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Abstract
We study equivalence of invariant metrics on noncompact Kähler manifolds with a
complete Bergman metric of bounded curvature. Especially only the boundedness
of the ratio between Bergman kernel and the n-times wedge product of Bergman
metric in any fundamental domain of such a Kähler manifold is required to obtain
the equivalence of the Bergman metric and the complete Kähler–Einstein metric. To
demonstrate the effectiveness of this method, we consider a two-parameter family of
3-dimensional bounded pseudoconvex domains

E p,λ = {(x, y, z) ∈ C
3; (|x |2p + |y|2)1/λ + |z|2 < 1}, p, λ > 0.

For this family, boundary limits of the holomorphic sectional curvature of the Bergman
metric are not well-defined, and hence previously known methods for comparison of
invariant metrics do not work. Lastly, we provide an estimate of lower bound of the
integrated Carathéodory–Reiffen metric on complete noncompact simply-connected
Kähler manifolds with negative sectional curvature.

1 Introduction

As the Bergman metric, the complete Kähler–Einstein metric of negative scalar
curvature, the Kobayashi–Royden metric, and the Carathéodory–Reiffen metric are
generalizations of the Poincaré–Bergman metric on the complex hyperbolic space,

B Gunhee Cho
gunhee.cho@math.ucsb.edu

Kyu-Hwan Lee
khlee@math.uconn.edu

1 Department of Mathematics, University of California, Santa Barbara, 552 University Rd, Isla
Vista, CA 93117, USA

2 Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-023-02735-2&domain=pdf
http://orcid.org/0000-0002-8474-4749


G. Cho, K.-H. Lee

equivalence of these four invariant metrics on negatively curved complex manifolds
has been studied in complex geometry. In addition, since these four metrics have the
property that any automorphism becomes an isometry [31, 35], it makes sense to study
them from the viewpoint of differential geometry. Hermitian metrics and Finsler met-
rics with this property are called invariant metrics. Some well-known classes having
equivalence of these metrics are complex manifolds with uniform squeezing property,
smoothly bounded strictly pseudoconvex domains in C

n , and weakly pseudoconvex
domains of finite type inC2 [4, 36]. In complex dimension 3, the equivalence of these
metrics breaks down for some weakly pseudoconvex domains with analytic boundary
[16].

In this context, Wu and Yau proved the following remarkable theorems based on
the quasi-bounded geometry and Shi’s estimate [30] with Kähler–Ricci flow.

Theorem 1 ([33], Corollary 7) Let (M, ω) be a complete simply-connected noncom-
pact Kähler manifold whose Riemannian sectional curvature is negatively pinched.
Then the base Kähler metric is uniformly equivalent to the Kobayashi–Royden met-
ric, the Bergman metric and the complete Kähler–Einstein metric of negative scalar
curvature.

Theorem 2 ([33], Theorems 2, 3) Let (M, ω) be a complete Kähler manifold whose
holomorphic sectional curvature is negatively pinched. Then the base Kähler metric
is uniformly equivalent to the Kobayashi–Royden metric and the complete Kähler–
Einstein metric of negative scalar curvature.

As an interesting application of equivalence of invariant metrics, it is recently
showed by the first-named author that the non-equivalence of invariant metrics can
be used to show the non-existence of complete Kähler metric whose holomorphic
sectional curvature is negatively pinched on pseudoconex domains in Cn under some
conditions (see [12]).

Based on Theorem 2, one possible method to show the equivalence of the invariant
metrics on a complete Kähler manifold (M, ω) is to prove that the holomorphic sec-
tional curvature of ω has a negative range. As explicit formulas are recently obtained
for the Bergman kernels on certain weakly pseudoconvex domains (e.g., see [2, 3, 14,
28] and references therein), one could attempt to compute the holomorphic sectional
curvature of the Bergman metric to establish the equivalence of the invariant metrics
(for example, see [13]). However, in general, it seems to be a daunting task to compute
the holomorphic sectional curvature for nontrivial pseudoconvex domains even with
explicit formulas of the Bergman kernels.

Indeed, for the bounded pseudoconvex domains, even for the class of convex
domains or strictly pseudoconvex domains, the curvature information of Bergman
metric is known only near the boundary and not in the interior. The holomorphic
sectional curvature of the Bergman metric has values between −∞ and +2 [17, 24],
but there is an example [21] of a semi-finite type pseudoconvex domain in which the
holomorphic sectional curvature of Bergman metric blows up to −∞.

Ourmain result in this paper is that, neither requiring the negative range of curvature
asWu–Yau theorems do, nor specifying the type of pseudoconvex domains,we provide
a concrete approach to compare invariant metrics. Our method is based on knowledge
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of the Bergman kernel and can be applied to general bounded pseudoconvex domains
� in C

n when an explicit description of the Bergman kernel near the boundary of �

is available.
To state the main result (Theorem 1) below, we define the fundamental domain ˜M

of a complex manifold M to be the subset of M which contains exactly one point
from each of the orbits of the group action by the automorphism group of M . An
automorphism f of M means f and its inverse are holomorphic.

Theorem A Let (M, ωB) be an n-dimensional noncompact Kähler manifold with a
complete Bergman metric ωB of bounded curvature, where B denotes the Bergman
kernel on M (as the (n, n)-form). Then the following statements hold:

1. Assume that B
ωn

B
is a bounded function for some fundamental domain ˜M. Here

ωn
B := ωB ∧ · · · ∧ ωB (n-times). Then there exist a complete Kähler–Einstein

metric ωK E of negative scalar curvature and a constant C1 > 0 such that ωK E is
uniformly equivalent to ωB by C1, i.e.,

1

C1
ωK E (v, v) ≤ ωB(v, v) ≤ C1ωK E (v, v) for all v ∈ T ′M .

2. Assume that there exists a compact subset K in M such that the holomorphic
sectional curvature of ωB is negative outside of K , and that M is biholomorphically
and properly embedded into BN , N ≥ n, where BN is the unit ball inCN . Then the
Carathéodory–Reiffen metric γM is not essentially zero, and the Bergman metric
is uniformly equivalent to the Kobayashi–Royden metric, i.e., there exists C2 > 0
such that

1

C2
χM (p; v) ≤ √

ωB(v, v) ≤ C2χM (p; v) for all v ∈ T ′
p M, p ∈ M,

whereχM is the Kobayashi–Royden metric on M. Moreover, if N = n, the Bergman
metric is uniformly equivalent to the complete Kähler–Einstein metric of negative
scalar curvature.

Remark 3 Under the same assumptions of TheoremA, but without additional assump-
tions of the first and second statements, we obtain the following from [32]: there exists
C0 > 0, which only depends on n and the curvature range of ωB , such that

χM (p; v) ≤ C0

√

ωB(v, v) for all v ∈ T ′
p M, p ∈ M .

(See Remark 11 for the details.)

The second statement of Theorem A differs from theWu–Yau theorems (Theorems
1 and 2) in that the Bergman metric’s holomorphic sectional curvature is not required
to be everywhere negative, but it still ensures the equivalence of invariant metrics. For
the other assumption, we note that every bounded strictly pseudoconvex domain in
C

n admits a proper holomorphic embedding into a ball (for example, see [18, p.11]).
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To demonstrate the effectiveness of our method, we consider invariant metrics on
a two-parameter family of 3-dimensional bounded domains defined by

E p,λ = {(x, y, z) ∈ C
3; (|x |2p + |y|2)1/λ + |z|2 < 1}, p, λ > 0. (1.1)

When p = λ = 1, the domain E p,λ is the unit ball inC3.Whenλ = 1 and p ≥ 1/2, this
reduces to the well-known convex egg (Thullen) domains whose invariant metrics are
uniformly equivalent ([13, 23]).With other pairs of (p, λ) for (1.1), the boundary limits
of the holomorphic sectional curvature of the Bergman metric are not well-defined,
so neither squeezing functions nor the Wu–Yau theorems can be applied. However,
we show that Theorem A can be applied. For this purpose, we use a concrete formula
for the Bergman kernel of E p,λ, which is obtained in [2]. We also verify the Cheng’s
conjecture on E p,λ in the process of calculation. Namely, we show that the Bergman
metric and the complete Kähler–Einstein metric is the same on E p,λ if and only if
p = λ = 1 (Proposition 25).

