Ð
p1,´1q

¨ ¨ ¨ ¨ ¨ 9 8 7
¨ ¨ ¨ ¨ ¨ 1
6 5 4 3 2

Ð
p1,0q

¨ ¨ ¨ ¨ ¨ 8 7
¨ ¨ ¨ ¨ ¨ 1
6 5 4 3 2

Ð
p1,0q

¨ ¨ ¨ ¨ ¨ 7
¨ ¨ ¨ ¨ ¨ 1
6 5 4 3 2

Ð
p1,´1q

¨ ¨ ¨ ¨ ¨ ¨

¨ ¨ ¨ ¨ ¨ ¨

6 5 4 3 2 1

Ð
p1,1q6

H.

Thus T corresponds to the Motzkin path given below:

p0, 0q p2, 0q p4, 0q p6, 0q p8, 0q p10, 0q p12, 0q

Remark 8.24. In [4], Eu constructed a bijection between 0B
p3q
m and Mpm,0q.

His bijection gives paths different from those obtained by our bijection.
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CHAPTER 9

Some level k weight multiplicities when k Ñ 8:
Bessel triangle

In this chapter we will compute level k weight multiplicities |sB
pkq
m | and |sD

pkq
m |

when k is as large as m (or m{2). Recall that we have 0B
pkq
m “ B

pkq
m and 0D

pkq
m “

D
pkq
m . Let Rm be the set of reverse SYTs with m cells and Sm be the set of SYT

with m cells.
First, observe that if k ě m, the set B

pkq
m is the same as the set Rm. Since

|Sm| is equal to the number of involutions in Sm, we have

(9.1) Bp8q
m :“ lim

kÑ8
|Bpkq

m | “ |Rm| “ |Sm| “

tm{2u
ÿ

s“0

ˆ

m

2s

˙

p2s ´ 1q!!,

where p2s ´ 1q!! “ 1 ¨ 3 ¨ ¨ ¨ p2s ´ 1q. Similarly, if k ě m, the set D
pkq
m becomes

the set of Young tableaux with m cells that have exactly one or two rows of odd
length depending on the parity of m. Using a well known property of the Robinson–

Schensted algorithm we can deduce that limkÑ8 |D
pkq
m | is the number of involutions

in Im with one or two fixed points.

In Section 9.1 we find formulas for |D
pkq

2m| when k ě m ´ 1 and for |D
pkq

2m´1|

when k ě m ´ 2. Our formulas (Theorems 9.2 and 9.3) imply that

(9.2) Dp8q
m :“ lim

kÑ8
|Dpkq

m | “

#

m!! if m is odd,
m

2
ˆ pm ´ 1q!! if m is even.

In Section 9.2 we find a formula for |sB
pkq
m | when k ě m´ s and compute the limit

of |sB
pkq
m | as k Ñ 8. In Section 9.3 we find a formula for |sD

pkq
m | when k ě m´s`1

and compute the limit of |sD
pkq
m | as k Ñ 8.

9.1. The limit of |D
pkq
m | when k Ñ 8

The following lemma is well-known ([35, Exercise 3.12]). Here we identify a
reverse standard Young tableau with a standard Young tableau using the obvious
bijection.

Lemma 9.1. The Robinson–Schensted algorithm gives a bijection between the
set of Young tableaux of n cells with k columns of odd length and the set of involu-
tions of t1, 2, . . . , nu with k fixed points.

Let Ipm, kq denote the number of involutions of t1, 2, . . . ,mu with k fixed
points. It is easy to see that

Ip2m, 0q “ Ip2m ´ 1, 1q “ p2m ´ 1q!!, Ip2m, 2q “ m ¨ Ip2m, 0q “ mp2m ´ 1q!!.

75
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Theorem 9.2. For an odd integer 2m ´ 1 and any k ě m,

|D
pkq

2m´1| “ p2m ´ 1q!!.

Proof. Since k ě m, any Young tableau of 2m ´ 1 cells has at most m ´ 1

(nonzero) rows of even length. Thus D
pkq

2m´1 is the set of Young tableaux of 2m´ 1
cells with exactly one row of odd length and there is no restriction on the number
of rows. By taking the conjugate, this number is also equal to the number of Young
tableaux of 2m ´ 1 cells with exactly one column of odd length. By Lemma 9.1,
this is equal to the number of involutions of t1, 2, . . . , 2m´1u with one fixed point.

