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0. Introduction

In this paper, we obtain an analogue of Gindikin–Karpelevich formula for a family
of generalized Kac–Moody algebras (see Proposition 1.4). They are attached to
Borcherds–Cartan matrices with only one positive entry in the diagonal. Here it is
important for our purpose to take the definition of generalized Kac–Moody algebras
as in [9] so that the imaginary simple roots have multiplicity one. Then we can apply
our earlier technique [12] of writing the product over positive roots as the sum over
certain PBW basis. (See also [9, Sec. 5.3, Remark].) Then we take a specialization
of Z × Z-grading to obtain our result (see Theorem 1.6). The resulting identities
can also be considered as deformation of partial denominator identities.
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Borcherds [2] obtained many weakly holomorphic modular forms as infinite prod-
ucts as an application of generalized Kac–Moody algebras. One striking example is

j(z) − 1728 =
E6(z)2

∆(z)
= q−1 − 984 +

∞∑
n=1

c(n)qn = q−1
∞∏

n=1

(1 − qn)a(n2),

where c(1) = 196884, c(2) = 21493760, . . . , and
∑

a(n)qn = 2q−4 + 984q +
286752q4 + · · · is a weakly holomorphic modular form of weight 1

2 with respect
to Γ0(4).

As an application of our Gindikin–Karpelevich formula, we obtain an expression
of the form (Example 2.5)

∞∏
n=1

(
1 − qn

1 − tqn

)a(n2)

= 1 +
∞∑

n=0

ct(n)qn+1,

where

ct(0) = 984(t − 1), ct(1) = 484620t2 − 681504t + 196884, . . . .

So ct(n) can be considered as a t-deformation of c(n).
In the same way, since we have

E6(z) = 1 − 504
∞∑

n=1

σ5(n)qn =
∞∏

n=1

(1 − qn)a(n2),

where
∑

a(n)qn = q−4 + 6 + 504q + 143388q4 + · · · is another weakly holomor-
phic modular form of weight 1

2 with respect to Γ0(4), we can obtain t-deformation
of the function 504 σ5(n) using our general result. This example is considered in
Example 2.6.

Our deforming process of modular forms can be applied to any weakly holo-
morphic modular form f of weight 1

2 with respect to Γ0(4) in the Kohnen plus
space if the Fourier coefficients of f are positive. We prove in Sec. 2.1 that many
such forms have positive Fourier coefficients. In particular we can prove that the
Fourier coefficients of basis elements fd of the Kohnen plus space are positive if
4|d (Theorem 2.1). The proof uses the explicit formula of the Fourier coefficients
due to Bringmann and Ono [4]. This result not only provides an abundance of
examples for our method but also makes quite a contrast to the class of holomor-
phic Hecke eigenforms with respect to Γ0(N), since such an eigenform has infinitely
many positive and infinitely many negative coefficients. This result is of independent
interest.

In the last section, we look at the special case of Ramanujan-type modular forms,
namely,

∏∞
n=1(1 − qn)k, and their t-deformations. We start with the t-deformation∏∞

n=1(1 − t−1qn)k =
∑∞

n=0 εt,k(n)qn and derive some identities involving deforma-
tion of divisor-sum function and partition function (Propositions 3.1 and 3.6). The
case k = 1 has long been studied in various contexts. Recently, a modular-type
representation of the infinite product

∏
(1 − t−1qn) was investigated in [18].
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The coefficients of t-deformation of arithmetical functions seem to carry
important information. In the simplest case of the usual partition function, the
first coefficient of the t-deformation pt,1(n) turns out to be equal to the number of
divisors of n (Lemma 3.5(2)). This fact has an immediate application that involves
a derivative with respect to t (Corollary 3.7).

As the last result of this paper, we obtain various expressions for the Ramanujan
function τ(n) using the deformation εt,24(n) (Proposition 3.8). See also Remark 3.10.

1. Preliminaries

1.1. Generalized Kac–Moody algebra

Let I be a countable set of indices. Let A = (aij)i,j∈I be a matrix with entries in
R, satisfying the following conditions:

(a) A is symmetric,
(b) if i �= j then aij ≤ 0,
(c) if aii > 0 then 2aij

aii
∈ Z for all j ∈ I.

Definition 1.1. The generalized Kac–Moody algebra g = g(A) associated to the
matrix A is defined to be the Lie algebra with generators ei, hi, fi (i ∈ I) and the
following defining relations:

(i) [hi, hj ] = 0,
(ii) [hi, ek] = aikek, [hi, fk] = −aikfk,
(iii) [ei, fj] = δijhi,
(iv) (ad ei)1−2aij/aiiej = 0, (ad fi)1−2aij/aiifj = 0 for i �= j and aii > 0,
(v) [ei, ej] = 0, [fi, fj] = 0 if aij = 0.

Let h =
∑

i∈I Rhi. The Lie algebra g has an automorphism η of order 2 which
acts as −1 on h and interchanges the elements ei and fi. We denote by L(X) the
free Lie algebra on a set X .

Theorem 1.2 ([9]). Assume that the matrix A has only one positive diagonal
entry, ai0i0 > 0, and if amj = 0 then m = i0 or j = i0 or m = j. Let S =
{(ad ei0)lej | 0 ≤ l ≤ −2ai0j/ai0i0 , j �= i}. Then we have

g(A) = L(S ) ⊕ (sl2 + h) ⊕ L(η(S )).

We keep the assumption in the above theorem. Let the set of imaginary simple
roots be denoted by

S′ = {αj | j ∈ I, j �= i0} ⊂ h∗.

We consider the following subset of positive roots:

S = {lαi0 + αj | l = 0, 1, . . . ,−2ai0j/ai0i0 , j ∈ I, j �= i0}.
Let ∆′

+ be the additive monoid generated by S in h∗. Then ∆+ = {αi0} ∪ ∆′
+ is

the set of positive roots. Using the denominator identity for a free Lie algebra (see,
e.g., [3]), we obtain the following corollary.
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Corollary 1.3 ([9]). We have the denominator identity for g(A) :

∏
α∈∆+

(1 − zα)mult α = (1 − zαi0 )
∏

α∈∆′
+

(1 − zα)mult α = (1 − zαi0 )

(
1 −

∑
α∈S

zα

)
.

1.2. Deformation of partial denominator identities

Now we begin to consider a certain family of generalized Kac–Moody algebras.
First we assume that a sequence b(n), n ≥ 1, of positive integers is given and we
set b(−1) = 1. Let M be the symmetric matrix of blocks indexed by {−1, 1, 2, . . .},
where the block in position (i, j) has entries −(i + j) and size b(i)× b(j). Let g(M)
be the generalized Kac–Moody algebra associated to the matrix M . The generators
of g(M) will be denoted by

f−1, fjk, h−1, hjk, e−1, ejk for j = 1, 2, 3, . . . , k = 1, . . . , b(j).