In the last section, we obtain a result on the Carathéodory–Reiffen metric
which is missing in the Wu–Yau theorems. Classical invariant metrics include
the Carathéodory–Reiffen metric whose definition is based on the existence of
non-constant bounded holomorphic functions on noncompact complex manifolds.
However, showing the existence of such functions still remains as a big challenge in
hyperbolic complex geometry.

The upper bounds of the Carathéodory–Reiffen metric have been studied exten-
sively. As for comparison between Carathéodory–Reiffen metric and the Bergman
metric on the bounded domains, the first result is obtained byQi-KengLu [26] and then
on manifolds by Hahn [19, 20]. Further developments are made by Ahn, Gaussier and
Kim [1]. Very recently, a comparison of Carathéodory distance and Kähler–Einstein
distance ofRicci curvature−1 for certainweakly pseudoconvex domains is established
by the first-named author [11].

Our result in the last section is a lower boundof the integratedCarathéodory–Reiffen
metric (Theorem 7). The positive lower bound of the Carathéodory–Reiffen metric is
important in that it is the smallest invariant metric among invariant metrics [11, 22],
and it provides quantitative information about non-constant bounded holomorphic
functions (also, see [5]).

The article is organized as follows: In Sect. 2, we review the definitions of the
invariant metrics. In the next section, we recall the quasi-bounded geometry and a
result on comparison with the Kobayashi–Royden metric. In Sect. 4, we apply Shi’s
estimate on Kähler–Ricci flow outside of a compact subset on noncompact Kähler
manifold. In Sect. 5, we prove Theorem A by generating a complete Kähler metric
with negatively pinched holomorphic sectional curvature and applying the Wu–Yau
theorems. In Sect. 6,we performexplicit calculation on E p,λ for any (p, λ) to verify the
bounded curvature of the complete Bergmanmetric, and the hypothesis of TheoremA-
3. In the last section, we prove Theorem 7 to obtain an integrated lower bound of the
Carathéodory–Reiffen metric in the setting of Theorem 1.
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2 Preliminaries

Let M be an n-dimensional complex manifold equipped with a complex structure J
and a Hermitian metric g. The complex structure J : TRM → TRM is a real linear
endomorphism that satisfies for every x ∈ M , and X , Y ∈ TR,x M , gx (Jx X , Y ) =
−gx (X , Jx Y ), and for every x ∈ M , J 2

x = −IdTx M . We decompose the complexified
tangent bundle TRM ⊗R C = T ′M ⊕ T ′M , where T ′M is the eigenspace of J
with respect to the eigenvalue

√−1 and T ′M is the eigenspace of J with respect
to the eigenvalue −√−1. We can regard v,w as real tangent vectors, and η, ξ as
corresponding holomorphic (1, 0) tangent vectors under the R-linear isomorphism
TRM → T ′M , i.e. η = 1√

2
(v − √−1Jv), ξ = 1√

2
(w − √−1Jw).

A Hermitian metric on M is a positive definite Hermitian inner product

gp : T ′
p M ⊗ T ′

p M → C

which varies smoothly for each p ∈ M . The metric g can be decomposed into the real
part denoted by Re(g), and the imaginary part denoted by Im(g). The real part Re(g)

induces an inner product called the induced Riemannian metric of g, an alternating
R-differential 2-form. Define the (1, 1)-form ω := − 1

2 Im(g), which is called the
fundamental (1, 1)-form of g or the Kähler metric. In local coordinates this form can
written as

ω =
√−1

2

n
∑

i, j=1

gi j dzi ∧ dz j .

The components of the curvature 4-tensor of the Chern connection associated with
the Hermitian metric g are given by

Ri jkl := R(
∂

∂zi
,

∂

∂zi
,

∂

∂zi
,

∂

∂zi
)

= g

(

∇c
∂

∂zi

∇c
∂

∂z j

∂

∂zk
− ∇c

∂
∂z j

∇c
∂

∂zi

∂

∂zk
− ∇c

[ ∂
∂zi

, ∂
∂z j

]
∂

∂zk
,

∂

∂zl

)

= − ∂2gi j

∂zk∂zl
+

n
∑

p,q=1

gq p ∂gi p

∂zk

∂gq j

∂zl
,

where i, j, k, l ∈ {1, . . . , n}.
The holomorphic sectional curvature with the unit direction η at x ∈ M (i.e.,

gω(η, η) = 1) is defined by

H(g)(x, η) = R(η, η, η, η) = R(v, Jv, Jv, v),
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where v is the real tangent vector corresponding to η.Wewill oftenwrite H(g)(x, η) =
H(g)(η) = H(η). The Ricci tensor of a Kähler metric ω is defined by

Ric(ω) := −√−1∂∂ log det(g).

Given any complex manifold M , for each p ∈ M and a tangent vector v at p, define
the Carathéodory–Reiffen metric and the Kobayashi–Royden metric by

γM (p; v) := sup {|d f (p)(v)|; f : M → D, f (p) = 0, f holomorphic} ,

χM (p; v) := inf

{

1

R
; f : RD → M, f (0) = p, d f ( ∂

∂z |z=0) = v, f holomorphic

}

,

respectively.
The Bergman metric is defined in terms of the Bergman kernel. Let 
(n,0)M be the

space of smooth complex differential (n, 0)-forms on M . For ϕ,ψ ∈ 
(n,0)M , define

〈ϕ,ψ〉 = (−1)n2/2
∫

M
ϕ ∧ ψ,

and

||ϕ|| = √〈ϕ, ϕ〉.

Let L2
(n,0) be the completion of

{

ϕ ∈ 
(n,0)M; ||ϕ|| < +∞
}

with respect to || · ||. Then L2
(n,0) is a separable Hilbert space with respect to the inner

product 〈·, ·〉.
Define H =

{

ϕ ∈ L2
(n,0);ϕ is holomorphic

}

. Suppose H �= 0. Let
{

e j
}

j≥0 be an

orthonormal basis of H with respect to 〈·, ·〉. Then the 2n-form on M × M , defined
by

B(x, y) :=
∑

j≥0

e j (x) ∧ e j (y), x, y ∈ M,

is called theBergman kernel of M . Suppose for some point p ∈ M , we have B(p, p) �=
0.Write B(z, z) = b(z, z)dz1∧· · ·∧dzn ∧dz1∧· · ·∧dzn in terms of local coordinates
(z1, · · · , zn). Define

ωB(z) := √−1∂∂ log b(z, z).

If the real (1, 1)-form ωB is positive definite, we call the corresponding Hermitian
metric gB

M the Bergman metric. By definition, gB
M is Kähler.

123



Equivalence of invariant metrics via Bergman kernel...

Lastly, the Kähler–Einstein metric ωK E means the Kähler metric which is also
the Einstein metric, and the Kähler–Einstein metric of the negative scalar curvature
becomes an invariant metric.

We will use the following lemma to prove Theorem A:

Lemma 4 ([33, Lemma 19]) Let (M, ω) be a Hermitian manifold such that the
holomorphic sectional curvature has the upper bound −κ < 0. Then the Kobayashi–
Royden metric satisfies

χM (x, v) ≥
√

κ

2
|v|ω,

for each x ∈ M, v ∈ T ′
x M.

3 Quasi-bounded geometry

In this section, we review some results from Sect. 2 in [33].
The notion of quasi-bounded geometry is introduced by Yau and Cheng ([9]).

Let (M, ω) be an n-dimensional complete Kähler manifold. For a point p ∈ M , let
Bω(p; ρ) be the open geodesic ball centered at p in M of radius ρ; we omit the
subscript ω if there is no peril of confusion. Denote by BCn (r) the open ball centered
at the origin in C

n of radius r with respect to the standard metric ωCn .
An n-dimensional Kähler manifold (M, ω) is said to have quasi-bounded geometry

if there exist two constants r2 > r1 > 0 such that for each point p ∈ M , there is a
domain U ⊂ C

n and a nonsingular holomorphic map ψ : U → M satisfying
(1) BCn (r1) ⊂ U ⊂ BCn (r2) and ψ(0) = p;
(2) there exists a constant C > 0 depending only on r1, r2, n such that

C−1ωCn ≤ ψ∗(ω) ≤ CωCn on U ; (3.1)

(3) for each integer l ≥ 0, there exists a constant Al depending only on l, n, r1, r2
such that

sup
x∈U

∣

∣

∣

∣

∣

∂ |ν|+|μ|gi j

∂vμ ∂vν

∣

∣

∣

∣

∣

≤ Al , for all |μ| + |ν| ≤ l, (3.2)

where gi j are the components of ψ∗ω on U in terms of the natural coordinates

(v1, . . . , vn), and μ, ν are multiple indices with |μ| = μ1 + · · · + μn . We call r1
a radius of quasi-bounded geometry.