Thus we get |D
pkq

2m´1| “ Ip2m ´ 1, 1q “ p2m ´ 1q!!. �

Theorem 9.3. For an even integer 2m and any k ě m ` 1,

|D
pkq

2m| “ mp2m ´ 1q!! “
p2mq!

pm ´ 1q!2m
.

Proof. This can be shown by the same argument as in the proof of the pre-
vious theorem. �

Corollary 9.4. For each m,

|D
pm´1q

2m´1 | “ p2m ´ 1q!! ´ Cm.

Proof. Note that

D
pmq

2m´1zD
pm´1q

2m´1 “ Rλ

where λ “ p2, 2, . . . , 2, 1q $ 2m ´ 1. Since |Rλ| “ fλ “ Cm, our assertion follows.
�

By applying the same strategy as in Corollary 9.4, we have the following corol-
lary:

Corollary 9.5. For each m, we have

(1) |D
pmq

2m | “ mp2m ´ 1q!! ´ 3
2m!

pm ´ 1q!pm ` 2q!
.

(2) |D
pm´2q

2m´1 | “ p2m ´ 1q!! ´ Cm ´
p2m ´ 1q!

m!pm ´ 3q!
´

ˆ

2m ´ 1
m ` 1

˙

.

(3) |D
pm´1q

2m | “ mp2m ´ 1q!! ´ 3
2m!

pm ´ 1q!pm ` 2q!
´

4

m ` 2
ˆ

p2m ´ 1q!

m!pm ´ 2q!
.

Since B
pkq
m and D

pkq
m can be understood as special cases of sB

pkq
m and sD

pkq
m

respectively, in the next two sections we will investigate

lim
kÑ8

|sB
pkq
m | and lim

kÑ8
|sD

pkq
m |.

9.2. The limit of |sB
pkq
m | when k Ñ 8

Proposition 9.6. Let k ě m ´ s ` 2. Then

|sB
pkq
m | “

ˆ

m

s

˙

ˆ B
p8q

m´s,

where B
p8q
m is the number defined in (9.1).
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Proof. Let T P sB
pkq
m . Since the kth row of T has at least s cells, the first

k ´ 1 rows can have at most m ´ s cells. Since m ´ s ď k ´ 2, the pk ´ 1qst row
must be empty. Thus the kth row of T has exactly s cells. Such a tableau can be
constructed by selecting s integers from t1, 2, . . . ,mu for the kth row and filling the
remaining m ´ s integers in a Young diagram so that the entries are increasing in

each row and column. The number of ways to do this is equal to
`

m
s

˘

ˆ B
p8q

m´s. �

Remark 9.7. By similar arguments, one can show the following identities:

|sB
pm´s`1q
m | “

ˆ

m

s

˙

ˆ B
p8q

m´s ´

ˆ

m ´ 1

s ´ 1

˙

and

|sB
pm´sq
m | “

ˆ

m

s

˙

ˆ B
p8q

m´s ´

ˆ

m ´ 1

s ´ 1

˙

pm ´ s ´ 1q.

Corollary 9.8. For positive integers s ď m,

sB
p8q
m :“ lim

kÑ8
|sB

pkq
m | “

ˆ

m

s

˙

ˆ B
p8q

m´s.

The triangular array consisting of tsB
p8q
m u is given as follows:

. .
.

. .
.

. .
.

. .
. ...

1 5 30 140 700 ¨ ¨ ¨

1 4 20 80 350 1456 ¨ ¨ ¨

1 3 12 40 150 546 2128 ¨ ¨ ¨

1 2 6 16 50 156 532 1856 ¨ ¨ ¨

1 1 2 4 10 26 76 232 764 ¨ ¨ ¨

where the bottom row is the number of involutions in Sm.

9.3. The limit of |sD
pkq
m | when k Ñ 8

Theorem 9.9. Assume that we have a pair of positive integers 2 ď s ď m
satisfying s ı2 m. Then, for k ě m ´ s ` 3, we have

|sD
pkq
m | “

ˆ

m ` 1

s

˙

ˆ pm ´ sq!!.