Then the set of imaginary simple roots are given by

S′ = {αjk | j = 1, 2, 3, . . . , k = 1, . . . , b(j)},
and we set

S ′ = {ejk | j = 1, 2, 3, . . . , k = 1, . . . , b(j)}.
By Theorem 1.2, we have the decomposition

g(M) = L(S ) ⊕ (sl2 + h) ⊕ L(η(S )),

where

S =
∞⋃

j=1

{(ade−1)lejk | l = 0, 1, . . . , j − 1, k = 1, . . . , b(j)}.

As in Sec. 1.1, we consider the following subset of positive roots

S = {lα−1 + αjk | j = 1, 2, . . . , l = 0, 1, . . . , j − 1, k = 1, . . . , b(j)}.
Let ∆′

+ be the additive monoid generated by S. Then ∆+ = {α−1} ∪∆′
+ is the set

of positive roots. It follows from Corollary 1.3 that we have the identity∏
α∈∆+

(1 − zα)multα

= (1 − zα−1)
∏

α∈∆′
+

(1 − zα)mult α

= (1 − zα−1)

(
1 −

∑
α∈S

zα

)

= (1 − zα−1)


1 −

∑
j=1,2,...

l=0,1,...,j−1
k=1,...,b(j)

zlα−1+αjk


 . (1.1)
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Let U(g(M)) be the universal enveloping algebra of g(M). We define a linear
ordering on the set S by

lα−1+αjk ≺ l′α−1+αj′k′ if j < j′, or j = j′, k < k′, or j = j′, k = k′, l < l′.

Since S′ ⊂ S, this ordering is restricted to the set S′.
We consider the following subset of U(g(M)):

B′ =




∞∏
j=1

b(j)∏
k=1

e
cjk

jk

∣∣∣∣∣∣ cjk ∈ Z≥0, cjk’s are zero for all but finitely many (j, k)


 .

The set B′ is nothing but the set of PBW-basis elements that are products of
elements of S ′. We also consider the set B of PBW-basis elements that are products
of elements of S . That is, we set

B =



∏
j,k,l

(ad(e−1)lejk)cl
jk

∣∣∣∣∣∣ cl
jk ∈ Z≥0,

cl
jk’s are zero for all but finitely many (j, k, l)


 .

Note that we have S ′ ⊂ S and B′ ⊂ B. For b =
∏

j,k,l(ad(e−1)lejk)cl
jk ∈ B, we

define d(b) to be the number of non-zero cl
jk’s, and also define

wt(b) =
∑
j,k,l

cl
jk(lα−1 + αjk).

These definitions are naturally restricted to the set B′.

Proposition 1.4. We have∏
α∈S

1 − t−1zα

1 − zα
=
∑
b∈B

(1 − t−1)d(b)zwt(b).

The same identity holds if we replace S and B with S′ and B′, respectively.

Proof. We use induction on S with respect to the ordering ≺. For convenience, we
enumerate the elements of S corresponding to elements of S by x1, x2, . . . according
to the ordering ≺. We define

S(k) = {wt(x1), . . . , wt(xk)} and B(k) = {xb1
1 xb2

2 · · ·xbk

k | bi ∈ Z≥0}.
If k = 1, then x1 = e11 and we have

1 − t−1zα11

1 − zα11
= 1 + (1 − t−1)zα11 + (1 − t−1)z2α11 + · · ·

=
∑

b∈B(1)

(1 − t−1)d(b)zwt(b).
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Now, using an induction argument, we obtain

∏
α∈S(k)

1 − t−1zα

1 − zα
=


 ∏

α∈S(k−1)

1 − t−1zα

1 − zα


 1 − t−1zwt(xk)

1 − zwt(xk)

=


 ∑

b∈B(k−1)

(1 − t−1)d(b)zwt(b)




1 +

∑
j≥1

(1 − t−1)zjwt(xk)




=
∑

b∈B(k−1)

(1 − t−1)d(b)zwt(b)

+
∑
j≥1

∑
b∈B(k−1)

(1 − t−1)d(b)+1zwt(b)+jwt(xk). (1.2)

On the other hand, we can write B(k) as a disjoint union

B(k) =
⋃
j≥0

{xb1
1 xb2

2 · · ·xbk−1
k−1 xj

k | bi ∈ Z≥0}.

Then we have∑
b∈B(k)

(1 − t−1)d(b)zwt(b) =
∑

b∈B(k−1)

(1 − t−1)d(b)zwt(b)

+
∑
j≥1

∑
b∈B(k−1)

(1 − t−1)d(b)+1zwt(b)+jwt(xk),

which is the same as (1.2). This completes the proof.
One sees that the case with S′ and B′ can be proved similarly.

Remark 1.5. Note that we considered a partial denominator identity in the above
proposition. In particular, every element in the set S has multiplicity 1 as one can
see from Theorem 1.2. In the whole denominator identity (1.1), an element of ∆+\S
may have multiplicity bigger than 1.

1.3. Specialization

We write N = Z>0. We consider the specialization map sp :∆′
+ → N

2 defined by

lα−1 + αjk 
→ l(1,−1) + (1, j) = (l + 1, j − l),

and write u = z(1,0), v = z(0,1). We define

pB(i, j; t) =
∑
b∈B

sp(wt(b))=(i,j)

(1 − t−1)d(b).

The function pB′(i, j; t) is defined similarly using B′. Note that pB′(i, j; t) = 0 for
i > j.
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We apply this specialization to the identity in Proposition 1.4 and obtain:

Theorem 1.6.

(1) We have
∞∏

j=1

(
1 − t−1uvj

1 − uvj

)b(j)

= 1 +
∑

(i,j)∈N
2

i≤j

pB′(i, j; t)uivj .

(2) We have

∏
(i,j)∈N2

(
1 − t−1uivj

1 − uivj

)b(i+j−1)

= 1 +
∑

(i,j)∈N2

pB(i, j; t)uivj .

Proof. (1) Since there are b(j) elements of degree (1, j) in the set S′, the identity
follows from Proposition 1.4.

(2) By definition, the element lα−1 +αjk has degree l(1,−1)+(1, j) = (l+1, j− l).
So the number of elements of degree (i, j) in S is b(i + j − 1). Then we obtain
the identity again from Proposition 1.4.

Example 1.7. Let j(z) be the modular j-function. We write j(z) = q−1 + 744 +∑
i≥1 c(i)qi, q = e2πiz . Then we have c(i) > 0 for i ≥ 1 and we set c(−1) = 1. Let

M be the symmetric matrix of blocks indexed by {−1, 1, 2, . . .}, where the block
in position (i, j) has entries −(i + j) and size c(i) × c(j). The Monster Lie algebra
is the generalized Kac–Moody algebra g(M) associated to this matrix M . Using
the same notations S′, S,B′,B as before, we obtain from Theorem 1.6 the following
identities:

∞∏
j=1

(
1 − t−1uvj

1 − uvj

)c(j)

= 1 +
∑

(i,j)∈N
2

i≤j

pB′(i, j; t)uivj

and ∏
(i,j)∈N2

(
1 − t−1uivj

1 − uivj

)c(i+j−1)

= 1 +
∑

(i,j)∈N2

pB(i, j; t)uivj .