By applying the L2-estimate, the following theorem is proved.

Theorem 5 ([33], Theorem 9) Let (M, ω) be a complete Kähler manifold. Then the
manifold (M, ω) has quasi-bounded geometry if and only if for each integer q ≥ 0,
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there exists a constant Cq > 0 such that

sup
p∈M

|∇q Rm | ≤ Cq , (3.3)

where Rm = {Ri jkl} denotes the curvature tensor of ω. In this case, the radius of
quasi-bounded geometry depends only on C0 and the dimension of M.

Also, we will use the following lemma:

Lemma 6 ([33, Lemma 20]) Suppose a complete Kähler manifold (M, ω) has quasi-
bounded geometry. Then the Kobayashi–Royden metric satisfies

χM (x, v) ≤ C |v|ω,

for each x ∈ M, v ∈ T ′
x M, where C depends only on the radius of quasi-bounded

geometry of (M, ω).

4 Themaximum principle and Shi’s estimate on Kähler–Ricci flow

Let (M, ω̃) be an n-dimensional complete noncompact Kähler manifold. Suppose for
some constant T > 0 there is a smooth solutionω(x, t) > 0 for the evolution equation

{

∂
∂t gαβ(x, t) = −4Rαβ(x, t) on M × [0, T ],
gαβ(x, 0) = g̃αβ(x) x ∈ M,

(4.1)

where gαβ(x, t) and g̃αβ are the metric components of ω(x, t) and ω̃, respectively.

Assume that the curvature Rm(x, t) =
{

Rαβγ δ(x,t)

}

of ω(x, t) satisfies

sup
M×[0,T ]

|Rm(x, t)|2 ≤ k0 (4.2)

for some constant k0 > 0.
The following lemma is an extension of Lemma15 in [33] to the case of complement

of compact subset. Though the proof is similar, we provide some details to indicate
where modifications are needed for the complement.

Lemma 7 With the above assumptions, suppose a smooth tensor
{

Wαβγ δ(x,t)

}

on M

with complex conjugation Wαβγ δ(x,t) = Wβαδγ (x,t) satisfies

(

∂
∂t Wαβγ δ(x,t)

)

ηαηβηγ ηδ ≤ (�Wαβγ δ)η
αηβηγ ηδ + C1|η|4ω(x,t), (4.3)

for all x ∈ M, η ∈ T ′
x M, 0 ≤ t ≤ T , where � ≡ 2 gαβ(x, t)(∇β∇α + ∇α∇β) and C1

is a constant. Let

h(x, t) = max
{

Wαβγ δη
αηβηγ ηδ; η ∈ T ′

x M, |η|ω(x,t) = 1
}

,
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for all x ∈ M and 0 ≤ t ≤ T . For any compact subset K in M, suppose

sup
x∈M,0≤t≤T

|h(x, t)| ≤ C0, (4.4)

sup
M\K

h(x, 0) ≤ −κ, (4.5)

for some constants C0 > 0 and κ . Then,

h(x, t) ≤ (8C0

√

nk0 + C1)t − κ,

for all x ∈ M\K and 0 ≤ t ≤ T .

Proof Denote

C = 8C0

√

nk0 + C1 > 0. (4.6)

Suppose

h(x1, t1) − Ct1 + κ > 0, (4.7)

for some (x1, t1) ∈ M\K ×[0, T ]. Then by (4.4) we have t1 > 0. Under the conditions
(4.1) and (4.2), it follows from [30] that there exists a function θ such that

0 < θ(x, t) ≤ 1, on M × [0, T ], (4.8)
∂θ

∂t
− �ω(x,t)θ + 2θ−1|∇θ |2ω(x,t) ≤ −θ on M × [0, T ], (4.9)

C−1
2

1 + d0(x0, x)
≤ θ(x, t) ≤ C2

1 + d0(x0, x)
on M × [0, T ], (4.10)

where x0 is a fixed point in M , d0(x, y) is the geodesic distance between x and y with
respect to ω(x, 0), and C2 > 0 is a constant depending only on n, k0 and T .

Let

m0 = sup
M\K ,0≤t≤T

([h(x, t) − Ct + κ]θ(x, t)) .

Then 0 < m0 ≤ C0 + |κ| by (4.4),(4.7), and (4.8). Denote


 = 2C2(C0 + CT + |κ|)
m0

> 0.

Then, for any x ∈ M\K with d0(x0, x) ≥ 
, we have

|(h(x, t) − Ct + κ)θ(x, t)| ≤ C2(C0 + CT + |κ|)
1 + d0(x, x0)

≤ m0

2
.
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It follows that the function (h − Ct + κ)θ must attain its supremum m0 on the
compact set B(x0;
) × [0, T ] ⊂ M\K × [0, T ], where B(x0; r) denotes the closure
of the geodesic ball with respect to ω(x, 0) centered at x0 of radius r . Let

f (x, η, t) = Wαβγ δηαηβηγ ηδ

|η|4ω(x,t)

− Ct + κ,

for all (x, t) ∈ M\K × [0, T ], η ∈ T ′
x M\ {0}. Then there exist x∗, η∗, t∗ with x∗ ∈

B(x0; r), 0 ≤ t∗ ≤ T , η∗ ∈ T ′
x∗ M and |η∗|ω(x∗,t∗) = 1, such that

m0 = f (x∗, η∗, t∗)θ(x∗, t∗) = max
St ×[0,T ]

( f θ),

where St = {

(x, η) ∈ T ′M; x ∈ M, η ∈ T ′
x M, |η|ω(x,t) = 1

}

. Since h(., 0) is a con-
tinuous function on M , either x∗ ∈ M\K or x∗ ∈ ∂K , t∗ > 0 by (4.5). Nowwe extend
η∗ to a smooth vector field using the same argument as in the proof of Lemma 15 in
[33]. Since f θ = f (x, η(x), t)θ(x, t) attains its maximum at (x∗, t∗), we have

∂
∂t ( f θ) ≥ 0, ∇( f θ) = 0, �( f θ) ≤ 0 at (x∗, t∗). (4.11)

From (4.11) and (4.9), one can see that at the point (x∗, t∗), we have

0 ≤ ∂
∂t ( f θ) = −m0 < 0

(for details, see [33]). This yields a contradiction and the proof is completed.

The following lemma is an extension of Lemma13 in [33] to the case of complement
of a compact subset.

Lemma 8 Let (M, ω) be an n-dimensional complete noncompact Kähler manifold.
Let K be a compact set in M such that

− κ2 ≤ H(ω) ≤ −κ1 < 0 on M\K , (4.12)

where H(ω) is the holomorphic sectional curvature and κ1, κ2 are positive constants.
Then there exists another Kähler metric ω̃ such that

C−1ω ≤ ω̃ ≤ Cω on M, (4.13)

−κ̃2 ≤ H(ω̃) ≤ −κ̃1 < 0 on M\K , (4.14)

sup
p∈M

|˜∇q
˜Rm | ≤ Cq on M, (4.15)

where ˜∇q denotes the q-th order covariant derivative of ˜Rm with respect to ω̃, and
the positive constants C = C(n), κ̃ j = κ̃ j (n, κ1, κ2), j = 1, 2, Cq = Cq(n, q, κ1, κ2)

depend only on the parameters in their parentheses.
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The conditions (4.13) and (4.15) appear in [30, 33]. We provide below details for the
pinching estimate.

Proof From the short time existence of the Kähler–Ricci flow [30], the equation (4.1)

admits a smooth solution
{

gαβ(x, t)
}

for all 0 ≤ t ≤ T . The curvature Rm(x, t)

satisfies

sup
x∈M

|∇q Rm(x, t)|2 ≤ C(q, n, K )(κ2 − κ1)
2

tq
, 0 < t ≤ θ0(n, K )

κ2 − κ1
≡ T ,

(4.16)

for each nonnegative integer q, where C(q, n, k) > 0 is a constant depending only on
q, K and n, and θ0(n, K ) > 0 is a constant depending only on n and K .