Therefore, we have a closed formula for the limit as follows:

sD
p8q
m :“ lim

kÑ8
|sD

pkq
m | “

ˆ

m ` 1

s

˙

ˆ pm ´ sq!!.(9.3)

Proof. Let T P sD
pkq
m . By the same arguments as in the proof of Proposi-

tion 9.6, the kth row of T has s ´ 1 or s cells. Now we consider the two cases
separately.

(1) The kth row of T has s cells. Let T 1 be the tableau obtained from the first
k ´ 1 rows of T by relabeling the integers with 1, 2, . . . ,m ´ s with respect to their
relative order. Then T 1 is an almost even tableau of the odd number m ´ s. The
number of such tableaux T 1 is D

p8q

m´s “ pm ´ sq!!. Since we can select the entries
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in the kth row of T freely, there are
`

m
s

˘

ways to do this. Thus, the number of

tableaux T in this case is
`

m
s

˘

pm ´ sq!!.
(2) The kth row of T has s ´ 1 cells. Let T 1 be the tableau obtained from the

first k ´ 1 rows of T by relabeling the integers with 1, 2, . . . ,m´ s` 1 with respect
to their relative order. Then all the rows of T 1 have even length. By the same
arguments as in the proof of Theorem 9.2, the number of such tableaux T 1 is equal
to Ipm´ s` 1, 0q “ pm´ sq!!, the number of fixed-point free involutions. Similarly
to the first case, the number of tableaux T in this case is

`

m
s´1

˘

pm ´ sq!!.
By the above two cases, we have

|sD
pkq
m | “

ˆ

m

s

˙

pm ´ sq!! `

ˆ

m

s ´ 1

˙

pm ´ sq!! “

ˆ

m ` 1

s

˙

pm ´ sq!!. �

Theorem 9.10. Assume that a given pair of positive integers 2 ď s ď m
satisfies s ”2 m. Then for a k ě m ´ s ` 3, we have

|sD
pkq
m | “

ˆ

m

s

˙

ˆ D
p8q

m´s `

ˆ

m

s ´ 1

˙

ˆ D
p8q

m´s`1,

where D
p8q
m is given in (9.2). Therefore, we have a closed formula for the limit as

follows:

sD
p8q
m :“ lim

kÑ8
|sD

pkq
m | “

ˆ

m

s

˙

ˆ D
p8q

m´s `

ˆ

m

s ´ 1

˙

ˆ D
p8q

m´s`1.

Proof. The proof is almost identical to the proof of Theorem 9.9. �
The closed formula (9.3) is known to compute the triangular array consisting

of coefficients of Bessel polynomials ([36, A001497]):

(9.4)

. .
.

. .
.

¨ ¨ ¨

1 36 990 ¨ ¨ ¨

1 28 630 13860 ¨ ¨ ¨

1 21 378 6930 135135 ¨ ¨ ¨

1 15 210 3150 51975 945945 ¨ ¨ ¨

1 10 105 1260 17325 270270 4729725 ¨ ¨ ¨

1 6 45 420 4725 62370 945945 16216200 ¨ ¨ ¨

1 3 15 105 945 10395 135135 2027025 34459425 ¨ ¨ ¨

1 1 3 15 105 945 10395 135135 2027025 34459425 ¨ ¨ ¨

where the lowest two rows are D
p8q

2m´1 “ p2m ´ 1q!!. We call this triangular array
Bessel triangle.
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CHAPTER 10

Standard Young tableaux with a fixed number of
rows of odd length

In this chapter we consider SYTs with a fixed number of rows of odd length.

We denote by Sm the set of SYTs with m cells. Recall that Spkq
m is the set of SYTs

with m cells and at most k rows, and that there is an obvious bijection from Spkq
m

to B
pkq
m . The main objects in this section are the sets Spkq

m and their subsets Spk,tq
m

defined below.

Definition 10.1. For 0 ď t ď k, we denote by Spk,tq
m the set of SYTs with m

cells, at most k rows and exactly t rows of odd length.

