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We calculate murmuration densities for two families of Dirichlet characters. The first family contains
complex Dirichlet characters normalized by their Gauss sums. Integrating the first density over a
geometric interval yields a murmuration function compatible with experimental observations. The
second family contains real Dirichlet characters weighted by a smooth function with compact support.
We show that the second density exhibits a universality property analogous to Zubrilina’s density
for holomorphic newforms, and it interpolates the phase transition in the the 1-level density for a
symplectic family of L-functions.

1 Introduction
Following a programme of machine learning in arithmetic [7–9], a striking oscillation in the average
value of Frobenius traces for certain families of elliptic curves was observed in [10]. This oscillation
was termed a murmuration. In the original work, the average was taken over elliptic curves E/Q with
conductor in certain intervals. Similar averages for other arithmetic families, including higher weight
modular forms and higher genus curves, will be explored in [11].

After the initial observation, three important ideas emerged based on contributions of J. Ellenberg, A.
Sutherland, J. Bober, and P. Sarnak. Firstly, on Ellenberg’s suggestion, Sutherland studied murmurations
attached not only to newforms with rational coefficients, but, moreover, Galois orbits of those with
coefficients in number fields. Secondly, Bober proposed a so-called local average, which eliminated
the role played by the interval from the original construction. Thirdly, Sarnak introduced a notion
of murmuration density, which involved additional averaging over primes and weighting by smooth
functions of compact support [17]. To motivate his construction, Sarnak articulated the relationship
between murmurations and the 1-level densities for families of L-functions (see [18]). All three ideas
informed the important work of N. Zubrilina, in which a murmuration density for holomorphic
newforms was calculated [21]. In this paper we calculate murmuration densities for two families of
Dirichlet characters, both of which come from averaging characters over primes in short intervals (see
Examples 2.3 and 2.4).

The first murmuration density we compute involves odd (resp. even) complex Dirichlet characters χ

normalized by their Gauss sums τ(χ). By way of justification, note that χ(p)/τ(χ) is the Fourier
coefficient of χ when expanded in terms of additive characters (see, e.g., [12, equation (3.12)]), and so
this is a natural analogue of the modular form case. Integrating the murmuration density over a given
geometric interval yields the average value of χ(p)/τ(χ) over odd (resp. even) Dirichlet characters with
conductor in that interval, which is a scale invariant oscillation comparable with the murmuration first
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observed for elliptic curves (see Figure 5). More precisely, we let D+(N) (resp. D−(N)) denote the set of
primitive even (resp. odd) Dirichlet characters mod N. For x ∈ R>0, denote by �x�p the smallest prime
that is bigger than or equal to x. For c ∈ R>1, δ ∈ (0, 1), and y ∈ R>0, define

P±(y, X, c) = log X
X

∑
N∈[X,cX]
N prime

∑
χ∈D±(N)

χ(�yX�p)

τ (χ)
, (1.1)

P̃±(y, X, δ) = log X
Xδ

∑
N∈[X,X+Xδ ]

N prime

∑
χ∈D±(N)

χ(�yX�p)

τ (χ)
. (1.2)

We plot instances of the functions P±(y, X, c) and P̃±(y, X, δ) in Figure 1. The factors log(X)/X and
log(X)/Xδ are connected to the number of primes in the respective intervals. In the case of equation
(1.2), we work conditional on the Riemann hypothesis, which guarantees that the interval [X, X + Xδ]
contains primes provided that δ > 1

2 . Our first theorem is stated as follows:

Theorem 1.1. Fix y ∈ R>0. If c ∈ R>1, then

lim
X→∞

P±(y, X, c) =
⎧⎨⎩
∫ c

1 cos
(

2πy
x

)
dx, if +,

−i
∫ c

1 sin
(

2πy
x

)
dx, if −,

(1.3)

and, assuming the Riemann hypothesis, if δ ∈ ( 1
2 , 1), then

lim
X→∞

P̃±(y, X, δ) =
⎧⎨⎩cos(2πy), if +,

−i sin(2πy), if − .
(1.4)

The proof of Theorem 1.1 uses the prime number theorem, and the relationship between additive
and multiplicative characters. The fit for P±(y, X, c) and P̃±(y, X, δ) given by Theorem 1.1 is depicted in
Figure 1, in which we have used the relatively small value X = 210. For small values of X, the fit given by
Theorem 1.1 is far from perfect. Upon closer inspection, the proof of Theorem 1.1 indicates that equation
(1.4) may be reformulated to incorporate certain composite conductors, and this yields a better fit even
for relatively small values of X (cf. Figure 6). We specify this reformulation in Section 6, and furthermore
establish variants of Theorem 1.1 for arbitrary conductors (in which case we no longer need to assume
the Riemann hypothesis).

The second murmuration density we compute is the more challenging case of real Dirichlet
characters. In this case, the average value of the Fourier coefficients for those with conductor in a
geometric interval yields a noisy image (see Figure 4). To counteract this, we use techniques originally

developed by Katz–Sarnak and refined by Soundararajan [19]. For d ∈ Z, we use the notation χd =
(

d
·
)
.

We also let G be the set of odd squarefree integers. If d ∈ G and d > 0 (resp. d < 0), then χ8d is an even
(resp. odd) primitive real character of conductor 8d. For a smooth Schwartz function � ≥ 0 with compact
support, define

M�(y, X, δ) = log X
X1+δ

∑
p∈[yX,yX+Xδ ]

p prime

∑
d∈G

�

(
d
X

)
χ8d(p)

√
p. (1.5)

Notice that one can isolate even (resp. odd) characters in this sum by choosing � to have compact
support in R>0 (resp. R<0). In Figure 2, we plot equation (1.5) for two choices of �.
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Murmurations of Dirichlet Characters | 3

Fig. 1. (Top) P±(y, 210, 2) for y ∈ [0, 10] with + in blue and (the imaginary part of) − in red. (Bottom) P̃±(y, 2002, 0.51)

for y ∈ [0, 2] with + in blue and (the imaginary part of) − in red. The solid curves (in yellow and green) represent
the limits given by Theorem 1.1. The discontinuity around y = 1 will be explained in Remark 3.1.

Theorem 1.2. Fix y ∈ R>0. If δ ∈ ( 3
4 , 1) and � ≥ 0 is a smooth Schwartz function with compact

support, then, assuming the Generalized Riemann hypothesis, we have

M�(y, δ) := lim
X→∞

M�(y, X, δ) = 1
2

∞∑
a=1

(a,2)=1

μ(a)

a2

∞∑
m=1

(−1)m�̃

(
m2

2a2y

)
, (1.6)

where

�̃(ξ) =
∫ ∞

−∞

(
cos(2πξx) + sin(2πξx)

)
�(x)dx. (1.7)

We note that, in Figure 2, and the related Figures 5 and 8, we use the value δ = 2
3 , which is smaller

than the minimal δ included in Theorem 1.2. These figures offer some evidence that Theorem 1.2 may
remain valid for such values of δ. Furthermore, although the smoothness of � is crucial in enabling the
analytic tools used in the proof, we expect Theorem 1.2 to hold for weight functions with a sharp cut-off
as well (we refer to Figure 3 for numerical support of this claim). We remark that a murmuration density
for a family of real Dirichlet characters was first computed by Rubinstein and Sarnak in [18, equation
(13)], although their formulation and evaluation is different to ours in places. Rubinstein and Sarnak
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Fig. 2. Let

�+(x) = 1(1,2)(x) exp
( −1

1−4(x−1.5)2

)
,

�−(x) = 1(−2,−1)(x) exp
( −1

1−4(−x−1.5)2

)
.