From the evolution equation of the curvature tensor (see [30, 33]), we have

∂

∂t
Rαβγ δ = 4�Rαβγ δ + 4gμνgρτ (Rαβμτ Rγ δρν + Rαδμτ Rγ βρν − Rανγ τ Rμβρδ)

− 2gμν(Rαν Rμβρτ + Rμβ Rανρτ + Rγ ν Rαβμτ + Rμδ Rαβρν),

where � ≡ �ω(x,t) = 1
2gαβ(x, t)(∇β∇α + ∇α∇β). It follows that

(

∂

∂t
Rαβγ δ

)

ηαηβηγ ηδ (4.17)

≤ 4(�Rαβγ δ)η
αηβηγ ηδ + C1(n)|η|4gαβ

(x, t)|Rm(x, t)|2ω(x,t) (4.18)

≤ 4(�Rαβγ δ)η
αηβηγ ηδ + ˜C1(n, K )(κ2 − κ1)

2|η|4ω(x,t),

by (4.16) with q = 0. Let

H(x, η, t) = Rαβγ δ)η
αηβηγ ηδ

|η|4ω(x,t)

.

Then by (4.12) and (4.16),

H(ω̃) ≤ −κ̃1 < 0 on M\K ,

|H(x, η, t)| ≤ |Rm(x, t)|ω(x,t) ≤ C0(n, K )(κ2 − κ1).

To apply the maximum principle, let us denote

h(x, t) = max
{

H(x, η, t); |η|ω(x,t)=1
}

,

for all x ∈ M and 0 ≤ t ≤ θ(n,K )
κ2−κ1

. Then h with (4.17) satisfies the three conditions in
Lemma 7. Then

H(x, η, t) ≤ h(x, t) ≤ −κ1

2
< 0,
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for all 0 < t ≤ t0 := min
{

κ1

2˜C1(n,K )(κ2−κ1)2
,

θ0(n,K )
κ2−κ1

}

. Since the curvature ten-

sor is bounded by (4.16) with q = 0, the complete Kähler metric ω(x, t) =√−1
2 gαβ(x, t)dzα ∧ dzβ is a desired metric for an arbitrary t ∈ (0, t0].

5 Generation of Kähler metrics with negative holomorphic sectional
curvature

In this section, after establishing a proposition below, we prove Theorem 1.

Proposition 9 Given an n-dimensional Kähler manifold (M, ω), assume that there
exists a compact subset K in M such that the holomorphic sectional curvature of ω

is negative outside of K , and M is biholomorphically and properly embedded into
BN , N ≥ n, where BN is the unit ball in C

N . Then there exists a complete Kähler
metric ω̃ whose holomorphic sectional curvature has a negative upper bound and
ω̃ ≥ ω.

Proof From the holomorphic embedding M ↪→ BN , consider a Kähler metric of the
form

ωm := mωP + ω, m > 0,

where ωP is the Poincaré metric of the unit ball BN in CN . It is clear that ωm ≥ ω for
each m > 0. From the decreasing property of the holomorphic sectional curvature,
ωP restricted to M has a negative holomorphic sectional curvature [34]. From Lemma
4 of [34], we may assume that the holomorphic sectional curvature of ωm is the
Gaussian curvature on some embedded Riemann surfaces in M . Recall that for a
Hermitian metric G on a Riemann surface, the holomorphic sectional curvature of G

is the Gaussian curvature H(g) = − 1
g

∂2 log g
∂z∂z

of G for some positive smooth function
g = g(z, z). In this case, the holomorphic sectional curvature H(G, t) becomes a
real-valued function independent of the unit vector t . Thus we write H(G) instead of
H(G, t).

From [25, Proposition 3.1], for any positive functions f and g with m > 0,

H( f + mg) ≤ f 2

( f + mg)2
H( f ) + m2g2

( f + mg)2
H(mg)

= f 2

( f + mg)2
H( f ) + mg2

( f + mg)2
H(g).

From here, we can deduce that H(ωm) becomes negative on K by taking sufficiently
large m. Since H(ωm) is negative on M\K , we are done.

Proof of Theorem 1 For the first statement, we fix a fundamental domain ˜M and define
a function f : M → C by f (z) := B(z)

ωn
B (z) . Since the numerator and the denominator are

smooth (n, n)-forms, the function f is well-defined and clearly smooth. Note that the
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Bergmankernel and theBergmanmetric are invariant under the automorphismgroupof
M . Thus the boundedness assumption of f on ˜M implies the boundedness of f on M ,
and we have a function f which is smooth and bounded on M satisfying Rici j +gi j =
fi j for each i, j , where we denote the Bergman metric in local coordinates by (gi j ).
Now we apply the main theorem in [6], and the conclusion follows.

The first part of the second statement follows from Lemma 4, Lemma 6 and Propo-
sition 9 with the fact that for each m > 0,

ωB ≤ ω̃,

where ω̃ is defined in Proposition 9. For the second part of the case N = n, themetric ω̃

has the bounded curvature. Then one can solve the complex Monge–Ampere equation
by following Wu–Yau’s approach (see Lemma 31 and Theorem 3 in [33]).

Remark 10 When N > n, the holomorphic sectional curvature ω̃ does not need to be
bounded below because of the presence of the second fundamental form (see [34]).

Remark 11 If (4.12) is replaced by

−κ2 ≤ H(ω) ≤ −κ1 on M for κ1 ∈ R,

then (4.13) and (4.15) still follow from the original Shi’s argument. Combining
it with Lemmas 6 and 8, we obtain a proof of the statement in Remark 3. Indeed,
by applying Shi’s estimate on Kähler–Ricci flow with the short-time existence, we
can generate a complete Kähler metric ω such that any order of covariant derivatives
of the curvature tensor is bounded, and ω is equivalent to the Bergman metric ωB .
Then by the characterization of quasi-bounded geometry of Wu–Yau [33], ω admits a
quasi-bounded geometry, and the statement in Remark 3 follows from Lemma 6.

6 Domain Ep,�

In this section, we consider the domain

E p,λ = {(x, y, z) ∈ C
3; (|x |2p + |y|2)1/λ + |z|2 < 1}, p, λ > 0,

and perform necessary computations to examine the comparison of invariant metrics
through verification of the hypotheses in Theorem A.

First, we take a suitable compact set K ⊂ E p,λ ∪∂ E p,λ that satisfies the conditions
in Theorem A. Since any point (x, y, z) ∈ C

3 can be realized as

|x | < r(z, y) =
(

(1 − |z|2)λ − |y|2
) 1

2p
,

with a fixed pair (y, z), the point (x, y, z) can be mapped biholomorphically onto
the form (0, y, z) through the automorphism of one-dimensional disc with the radius
r(y, z) centered at the origin. Then using rotations, we can make the other two entries
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to have non-negative real-values. Since all these transformations are automorphisms
of E p,λ, we take the compact set:

K1 = {(0, y, z) ∈ E p,λ; 0 ≤ x, y < 1},

where the closure is taken with respect to the usual topology of C3.
An explicit formula of Bergman kernel B on E p,λ is computed in [2]:

B((x, y, z), (x, y, z)) =
(

(1 − ν3)
λ − ν2

) 1
p −3

ν1
2(p − 1)(λ(p − 1) + p)

(1 − ν3)2−2λπ3 p2
(

ν1 − ((1 − ν3)λ − ν2)1/p
)4 (6.1)

+ (1 − ν3)
λ−2

(

(1 − ν3)
λ − ν2

) 1
p −3

ν1
2(p − 1)(λ − 1)ν2 p

π3 p2
(

ν1 − ((1 − ν3)λ − ν2)1/p
)4

+
(

(1 − ν3)
λ − ν2

) 3
p −3

(p + 1)
(

(1 − ν3)
λ(λ + λp + p) + (λ − 1)ν2 p

)

(1 − ν3)2−λπ3 p2
(

ν1 − ((1 − ν3)λ − ν2)1/p
)4

−
(

(1 − ν3)
λ − ν2

) 2
p −3

2ν1
(

(1 − ν3)
λ(λ(p2 − 2) + p2) + (λ − 1)ν2 p2

)

(1 − ν3)2−λπ3 p2
(

ν1 − ((1 − ν3)λ − ν2)1/p
)4 ,

where we set ν1 := xx , ν2 := yy and ν3 := zz.
We write

a = 1 − ν3, b = (1 − ν3)
λ − ν2, c = ((1 − ν3)

λ − ν2)
1/p − ν1.