Observe that by the obvious bijection between SYTs and reverse standard
Young tableaux, we have

(10.1) |Spk,2q

2m | “ |D
pkq

2m| and |Spk,1q

2m´1| “ |D
pkq

2m´1|.

Thus, |Spk,tq
m | can be thought of as a generalization of |D

pkq
m |. In this section, we

study the cardinalities of Spkq
m and Spk,tq

m .

In Section 10.1, we express |Spkq
m | in terms of |Spk,0q

i | and |Spk,kq

i | (Proposi-
tion 10.5). Using this relation and some known results, we find an explicit formula

for Spk,tq
m for every 0 ď t ď k ď 5 (Theorem 10.2). In Section 10.2, we express

|Spkq
m | as an integral over the orthogonal group Opkq with respect to the normalized

Haar measure (Theorem 10.7). In Section 10.3, we evaluate this integral to find an

explicit formula for |Spkq
m | “ |B

pkq
m | (Theorem 10.9).

10.1. The cardinality of Spk,tq
m for 0 ď t ď k ď 5

In this section we give an explicit formula for Spk,tq
m for every 0 ď t ď k ď 5.

Note that Spk,tq
m “ H if m ı2 t. Since it is trivial for k “ 0, 1, we consider k ě 2.

Recall that

Rm “
1

m ` 1

tm{2u
ÿ

i“1

ˆ

m ` 1

i

˙ˆ

m ´ i ´ 1

i ´ 1

˙

.

79
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Theorem 10.2. We have a formula for |Spk,tq
m | for 0 ď t ď k ď 5 as follows:

For k “ 2, |Sp2,0q

2m | “ |Sp2,1q

2m´1| “ |Sp2,2q

2m | “

ˆ

2m ´ 1

m

˙

.

For k “ 3, |Sp3,0q

2m | “ |Sp3,1q

2m´1| “ |D
p3q

2m´1| “ R2m,

|Sp3,2q

2m | “ |Sp3,3q

2m`1| “ |D
p3q

2m| “ R2m`1.

For k “ 4, |Sp4,0q

2m | “ |Sp4,1q

2m´1| “ |D
p4q

2m´1| “

ˆ

Cm ` 1

2

˙

,

|Sp4,2q

2m | “ |D
p4q

2m| “ CmCm`1 ´ C2
m “

3p2mq!2

pm ´ 1q!m!pm ` 1q!pm ` 2q!
,

|Sp4,3q

2m´1| “ |Sp4,4q

2m | “

ˆ

Cm

2

˙

.

For k “ 5, |Sp5,0q

2m | “ |Sp5,1q

2m´1| “ |D
p5q

2m´1| “

m
ÿ

i“0

ˆ

2m

2i

˙

CiCi`1 ´

m´1
ÿ

i“0

ˆ

2m

2i ` 1

˙

C2
i`1,

|Sp5,2q

2m | “ |D
p5q

2m| “

m
ÿ

i“0

2i

i ` 3

ˆ

2m

2i

˙

CiCi`1 ´

m´1
ÿ

i“0

2i

i ` 3

ˆ

2m

2i ` 1

˙

C2
i`1,

|Sp5,3q

2m´1| “

m´1
ÿ

i“0

2i

i ` 3

ˆ

2m ´ 1

2i

˙

CiCi`1 ´

m´1
ÿ

i“0

2i

i ` 3

ˆ

2m ´ 1

2i ` 1

˙

C2
i`1,

|Sp5,4q

2m | “ |Sp5,5q

2m´1| “

m´1
ÿ

i“0

ˆ

2m ´ 1

2i

˙

CiCi`1 ´

m´1
ÿ

i“0

ˆ

2m ´ 1

2i ` 1

˙

C2
i`1.

Before proving this theorem we first find some relations between the numbers

|Spk,tq
m | and |Spkq

m |.

Lemma 10.3. We have

|Spk,kq
m | “ |Spk,k´1q

m´1 | and |Spk,0q
m | “ |Spk,1q

m´1 |.