These are deformation of partial denominator identities. The whole denominator
identity of the Monster Lie algebra is due to Borcherds [1] and can be written as

u−1
∏

i∈N, j∈Z

(1 − uivj)c(ij) = j(u) − j(v),

or equivalently, ∏
(i,j)∈N2

(1 − uivj)c(ij) = 1 −
∑

(i,j)∈N2

c(i + j − 1)uivj .

(See [10, (4.11)].)
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In the above example, the whole denominator identity of the Monster Lie alge-
bra is a modular function, while the partial denominator identity is not. In Sec. 2.2,
we will construct many examples in which partial denominator identities repre-
sent modular forms and obtain deformation of those modular forms by applying
Theorem 1.6.

2. Deformation of Modular Forms

In this section we will consider generalized Kac–Moody algebras whose partial
denominator identities represent modular forms. In particular, the sequence b(n) in
Sec. 1.2 will be given by Fourier coefficients of certain weakly holomorphic modular
forms. We need to show that each b(n) is positive for these weakly holomorphic
modular forms, and this will be accomplished in Sec. 2.1. In Sec. 2.2, we obtain
deformation of modular forms using the results established in Sec. 1.

2.1. Positivity of Fourier coefficients

Let M+
1
2
(Γ0(4)) be the Kohnen plus-space of weakly homomorphic modular forms

with integer coefficients of weight 1
2 with respect to Γ0(4). See [14] for definitions.

Assume that f ∈ M+
1
2
(Γ0(4)). Then the function f has a Fourier expansion

f(z) =
∑

n≥n0
n≡0,1 (mod4)

a(n)qn,

where q = e2πiz and z ∈ H, the upper half-plane. For each non-negative integer
d ≡ 0, 3 (mod 4) we let fd(z) ∈ M+

1
2
(Γ0(4)) be the unique modular form with a

Fourier expansion of the form

fd(z) = q−d +
∑
n>0

a(n)qn.

For the existence of the modular form fd(z), we refer the reader to [2, 14]. Here
fd(z)’s form a basis for M+

1
2
(Γ0(4)). It follows from [2, Lemma 14.2] that the space

M+
1
2
(Γ0(4)) is a rank-2 free module over the polynomial ring Z[j(4z)] with genera-

tors f0(z) and f3(z). See also [14, Remark 4.3].
In Sec. 2.2, we will assume that b(n) := a(n2) > 0 (n ≥ 1) for f(z) =

∑
a(n)qn ∈

M+
1
2
(Γ0(4)). This assumption is not very restrictive, which we will justify in sev-

eral ways.
First, let f(z) = f0(z)P (z), where P (z) = c0+c1j(4z)+c2j(4z)2+· · ·+cmj(4z)m,

for c0, . . . , cm non-negative integers. We write f(z) =
∑∞

n=−4m a(n)qn. We claim
that a(n2) is a positive integer for all n ≥ 1. Since j(z) has positive Fourier coeffi-
cients, it is clear that P (z) has non-negative integer Fourier coefficients. Obviously,
f0(z) =

∑
n∈Z

qn2
has non-negative Fourier coefficients; in particular, the coefficient

of qn2
is 2 for n ≥ 1. Then we have a(n2) ≥ 2p0, where p0 is the constant term of

P (z), which is positive.
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Second, we can use the denominator identity of a free Lie algebra to see the
positivity b(n) = a(n2) > 0 (n ≥ 1) for some weakly holomorphic modular forms
f(z). Suppose that we have a product identity

∞∏
n=1

(1 − qn)b(n) = 1 −
∞∑

n=1

s(n)qn. (2.1)

If s(n) ∈ Z≥0 for all n, the product identity (2.1) can be interpreted as the denom-
inator identity for the free Lie algebra generated by s(n)-generators of degree n

for each n. Then b(n) is the homogeneous dimension of degree n of the free Lie
algebra. In particular, we have b(n) ≥ s(n). See [11] for more details and general
results.

In Example 2.3(4) below, we will see that E6(z) = 1 − 504
∑∞

n=1 σ5(n) qn can
be written as a product of the form (2.1). Then we have a(n2) = b(n) ≥ s(n) =
504σ5(n) for the corresponding f(z) =

∑
a(n)qn. Since f4(z) = f(z) − 6f0(z), we

also see that the n2th coefficient of f4(z) is ≥ 504σ5(n) − 12 > 0 for each n ≥ 1.
Third, we can prove that fd(z), 4|d, have all positive Fourier coefficients. This

is quite a contrast to some results in the literature. For example, it is proved (for
example, [13]) that for any holomorphic Hecke eigenforms with respect to Γ0(N),
there are infinitely many coefficients which are positive, and infinitely many coeffi-
cients which are negative. Therefore the following theorem may be of independent
interest.

Theorem 2.1. Let fd(z) = q−d +
∑

n>0
n≡0,1 (mod4)

a(n)qn ∈ M+
1
2
(Γ0(4)). Then if d ≡

0 (mod 4), we have a(n) > 0 for all n > 0, and as n → ∞, we obtain a(n) ∼
2√
n

sinh(π
√

dn). Similarly, if d ≡ 3 (mod 4), (−1)na(n) > 0 for all n > 0, and as

n → ∞, a(n) ∼ (−1)n 2√
n

sinh(π
√

dn).

Proof. We use the explicit formula for a(n) due to Bringmann and Ono [4, p. 599]:

a(n) = −24δ�,nH(−d) + π
√

2
(

d

n

) 1
4

(1 − i)

×
∑

c>0, 4|c

(
1 + δodd

( c

4

)) K0(−d, n; c)
c

I 1
2

(
4π

√
dn

c

)
, (2.2)

where

δ�,n =

{
1 if n is a square,

0 otherwise,
δodd(ν) =

{
1 if ν is odd,

0 otherwise.

Here I 1
2
(z) =

√
2
π

sinh(z)√
z

, and

K0(−d, n; c) =
∑

ν(mod c)∗

( c

ν

)
ενe2πi−dν̄+nν

c , εν =

{
1 if ν ≡ 1 (mod 4),

i if ν ≡ 3 (mod 4).
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In the sum, ν runs through the primitive residue classes modulo c, and ν̄ denotes
the multiplicative inverse of ν modulo c. Then we can easily see

K0(−d, n; 4) =

{
1 + i if d ≡ 0 (mod 4),

(−1)n(1 + i) if d ≡ 3 (mod 4).