We plot M�± (y, 219, 2
3 ) for y ∈ [0, 2] with + in blue (resp. − in red). We also plot the right hand side of equation (1.6)

in green (resp. orange).

Fig. 3. Let �+(x) = 1(1,2)(x) and �−(x) = 1(−2,−1)(x). We plot M�+ (y, 219, 2
3 ) (resp. M�− (y, 219, 2

3 )) in blue (resp. red).
We also plot the right-hand side of equation (1.6) in green (resp. orange).

also noted that the murmuration density interpolates the phase transition for the 1-level density of a
symplectic family, which emerges from our analysis in the following form.

Corollary 1.3. Let � ≥ 0 be a Schwartz function with compact support and let δ ∈ ( 3
4 , 1). Assuming

the Generalized Riemann hypothesis, we have

lim
y→0+

M�(y, δ) = 0, and lim
y→∞ M�(y, δ) = − 2

π2
�̃(0), (1.8)

where M�(y, δ) is defined in equation (1.6).
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Fig. 4. Plot of
∑

N∈[X,2X)

∑
χ∈Q±(N) χ(p)/τ(χ), for X = 217 and 2 ≤ p < 4X with + in blue and (the imaginary part of) −

in red.

We present a proof of Corollary 1.3 in Section 5, in which we use the same techniques as Rubinstein
and Sarnak. A similar phenomenon for real character sums was previously observed in [4], which
studied the asymptotics for double sums of the form

∑
m≤X

m odd

∑
n≤Y

n odd

(m
n

)
.

In [4], the authors study the case that X ∼ Y, which yields a function exhibiting murmuration-like
properties, including scale-invariance and non-differentiability. The analysis presented in [4] is different
from that presented here.

The proof of Theorem 1.2 involves identities for the Möbius function, the Polya–Vinogradov inequality
for sums over primes, and Poisson summation as in [19, Lemma 2.6]. The transform in equation (1.7) was
used in [19, Section 2.4]. Unfolding this transform and applying the identity cos(x)+sin(x) = √

2 cos(x−
π/4) to equation (1.7) we conclude that

lim
X→∞

M�(y, X, δ) = 1
2

∞∑
a=1

(a,2)=1

μ(a)

a2

∞∑
m=1

(−1)m
∫ ∞

−∞

(
cos

(
πm2x
a2y

)
+ sin

(
πm2x
a2y

))
�(x)dx

=
∫ ∞

−∞
�(x)

⎛⎜⎝√
2

2

∞∑
a=1

(a,2)=1

μ(a)

a2

∞∑
m=1

(−1)m cos
(

πm2x
a2y

− π

4

)⎞⎟⎠dx.

(1.9)

In other words, conditional on the Generalized Riemann hypothesis, we exhibit a distribution M such
that, for every smooth Schwartz � ≥ 0 with compact support and every δ ∈ ( 3

4 , 1), we have

lim
X→∞

M�(y, X, δ) =
∫ ∞

−∞
�(t)M(y/t)dt. (1.10)

Consequently, using Sarnak’s terminology, the distribution M in equation (1.10) is the Zubrilina density

for the family
{(

8d
·
)

: d ∈ G
}

[18]. Using the same techniques, we calculate the Zubrilina density

for
{(

d
·
)

: d ∈ G
}

in Section 6.2 and deduce the analogue of Corollary 1.3. Given Figure 3, it is not

immediately clear whether or not M�(y, X, δ) exhibits infinitely many sign changes near y = 0. Zubrilina
has shown that, in the setting of modular forms, the analogous function has only finitely many sign
changes.
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We conclude this introduction with a summary of the sequel. Section 2 contains the relevant
background material on Dirichlet characters. In Section 3, we prove Theorem 1.1. In Section 4, we prove
Theorem 1.2. In Section 5, we prove Corollary 1.3. In Section 6, we state and prove the aforementioned
variations on Theorems 1.1 and 1.2 (both of which concern averaging over an alternative set of
conductors).

2 Background
2.1 Asymptotics of double averages
For m ∈ Z>0, a Dirichlet character mod m is a completely multiplicative function χ : Z → C, which is
periodic with period m and satisfies χ(a) = 0 if and only if gcd(a, m) > 1. The Gauss sum of a Dirichlet
character χ mod m is defined by

τ(χ) =
m∑

b=1

χ(b)e2π ib/m.

We denote by χ0 the principal Dirichlet character mod m, which satisfies χ0(a) = 1 for (a, m) = 1 by
definition. We say that a Dirichlet character χ is even (resp. odd) if χ(−1) = 1 (resp. χ(−1) = −1). The
conductor of a Dirichlet character χ is the minimal positive integer N such that χ is a Dirichlet character
mod N. We say that a Dirichlet character χ is primitive if its modulus and conductor are equal. We let
D+(N) (resp. D−(N)) denote the set of primitive even (resp. odd) Dirichlet characters mod N. A Dirichlet
character is said to be quadratic if its values are real. We denote by Q±(N) the subset of D±(N) consisting
of quadratic characters. Note that, for even (resp. odd) characters χ ∈ Q±(N), we have τ(χ) = √

N (resp.
i
√

N).

Example 2.1. Quadratic characters provide the simplest analogue to the murmurations of elliptic
curves over Q discovered in [10]. Furthermore, using quadratic reciprocity, one may relate sums
of quadratic Dirichlet characters to Chebyshev’s bias (cf. [16]). In Figure 4, we plot the sum of
χ(p)/τ(χ) over

⋃2X−1
N=X Q±(N) for X = 217.

In this paper, we consider two variations of the sum considered in Figure 4. The first, and simplest,
variation is to involve (Galois orbits of) complex characters in the average. The second, more challenging,
variation is to work only with real characters but to incorporate a smooth weight function with compact
support and to take the average over the primes in a short interval.

Example 2.2. In Figure 5, we plot the sum of χ(p)/τ(χ) over χ ∈ ⋃2X−1
N=X D±(N), for X = 210,

normalized by (cf. [14]):

1
X

∼ 3
√

3

π2
√

#D±(X)
(2.1)

We note that including the non-real characters and normalizing in this way yields a much
less noisy image than in Figure 4. We will observe a similar effect with modular forms in a
forthcoming work [11].

Example 2.3. The function P̃±(y, X, δ) in equation (1.2) comes from the following average:

∑
N∈[X,X+Xδ ]

N prime

∑
χ∈D±(N) χ(�yX�p)/τ(χ)∑
N∈[X,X+Xδ ]

N prime

1
, (2.2)
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where y ∈ R>0 and δ ∈ ( 1
2 , 1). Indeed, assuming the Riemann hypothesis and applying the prime

number theorem, we deduce

lim
X→∞

[
#
{
N ∈ [X, X + Xδ] : N prime

} · log(X)

Xδ

]
= 1. (2.3)

It follows that the function in equation (2.2) is asymptotic to P̃±(y, X, δ). There is a similar
interpretation for the equation P±(y, X, c) in equation (1.1).