Proof. The map deleting the cell with m gives a bijection from Spk,kq
m to

Spk,k´1q

m´1 . The same map also gives a bijection from Spk,0q
m to Spk,1q

m´1 . �
The next lemma is the key lemma in this chapter. The proof is based on the

Robinson–Schensted algorithm and a sign-reversing involution. Recall that an SYT
is a filling of a Young diagram λ $ m with integers 1, 2, . . . ,m. We need to extend
this definition to a partial SYT which is a filling of a Young diagram with distinct
integers such that the entries are increasing in each row and each column.

Lemma 10.4. For integers k ě 1 and m ě 0, we have

|Spk,0q
m | ´ |Spk,kq

m | “

m
ÿ

i“0

p´1q
m´i

ˆ

m

i

˙

|Spk´1q

i |.

Proof. Let X be the set of pairs pT,Aq of a partial SYT T and a subset A
of t1, 2, . . . ,mu such that T has at most k ´ 1 rows and the set of entries of T is
t1, 2, . . . ,muzA. Then we have

m
ÿ

i“0

p´1q
m´i

ˆ

m

i

˙

|Spk´1q

i | “

ÿ

pT,AqPX

p´1q
|A|.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

10.1. THE CARDINALITY OF Spk,tq
m FOR 0 ď t ď k ď 5 81

We define Y to be the set of pairs pP,Hq of an SYT P and a sequence H “

pt1, t2, . . . , tkq such that

‚ P has at most k rows, and
‚ if λ “ pλ1, . . . , λkq is the shape of P (some λi can be zero), then 0 ď ti ď

λi ´ λi`1 for all 1 ď i ď k ´ 1 and tk “ λk.

Note that if μ “ pμ1, . . . , μkq is defined by μi “ λi ´ ti for 1 ď i ď k, then the
second condition above means that μ Ă λ and λ{μ is a skew partition whose Young
diagram contains at most one cell in each column. Such a skew partition is called
a horizontal strip. By identifying the sequence H and the skew partition λ{μ, one
can consider H as a horizontal strip of P which contains all cells in row k of P .

We claim that there is a bijection from X to Y such that if pT,Aq P X cor-
responds to pP,Hq P Y , then |A| “ t1 ` t2 ` ¨ ¨ ¨ ` tk. For pT,Aq P X, let P be
the SYT obtained from T by inserting the elements of A in increasing order via
the Robinson–Schensted algorithm and H “ pt1, . . . , tkq be the sequence of inte-
gers such that ti is the number of newly added cells in row i. In other words, if
ShpP q “ λ “ pλ1, . . . , λkq and ShpT q “ μ “ pμ1, . . . , μkq, then ti “ λi ´ μi. It is
well known that if i ă j and i is inserted to a partial SYT T and j is inserted to
the resulting tableau via the Robinson–Schensted algorithm, then the newly added
cell after inserting j is strictly to the right of the newly added cell after inserting
i. This property implies that λ{μ is a horizontal strip and the cells in it have been
added from left to right. Therefore, we can recover pT,Aq from pP,Hq using the
inverse map of the Robinson–Schensted algorithm and this proves the claim.

By the above claim, we have
ÿ

pT,AqPX

p´1q
|A|

“

ÿ

pP,HqPY

p´1q
t1`¨¨¨`tk .

Now we define a map φ on Y as follows. Suppose that pP,Hq P Y and the
shape of P is λ “ pλ1, . . . , λkq and H “ pt1, . . . , tkq. Find the smallest i ď k ´ 1
such that ti is an odd integer or ti is an even integer less than λi ´ λi´1. In this
case we define φpP,Hq “ pP,H 1q, where H 1 “ pt1

1, . . . , t
1
kq is obtained from H by

replacing ti by ti ´1 if ti is odd and by ti `1 if ti is even. If there is no such integer
i, then we define φpP,Hq “ pP,Hq. It is easy to see that φ is an involution on Y

such that if φpP,Hq “ pP,H 1q and H ‰ H 1, then p´1qt1`¨¨¨`tk “ ´p´1qt
1
1`¨¨¨`t1

k .
Moreover, if φpP,Hq “ pP,Hq, then ti “ λi ´ λi`1 is even for all 1 ď i ď k ´ 1.