Then c = 4 gives rise to the main term. It is


2√
n

sinh(π
√

dn) d ≡ 0 (mod 4),

(−1)n 2√
n

sinh(π
√

dn) d ≡ 3 (mod 4).
(2.3)

Now we show that the sum of the remaining terms is smaller than the main term.
First, by [5, p. 236], note that

H(−d) ≤




σ(d)
3

if d ≡ 3 (mod 4),

σ(d + 1)
6

if d ≡ 0 (mod 4).

where σ(d) is the sum of positive divisors of d. Since σ(n) ≤ eγn log log n + 0.6482n
log log n ,

where γ is the Euler constant, we have H(−d) ≤ 2d log log d.
We divide the sum in (2.2) into two regions: 4 < c ≤ 4π

√
dn and c > 4π

√
dn.

By Weil’s bound (cf. [8, p. 403; 15, p. 26]), |K0(−d, n; c)| ≤ (d, n, c)
1
2 c

1
2 τ(c), where

τ(c) is the number of positive divisors of c.
In the region c ≤ 4π

√
dn, using the fact that (d, n, c) ≤ (d, n) ≤ (dn)

1
2 , and∑

n<x τ(n) ≤ 2x log x, the sum over 4 < c ≤ 4π
√

dn is less than

2
√

2
(

d

n

) 1
4 ∑

c≤4π
√

dn, 4|c
τ(c) sinh

(
4π

√
dn

c

)

≤ 16
√

2πd
3
4 n

1
4 log 4π

√
dn sinh

(π

2

√
dn
)

. (2.4)

In the region c > 4π
√

dn, we use the fact that for 0 < z < 1, sinh(z) = z +h(z),
where |h(z)| ≤ z3. The error term h(z) gives rise to

27
√

2π3d
7
4 n

5
4

∑
c>4π

√
dn

τ(c)
c3

≤ 8
√

2πd
3
4 n

1
4 log 4π

√
dn. (2.5)

The term z gives rise to

4πd
1
2 (1 − i)

∑
c>4π

√
dn, 4|c

(
1 + δodd

( c

4

)) K0(−d, n; c)
c

3
2

. (2.6)

The above inner sum can be written as

2
∑

c>4π
√

dn, 4|c

K0(−d, n; c)
c

3
2

−
∑

c>π
√

dn, 8|c

K0(−d, n; c)
c

3
2

.
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The first sum is Selberg–Kloosterman sum for Γ0(4), the second for Γ0(8). For
q = 4, 8, let Γ = Γ0(q), and

Zq(−m, n, s) =
∑

c>0, q|c

K0(−m, n; c)
c2s

. (2.7)

This series occur in the Fourier expansion of the Poincaré series in [6]. In their
notation, χ(γ) = χ3

θ(γ) = ( c
d )εd for γ = (a b

c d) ∈ Γ, and q = 1, α = 0, k = 3
2 ,

since χ(−1) = −i in our case. Here χθ(γ) = ( c
d )ε−1

d is the usual θ-multiplier, and
j(γ, z) = χθ(γ)(cz + d)

1
2 . (Note that there is a misprint in [6, p. 244]: χ(−1) = eikπ

should be χ(−1) = e−ikπ .)
In order to apply Theorem 2 in [6, p. 245], we need to show that there are no

exceptional eigenvalues in our case: For k = 3
2 , there is no residual spectrum (cf. [17,

p. 21]). For cuspidal spectrum, there are no exceptional eigenvalues: In [16, p. 304],
Sarnak associated to each cusp form of type (Γ0(4N), 3

2 , χ) with eigenvalue µ, a
Maass form of type (Γ0(2N), 2, 1) with eigenvalue 4µ− 3

4 . When N = 1, 2, there are
no exceptional eigenvalues for Γ0(2N). Hence 4µ − 3

4 > 1
4 , and µ > 1

4 . Therefore,
by [6, p. 245], ∑

c≤x

K0(−d, n; c)
c

= O(x
1
6+ε).

Hence the series (2.7) converge at s = 3
4 . However, for our purpose, we need a

precise estimate.
Consider the Poincaré series Pm(z, s, χ) in [16, p. 291]:

Pm(z, s, χ) =
∑

γ∈Γ∞\Γ
χ(γ)

(
cz + d

|cz + d|
)−k

e2πimRe(γz)−2π|m|Im(γz) ys

|cz + d|2s
,

where γ =
(a b

c d

)
. It satisfies

Pm(γz, s, χ) = χ(γ)
(

cz + d

|cz + d|
)k

Pm(z, s, χ),

and let ∆k = y2( ∂2

∂x2 + ∂2

∂y2 ) − iky ∂
∂x and Rs(1−s) = (∆k + s(1 − s))−1. Then

for m > 0,

Pm(z, s, χ) = −4πm

(
s − k

2

)
Rs(1−s)(Pm(z, s + 1, χ)),

and

P−m(z, s, χ) = −4πm

(
s +

k

2

)
Rs(1−s)(P−m(z, s + 1, χ)). (2.8)

Since there are no exceptional eigenvalues, Rs(1−s) is holomorphic for Re(s) > 1
2

(see [6, p. 247]). By [15, p. 38],

‖Rλ‖ ≤ (distance(λ, Spec(∆k)))−1.
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Since Spec(∆k) ≥ 1
4 , if s = 3

4 , ‖Rs(1−s)‖ ≤ 16.
Observe by [4, p. 605; 6, p. 244] that K0(−m, n, c) = iS(−n, m, c, χ) in the

notation of [6].
In [6, p. 248], the inner product 〈Pm(·, s, χ), Pn(·, s̄ + 2, χ)〉 is computed for

m, n > 0. In the exactly same way (cf. [15, p. 23]), we can compute the inner
product 〈P−n(·, s, χ), Pm(·, s̄ + 2, χ)〉 for m, n > 0:

〈P−n(·, s, χ), Pm(·, w, χ)〉

=
∫∫

DΓ

P−n(·, s, χ)Pm(·, w, χ)
dxdy

y2

=
∫ ∞

0

∫ 1

0

P−n(·, s, χ)e−2πimx−2πmyyw̄ dxdy

y2

=
∑

c 	=0, γ∈Γ∞\Γ/Γ∞

∫ ∞

0

∫ ∞

−∞
j(γ, z)−3

× |j(γ, z)|3e−2πinRe(γz)−2πnIm(γz)Im(γz)se−2πimx−2πmyyw̄ dxdy

y2

= 2
∑

c>0,q|c

S(−n, m, c, χ)
c2s

∫ ∞

0

∫ ∞

−∞

yw̄−s

(x2 + 1)s

×
(

x + i√
x2 + 1

)− 3
2

e
2πin

c2y(x+i)
−2πim(xy−iy) dxdy

y
.