Example 2.4. The function M�(y, X, δ) in equation (1.5) comes from the following double average:

D�(y, X, δ) =

∑
p∈[yX,yX+Xδ ]

p prime

∑
d∈G �(d/X)χ8d(p)

√
p∑

d∈G �(d/X)∑
p∈[yX,yX+Xδ ]

p prime

1
, (2.4)

where y ∈ R>0, δ ∈ ( 3
4 , 1), � is a smooth function of compact support, G denotes the set of

odd squarefree integers, and χd denotes the Kronecker symbol
(

d
·
)
. Assuming the Riemann

hypothesis and applying the prime number theorem, we deduce

lim
X→∞

[
#
{
p ∈ [yX, yX + Xδ] : p prime

} · log(X)

Xδ

]
= 1. (2.5)

It follows that D�(y, X, δ) is asymptotic to

log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

∑
d∈G �(d/X)χ8d(p)

√
p∑

d∈G �(d/X)
. (2.6)

To simplify the denominator in equation (2.6), we note that the natural density of G is shown
to be 4/π2 in [13]. Using the fact that � is Schwartz, an equidistribution argument for (d/X)d∈G
implies that

lim
X→∞

1
X

∑
d∈G

�(d/X) = 4
π2

∫ ∞

−∞
�(τ)dτ < ∞. (2.7)

Therefore, to understand asymptotics of D�(y, X, δ), it suffices to analyse the limit of M�(y, X, δ).

2.2 Lemmas for Theorem 1.1
We begin with the following Lemma on Gauss sums.

Lemma 2.5. Let N be a positive integer. If p is a prime such that (p, N) = 1, then

cos
(

2πp
N

)
= −1

φ(N)
+ 1

φ(N)

∑
χ mod N

χ �=χ0, χ(−1)=1

τ(χ)χ(p), (2.8)

sin
(

2πp
N

)
= −i

φ(N)

∑
χ mod N
χ(−1)=−1

τ(χ)χ(p). (2.9)

Proof. This follows from [12, (3.11)]. �

If N is prime, then every non-trivial Dirichlet character mod N is primitive and hence

D+(N) = {χ mod N : χ �= χ0, χ(−1) = 1}, D−(N) = {χ mod N : χ(−1) = −1} (N prime).
(2.10)
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8 | K.-H. Lee et al.

Lemma 2.6. If p and N are two distinct primes, then

∑
χ∈D+(N)

χ(p)

τ (χ)
=
(

N − 1
N

)
cos

(
2πp
N

)
+ 1

N
, (2.11)

∑
χ∈D−(N)

χ(p)

τ (χ)
= −i

(
N − 1

N

)
sin
(

2πp
N

)
. (2.12)

Proof. For χ ∈ D±(N), recall

1
τ(χ)

= χ(−1)

N
τ(χ), (2.13)

(see, e.g., [3, Exercise 1.1.1]). Since ε := χ(−1) is constant on χ ∈ D±(N), summing equation (2.13) over
χ ∈ D±(N) yields

∑
χ∈D±(N)

χ(p)

τ (χ)
= ε

N

∑
χ∈D±(N)

τ (χ)χ(p). (2.14)

Since N is prime and (p, N) = 1, Lemma 2.5 implies

cos
(

2πp
N

)
= −1

N − 1
+ 1

N − 1

∑
χ mod N

χ �=χ0,χ(−1)=1

τ(χ)χ(p), (2.15)

sin
(

2πp
N

)
= −i

N − 1

∑
χ mod N
χ(−1)=−1

τ(χ)χ(p). (2.16)

The result now follows from equations (2.10), (2.14), (2.15), and (2.16). �

Lemma 2.7. For a ∈ R>0 and b ∈ (0, 1], we have

lim
X→∞

log X
Xb

∑
N∈[X,X+aXb]

1
N

= 0. (2.17)

Proof. Since a, b, N are all positive, we have

lim
X→∞

log X
Xb

∑
N∈[X,X+aXb]

1
N

≤ lim
X→∞

log X
Xb

∑
0<N≤(a+1)X

1
N

= lim
X→∞

O
(

log X log((a + 1)X)

Xb

)
= 0.

�

Lemma 2.8. For y ∈ R>0, if N ≥ X, we have

lim
X→∞

�yX�p − yX
N

= 0. (2.18)

Proof. For any x ∈ R>0, we have �x�p − x < xθ for some constant θ < 1 (see, e.g., [2]). Subsequently, we
deduce that

lim
X→∞

�yX�p − yX
N

≤ lim
X→∞

�yX�p − yX
X

= 0.

�
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Murmurations of Dirichlet Characters | 9

Lemma 2.9. Fix η ∈ R>0 and δ ∈ ( 1
2 , 1). If f : R → C is continuous, then, assuming the Riemann

hypothesis, we have

lim
X→∞

log X
Xδ

∑
p∈[ηX,ηX+Xδ ]

p prime

f
( p

X

)
= f (η) (2.19)

Proof. Since we have p/X → η as X → ∞ for p ∈ [ηX, ηX + Xδ], we know that, for all ε′ > 0, there exists X0

such that X > X0 implies |p/X − η| < ε′. Since f is continuous, for all ε > 0 there exists ε′ > 0 such that
|p/X − η| < ε′ implies |f (p/X) − f (η)| < ε. Thus, for X sufficiently large, we have:

∣∣∣∣∣∣∣∣∣
∑

p∈[ηX,ηX+Xδ ]
p prime

f
( p

X

)
− f (η)

∑
p∈[ηX,ηX+Xδ ]

p prime

1

∣∣∣∣∣∣∣∣∣ ≤
∑

p∈[ηX,ηX+Xδ ]
p prime

∣∣∣f ( p
X

)
− f (η)

∣∣∣ < ε
∑

p∈[ηX,ηX+Xδ ]
p prime

1. (2.20)

Multiplying equation (2.20) by log X/Xδ , and using equation (2.5), we deduce that:

∣∣∣∣∣∣∣∣∣ limX→∞
log X

Xδ

∑
p∈[ηX,ηX+Xδ ]

p prime

f
( p

X

)
− f (η)

∣∣∣∣∣∣∣∣∣ < ε. (2.21)

Since ε > 0 is arbitrary, we deduce equation (2.19). �

2.3 Lemmas for Theorem 1.2
We begin with the following manifestation of the Polya–Vinogradov inequality.

Lemma 2.10. Let y ∈ R>0, and let d ∈ Z be such that χd is non-principal. If δ ∈ ( 1
2 , 1) then assuming

the Generalized Riemann hypothesis, for any ε > 0, as X → ∞, we have

∣∣∣∣∣∣∣∣∣
∑

p∈[yX,yX+Xδ ]
p prime

χd(p)

∣∣∣∣∣∣∣∣∣
 (yX)
1
2 +ε . (2.22)

Proof. This follows from [6, equation (5.1)]. �

Following [20, Section (2.2)], for an integer k and a prime number p, we define

Gk(p) =
(

1 − i
2

+
(−1

p

)
1 + i

2

) ∑
b mod p

(
b
p

)
e2π ibk/p, (2.23)

and

τk(p) =
∑

b mod p

(
b
p

)
e2π ibk/p, (2.24)

so that

τk(p) =
(

1 + i
2

+
(−1

p

)
1 − i

2

)
Gk(p). (2.25)
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Moreover, using the notation from Section 2.2, we have τ1(p) = τ
((

·
p

))
. For a smooth Schwartz function

�, we let �̃ be as in equation (1.7). At various points in what follows, we will use the fact that, if � is
Schwartz, then �̃ is Schwartz. We will also use the notation �̂ to denote the usual Fourier transform,
that is,

�̂(ξ) =
∫ ∞

−∞
�(x)e−2π ixξ dx.