This can happen only if P P Spk,0q
m or P P Spk,kq

m . If φpP,Hq “ pP,Hq for P P

Spk,0q
m , then p´1qt1`¨¨¨`tk “ p´1qtk “ 1. If φpP,Hq “ pP,Hq for P P Spk,kq

m , then
p´1qt1`¨¨¨`tk “ p´1qtk “ ´1. Therefore, φ is a sign-reversing involution and we
have

ÿ

pP,HqPY

p´1q
t1`¨¨¨`tk “ |Spk,0q

m | ´ |Spk,kq
m |,

which finishes the proof. �

Applying the principle of inclusion and exclusion to Lemma 10.4, we obtain the
following proposition.

Proposition 10.5. For integers k ě 1 and m ě 0, we have

|Spk´1q
m | “

m
ÿ

i“0

ˆ

m

i

˙

´

|Spk,0q

i | ´ |Spk,kq

i |

¯

.
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Now we prove Theorem 10.2.

Proof of Theorem 10.2. We have already proved the formulas for k “ 2 in

(3.2) and for k “ 3 in Proposition 4.12. Now we consider the cardinality of Spk,tq
m

for k “ 4.
Recall that we have a formula for |Sp4q

m | “ |B
p4q
m | in Theorem 3.5:

|Sp4q

2m| “ CmCm`1 and |Sp4q

2m´1| “ CmCm.

Since 2m is even,

(10.2) |Sp4,0q

2m | ` |Sp4,2q

2m | ` |Sp4,4q

2m | “ |Sp4q

2m| “ CmCm`1.

By Lemma 10.3, we have

(10.3) |Sp4,0q

2m | ` |Sp4,4q

2m | “ |Sp4,1q

2m´1| ` |Sp4,3q

2m´1| “ |Sp4q

2m´1| “ C2
m.

By Lemma 10.4, we have

(10.4) |Sp4,0q

2m | ´ |Sp4,4q

2m | “

2m
ÿ

i“0

p´1q
i

ˆ

2m

i

˙

|Sp3q

i | “ Cm.

In (10.4), we used the fact that |Sp3q

i | “ Mi and

2m
ÿ

i“0

p´1q
i

ˆ

2m

i

˙

Mi “ Cm,

which can be obtained from the following identity using inclusion-exclusion:

Mm “

tm{2u
ÿ

i“0

ˆ

m

2i

˙

Ci.

By (10.2), (10.3) and (10.4), we obtain the formulas for |Sp4,0q

2m |, |Sp4,2q

2m | and

|Sp4,4q

2m |. By Lemma 10.3, we obtain the formulas for |Sp4,1q

2m´1| and |Sp4,3q

2m´1|.

Now we consider the cardinality of Spk,tq
m for k “ 5. First, we have

|Sp5,0q

2m | ` |Sp5,2q

2m | ` |Sp5,4q

2m | “ |Sp5q

2m| and |Sp5,1q

2m´1| ` |Sp5,3q

2m´1| ` |Sp5,5q

2m´1| “ |Sp5q

2m´1|.

By Lemma 10.3, we have

|Sp5,0q

2m | “ |Sp5,1q

2m´1| and |Sp5,5q

2m`1| “ |Sp5,4q

2m |.

By Lemma 10.4, we have

|Sp5,0q

2m | ´ |Sp5,5q

2m | “ |Sp5,0q

2m | “

2m
ÿ

i“0

p´1q
i

ˆ

2m

i

˙

|Sp4q

i |,

|Sp5,0q

2m´1| ´ |Sp5,5q

2m´1| “ ´|Sp5,5q

2m´1| “

2m´1
ÿ

i“0

p´1q
i

ˆ

2m ´ 1

i

˙

|Sp4q

i |.

By solving the above equations, we obtain the desired formulas. �
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10.2. Traces of orthogonal matrices

There is an interesting integral representation of the number |Spk,0q

2m | as follows,
see Example 2 on page 423 in [32]:

(10.5)

ż

Opkq

TrpXq
mdμpXq “ |Spk,0q

m |.

Here, the integral is taken with respect to the normalized Haar measure μ on the
orthogonal group Opkq consisting of k ˆ k orthogonal matrices. Note that if m is

odd, we have |Spk,0q
m | “ 0. Thus, by (10.1) and Lemma 10.3, we have

|D
pkq

2m´1| “ |Spk,0q

2m | “

ż

Opkq

TrpXq
2mdμpXq.