Use the fact that∫ ∞

−∞

(x + i)−
3
2

(x2 + 1)s− 3
4
e−2πimxy dx =

−π(−i)
3
2 (πym)s−1

Γ
(

s +
3
4

) W 3
4 ,s− 1

2
(4πmy).

Therefore by setting w = s̄ + 2,

〈P−n(·, s, χ), Pm(·, s̄ + 2, χ)〉

= (−i)
3
2 4−s−1π−1m−2 Γ(2s + 1)

Γ
(

s +
3
4

)
Γ
(

s − 3
4

+ 2
)(−i)Zq(−m, n, s)

+ 2
∑
c>0

S(−n, m, c, χ)
c2s

Rm,n(s, c), (2.9)

where

Rm,n(s, c) =
∫ ∞

0

∫ ∞

−∞

y2

(x2 + 1)s

(
x + i√
x2 + 1

)− 3
2

(e
2πin

c2y(x+i) − 1)e−2πim(xy−iy) dxdy

y

=
∫ ∞

0

∫ ∞

−∞

y2

(x2 + 1)s

(
x + i√
x2 + 1

)− 3
2

(e
2πin
yc2

· x−i

x2+1 − 1)e−2πim(xy−iy) dxdy

y
.
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Consider the integral ∫ ∞

0

y|e 2πin
yc2

· x−i

x2+1 − 1|e−2πmy dy.

As in [15, p. 40], divide the integral into
∫ 2πn

c2
√

x2+1
0 and

∫∞
2πn

c2
√

x2+1

. For the integral

∫ 2πn

c2
√

x2+1
0 , use the trivial estimate, and the fact that 1 − e−x ≤ x if x ≥ 0:

∫ 2πn

c2
√

x2+1

0

· ≤
∫ 2πn

c2
√

x2+1

0

2ye−2πmy dy ≤ 2n

c2m
√

x2 + 1
.

For the integral
∫∞

2πn

c2
√

x2+1

, use the fact that |e−z − 1| ≤ 2|z| if |z| ≤ 1. Hence

∫ ∞

2πn

c2
√

x2+1

· ≤
∫ ∞

2πn

c2
√

x2+1

y
4πn

c2y
√

x2 + 1
e−2πmy dy ≤ 2n

c2m
√

x2 + 1
.

Therefore, for σ = Re(s),

|Rm,n(s, c)| ≤ 4n

c2m

∫ ∞

−∞

dx

(x2 + 1)σ+ 1
2
.

Now we use the fact that
∫∞
−∞(x2 + 1)−s dx =

√
π

Γ(s− 1
2 )

Γ(s) . Then

|Rm,n(s, c)| ≤ 4n
√

π

c2m

Γ(σ)

Γ
(

σ +
1
2

) .

Let s = 3
4 . Then ∣∣∣∣Rm,n

(
3
4
, c

)∣∣∣∣ ≤ 9.6n

c2m
.

Therefore, ∣∣∣∣∣2
∑
c>0

S(−n, m, χ)
c

3
2

Rm,n

(
3
4
, c

)∣∣∣∣∣ ≤ 19.2n

m

∞∑
c=1

|S(−n, m, c, χ)|
c

7
2

.

By Weil’s bound (cf. [8, p. 403; 15, p. 26]), |S(−n, m, c, χ)| ≤ (m, n, c)
1
2 c

1
2 τ(c).

By using (m, n, c) ≤ (m, n) ≤ (mn)
1
2 , and

∑∞
c=1 τ(c)c−s = ζ(s)2, the above term is

less than 28n
5
4 m− 3

4 .
By Cauchy–Schwarz inequality,∣∣∣∣

〈
P−n

(
·, 3

4
, χ

)
, Pm

(
·, 11

4
, χ

)〉∣∣∣∣
2

≤
〈

P−n

(
·, 3

4
, χ

)
, P−n

(
·, 3

4
, χ

)〉〈
Pm

(
·, 11

4
, χ

)
, Pm

(
·, 11

4
, χ

)〉
.
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Here by (2.8),〈
P−n

(
·, 3

4

)
, P−n

(
·, 3

4

)〉
≤ (96πn)2

〈
P−n

(
·, 7

4

)
, P−n

(
·, 7

4

)〉
.

In order to compute 〈P−n(·, 7
4 ), P−n(·, 7

4 )〉, use the formula [6, p. 248]:

〈Pm(·, s, χ), Pm(·, s̄, χ)〉

= (4πm)1−2sΓ(2s − 1) + 2
∑
c>0

S(−n, m, c, χ)
c2s

∫ ∞

0

∫ ∞

−∞

1
(x2 + 1)s

×
(

x + i√
x2 + 1

)− 3
2

e
− 2πim

c2y(x+i)
−2πim(xy−iy) dxdy

y
.

For P−m(·, s, χ), we have a similar formula. Then the inner integral is less than∫ ∞

0

∫ ∞

−∞

1
(x2 + 1)σ

e
− 2πm

c2y(x2+1)
−2πmy dxdy

y

=
∫ ∞

−∞
(x2 + 1)−σ2K0

(
4πm

c
√

x2 + 1

)
dx.

Here we used the fact that
∫∞
0

e−
a
x−bx dx

x = 2K0(2
√

ab). Now we use the fact that

K0(x) =
1

4πi

∫
Re(s)=α

Γ(s)2
(

x

2

)−2s

ds.

Then the above integral is

1
2πi

∫
Re(s)=α

√
π(2πm)−2sc2sΓ(s)2

Γ
(

σ − s − 1
2

)
Γ(σ − s)

ds.

Take α = 1
2 . If σ = 7

4 , it is less than

√
πc

(2π)2m

∫ ∞

−∞

∣∣∣∣Γ
(

1
2

+ it

)∣∣∣∣
2

∣∣∣∣∣∣∣∣
Γ
(

3
4
− it

)

Γ
(

5
4
− it

)
∣∣∣∣∣∣∣∣
dt.

By using Mathematica, it is easy to see that it is less than 1.1c
m . If σ = 11

4 , it is less
than 0.71c

m . Hence〈
P−n

(
·, 7

4
, χ

)
, P−n

(
·, 7

4
, χ

)〉
≤ (4πn)−

5
2 Γ
(

5
2

)
+ 2.2n−1

∑
c>0

|S(−n, n, c, χ)|
c

5
2

≤ (4πn)−
5
2 Γ
(

5
2

)
+ 2.2n− 1

2 ζ(2)2 ≤ 7n− 1
2 .
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In the same way,〈
Pm

(
·, 11

4
, χ

)
, Pm

(
·, 11

4
, χ

)〉
≤ (4πm)−

9
2 Γ
(

9
2

)
+ 1.42m−1

∑
c>0

|S(−m, m, c, χ)|
c

9
2

≤ (4πm)−
9
2 Γ
(

9
2

)
+ 1.42m−1

2 ζ(4)2 ≤ 2m− 1
2 .