Then

B = b
1
p −3

ν1
2(p − 1)(λ(p − 1) + p)

a2−2λπ3 p2c4
+ aλ−2b

1
p −3

ν1
2(p − 1)(λ − 1)ν2 p

π3 p2c4

+ b
3
p −3

(p + 1)
(

aλ(λ + λp + p) + (λ − 1)ν2 p
)

a2−λπ3 p2c4

− b
2
p −32ν1

(

aλ(λ(p2 − 2) + p2) + (λ − 1)ν2 p2
)

a2−λπ3 p2c4
. (6.2)

Write D = a2c4 and

N = a2λb
1
p −3

ν1
2(p − 1)(λ(p − 1) + p) + aλb

1
p −3

ν1
2(p − 1)(λ − 1)ν2 p

+ aλb
3
p −3

(p + 1)
(

aλ(λ + λp + p) + (λ − 1)ν2 p
)

− aλb
2
p −32ν1

(

aλ(λ(p2 − 2) + p2) + (λ − 1)ν2 p2
)

.

Then

B = N

π3 p2D
. (6.3)
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Write

N1 = a2λb
1
p −3

ν21 , N2 = aλb
1
p −3

ν21ν2, N3 = a2λb
3
p −3

,

N4 = aλb
3
p −3

ν2, N5 = a2λb
2
p −3

ν1, N6 = aλb
2
p −3

ν1ν2,

u1 = (p − 1)(λ(p − 1) + p), u2 = p(p − 1)(λ − 1), u3 = (p + 1)(λ + λp + p),

u4 = p(p + 1)(λ − 1), u5 = −2(λ(p2 − 2) + p2), u6 = −2(λ − 1)p2.

Then

N =
6

∑

i=1

ui Ni .

Note that we have

u1 + u3 + u5 = 6λ and u2 + u4 + u6 = 0.

From the description of the Bergman kernel, we can check the pseudoconvexity of
E p,λ for each p, λ > 0.

Proposition 12 E p,λ is a pseudoconvex domain for each p, λ > 0.

Proof 1 To show that u = u p,λ := (|x |2p + |y|2) 1
λ + |z|2 is a (bounded) plurisub-

harmonic exhaustion function of E p,λ, it suffices to show that v = vp,λ :=
(|x |2p + |y|2) 1

λ is plurisubharmonic. To this end, consider

log v = 1

λ
log

(

eψ1 + eψ2
)

, where ψ1 := 2p log |x | and ψ2 := 2 log |y|.

Now the plurisubharmonicity of log v follows from the fact that log
(

eψ1 + eψ2
)

is
always plurisubharmonic whenever ψ1 and ψ2 are plurisubharmonic, since we have

∂2

∂z∂z
log

(

eψ1 + eψ2
)

= 1
(

eψ1 + eψ2
)2

(

eψ1+ψ2

(

∂ψ1

∂z
− ∂ψ2

∂z

)2

+ eψ1
∂2ψ1

∂z∂z
+ eψ2

∂2ψ2

∂z∂z

)

≥ 0.

From the plurisubharmonicity of log v it follows that v = elog v is plurisubharmonic,
as desired.

We are interested in behaviours of the metric and curvature components on the
compact set K1 = {(0, y, z) ∈ Eλ,p; 0 ≤ y, z < 1}. In what follows, we compute
those components.

1 This proof is suggested by an anonymous referee and replaces our original proof. We are grateful to the
referee.
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Recall the formula for the components of the Bergman metric

gi j = ∂2 log B

∂zi∂z j
, i, j = 1, 2, 3,

where we set (z1, z2, z3) = (x, y, z). For i = 1, 2, 3, we write

∂i = ∂

∂zi
and ∂ i = ∂

∂zi
.

Proposition 13 Each component of the Bergman metric gi j at (0, y, z) ∈ E p,λ, 0 ≤
y, z < 1, is given as follows:

g11 = 1

c
· u5 + u6δ

u3 + u4δ
+ 4

c
,

g22 = aλ

b2

(

1

p
+ 3

)

+ aλ

b2
· u3u4(1 − δ)2

(u3 + u4δ)2
,

g23 = g32 = λyz

a1−λb2
·
(

1

p
+ 3

)

+ λyz

a1−λb2
· u3u4(1 − δ)2

(u3 + u4δ)2
,

g33 = 1 + δ(λz2 − 1)

a2−2λb2
· λ

p
+ δ2(2 − 2λ) + δ(2λ2z2 − 4) + λ + 2

a2−2λb2

+ λδ

a2−2λb2
· u3u4(1 + δ2)(1 + λz2) + u2

4δ(1 + (λz2 − 1)δ + δ2) + u2
3(1 + λz2)

(u3 + u4δ)2
,

gi j = 0 otherwise,

where we write δ := y2/aλ = y2/(1 − z2)λ.

Proof All the formulas for gi j are obtained from direct computations. For example,
since

∂1D = −4a2c3x, ∂1N1 = 2a2λb
1
p −3

ν1x, ∂1N2 = 2aλb
1
p −3

ν1xν2,

∂1N3 = 0, ∂1N4 = 0, ∂1N5 = a2λb
2
p −3x, ∂1N6 = aλb

2
p −3xν2,

and

∂1∂1D = −4a2c3 + 12a2c2ν1, ∂1∂1N1 = 4a2λb
1
p −3

ν1, ∂1∂1N2 = 4aλb
1
p −3

ν1ν2,

∂1∂1N3 = 0, ∂1∂1N4 = 0, ∂1∂1N5 = a2λb
2
p −3

, ∂1∂1N6 = aλb
2
p −3

ν2,

we have

123



Equivalence of invariant metrics via Bergman kernel...

where we use c = b
1
p at (0, y, z).

The other gi j can be computed similarly, and we omit the details.

Remark 14 When (0, y, z) approaches the boundary of K1, we find that the limits
of the metric components and those of curvature components cannot be determined.
However, using δ introduced in the above proposition, we will be able to control the
limit behaviors.

Write

g11 = 1

c
· A1, g22 = aλ

b2
· A2, g23 = λyz

a1−λb2
· A2, g33 = 1

a2−2λb2
· A3,

(6.4)

where

A1 = u5 + u6δ

u3 + u4δ
+ 4, A2 = 1

p
+ 3 + u3u4(1 − δ)2

(u3 + u4δ)2
,

A3 = (1 + δ(λz2 − 1)) · λ

p
+ δ2(2 − 2λ) + δ(2λ2z2 − 4) + λ + 2

+ λδ · u3u4(1 + δ2)(1 + λz2) + u2
4δ(1 + (λz2 − 1)δ + δ2) + u2

3(1 + λz2)

(u3 + u4δ)2
.

Then

g22g33 − g23g32 = 1

a2−3λb4
A2(A3 − λ2δz2A2) = 1 − δ

a2−3λb4
· A2A4 = A2A4

a2−2λb3
,

(6.5)

where we put A4 := (A3 − λ2δz2A2)/(1− δ) and use 1− δ = b/aλ. More explicitly,
we have

A4 = δ2 p2(r − 2)(r − 1) + δ p(r − 1)(4pr + 4p + 3r) + p2r2 + 3p2r + 2p2 + 2pr2 + 3pr + r2

p(δ p(r − 1) + pr + p + r)
.

Note that 0 ≤ δ < 1. Furthermore, as (0, y, z) ∈ E p,λ approaches the boundary, we
have δ → 1−. One sees that

lim
δ→1− A1 = 4(2 + p)

1 + 2p
, lim

δ→1− A2 = 3 + 1

p
and lim

δ→1− A4 = λ

(

3 + 1

p

)

.

(6.6)

Lemma 15 At (0, y, z) ∈ E p,λ, 0 ≤ y, z < 1, the ratio
det gB

B
is bounded.
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Proof From (6.3), (6.4) and (6.5), we obtain

det gB

B
=

1
c A1

A2 A4
a2−2λb3

N
π3 p2D

= π3 p2 A1A2 A4a2c4

ca2−2λb3 · aλb
3
p −3

(p + 1)
(

aλ(λ + λp + p) + (λ − 1)y2 p
)

= π3 p2 A1A2 A4

(p + 1) ((λ + λp + p) + (λ − 1)pδ)
,

which is bounded.