In this section we show that |Spk,kq
m | and |Spkq

m | also have similar integral represen-
tations.

For a symmetric function fpx1, . . . , xkq with k variables and X P Opkq, we
define fpXq by fpXq “ fpeiθ1 , . . . , eiθkq, where eiθ1 , . . . , eiθk are the eigenvalues of
X. Note that TrpXmq “ pmpXq, where pmpx1, . . . , xkq “ xm

1 ` ¨ ¨ ¨ `xm
k is the m-th

power sum symmetric function.
We need the following known result, see [32, pp.420–421]:

(10.6)

ż

Opkq

sλpXqdμpXq “

"

1 if every part of λ is even,
0 otherwise,

where sλ is the Schur function.

Proposition 10.6. We have

|Spk,kq
m | “

ż

Opkq

detpXqTrpXq
mdμpXq.

Proof. Note that

TrpXq
m

“ p1pXq
m

“

ÿ

λ$m, 	pλqďk

fλsλpXq,

where fλ is the number of standard Young tableaux of shape λ. Since

x1 . . . xksλpx1, . . . , xkq “ sλ`p1kqpx1, . . . , xkq

for λ with at most k rows, we have detpXqsλpXq “ sλ`p1kqpXq. Thus,
ż

Opkq

detpXqTrpXq
mdμpXq “

ÿ

λ$m, 	pλqďk

fλ

ż

Opkq

sλ`p1kqpXqdμpXq.

By (10.6), this is equal to |Spk,kq
m |. �

Now we give an integral expression for the number SYTs with m cells and at
most k rows.

Theorem 10.7. For integers k,m ě 0, we have

|Bpkq
m | “ |Spkq

m | “

ż

Opk`1q

p1 ´ detpXqqp1 ` TrpXqq
mdμpXq.
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Proof. By Proposition 10.5,

|Spkq
m | “

m
ÿ

i“0

ˆ

m

i

˙

´

|Spk`1,0q

i | ´ |Spk`1,k`1q

i |

¯

.

By (10.5) and Proposition 10.6, we have

|Spkq
m | “

m
ÿ

i“0

ˆ

m

i

˙

˜

ż

Opk`1q

TrpXq
idμpXq ´

ż

Opk`1q

detpXqTrpXq
idμpXq

¸

“

ż

Opk`1q

p1 ´ detpXqq

˜

m
ÿ

i“0

ˆ

m

i

˙

TrpXq
i

¸

dμpXq.

We then obtain the desired identity using the binomial theorem. �

10.3. Evaluation of integrals

In this section we obtain an explicit formula for the number of SYTs with
m cells and at most k rows by evaluating the integral in Theorem 10.7. For the
reader’s convenience we recall a well-known fact on the normalized Haar measure
on the orthogonal group Opkq due to Weyl [40], see also [3, Remarks 3 on p. 57].

For any orthogonal matrix A P Opnq, the eigenvalues of A lie on the unit circle.
Let Pnpeiθ1 , eiθ2 , . . . , eiθnq be the probability that a random matrix A P Opnq has
the given eigenvalues eiθ1 , eiθ2 , . . . , eiθn for θ1, . . . , θn P r0, 2πq. Here, we assume
that A is selected randomly with respect to the normalized Haar measure. Then
this probability is given as follows.

Proposition 10.8. For k ě 1, ε P t1,´1u and θ1, . . . , θk P r0, πs we have

P2kpe˘iθ1 , e˘iθ2 , . . . , e˘iθkq “
2k

2
´2k`1

πkk!

ź

1ďrăsďk

pcos θr ´ cos θsq
2,

P2k`2p˘1, e˘iθ1 , e˘iθ2 , . . . , e˘iθkq “
2k

2
´1

πkk!

k
ź

t“1

p1 ´ cos2 θtq
ź

1ďrăsďk

pcos θr ´ cos θsq
2,

P2k̀ 1pε, e ĭθ1 , e ĭθ2 , . . . , e ĭθkq “
2k

2
´k´1

πkk!

k
ź

t“1

p1´ε cos θtq
ź

1ďrăsďk

pcos θr´cos θsq
2.