By combining all these estimates, by (2.9), we have∣∣∣∣Z
(
−d, n;

3
4

)∣∣∣∣ ≤ 26740d
7
4 n

3
4 + 664d

5
4 n

5
4 .

Here ∣∣∣∣∣∣
∑

c≤4π
√

dn

K0(−d, n; c)
c

3
2

∣∣∣∣∣∣ ≤
∑

c≤4π
√

dn

(d, n, c)
1
2 c

1
2 τ(c)

c
3
2

≤ (dn)
1
4

∑
c≤4π

√
dn

τ(c)
c

≤ 2(dn)
1
4 log 4π

√
dn.

Hence

|(2.6)| ≤ 1425630d
9
4 n

3
4 + 35402d

7
4 n

5
4 + 107d

3
4 n

1
4 log 4π

√
dn.

So the main term (2.3) is bigger than the sum of the remaining terms (2.4),
(2.5) and (2.6) except for finitely many terms: For example, 2√

n
sinh(π

√
dn) >

1425630d
9
4 n

3
4 if dn ≥ 55. If dn < 55, we can verify by looking at the tables that

a(n) is positive.

2.2. Borcherds’ correspondence

Suppose that f(z) =
∑

n≥n0
n≡0,1 (mod4)

a(n)qn ∈ M+
1
2
(Γ0(4)). In this section, we assume

that a(n2) is positive for all n ≥ 1. Let H(−n) be the usual Hurwitz class number
of discriminant −n for n > 0, and define

H̃(z) = − 1
12

+
∑
n>1

n≡0,3 (mod4)

H(−n)qn

= − 1
12

+
q3

3
+

q4

2
+ q7 + q8 + q11 +

4
3
q12 + · · · .

We set h to be the constant term of f(z)H̃(z), and put

Ψ(z) = q−h
∞∏

n=1

(1 − qn)a(n2).
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Theorem 2.2 ([2]). The function Ψ(z) is a meromorphic modular form with
respect to SL2(Z), of weight a(0), with integer coefficients and leading coefficient 1.

Example 2.3. (1) We have f0(z) = θ(z) =
∑

n∈Z
qn2

. Let f(z) = 12 θ(z) =
12 + 24q + 24q4 + 24q9 + · · · . Then

Ψ(z) = q

∞∏
n=1

(1 − qn)24 = ∆(z).

(2) Let σk(n) =
∑

d|n dk and σ(n) = σ1(n). We set

F (z) =
∑
n>0
n odd

σ(n) qn = q + 4q3 + 6q5 + · · · .

Then we have

f3(z) = F (z)θ(z)(θ(z)4 − 2F (z))(θ(z)4 − 16F (z))
E6(4z)
∆(4z)

+ 56 θ(z)

= q−3 − 248q + 26752q4 − · · · ,

where E6(z) = 1 − 504
∑∞

n=1 σ5(n) qn is the Eisenstein series. Finally we set

f(z) = 3f3(z) =
∑

n

a(n)qn = 3q−3 − 744q + 80256q4 + · · · .

Then we obtain

Ψ(z) = q−1(1 − q)−744(1 − q2)80256 · · ·
= q−1 + 744 + 196884q + 21493760q2 + · · · = j(z).

(3) We have f4(z) = q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 +
51180012q9 + · · · . One can see that f4(z) = f0(z)j(4z) − 2f3(z) − 746f0(z).
Set f(z) = 2f4(z). Then we have

Ψ(z) = q−1(1 − q)984(1 − q2)286752(1 − q3)102360024 · · ·
= q−1 − 984 + 196884q + 21493760q2 + · · · = j(z) − 1728.

(4) We consider

f(z) = f4(z) + 6f0(z)

= q−4 +6+504q+143388q4+565760q5+18473000q8+51180024q9+ · · · .

Then we obtain

Ψ(z) = (1 − q)504(1 − q2)143388(1 − q3)51180024 · · ·
= 1 − 504q − 16632q2 − 122976q3 − · · ·
= 1 − 504

∑
n>0

σ5(n)qn = E6(z).
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Since 2f4(z) = 2f(z)− 12f0(z), it follows from (1) and (3) that we recover the
well-known identity j(z) − 1728 = E6(z)2

∆(z) .

Now we set b(n) = a(n2) as before and recall the developments in Sec. 1. We
obtain from Theorem 1.6(1)

∞∏
j=1

(
1 − t−1uvj

1 − uvj

)b(j)

= 1 +
∑

(i,j)∈N
2

i≤j

pB′(i, j; t)uivj , (2.10)

where the function pB′(i, j; t) is the same as defined in Sec. 1.3. This identity should
be considered as deformation of the modular form Ψ(z) in Theorem 2.2. More
precisely, we put u = t and v = q in (2.10) and obtain

∞∏
n=1

(
1 − qn

1 − tqn

)a(n2)

= 1 +
∞∑

n=1

st(n)qn, st(n) =
n∑

i=1

pB′(i, n; t)ti. (2.11)

As t → 0, the product becomes qhΨ(z) and the polynomial st(n) becomes the
Fourier coefficients s(n) of the modular form Ψ(z) = q−h

∑
s(n)qn. So st(n) is a

t-deformation of s(n).

Example 2.4. Let f(z) = 12f0(z). Then we have b(j) = 24 for all j ≥ 1, and
obtain

pB′(1, 1; t) = 24(1 − t−1), pB′(1, 2; t) = 24(1 − t−1) and

pB′(2, 2; t) =
(

24
2

)
(1 − t−1)2 + 24(1 − t−1) = 300 − 576t−1 + 276t−2.

Thus we have obtained the first few terms of the sum in the product identity
∞∏

j=1

(
1 − t−1uvj

1 − uvj

)24

= 1 +
∑

(i,j)∈N
2

i≤j

pB′(i, j; t)uivj

= 1 + 24(1 − t−1)uv + 24(1 − t−1)uv2

+ (300 − 576t−1 + 276t−2)u2v2 + · · · . (2.12)

Hence we have obtained a deformation of ∆(z)/q. We will see applications of this
formula in the next section.

Example 2.5. Let f(z) = 2f4(z) =
∑

a(n)qn. Then we have a(n2) > 0 from the
discussion in Sec. 2.1. The expression of f4(z) in Example 2.3(3) gives a(1) = 984,
a(4) = 286752 and a(9) = 102360024. On the other hand, we obtain

pB′(1, 1; t) = 984(1 − t−1), pB′(1, 2; t) = 286752(1− t−1),

pB′(2, 2; t) =
(

984
2

)
(1 − t−1)2 + 984(1 − t−1) = 484620− 968256t−1 + 483636t−2,

pB′(1, 3; t) = 102360024(1− t−1).
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Thus we have(
1 − t−1uv

1 − uv

)984(1 − t−1uv2

1 − uv2

)286752(1 − t−1uv3

1 − uv3

)102360024

· · ·

= 1 + 984(1 − t−1)uv + 286752(1− t−1)uv2

+ (484620− 968256t−1 + 483636t−2)u2v2 + 102360024(1− t−1)uv3 + · · · .