Proposition 16 The inverse metric of the Bergman metric gi j at (0, y, z) ∈ E p,λ,
0 ≤ y, z < 1, are given as follows:

g11 = c

A1
, g22 = b2

aλ
· A3

(1 − δ)A2A4
= bA3

A2A4
,

g23 = g32 = −λyza1−2λb2

(1 − δ)A4
= −λyza1−λb

A4
, g33 = a2−2λb2

(1 − δ)A4
= a2−λb

A4
,

gi j = 0 otherwise.

Proof The formulas are obtained by taking the inverse matrix of the 3 × 3 matrix
(gi j )i, j=1,2,3 calculated in Proposition 13. In particular, the determinant of the 2 × 2

block (gi j )i, j=2,3 is computed in (6.5). Also recall 1 − δ = b/aλ.

Through direct computations, we obtain the following for (0, y, z) ∈ K1:
Here Gi are set to be the remaining factors after pulling out the factors involving

a, b, c, y, z. Explicitly, we have

G1 = 4

p
− (u5 + u6δ)((2p − 3)u4δ + 3(p − 1)u3 + pu4)

p(u3 + δu4)2

+ 2(p − 1)u6δ + (3p − 2)u5 + pu6

p(u3 + u4δ)
,

G2 = 4λ

p
+ λ

p
· u5 + u6δ

u3 + u4δ
− λδ(1 − δ)(u4u5 − u3u6)

(u3 + u4δ)2
.

For simplicity, we do not present expressions for the other Gi ’s. Since u3 + u4δ > 0,
one can see that Gi are bounded for i = 1, 2, . . . , 8 as δ → 1−.

Lemma 17 We have

G4 = λG3.

If we define F1 and F2 by

F1 := z2

1 − δ
(G6 − λδG5) and F2 := 1

1 − δ

(

G8 − λδz2G7

)

,
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then

lim
δ→1− F1 = λ

(

3 + 1

p

)

and lim
δ→1− F2 = 2λ2(1 + 3p)

p
.

Proof We verify the identities through direct computations with help of a computer
algebra system.

Similarly, we obtain
Here Hi are the remaining factors; in particular, we have

H1 = 8 + 4 · u1 + u2δ

u3 + u4δ
− 2 · (u5 + u6δ)

2

(u3 + u4δ)2
.

We do not present explicit expressions for the other Hi ’s. Using 0 ≤ δ < 1 and
u3 + u4δ > 0, one can check that Hi are bounded for i = 1, 2, . . . , 10 as δ → 1−.

Proposition 18 Each curvature components of the Bergman metric at (0, y, z) ∈ E p,λ,
0 ≤ y, z < 1, is given by

R1111 = 1

c2
(−H1) = 1

c2
· ˜H1,

R1122 = R2112 = R1221 = R2211 = aλ

b2c
·
(

−H2 + δG1
2

A1

)

= aλ

b2c
· ˜H2,

R1123 = R1132 = R2113 = R1231 = R1321 = R2311 = R3112 = R3211

= yzaλ−1

b2c
·
(

−H3 + G1G2

A1

)

= yzaλ−1

b2c
· ˜H3,

R1133 = R1331 = R3113 = R3311 = a2λ−2

b2c
·
(

−H4 + z2G2
2

A1

)

= a2λ−2

b2c
· ˜H4,

R2222 = a2λ

b4
·
(

−H5 + δG2
3

A2

)

= a2λ

b4
· ˜H5,

R2223 = R2232 = R2322 = R3222 = yza2λ−1

b4
·
(

−H6 + δG3G5

A2

)

= yza2λ−1

b4
· ˜H6,

R2233 = R2332 = R3223 = R3322

= a3λ−2

b4
·
(

−H7 + δ2z2G2
5

A2
+ δ(1 − δ)F2

1

A4

)

= a3λ−2

b4
· ˜H7,

R2323 = R3232 = a2λ−2y2z2

b4
·
(

−H8 + G3G7

A2

)

= a2λ−2y2z2

b4
· ˜H8,

R2333 = R3233 = R3323 = R3332

= a3λ−3yz

b4
·
(

−H9 + δz2G5G7

A2
+ (1 − δ)F1F2

A4

)

= a3λ−3yz

b4
· ˜H9,
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Table 1 Formulas for ∂i g jk ∂1g21 = ∂2g11 = ∂1g12 = ∂2g11 = y
bc G1,

∂1g31 = ∂3g11 = ∂1g13 = ∂3g11 = z
a1−λbc

G2,

∂2g22 = ∂2g22 = yaλ

b3
G3,

∂2g23 = ∂2g32 = y2z
a1−λb3

G4,

∂2g32 = ∂3g22 = ∂2g23 = ∂3g22 = y2z
a1−λb3

G5,

∂2g33 = ∂3g23 = ∂2g33 = ∂3g32 = yz2

a2−2λb3
G6,

∂3g32 = ∂3g23 = yz2

a2−2λb3
G7,

∂3g33 = ∂3g33 = z
a3−3λb3

G8,

∂i g jk = ∂ i g jk = 0 otherwise.

R3333 = a4λ−4

b4
·
(

−H10 + δz4G2
7

A2
+ z2(1 − δ)F2

2

A4

)

= a4λ−4

b4
· ˜H10,

Ri jkl = 0 otherwise,

where we define ˜Hi for i = 1, 2, . . . , 10 for later use.

Proof Recall that the components of curvature tensor R associated with g is given by

Ri jkl = −∂k∂ l gi j +
3

∑

p,q=1

gq p(∂k gi p)(∂l gq j ).

Thus the results follow from Tables 1 and 2 and Proposition 16.

Lemma 19 We have

˜H3 = λ ˜H2, ˜H6 = λ ˜H5, ˜H8 = λ ˜H6 and ˜H9 = 2λ ˜H7 − λ2δz2 ˜H6.

If we define

˜F1 := 1

1 − δ

(

˜H4 − λδz2 ˜H3

)

, ˜F2 := 1

1 − δ

(

˜H7 − λδz2 ˜H6

)

,

˜F3 = 1

(1 − δ)2

(

˜H10 − 4λ2δz2 ˜H7 + 3λ3δ2z4 ˜H6

)

,

then

lim
δ→1−

˜F1 = − 4λ(2 + p)

p(1 + 2p)
, lim

δ→1−
˜F2 = −λ

(

3 + 1

p

)

and

lim
δ→1−

˜F3 = −2λ2
(

3 + 1

p

)

. (6.7)
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Table 2 Formulas for ∂i ∂ j gkl

∂1∂1g11 = 1
c2

H1,

∂1∂1g22 = ∂1∂2g21 = ∂2∂1g12 = ∂2∂2g11 = aλ

b2c
H2,

∂1∂1g23 = ∂1∂3g21 = ∂2∂1g13 = ∂2∂3g11 = ∂1∂1g32 = ∂1∂2g31 = ∂3∂1g12 = ∂3∂2g11 = yz
a1−λb2c

H3,

∂1∂1g33 = ∂1∂3g31 = ∂3∂1g13 = ∂3∂3g11 = 1
a2−2λb2c

H4,

∂2∂2g22 = a2λ

b4
H5,

∂2∂2g23 = ∂2∂3g22 = ∂2∂2g32 = ∂3∂2g22 = yz
a1−2λb4

H6,

∂2∂2g33 = ∂2∂3g32 = ∂3∂2g23 = ∂3∂3g22 = 1
a2−3λb4

H7,

∂2∂3g23 = ∂3∂2g32 = y2z2

a2−2λb4
H8,

∂2∂3g33 = ∂3∂3g23 = ∂3∂2g33 = ∂3∂3g32 = yz
a3−3λb4

H9,

∂3∂3g33 = 1
a4−4λb4

H10,

∂i ∂ j gkl = 0 otherwise.

Proof The identities are verified through direct computations and can be checked by
a computer algebra system.

In order to see cancellations of factors involving a, b, c in the holomorphic sectional
curvature, we apply the Gram–Schmidt process to determine an orthonormal frame
X , Y , Z instead of using the global coordinate vector fields ∂

∂zi
, i = 1, 2, 3. Indeed,

let g be any Hermitian metric, and take the first unit vector field

X = ∂1√
g11

. (6.8)

Write k1 := 1√
g11

so that X = k1∂1. Then a vector field Ỹ which is orthogonal to X is

given by

Ỹ = ∂2√
g22

− g

(

∂2√
g22

, X

)

X = a1∂1 + a2∂2,

where we put

a1 := − g21
g11

√
g22

and a2 := 1√
g22

.