Note that

τk(p)�̂

(
kX

αa2p

)
+ τ−k(p)�̂

(−kX
αa2p

)
= Gk(p)�̃

(
kX

αa2p

)
+ G−k(p)�̃

(−kX
αa2p

)
. (2.26)

Since Gk(p) =
(

−1
p

)
G−k(p) and τ0(p) = G0(p) = 0, equation (2.25) implies:

X
αa2p

∑
k∈Z

τk(p)�̂

(
kX

αa2p

)
= X

αa2p

∑
k∈Z

Gk(p)�̃

(
kX

αa2p

)
. (2.27)

For completeness, we prove the following form of [20, Lemma 2.6].

Lemma 2.11. Let � ≥ 0 be a smooth function with compact support and let β = supx∈R{|x| :
�(x) > 0}. For a prime number p, and any A ∈ (0,

√
βX], we have

1
X

∑
d∈Z

(d,2)=1

( ∑
a2 ||d|
a≤A

μ(a)
)
�

(
d
X

)(
d
p

)√
p = 1

2

(
2
p

) ∑
0<a≤A
(a,2p)=1

μ(a)

a2

∑
k∈Z

(−1)k
(

k
p

)
�̃

(
kX

2a2p

)
. (2.28)

Proof. By switching the order of summation and using
(

da2

p

)
=
(

d
p

) (
a
p

)2
, we deduce that:

∑
d∈Z

(d,2)=1

( ∑
a2 ||d|
a≤A

μ(a)
)
�

(
d
X

)(
d
p

)
=

∑
a≤A

(a,2p)=1

μ(a)
∑
d∈Z

(d,2)=1

�

(
da2

X

)(
d
p

)
. (2.29)

We observe that

∑
d∈Z

(d,2)=1

�

(
da2

X

)(
d
p

)
=
∑
d∈Z

�

(
da2

X

)(
d
p

)
−
(

2
p

)∑
d∈Z

�

(
2da2

X

)(
d
p

)
, (2.30)

and, for α ∈ {1, 2}, we write

∑
d∈Z

(
d
p

)
�

(
αda2

X

)
=

∑
b mod p

(
b
p

)∑
d∈Z

�

(
αa2(pd + b)

X

)
. (2.31)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/1/rnae277/7932774 by U
niv of C

onnecticut user on 18 February 2025



Murmurations of Dirichlet Characters | 11

Poisson summation implies that

∑
d∈Z

�

(
αa2(pd + b)

X

)
=
∑
k∈Z

∫ ∞

−∞
�

(
αa2(pξ + b)

X

)
e
(−ξk

)
dξ

= X
αa2p

∑
k∈Z

∫ ∞

−∞
�(u)e

(
kb
p

− kXu
αa2p

)
du

= X
αa2p

∑
k∈Z

e
(

kb
p

)∫ ∞

−∞
�(u)e

(−kXu
αa2p

)
du

= X
αa2p

∑
k∈Z

e
(

kb
p

)
�̂

(
kX

αa2p

)
.

(2.32)

Multiplying equation (2.32) by
(

b
p

)
, summing over b mod p, and switching the order of summation, we

get

∑
b mod p

(
b
p

)∑
d∈Z

�

(
αa2(pd + b)

X

)
= X

αa2p

∑
k∈Z

∑
b mod p

(
b
p

)
e
(

kb
p

)
�̂

(
kX

αa2p

)

= X
αa2p

∑
k∈Z

τk(p)�̂

(
kX

αa2p

)
.

(2.33)

Combining equations (2.27), (2.30), and (2.33), and using Gk(p) =
(

2
p

)
G2k(p), we deduce

∑
d∈Z

(d,2)=1

�

(
da2

X

)(
d
p

)
= X

2a2p

(
2
p

)∑
k∈Z

(−1)kGk(p)�̃

(
kX

2a2p

)
. (2.34)

Since Gk(p) =
(

k
p

)√
p, equation (2.28) follows from equations (2.29) and (2.34). �

Lemma 2.12. Let � be a Schwartz function. For any α > 1, as X → ∞, we have∑
m∈N

�(Xm) 
 X−α . (2.35)

Proof. Since � is Schwartz, as X → ∞, we have �(X) 
 X−α . We deduce that:

∑
m∈N

�(Xm) 

∑
m∈N

(Xm)−α = X−α
∑
m∈N

m−α 
 X−α . (2.36)

�

3 Proof of Theorem 1.1
Proof of equation (1.3) We will prove the case of P+(y, X, c), and simply note that the case of P−(y, X, c)
is similar. For p �= N, equation (2.11) implies

lim
X→∞

P+(y, X, c) = lim
X→∞

log X
X

∑
N∈[X,cX]
N prime

[(
N − 1

N

)
cos

(
2π�yX�p

N

)
+ 1

N

]
. (3.1)

With a = c − 1 and b = 1 in (2.17), we have

lim
X→∞

log X
X

∑
N∈[X,cX]

1
N

= 0. (3.2)
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Substituting equations (2.18) and (3.2) into equation (3.1) gives:

lim
X→∞

P+(y, X, c) = lim
X→∞

log X
X

∑
N∈[X,cX]
N prime

cos
(

2πyX
N

)
. (3.3)

We relate the sum on the right-hand side of equation (3.3) to an integral using the following equidistri-
bution argument. For each X, consider the set S = {N ∈ [X, cX] : N prime}. If n = #S, then, according to
the prime number theorem, we have

n ∼
(

cX
log(cX)

− X
log X

)
∼ (c − 1)X

log X
. (3.4)

Consider the sequence T = (Ni/X)n
i=1 where Ni ∈ S for i ∈ {1, . . . , n}. Any subinterval [α, β] ⊂ (1, c) contains

the following proportion of elements in T:

π(βX) − π(αX)

n
∼ βX/ log(βX) − αX/ log(αX)

(c − 1)X/ log(X)
∼ β − α

c − 1
.

In other words, the sequence T = (Ni/X)n
i=1 approaches equidistributed on (1, c). Using equations (3.3)

and (3.4), and applying equidistribution of the sequence T on (1, c), we conclude using Riemann sums
that:

lim
X→∞

P+(y, X, c) = lim
X→∞
n→∞

c − 1
n

n∑
i=1

cos
(

2πyX
Ni

)
=
∫ c

1
cos

(
2πy

x

)
dx. (3.5)

�

Remark 3.1. The discontinuity around y = 1 in the bottom image from Figure 1 is explained by
the fact that equation (3.1) requires p �= N. In fact, when p = N, the quantity χ(�yX�p)/τ(χ)

vanishes. This discrepancy does not affect the limit.