Comparing this with the formula of Ψ(z) in Example 2.3(3), one sees that this
is a deformation of the function q(j(z) − 1728). We write q(j(z) − 1728) = 1 +∑∞

n=0 c(n)qn+1. By putting u = t, v = q in the deformation, we have

∞∏
n=1

(
1 − qn

1 − tqn

)a(n2)

= 1 +
∞∑

n=0

ct(n)qn+1,

where ct(n) =
∑n+1

i=1 pB′(i, n + 1; t)ti. Note that

ct(0) = 984(t − 1), ct(1) = 484620t2 − 681504t + 196884, . . . .

So ct(n) can be considered as a t-deformation of c(n).

Example 2.6. Let f(z) = f4(z) + 6f0(z) =
∑

a(n)qn. It follows from Example
2.3(4) that a(1) = 504, a(4) = 143388 and a(9) = 51180024. We calculate as in the
previous example, and obtain(

1 − t−1uv

1 − uv

)504(1 − t−1uv2

1 − uv2

)143388(1 − t−1uv3

1 − uv3

)51180024

· · ·

= 1 + 504(1 − t−1)uv + 143388(1− t−1)uv2

+ (127260− 254016t−1 + 126756t−2)u2v2 + 51180024(1− t−1)uv3 + · · · .

If we put u = t, v = q, then the sum becomes

1 −
∞∑

n=1

st(n)qn = 1 − 504(1 − t)q − (16632 + 110628t− 127260t2)q2 + · · · .

Hence st(n) is a t-deformation of 504 σ5(n). Notice that the coefficients 110628 and
−127260 are not divisible by 504. It is interesting that we obtain a t-deformation
504 σ5(n), not σ5(n).

3. Special Case of Ramanujan-Type Modular Forms

In this section, we study a special case of Borcherds product attached to f(z) =
lf0(z) for l = 1, 2, . . . in Theorem 2.2. This gives rise to

Ψ(z) = q
l
12

∞∏
n=1

(1 − qn)2l.
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We first consider the t-deformation
∏

(1− t−1qn)k and then move on to the product∏
( 1−qn

1−tqn )k, which is related to the product (2.11). The purpose of this section is
to provide some evidences that the function pB′(i, j; t) and its variants εt,k(n) and
pt,k(n) defined below are natural deformation and contain interesting arithmetical
information.

3.1. Deformation of arithmetical functions

For each k ∈ Z, recall the function εt,k : N → Z[t−1] from [12]:
∞∏

n=1

(1 − t−1qn)k =
∞∑

n=0

εt,k(n)qn.

Note that ε1,24(n) = τ(n + 1). Here we switched q and t in the notations of [12],
since we like to keep the conventional notation q = e2πiz.

We define a t-deformation of the divisor-sum function by

σt(l) =
∑
k|l

kt−
l
k .

When t = 1, we get σt(l) = σ(l), the classical sum of divisors function.
We write F (q) =

∏∞
n=1(1−t−1qn)k. Using the fact that − log(1−x) =

∑∞
m=1

xm

m ,
we have

log F (q) = k

∞∑
n=1

log(1 − t−1qn) = −k

∞∑
n=1

∞∑
m=1

t−mqnm

m
.

By taking the logarithmic derivative, we obtain

q
F ′(q)
F (q)

= −k
∑
n,m

nt−mqnm = −k
∞∑
l=1



∑
n|l

nt−l/n


 ql.

Hence

qF ′(q) = −kF (q)
∞∑

l=1

σt(l)ql

and we get
∞∑

m=1

mεt,k(m)qm = −k

( ∞∑
n=0

εt,k(n)qn

)( ∞∑
l=1

σt(l)ql

)

= −k

∞∑
m=1

(
m∑

l=1

σt(l)εt,k(m − l)

)
qm.

Therefore we have proved.

Proposition 3.1. For m > 0, we have

mεt,k(m) = −k

m∑
l=1

σt(l)εt,k(m − l), (3.1)

and εt,k(0) = 1.
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Remark 3.2. When t = 1 and k = 1 or k = −1, we obtain the classical identities
due to Euler. Note that ε1,−1(m) is the usual partition function p(m).

By induction, we can prove the following proposition.

Proposition 3.3. Fix m > 0. Then we have

m!εt,k(m) =
m∑

i=1

α
(m)
i (k)t−i,

where α
(m)
i (x) is a polynomial of degree i with integer coefficients and zero constant

term for each i. In particular, we have

α
(m)
1 (x) = −m!x and α(m)

m (x) = (−1)mx(x − 1)(x − 2) · · · (x − m + 1).

By direct computation, we can see

εt,k(1) = −kt−1,

2εt,k(2) = k(k − 1)t−2 − 2kt−1,

3!εt,k(3) = −k(k − 1)(k − 2)t−3 + 6k2t−2 − 6kt−1,

4!εt,k(4) = k(k − 1)(k − 2)(k − 3)t−4 − 12k2(k − 1)t−3

+ 12k(3k − 1)t−2 − 24kt−1,

5!εt,k(5) = −k(k − 1)(k − 2)(k − 3)(k − 4)t−5 + 4k(k − 1)(5k2 − 4k − 6)t−4

− 120k2(k − 1)t−3 + 240k2t−2 − 120kt−1.

Proof of Proposition 3.3. Suppose that the assertion is true for all n < m and
assume m > 0. Then by (3.1),

m!εt,k(m) = −k(m − 1)!
m∑

l=1

σt(l)εt,k(m − l)

= −k

m∑
l=1

(m − 1)!
(m − l)!

σt(l)(m − l)!εt,k(m − l)

= −k

(
(m − 1)!σt(m) +

m−1∑
l=1

(m − 1)!
(m − l)!

σt(l)
m−l∑
i=1

α
(m−l)
i (k)t−i

)

= −k

(
(m − 1)!σt(m) +

m−1∑
i=1

t−i

(
m−i∑
l=1

(m − 1)!
(m − l)!

σt(l)α
(m−l)
i (k)

))

=
m∑

i=1

α
(m)
i (k)t−i.
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By substituting σt(l), we can see that all the coefficients are integers. The coef-
ficient of t−1 comes only from σt(m). So α

(m)
1 (k) = −m! k. On the other hand,

α(m)
m (k) = −k

(
(m − 1)! +

m−1∑
i=1

(m − 1)!
i!

α
(i)
i (k)

)
= (−1)m k!

(k − m)!
.

Here we used the induction and the well-known formula
n∑

j=0

(−1)j

(
k

j

)
= (−1)n

(
k − 1

n

)
.

Similarly, one can see that the leading term of α
(m)
i (k) is

(−1)i m!
i!