Since g(Ỹ , Ỹ ) = a1a1g11 + a1a2g12 + a2a1g21 + a2a2g22, we take

Y = Ỹ
√

g(Ỹ , Ỹ )

= a1∂1 + a2∂2
√

a1a1g11 + a1a2g12 + a2a1g21 + a2a2g22
= t1∂1 + t2∂2,

(6.9)

123



G. Cho, K.-H. Lee

where we put

ti := ai
√

a1a1g11 + a1a2g12 + a2a1g21 + a2a2g22
, i = 1, 2. (6.10)

Similarly, consider

Z̃ = p1∂1 + p2∂2 + p3∂3,

where

p1 := − g31
g11

√
g33

− t1√
g33

(t1g31 + t2g32),

p2 := − t2√
g33

(t1g31 + t2g32), p3 := 1√
g33

.

Normalizing Z̃ yields

Z = s1∂1 + s2∂2 + s3∂3, (6.11)

where

si := pi
√

∑3
k,l=1 pk pl gkl

, i = 1, 2, 3.

These X , Y , Z are used in the following proposition which is the main result of this
section.

Proposition 20 At (0, y, z) ∈ E p,λ, 0 ≤ y, z < 1, the components of the holomorphic
sectional curvature R are given by as follows.

H(X) = R(X , X̄ , X , X̄) = ˜H1

A2
1

, B(X , Y ) = R(X , X̄ , Y , Ȳ ) = ˜H2

A1A2
,

H(Y ) = R(Y , Ȳ , Y , Ȳ ) = ˜H5

A2
2

, B(X , Z) = R(X , X̄ , Z , Z̄) = ˜F1

A1A4
,

H(Z) = R(Z , Z̄ , Z , Z̄) = ˜F3

A2
4

, B(Y , Z) = R(Y , Ȳ , Z , Z̄) = ˜F2

A2A4
,

R(X , X̄ , X , Ȳ ) = R(Y , Ȳ , Y , X̄) = R(Z , Z̄ , Z , Ȳ ) = R(Y , X̄ , Y , X̄) = 0,

R(X , X̄ , X , Z̄) = R(Y , Ȳ , Y , Z̄) = R(Z , Z̄ , Z , X̄) = R(Z , X̄ , Z , X̄) = 0,

R(X , X̄ , Y , Z̄) = R(Y , Ȳ , X , Z̄) = R(Z , Z̄ , X , Ȳ ) = R(Z , Ȳ , Z , Ȳ ) = 0.

Proof All the identities follow from Proposition 18 and Lemma 19. To illustrate the
process, we compute H(X), B(X , Y ) and R(Y , Ȳ , Y , Z̄). Computations of the other
components are similar.
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Since g21 = 0 and g31 = 0, we have a1 = 0, t1 = 0, p1 = 0 and s1 = 0 on
(0, y, z). On the other hand,

t2 = a2
√

a2a2g22
= 1√

g22
.

Thus, using (6.4), we obtain

H(Y ) = t42 R2222 = b4

a2λ

1

A2
2

· a2λ

b4
˜H5 = ˜H5

A2
2

.

Similarly,

B(X , Y ) = k21 t22 R1122 = 1

g11

1

g22
· aλ

b2c
· ˜H2 = c

A1

b2

aλ A2

aλ

b2c
˜H2 = 1

A1A2

˜H2.

To compute R(Y , Ȳ , Y , Z̄), first observe

s2 = −s3t22 g32 = −s3
g32
g22

= −s3
λyz

a
.

Thus it follows from Proposition 18 and Lemma 19 that

R(Y , Ȳ , Y , Z̄) = t32 s2R2222 + t32 s3R2223 = t32

(

−s3
λyz

a

)

a2λ

b4
˜H5 + t32 s3

yza2λ−1

b4
˜H6

= t32 s3a2λ−1yz

b4
(−λ ˜H5 + ˜H6

) = 0.

Corollary 21 The holomorphic sectional curvature near ∂K1 is bounded for any
p, λ > 0.

Proof The assertion follows from (6.6) and (6.7) and the fact that Gi and Hi are
bounded as δ → 1−.

It is known [10] that the curvature tensor of the Bergman metric is bounded for
λ = 1 and p > 0. The following proposition tells us that the same is true for any
p, λ > 0.

Proposition 22 The curvature tensor of the Bergman metric on E p,λ is bounded for
any p, λ > 0.

Proof The curvature tensor can be explicitly expressed in terms of the holomorphic
sectional curvature HgB . Using the invariance of the Bergman metric, it suffices to
show HgB ≤ C on ∂K1 by some constant C ∈ R. By Corollary 21, we are done.
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Corollary 23 For any p, λ > 0, there exist C0 > 0 such that

χE p,λ (p; v) ≤ C0

√

ωB(v, v) for all v ∈ T ′
p E p,λ, p ∈ M,

and C1 > 0 such that

1

C1
ωK E (v, v) ≤ ωB(v, v) ≤ C1ωK E (v, v) for all v ∈ T ′E p,λ.

Proof The assertion immediately follows from Proposition 22 and Lemma 15.

Remark 24 For the third statement ofTheoremA, in general, the holomorphic sectional
curvature is not negatively pinched for E p,λ. For example, when λ = 1 and p = 1/5,
we have limδ→1− H(X) ≈ 0.033 > 0.

Lastly, we obtain interesting rigidity in the following proposition from direct com-
putation of the Ricci curvature of the Bergman metric and we omit the proof.

Proposition 25 The Bergman metric gB on E p,λ is a Kähler–Einstein metric if and
only if λ = p = 1.

7 A lower bound of the integrated Carathéodory–Reiffenmetric

In this last section, we prove the following theorem.

Theorem B Let (M, g) be a simply-connected complete noncompact n-dimensional
Kähler manifold whose Riemannian sectional curvature k of g satisfies k ≤ −a2 for
some a > 0. We denote by d the geodesic distance on M, and by γM the Carathéodory–
Reiffen metric on M. For any p ≥ 2, the following are true.

1. Let f be a holomorphic function from M to the unit disk D in C. Then

∫

M

∣

∣

∣

∣

∫

M
G(x, y)|∇ f |2(y)dy

∣

∣

∣

∣

p

dx

≤
(

p

(2n − 1)a

)p ∫

M
| f (x)|pγM (x; ∇ f (x))

p
2 dx, (7.1)

where G(x, y) is the minimal positive Green’s function on M.
2. If the Riemannian sectional curvature k of g further satisfies −b2 ≤ k for some

b > 0. Then there exists a constant C(n) > 0, which only depends on n, such that for
any holomorphic function f from M to the unit disk D, we have

∫ ∞

0

∫

M

(∫

M
t−n exp

[

−d(x, y)2

2t

− (2n − 1)2b2t

8
− (2n − 1)bd(x, y)

2

]

(1 + bd(x, y))|∇ f |2(y)dy

)p

dxdt
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≤ C(n)

(

2π p

(2n − 1)a

)p ∫

M
| f (x)|pγM (x; ∇ f (x))

p
2 dx . (7.2)

The inequalities (7.1) and (7.2) can be interpreted as integrated gradient estimates
of bounded holomorphic functions.

Although the lemmas below are known, we prove them here for tracking explicit
constants for the proof of Theorem 7.

Let M be an n-dimensional complete noncompact, simply connected Riemannian
manifold, and let L2(M) be the space of L2-functions on M . Denote by W 1(M) the
Hilbert space consisting of L2-functions whose gradient are also L2, and by W 1

0 (M)

the subspace in W 1(M) which is the completion of the space C∞
0 (M) under W 1(M)-

norm. When M is complete, we have W 1(M) = W 1
0 (M).

Lemma 26 ([29, Poincaré inequality]) Let M be an n-dimensional complete noncom-
pact, simply connected Riemannian manifold with sectional curvature k ≤ −a2 < 0.
Then

∫

M
|u|2 ≤ 4

(n − 1)2a2

∫

M
|∇u|2, u ∈ W 1

0 (M). (7.3)

Proof Let r(x) = d(p0, x) be the distance function from a fixed point p0 ∈ M . From
the Rauch comparison theorem, we have

�r ≥ (n − 1)a, (7.4)

where a > 0.
Let� be the geodesic ball centered at p0 with radius R > 0 in M . From the Green’s

theorem, we have for every u ∈ C∞
0 (�),

∫

�

|u|2�r −
∫

�

∇(|u|2) · ∇r =
∫

b�

|u|2dσ = 0,

where dσ is the surface measure on b�. We remark that r may not be smooth at p0,
but we can apply the Green’s theorem to � minus a small ball of radius ε > 0 around
p0 and let ε → 0. From (7.4) and |∇r | = 1, we have

(n − 1)a‖u‖2 ≤
∫

�

|u|2�r =
∫

�

∇(|u|2) · ∇r ≤
∫

�

|∇(|u|2)| ≤ 2‖u‖ ‖∇u‖.