Proof of equation (1.4) Recall that we assume the Riemann hypothesis. We will prove the case of
P̃+(y, X, c), and simply note that the case of P̃−(y, X, δ) is similar. Equation (2.11) implies that

P̃+(y, X, δ) = log X
Xδ

∑
N∈[X,X+Xδ ]

N prime

[(
N − 1

N

)
cos

(
2π�yX�p

N

)
+ 1

N

]
. (3.6)

With a = 1 and b = δ in (2.17), we obtain

lim
X→∞

log X
Xδ

∑
N∈[X,X+Xδ ]

1
N

= 0. (3.7)

Applying equations (2.18) and (3.7) to equation (3.6), we deduce

lim
X→∞

P̃+(y, X, δ) = lim
X→∞

log X
Xδ

∑
N∈[X,X+Xδ ]

N prime

cos
(

2πyX
N

)
. (3.8)

Now it follows from Lemma 2.9 that

lim
X→∞

log X
Xδ

∑
N∈[X,X+Xδ ]

N prime

cos
(

2πyX
N

)
= cos(2πy). (3.9)

�
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4 Proof of Theorem 1.2
For d ∈ Z<0, we define μ(d) = μ(|d|). Let G be as in Section 1 and note that d ∈ G if and only if (d, 2) = 1
and μ2(d) = 1. Subsequently, for y, δ, and � as in Theorem 1.2, we may rewrite equation (1.5) as follows:

M�(y, X, δ) = log X
X1+δ

∑
p∈[yX,yX+Xδ ]

p prime

∑
d∈Z

(d,2)=1

μ2(d)�

(
d
X

)
χ8d(p)

√
p. (4.1)

According to [12, equation (1.33)], we have μ2(d) =∑a2 |d
a>0

μ(a), and so:

∑
d∈Z

(d,2)=1

μ2(d)�

(
d
X

)
χ8d(p)

√
p =

∑
d∈Z

(d,2)=1

(∑
a2 |d
a>0

μ(a)
)
�

(
d
X

)
χ8d(p)

√
p. (4.2)

Since � has compact support, we may define β = supx∈R{|x| : �(x) > 0} < ∞. Combining equation (4.1)
and equation (4.2), for A ∈ (0,

√
βX], we may write M�(y, X, δ) = M�,A(y, X, δ) + R�,A(y, X, δ), where:

M�,A(y, X, δ) = log X
X1+δ

∑
p∈[yX,yX+Xδ ]

p prime

∑
d∈Z

(d,2)=1

( ∑
a2 |d

0<a≤A

μ(a)
)
�

(
d
X

)
χ8d(p)

√
p, (4.3)

R�,A(y, X, δ) = log X
X1+δ

∑
p∈[yX,yX+Xδ ]

p prime

∑
d∈Z

(d,2)=1

(∑
a2 |d
a>A

μ(a)
)
�

(
d
X

)
χ8d(p)

√
p. (4.4)

To complete the proof, we will show that R�,A(y, X, δ) vanishes as X → ∞, and use [20, Lemma 2.6] in
the form of Lemma 2.11 to analyse the asymptotic behaviour of M�,A(y, X, δ).

4.1 Analysis of R�,A(y, X, δ)
Given d ∈ Z, for any ε > 0, we have

∣∣∣∣∣∣∣∣
∑
a2 |d
a>A

μ(a)

∣∣∣∣∣∣∣∣

∑
k|d

1 
 |d|ε . (4.5)

Since the innermost sum in equation (4.4) is empty unless d = a2b where a > A, and �(d/X) = 0 unless
|d| < βX, switching the order of summation in equation (4.4) and applying equation (4.5) shows that

∣∣R�,A(y, X, δ)
∣∣
 log X

X
1
2 +δ−2ε

∑
a∈(A,

√
βX]

∑
|b|≤ βX

a2

�

(
a2b
X

) ∣∣∣∣∣∣∣∣∣
∑

p∈[yX,yX+Xδ ]
p prime

χ8d(p)

√
p
X

∣∣∣∣∣∣∣∣∣ , (4.6)

where the outer sums are over a, b ∈ Z satisfying the specified bounds. Using Abel’s summation formula
([1, Theorem 4.2]), we get

∑
p∈[yX,yX+Xδ ]

p prime

χ8d(p)

√
p
X

=
√

t
X

ψ8d(t)
∣∣∣yX+Xδ

t=yX
−
∫ yX+Xδ

yX

ψ8d(t)

2
√

tX
dt, (4.7)

where we set ψk(t) := ∑
3≤p≤t

p prime

(
k
p

)
. For t ∈ [yX, yX + Xδ], we have |1/

√
t| ≤ (yX)− 1

2 and, by Lemma 2.10,

|ψk(t)| 
 (yX)
1
2 +ε . Consequently, we see that |ψ8d(t)/

√
tX| 
 yεXε− 1

2 . Taking the absolute value of both
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sides of equation (4.7), and recalling δ < 1, we deduce

∣∣∣∣∣∣∣∣∣
∑

p∈[yX,yX+Xδ ]
p prime

χ8d(p)

√
p
X

∣∣∣∣∣∣∣∣∣
 y1+εX
1
2 +ε + yεXδ− 1

2 +ε 
 y1+εX
1
2 +ε . (4.8)

Applying equation (4.8) to equation (4.6), we infer that:

∣∣R�,A(y, X, δ)
∣∣
 y1+ε log X

Xδ−3ε

∑
a∈(A,

√
βX]

∑
|b|≤ βX

a2

�

(
a2b
X

)
. (4.9)

Since � is Schwartz, we have �(a2b/X) ≤ supx∈R �(x) < ∞, and so

∑
a∈(A,

√
βX]

∑
|b|≤ βX

a2

�

(
a2b
X

)



∑
a∈(A,

√
βX]

∑
|b|≤ βX

a2

1 
 X
∑

a∈(A,
√

βX]

1
a2

≤ X
∫ ∞

A

da
a2

= X
A

. (4.10)

Combining equations (4.9) and (4.10), we conclude that

|R�,A(y, X, δ)| 
 y1+εX1+3ε−δ

A
log X 
 y1+εX1+4ε−δ

A
. (4.11)

In what follows, we will refine our choice of ε and A. These refinements are made not only to show
that R�,A(y, X, δ) vanishes in the limit, but moreover to find an asymptotic formula for M�,A(y, X, δ) in
the sequel. Recall from the discussion above equation (4.3) that, by construction, we have A 
 X

1
2 . For

the asymptotic formula, we will require the stronger assumption that A 
 X
1
4 . Since δ > 3/4 is fixed,

we may choose 0 < ε < (δ − 3/4)/5 and A = X1+5ε−δ 
 X
1
4 
 X

1
2 . With these choices, equation (4.11)

implies that:

|R�,A(y, X, δ)| 
 y1+εX−ε . (4.12)

Using equation (4.12), and the fact that M�(y, X, δ) = M�,A(y, X, δ) + R�,A(y, X, δ), we obtain

lim
X→∞

M�(y, X, δ) = lim
X→∞

M�,A(y, X, δ). (4.13)