We denote by O`pkq (resp. O´pkq) the set of matrices A P Opkq with detpAq “ 1
(resp. detpAq “ ´1).

Now we give an explicit formula for |Spkq
m |.

Theorem 10.9. For k ě 1 and m ě 0, we have

|Sp2kq
m | “

ÿ

t1`¨¨¨`tk“m

ˆ

m

t1, . . . , tk

˙

det

ˆˆ

ti ` 2k ´ i ´ j

t
ti`2k´i´j

2 u

˙˙k

i,j“1

,

|Sp2k`1q
m | “

ÿ

t0`t1`¨¨¨`tk“m

ˆ

m

t0, t1, . . . , tk

˙

det

ˆ

C

ˆ

ti ` 2k ´ i ´ j

2

˙˙k

i,j“1

,

where Cpxq “
1

x`1

`

2x
x

˘

if x is an integer and Cpxq “ 0 otherwise.
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Proof. By Theorem 10.7 and Proposition 10.8, we have

|Sp2kq
m |

“ 2

ż

O´p2k`1q

p1 ` TrpXqq
mdμpXq

“
2k

2
´k

πkk!

ż

r0,πsk
p2 cos θ1 ` ¨ ¨ ¨ ` 2 cos θkq

m

ź

1ďrăsďk

pcos θr ´ cos θsq
2

k
ź

i“1

p1 ` cos θiqdθi

“
2k

2
´k`m

πkk!

ÿ

t1`¨¨¨`tk“m

ˆ

m

t1, . . . , tk

˙
ż

r0,πsk
detpxti`k´j

i q
k
i,j“1 detpx

k´j
i q

k
i,j“1

k
ź

i“1

p1 ` cos θiqdθi

“
2k

2
´k`m

πkk!

ÿ

t1`¨¨¨`tk“m

ˆ

m

t1, . . . , tk

˙

ÿ

σ,τPSn

sgnpσqsgnpτ q

ż

r0,πsk
x
ti`2k´σpiq´τpiq
i

k
ź

i“1

p1 ` cos θiqdθi,

where xi “ cos θi. When σ P Sn is fixed, since ti’s are symmetric, we can replace ti
by tσpiq. We can also replace τ by τσ. Then the resulting summand is independent
of σ. Thus, we obtain

|Sp2kq
m |

“
2k

2
´k`m

πk

ÿ

t1`¨¨¨`tk“m

ˆ

m

t1, . . . , tk

˙

ÿ

τPSn

sgnpτ q

k
ź

i“1

ż π

0

xti`2k´i´τpiq
p1 ` cos θqdθ.

By expressing the second sum as a determinant and using the fact
ż π

0

cosn θp1 ` cos θqdθ “
π

2n

ˆ

n

t
n
2 u

˙

,

we obtain the desired formula. The second formula can be proved similarly. �

In the literature there is an explicit formula for |Spkq
m | for k ď 5. As a corollary

of Theorem 10.9, we obtain a double-sum formula for |Sp6q
m |.

Corollary 10.10. Letting γn “
`

n
t n
2 u

˘

, we have

|Sp6q
m | “

ÿ

i`j`k“m

ˆ

m

i, j, k

˙

det

¨

˝

γi`4 γi`3 γi`2

γj`3 γj`2 γj`1

γk`2 γk`1 γk

˛

‚.

There is another way to compute |Spkq
m | using symmetric functions due to Ges-

sel [9, Section 6]. It would be interesting to find a connection between his result and

Theorem 10.9. Eu et al. [5] found a bijection between Spkq
m and the set of certain

colored Motzkin paths.
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We also note that the integrals in the proof of Theorem 10.9 are Selberg-
type integrals, see [6]. There is a combinatorial interpretation for Selberg-type
integrals, see [37, Exercise 1.10 (b)]. Recently, a connection between SYTs and the
Selberg integral was found in [24]. There is also a combinatorial interpretation for
a q-analog of the Selberg integral, see [25]. It would be interesting to study the
combinatorial aspects of the formulas in Theorem 10.9 and their q-analogs.
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