This gives

‖u‖ ≤ 2

(n − 1)a
‖∇u‖, u ∈ C∞

0 (�).

Since C∞
0 (M) is dense in W 1

0 (M), we are done.

Let �0 denote the Laplace–Beltrami operator. We use Mckean’s estimate [27] on
the first eigenvalue of �0.
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Lemma 27 ([27, Mckean’s estimate]) Let M be an n-dimensional complete noncom-
pact, simply-connected Riemannian manifold with sectional curvature k ≤ −a2 < 0.
Then we have

λ1 ≥ (n − 1)2a2

4
, (7.5)

where λ1 is the smallest eigenvalue of �0.

Proof From Lemma 26, for every u ∈ C∞
0 (M),

(�0u, u) = (du, du) =
∫

�

|∇u|2 ≥ (n − 1)2a2

4

∫

�

|u|2.

The assertion follows.

Lemma 28 ([8, Cheng]) Let M be an n-dimensional Riemannian manifold. Consider
the first eigenvalue for the Dirichlet problem λ1(M) > 0. Let � be a relatively compact
domain of M such that b� is smooth. Let f ∈ C∞(M) and let u be the solution of

{

�u = � f on �,

u = 0 on b�.

Then for any p ≥ 2,

∫

�

|u|p ≤ C p

∫

�

|∇ f |p, (7.6)

where the constant C p depends only on p and λ1(M).

Proof Assume that p ≥ 2. Multiplying the equation by u p−1 and integrating it, we
have

(p − 1)
∫

�

|∇u|2u p−2 = (∇u,∇u p−1) = (∇ f ,∇u p−1)

≤ (p − 1)
∫

�

|∇ f ||∇u|u p−2

≤ (p − 1)

(∫

�

|∇u|2u p−2
)1/2 (∫

�

|∇ f |2u p−2
)1/2

.

Thus we have

4

p2

∫

�

|∇u p/2|2 ≤
∫

�

|∇ f |2u p−2 ≤
(∫

�

|u|p
)

p−2
p

(∫

�

|∇ f |p
) 2

p

.
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From (7.3), we obtain

(

4λ1
p2

)
p
2

∫

�

|u|p ≤
∫

�

|∇ f |p.

The constant C p depends only on p and λ1. The general case can be proved similarly
through multiplication by (sgn u)|u|p−1 and integration.

Proof of Theorem B From Lemma 27, M has the positive spectrum. It is a standard
result that if the manifold has positive spectrum then there exists a positive symmetric
Green’s function G on M . Moreover, we can always take G(x, y) to be the minimal
Green’s function constructed using exhaustion of compact subdomains. Hence

G(x, y) = lim
i→∞ Gi (x, y) > 0,

where Gi is the Dirichlet Green’s function of a compact exhaustion {�i }i of M , and
the limit is uniform on compact subsets of M .

Take any (bounded) holomorphic function f : M → D. For any relatively compact
subdomain� ⊂ M with the smooth boundary b�, we use f 2 in Lemma28 and solving
the Dirichlet boundary problem with the inequality

(

g(∇ f 2,∇ f 2)(x)
)

p
2 =

(

4| f (x)|2d f (∇ f )(x)
)

p
2 ≤ 2p| f |p(x)γM (x; ∇ f (x))

p
2

(7.7)

for any x ∈ M , and the condition p ≥ 2 implies

∫

�

|u|p ≤
(

2p

(2n − 1)a

)p ∫

�

| f |pγM (.; ∇ f )
p
2

≤
(

2p

(2n − 1)a

)p ∫

M
| f |pγM (.; ∇ f )

p
2 , (7.8)

where u is the solution of

{

�u = 2|∇ f |2 on �,

u = 0 on b�,
(7.9)

and a > 0 is for the upper bound of the Riemannian sectional curvature ≤ −a2 < 0.
From the hypothesis | f |pγM (.; ∇ f )

p
2 ∈ L1(M) and from the exhaustion of com-

pact subdomains, there exists u ∈ C∞(M,R) such that

∫

M
|u|p < ∞,
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and �u = 2|∇ f |2 on M . Furthermore, the fact infx∈M Vol B(x, r) > 0 for any r > 0
implies that u(x) → 0 as d(p, x) → ∞ from some fixed point p ∈ M . Thus the
Dirichlet problem is solvable and u can be represented by

u(x) = 2
∫

M
G(x, y)|∇ f |2(y)dy, (7.10)

which proves part (1).
For part (2), the positive minimal Green’s function satisfies

G(x, y) =
∫ ∞

0
hM (x, y, t)dt,

where we denote the heat kernel of the Laplace–Beltrami operator by hM (x, y, t).
Hence (7.10) becomes

u(x) = 2
∫ ∞

0

∫

M
hM (x, y, t)|∇ f |2(y)dydt . (7.11)

We use the Cheeger and Yau’s heat kernel comparison theorem [7]:

hM (x, y, t) ≥ hMk (d(x, y)), (7.12)

where Mk is the space form with constant sectional curvature equal to k. From the
two-sided estimate of Davies and Mandouvalos [15],

c(n)−1h(t, d(x, y)) ≤ hMk (d(x, y)) ≤ c(n)h(t, d(x, y)), (7.13)

where c(n) depends only on n and

h(t, r) = (2π t)−n exp

[

− r2

2t
− (2n − 1)2b2t

8
− (2n − 1)br

2

]

(1 + br)

(

1 + br + b2t

2

)
2n−1
2 −1

(7.14)

for t, r > 0, where b > 0 is for the lower bound of the Riemannian sectional curvature
≥ −b2.

Now combining (7.8) with (7.11), (7.12), (7.13), and (7.14) gives the desired
inequality (7.2). This completes the proof.

We end this paper with an example for Theorem B.

Proposition 29 In the case of unit disk D in C, for each p ≥ 2, we have

2π
∫ 1

0

(

1

6
− R2

2
ln R − R4

8
(4 ln R − 1) − R6

36
(6 ln R − 1)

)p

R d R

≤ p p
∫

D

|z|pγD(z; ∇z)
p
2 .
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Proof The Green function of the unit disk D in C has the following form:

G(x, y) = 1

2π
ln

|x − y|
|x ||y − x

|x |2 |
.

The function G satisfies �x G(x, y) = δy at fixed y ∈ D and G(x, y) = 0 when
|x | = 1 and |y| < 1. Since the gradient vector of z ∈ D with respect to the Poincaré
metric is (1 − |z|2) ∂

∂z , the integrand of the left-hand side of (7.1) is

∫

|y|<1
G(x, y)(1 − |y|2)2dy. (7.15)

Rewrite G(x, y) = 1
4π ln

( |x |2|y−x/|x |2|2
|x−y|2

)

and choose coordinates x = (R, 0) and

y = (r cos θ, r sin θ), then (7.15) becomes

1

4π

∫ 1

0

∫ 2π

0
ln

(

1 + r2R2 − 2r R cos θ

R2 + r2 − 2r R cos θ

)

r(1 − r2)2dθdr

= 1

4π

∫ 1

0
r(1 − r2)2 (I (1, r R) − I (r , R)) dr ,

where I (a, b) := ∫ 2π
0 ln(a2 + b2 − 2ab cos θ)dθ . It is well-known that

I (a, b) = 4π max {ln |a|, ln |b|} .

Since 0 ≤ r , R ≤ 1, we have I (1, r R) = 0. Thus the integral becomes

−
∫ 1

0
r(1 − r2)2 max {ln |r |, ln |R|} dr

= − ln R
∫ R

0
r(1 − r2)2dr −

∫ 1

R
r(1 − r2)2 ln rdr

= 1

6
− R2

2
ln R − R4

8
(4 ln R − 1) − R6

36
(6 ln R − 1).

Thus the left-hand side of (7.1) is

2π
∫ 1

0

(

1

6
− R2

2
ln R − R4

8
(4 ln R − 1) − R6

36
(6 ln R − 1)

)p

R d R.
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