4.2 Analysis of M�,A(y, X, δ)
Recalling that χ8d(p) =

(
8d
p

)
and applying Lemma 2.11, we deduce

M�,A(y, X, δ) = log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

1
2

(
16
p

) ∑
(a,2p)=1
0<a≤A

μ(a)

a2

∑
k∈Z

(−1)k
(

k
p

)
�̃

(
kX

2a2p

)
. (4.14)

Since the k = 0 term in equation (4.14) is identically zero, and
(

16
p

)
=
(

4
p

)2 = 1 for odd primes p, we

have

M�,A(y, X, δ) = log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

1
2

∑
(a,2p)=1
0<a≤A

μ(a)

a2

∑
k∈Z
k �=0

(−1)k
(

k
p

)
�̃

(
kX

2a2p

)
, (4.15)
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for X sufficiently large (so that yX > 2). Since 0 < a ≤ A 
 X
1
2 
 p, we have (a, 2p) = 1 if and only if

(a, 2) = 1. Therefore, for large X, we can switch the order of summation in equation (4.15) to get

M�,A(y, X, δ) = 1
2

∑
(a,2)=1
0<a≤A

μ(a)

a2

∑
k∈Z
k �=0

(−1)k log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

(
k
p

)
�̃

(
kX

2a2p

)
. (4.16)

We handle the sum over non-zero integers k in equation (4.16) in two stages. In the first stage, we break
it into sums over k square (written k = �) and k non-square (written k �= �). In the second stage, we
show that the sum over k �= � exhibits cancellation, and consequently we identify the sum over k = �
as the main contribution. To bound the sum over k �= �, we introduce ε′ > 0 and break the sum further
into sums over k small (|k| < a2Xε′

) and k big (|k| ≥ a2Xε′
). The small k are handled by equation (4.18),

which will be deduced in the next paragraph, and the big k are handled by the rapid decay of �̃.

Assume k �= �, so that
(

k
·
)

is a non-principal character. Using Abel’s summation formula, we have

∑
p∈[yX,yX+Xδ ]

p prime

(
k
p

)
�̃

(
kX

2a2p

)
= �̃

(
kX

2a2t

)
ψk(t)

∣∣∣yX+Xδ

t=yX
−
∫ yX+Xδ

yX

d
dt

(
�̃

(
kX

2a2t

))
ψk(t)dt, (4.17)

where we set ψk(t) =∑ 3≤p≤t
p prime

(
k
p

)
as before. Since �̃ is bounded, applying Lemma 2.10 to equation (4.17),

for ε′ > 0 and a ≥ 1, we deduce

∑
p∈[yX,yX+Xδ ]

p prime

(
k
p

)
�̃

(
kX

2a2p

)

 (yX)

1
2 +ε′

(
1 +

∫ ∞

0

∣∣�̃′(u)
∣∣du

)
(k �= �). (4.18)

Now, summing over k �= � with |k| < a2Xε′
, we observe:

∑
k∈Z

|k|<a2Xε′

k �=�

(−1)k log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

(
k
p

)
�̃

(
kX

2a2p

)

 y

1
2 +ε′

a2 log X

Xδ− 1
2 −2ε′ . (4.19)

On the other hand, summing over k �= � with |k| ≥ a2Xε′
and a ≥ 1, we obtain

∣∣∣∣∣∣∣∣∣∣∣
∑
k∈Z

|k|≥a2Xε′

k �=�

(−1)k log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

(
k
p

)
�̃

(
kX

2a2p

)
∣∣∣∣∣∣∣∣∣∣∣



∑
k∈Z

|k|≥a2Xε′

k �=�

∣∣∣∣�̃( k
2a2y

)∣∣∣∣ , (4.20)

where we use
∣∣∣(−1)k

(
k
p

)∣∣∣ ≤ 1 and apply Lemma 2.9. Since �̃ is Schwartz, and x �→ |x|−α is even for all

α > 1, we have

∑
k∈Z

|k|≥a2Xε′

k �=�

∣∣∣∣�̃( k
2a2y

)∣∣∣∣
 2
∫ ∞

a2Xε′ −1

(
u

2a2y

)−α

du 
 a2yαXε′(1−α). (4.21)

Combining equation (4.19) with equations (4.20) and (4.21), we deduce:

∣∣∣∣∣∣∣∣∣
∑
k∈Z

k �=�

(−1)k log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

(
k
p

)
�̃

(
kX

2a2p

)∣∣∣∣∣∣∣∣∣

a2y

1
2 +ε′

log X

Xδ− 1
2 −2ε′ + a2yαXε′(1−α). (4.22)
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Summing equation (4.22) over odd a ≤ A, we see that:

∣∣∣∣∣∣∣∣∣
∑

(a,2)=1
0<a≤A

μ(a)

a2

∑
k∈Z

k �=�

(−1)k log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

(
k
p

)
�̃

(
kX

2a2p

)∣∣∣∣∣∣∣∣∣
 A

(
y

1
2 +ε′

log X

Xδ− 1
2 −2ε′ + yαXε′(1−α)

)
. (4.23)

Recall from the discussion preceding equation (4.12) that we have chosen A 
 X
1
4 . Combining this

bound for A with equations (4.15) and (4.23), we conclude:

M�,A(y, X, δ) = log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

1
2

∑
0<a≤A
(a,2)=1

μ(a)

a2

∑
k∈Z

k=�

(−1)k
(

k
p

)
�̃

(
kX

2a2p

)

+ O

(
y

1
2 +ε′

log X

Xδ− 3
4 −2ε′ + yαX

1
4 +ε′(1−α)

)
.

(4.24)

Since δ > 3/4, we may choose 0 < ε′ < δ/2 − 3/8 and α > 1 + (4ε′)−1 > 1. With these choices, we see that
the error term in equation (4.24) vanishes in the limit as X → ∞, and hence:

lim
X→∞

M�,A(y, X, δ) = lim
X→∞

log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

1
2

∑
0<a≤A
(a,2)=1

μ(a)

a2

∑
k∈Z

k=�

(−1)k
(

k
p

)
�̃

(
kX

2a2p

)
. (4.25)

Considering the innermost sum in equation (4.25), we note that:

∑
k∈Z

k=�

(−1)k
(

k
p

)
�̃

(
kX

2a2p

)
=

∞∑
m=1

(−1)m
(

m2

p

)
�̃

(
m2X
2a2p

)
=

∞∑
m=1

(m,p)=1

(−1)m�̃

(
m2X
2a2p

)
. (4.26)

Combining equations (4.25) and (4.26), we deduce

lim
X→∞

M�,A(y, X, δ) = lim
X→∞

log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

1
2

∑
0<a≤A
(a,2)=1

μ(a)

a2

∞∑
m=1

(m,p)=1

(−1)m�̃

(
m2X
2a2p

)
. (4.27)

To analyse the sum over m coprime to p in (4.27), we will eventually apply Poisson summation. Prior to
that, we will first quantify the error created when we extend the domain of summation to all m > 0.
Since {m ∈ N : (p, m) > 1} = {pm : m ∈ N} and �̃ is Schwartz, Lemma 2.12 implies that, for all κ > 1, we
have:

∞∑
m=1

(p,m)>1

(−1)m�̃

(
m2X
2a2p

)
≤

∞∑
m=1

∣∣∣∣�̃(pm2X
2a2

)∣∣∣∣
 (
pX
2a2

)−κ

. (4.28)

Since a ≤ A 
 √
X ∼ √

p/y, we have pX/a2 � yX. Combining these bounds with equation (4.28), we
deduce

∑
0<a≤A
(a,2)=1

μ(a)

a2

∞∑
m=1

(p,m)>1

(−1)m�̃

(
m2X
2a2p

)

 (yX)−κ

∑
0<a≤A
(a,2)=1

1
a2


 (yX)−κ . (4.29)

Equation (4.29) implies that

∑
0<a≤A
(a,2)=1

μ(a)

a2

∞∑
m=1

(m,p)=1

(−1)m�̃

(
m2X
2a2p

)
=
∑

0<a≤A
(a,2)=1

μ(a)

a2

∞∑
m=1

(−1)m�̃

(
m2X
2a2p

)
+ O

(
(yX)−κ

)
. (4.30)
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Applying equation (4.30) to equation (4.26) and combining the result with (4.25), we deduce:

lim
X→∞

M�,A(y, X, δ) = lim
X→∞

log X
Xδ

∑
p∈[yX,yX+Xδ ]

p prime

1
2

∑
0<a≤A
(a,2)=1

μ(a)

a2

∞∑
m=1

(−1)m�̃

(
m2X
2a2p

)
. (4.31)

To analyse the inner sum on the right-hand side of equation (4.31), we observe that

∞∑
m=1

(−1)m�̃

(
m2X
2a2p

)
= 1

2

∑
m∈Z

(−1)m�̃

(
m2X
2a2p

)
− 1

2
�̃(0). (4.32)

Poisson summation implies that

∑
m∈Z

(−1)m�̃

(
m2X
2a2p

)
=
∑
m∈Z

cos (πm) �̃

(
m2X
2a2p

)

=
∑
v∈Z

∫ ∞

−∞
�̃

(
u2X
2a2p

)
cos (πu) e(−uv)du

= a

√
2p
X

∑
v∈Z

∫ ∞

−∞
�̃
(
w2) cos

(
πwa

√
2p
X

)
e

(
−wav

√
2p
X

)
dw

= a

√
2p
X

(
Ĥa(0) + 2

∞∑
v=1

Ĥa

(
av

√
2p
X

))
,

(4.33)

where Ha(w) := �̃(w2) cos(πwa
√

2p/X). For the final equality in equation (4.33), we use the fact that Ĥ
is even. To proceed, let H(w) := �̃(w2) and Ca(w) := cos(πwa

√
2p/X) so Ha(w) = H(w)Ca(w). Since the

Fourier transform of a product is the convolution of the Fourier transforms, we have:

Ĥa(w) = (Ĥ � Ĉa)(w)

= 1
2

∫ ∞

−∞
Ĥ(t)

(
δ

(
w − t − a

√
p

2X

)
+ δ

(
w − t + a

√
p

2X

))
dt

= 1
2

(
Ĥ

(
w + a

√
p

2X

)
+ Ĥ

(
w − a

√
p

2X

))
.

(4.34)

Since Ĥ is even, equation (4.34) implies:

Ĥa(0) + 2
∞∑

v=1

Ĥa

(
av

√
2p
X

)
= Ĥ

(
a

√
p

2X

)
+

∞∑
v=1

Ĥ

(
a

√
p

2X
(2v + 1)

)
+ Ĥ

(
a

√
p

2X
(2v − 1)

)

= 2
∞∑

v=1
(v,2)=1

Ĥ

(
av

√
p

2X

)
.

(4.35)

Substituting (4.35) into equation (4.33), we get:

∑
m∈Z

(−1)m�̃

(
m2X
2a2p

)
= 2a

√
2p
X

∞∑
v=1

(v,2)=1

Ĥ

(
av

√
p

2X

)
. (4.36)

Combining equations (4.32) and (4.36), we deduce:

∞∑
m=1

(−1)m�̃

(
m2X
2a2p

)
= − 1

2
�̃(0) + a

√
2p
X

∞∑
v=1

(v,2)=1

Ĥ

(
av

√
p

2X

)
. (4.37)
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Noting that

∑
0<a≤A
(a,2)=1

μ(a)

a2
=
∏
p>2

(
1 − 1

p2

)
+ o(1) = 8

π2
+ o(1), (4.38)

as X → ∞ (hence A = X1+5ε−δ → ∞), equation (4.37) implies:

∑
0<a≤A
(a,2)=1

μ(a)

a2

∞∑
m=1

(−1)m�̃

(
m2X
2a2p

)
= − 4

π2
�̃(0) +

√
2p
X

∑
0<a≤A
(a,2)=1

μ(a)

a

∞∑
v=1

(v,2)=1

Ĥ

(
av

√
p

2X

)
+ o(1). (4.39)

Since Ĥ is Schwartz, the double sum in the right-hand side of equation (4.39) converges, and we conclude
that the sum on the left-hand side converges to a smooth function of p/X ∼ y as X → ∞ (hence A =
X1+5ε−δ → ∞). Noting the appearance of this sum in equation (4.31), we may apply Lemma 2.9 to deduce:

lim
X→∞

M�,A(y, X, δ) = 1
2

∞∑
a=1

(a,2)=1

μ(a)

a2

∞∑
m=1

(−1)m�̃

(
m2

2a2y

)
. (4.40)

Combining equations (4.13) and (4.40), we conclude the proof of Theorem 1.2.

5 1-Level Density
In [5, Section 4], murmurations of Kronecker symbols are considered from the perspective of L-function
zeros via the explicit formula. Furthermore, Rubinstein–Sarnak observed that the murmuration density
for Kronecker symbols in Theorem 1.2, when properly normalized, interpolates the transition in the
1-level densities for a symplectic family of L-functions [18]. We recover the observation of Rubinstein–
Sarnak in Corollary 1.3, in which the left (resp. right) limit corresponds to the case that p = yX is much
smaller (resp. larger) than X.

Proof of Corollary 1.3 We maintain the notation from Corollary 1.3. Combining equations (1.6) and
(4.39) with y = p/X, we observe that

M�(y, δ) = − 2
π2

�̃(0) +
√

y
2

∞∑
a=1

(a,2)=1

μ(a)

a

∞∑
v=1

(v,2)=1

Ĥ

(
av

√
y
2

)

= − 2
π2

�̃(0) +
√

y
2

∞∑
n=1

(n,2)=1

⎛⎜⎜⎝ ∑
a|n

(a,2)=1

μ(a)

a

⎞⎟⎟⎠ Ĥ

(
n

√
y
2

)
.

(5.1)

For even n, define bn = 0, and, for odd n, define

bn =
∑
a|n

(a,2)=1

μ(a)

a
. (5.2)

In particular, we have b1 = 1. Since, for p prime and m > 1, we have μ(pm) = 0, we observe that, for k ≥ 1,

bpk =
⎧⎨⎩0, p = 2,

1 − 1
p , p > 2.