(
m − 1
i − 1

)
ki

using the formula (
m + 1
i + 1

)
=

m−i+1∑
l=1

l

(
m − l

i − 1

)
,

which can be derived from the well-known formula
k∑

j=n

(
j

n

)
=
(

k + 1
n + 1

)
.

Remark 3.4. When t = 1, ε1,k(m) becomes P−k(m) in [7, p. 332] and Proposi-
tion 3.3 above can be compared with Lemma 1.1 on [7, p. 332].

Let P be the set of partitions. For a partition p = (1m12m2 · · · rmr · · · ) ∈ P ,
we set

d(p) = #{r |mr �= 0} and |p| = m1 + 2m2 + 3m3 + · · · .

We define for n ≥ 1

pt,1(n) =
∑
p∈P
|p|=n

(1 − t−1)d(p),

and we set pt,1(0) = 1. We write for n ≥ 1

pt,1(n) = a1(1 − t−1) + a2(1 − t−1)2 + · · · + am(1 − t−1)m. (3.2)

Then we obtain the following properties of pt,1(n).

Lemma 3.5. Assume that n ≥ 1.

(1) We have p∞,1(n) = a1 + a2 + · · · + am = p(n), the usual partition function.
(2) The coefficient a1 is equal to the number of divisors of n. In particular, n is a

prime if and only if a1 = 2.
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(3) The degree m is given by the condition

m(m + 1)
2

≤ n <
(m + 1)(m + 2)

2
.

In particular, n is a triangular number if and only if am = 1.

Proof. (1) We obtain the assertion by taking the limit t → ∞ in the definition of
pt,1(n) and (3.2).

(2) If d(p) = 1, then p = (l, l, . . . , l) and l|n. Thus a1 counts the number of divisors
of n.

(3) If n is a triangular number, the degree m is given by the partition p =
(112131 · · ·m1), and this is the only partition with m distinct parts. If we have
m(m+1)

2 < n < (m+1)(m+2)
2 , the number n has two distinct partitions

p1 = (1r2131 · · ·m1), r ≥ 2, and p2 = (1r−12231 · · · (m − 1)1(m + 1)1),

and we get am ≥ 2.

Proposition 3.6 ([12]). If n > 0, then

εt,1(n) − pt,1(n) =
∞∑

m=1

(−1)m

{
pt,1

(
n − 1

2
m(3m − 1)

)

+ pt,1

(
n − 1

2
m(3m + 1)

)}
, (3.3)

where we define pt,1(M) = 0 for all negative integer M .

Let d(n) be the number of positive divisors of n ∈ Z>0 and we set u = t−1. The
following result follows from Lemma 3.5(2) and (3.3).

Corollary 3.7. We have

d(n) = − d

du

∣∣∣
u=1

εt,1(n) +
∞∑

m=1

(−1)m−1

{
d

(
n − 1

2
m(3m − 1)

)

+ d

(
n − 1

2
m(3m + 1)

)}
,

where we define d(M) = 0 for M ≤ 0.

3.2. Deformation of Ramanujan-type modular forms

Let p = (ρ(1), ρ(2), . . . , ρ(k)) be a multi-partition with k components, i.e. each com-
ponent ρ(i) is a partition. We denote by P(k) the set of all multi-partitions with k

components. For a multi-partition p = (ρ(1), ρ(2), . . . , ρ(k)) ∈ P(k), we set

d(p) = d(ρ(1)) + d(ρ(2)) + · · · + d(ρ(k)) and |c0| = |ρ(1)| + · · · + |ρ(k)|.
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We define for n ≥ 1

pt,k(n) =
∑

p∈P(k)
|p|=n

(1 − t−1)d(p),

and set pt,k(0) = 1. Notice that if n > 0, the function p∞,k(n) is nothing but the
multi-partition function with k-components.

The function εt,k and pt,k are closed related. More precisely, we proved in [12,
Proposition 3.8] that if n > 0, then

εt,k(n) =
n∑

r=0

ε1,k(r)pt,k(n − r). (3.4)

This recursive relation follows from the identity
∞∏

n=1

(
1 − t−1qn

1 − qn

)k

= 1 +
∞∑

n=1

pt,k(n)qn. (3.5)

Recall that we obtained in (2.12)
∞∏

n=1

(
1 − t−1uvn

1 − uvn

)24

= 1 +
∑

(i,j)∈N
2

i≤j

pB′(i, j; t)uivj . (3.6)

Set k = 24 in (3.5) and make the substitution u = 1 and v = q in (3.6). Then,
comparing (3.6) with (3.5), we obtain

pt,24(n) =
n∑

i=1

pB′(i, n; t). (3.7)

Thus pB′(i, n; t) is a refinement of pt,24(n). For example, one can check

pt,24(2) = 324 − 600 t−1 + 276 t−2 = pB′(1, 2; t) + pB′(2, 2; t).

Now we make a specialization of u = t, v = q in (3.6), and obtain
∞∏

n=1

(
1 − qn

1 − tqn

)24

=
∞∑

n=0

τt(n + 1)qn, (3.8)

where τt(n + 1) =
∑n

i=1 pB′(i, n; t)ti. Recall the definition
∞∏

n=1

(1 − tqn)24 =
∞∑

n=0

εt−1,24(n)qn.

Thus we have
∞∏

n=1

(1 − qn)24 =
∞∑

n=0

τ(n + 1)qn =

( ∞∑
n=0

τt(n + 1)qn

)( ∞∑
l=0

εt−1,24(l)ql

)
,

and obtain the first identity of the following proposition.
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Proposition 3.8.

τ(n + 1) = εt−1,24(n) +
n∑

j=1

εt−1,24(n − j)τt(j + 1)

= εt,24(n) −
n∑

j=1

τ(n + 1 − j)

(
j∑

i=1

pB′(i, j; t)

)
.

Proof. We only need to prove the second identity. We set n = 24 in (3.4) and
obtain

εt,24(k) =
k∑

r=0

τ(r + 1)pt,24(k − r).

We rewrite this identity as

τ(n + 1) = εt,24(n) −
n∑

j=1

τ(n + 1 − j)pt,24(j).

Now we use (3.7) to obtain the second identity in the proposition.

From (3.8), we have the following corollary.

Corollary 3.9.

τ(n + 1) = lim
t→0

n∑
i=1

pB′(i, n; t)ti.

Remark 3.10. The famous Lehmer’s conjecture predicts τ(n) �= 0 for all n.
The conjecture has been verified for all n < 22798241520242687999. Suppose
τ(n + 1) = 0. Since pB′(i, j; t) is divisible by 1 − t−1 for all i, j, it follows from
the second identity of the proposition that εt,24(n) is divisible by 1 − t−1. Our cal-
culations show that it is unlikely. However, it is not clear whether it is useful to
prove Lehmer’s conjecture.
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