(5.3)
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If B(s) =∑∞
n=1 bnn−s, then equation (5.3) implies that, for Re(s) > 1,

B(s) =
∏
p>2

(
1 +

(
1 − 1

p

) ∞∑
k=1

p−ks

)
=
∏
p>2

(
1 + (1 − 1/p)p−s

1 − p−s

)
=
∏
p>2

1 − p−s−1

1 − p−s

= 1 − 2−s

1 − 2−s−1

ζ(s)
ζ(s + 1)

.

(5.4)

Equation (5.4) implies that B(s) has meromorphic continuation to Re(s) > 0 with a simple pole at s = 1
and

Ress=1B(s) = lim
s→1

(s − 1)
1 − 2−s

1 − 2−s−1

ζ(s)
ζ(s + 1)

= 2
3

1
ζ(2)

= 4
π2

. (5.5)

Consequently, we observe that the following function is meromorphic on Re(s) > 0 with a simple pole
at s = 1:

∫ ∞

0

( ∞∑
n=1

bnĤ(nx)

)
xs dx

x
=
∫ ∞

0

( ∞∑
n=1

bnn−sĤ(u)

)
us du

u
= B(s)

∫ ∞

0
Ĥ(u)us du

u
. (5.6)

Furthermore, equation (5.5) implies that:

Ress=1

(
B(s)

∫ ∞

0
Ĥ(u)us du

u

)
= 4

π2

∫ ∞

0
Ĥ(u)du = 2

π2
H(0) = 2

π2
�̃(0), (5.7)

where we have used Fourier inversion, and the facts that Ĥ is even and H(0) = �̃(0). We observe that,
for η ∈ (0, 1

2 ) and 1 − η ≤ Re(s) ≤ 1 + η, the Riemann hypothesis implies that, for all ε > 0, we have

|B(s)| =
∣∣∣∣ 1 − 2−s

1 − 2−s−1

ζ(s)
ζ(s + 1)

∣∣∣∣
 ∣∣∣∣ ζ(s)
ζ(s + 1)

∣∣∣∣
 |s|ε , (5.8)

as |s| → ∞ (see [20, Theorem 14.2]). Likewise, for 1−η ≤ Re(s) ≤ 1+η and r ∈ Z≥1, we may apply applying
integration by parts r times, and note that Ĥ(r) is a bounded function of rapid decay, to deduce:

∣∣∣∣∫ ∞

0
Ĥ(u)us du

u

∣∣∣∣ = ∣∣∣∣ (−1)r(s − 1)!
(s + r − 1)!

∫ ∞

0
Ĥ(r)(u)us+r du

u

∣∣∣∣ ≤ |s|−r
∫ ∞

0

∣∣Ĥ(r)(u)
∣∣ur+ηdu 
 |s|−r, (5.9)

as |s| → ∞. Therefore we may apply Mellin inversion, the residue theorem, and equation (5.7) to equation
(5.6) to obtain

∞∑
n=1

bnĤ(xn) ∼ Ress=1

(
B(s)

∫ ∞

0
Ĥ(u)us du

u
x−s
)

= 2�̃(0)

π2x
(5.10)

as x → 0+. Combining equations (5.2) and (5.10), we deduce that

√
y
2

∞∑
n=1

(n,2)=1

⎛⎜⎜⎝ ∑
a|n

(a,2)=1

μ(a)

a

⎞⎟⎟⎠ Ĥ

(
n

√
y
2

)
∼
√

y
2

2�̃(0)

π2
√

y/2
= 2

π2
�̃(0) (5.11)

as y → 0+. Combining equation (5.1) with equation (5.11), we conclude that

lim
y→0+

M�(y, δ) = − 2
π2

�̃(0) + 2
π2

�̃(0) = 0. (5.12)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2025/1/rnae277/7932774 by U
niv of C

onnecticut user on 18 February 2025



20 | K.-H. Lee et al.

For the limit as y → ∞, we again use equation (4.39) with p/X = y, and note that, since Ĥ is Schwartz,
for all α > 1, Lemma 2.12 implies that

∣∣∣∣∣∣∣
√

2y
∞∑

a=1
(a,2)=1

μ(a)

a

∞∑
v=1

Ĥ

(√
y
2

av

)∣∣∣∣∣∣∣

∞∑

a=1
(a,2)=1

√
y

a

(√
y
2

a

)−α


 y
1−α

2

∞∑
a=1

(a,2)=1

1
aα+1


 y
1−α

2 . (5.13)

Combining equations (5.1) and (5.13) we conclude that

lim
y→∞ M�(y, δ) = lim

y→∞
1
2

(−4�̃(0)

π2
+ O

(
y

1−α
2

))
= − 2

π2
�̃(0). (5.14)

�

6 Supplementary Results
6.1 Including composite conductors in Theorem 1.1
6.1.1 Preliminaries
Note that by [12, equation (3.7)], the set D±(N) is empty if and only if N ≡ 2 mod 4. For δ ∈ (0, 1), y ∈ R>0,
and c ∈ R>1, we will analyse functions connected to the following:

Q±(y, X, c) = 1
X

∑
N∈[X,cX]

N�≡2 mod 4

∑
χ∈D±(N)

χ(�yX�p)

τ (χ)
, (6.1)

Q̃±(y, X, δ) = 1
Xδ

∑
N∈[X,X+Xδ ]
N�≡2 mod 4

∑
χ∈D±(N)

χ(�yX�p)

τ (χ)
. (6.2)

For an integer N > 1 and a prime number p coprime to N, Lemma 2.5 implies:

∑
χ mod N

χ �=χ0, χ(−1)=1

τ(χ)χ(p) = 1 + φ(N) cos
(

2πp
N

)
, (6.3)

∑
χ mod N
χ(−1)=−1

τ(χ)χ(p) = iφ(N) sin
(

2πp
N

)
. (6.4)

We introduce the sets

I±(N) = {χ mod N χ imprimitive, χ �= χ0, χ(−1) = ±1}, (6.5)

so that equations (6.3) and (6.4) may be rewritten as follows:

∑
χ∈D+(N)

τ (χ)χ(p) = 1 + φ(N) cos
(

2πp
N

)
−

∑
χ∈I+(N)

τ (χ)χ(p), (6.6)

∑
χ∈D−(N)

τ (χ)χ(p) = iφ(N) sin
(

2πp
N

)
−

∑
χ∈I−(N)

τ (χ)χ(p). (6.7)

Applying equation (2.13) to equations (6.6) and (6.7), we deduce

∑
χ∈D+(N)

χ(p)

τ (χ)
= 1

N
+ φ(N)

N
cos

(
2πp
N

)
− 1

N

∑
χ∈I+(N)

τ (χ)χ(p), (6.8)

∑
χ∈D−(N)

χ(p)

τ (χ)
= −iφ(N)

N
sin
(

2πp
N

)
+ 1

N

∑
χ∈I−(N)

τ (χ)χ(p). (6.9)
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Fig. 5. Plot of 1
X
∑

N∈[X,2X)

∑
χ∈D±(N) χ(p)/τ(χ) for X = 210 for primes p such that 2 ≤ p ≤ 10X, with + in blue and

(the imaginary part of) − in red.

Fig. 6. Plot of T±(y, 1024, 2) for 0 ≤ y ≤ 10 with + in blue and (the imaginary part of) − in red. We also show
5

π2

∫ 2
1 cos

(
2πy

x

)
dx in green and − 5

π2

∫ 2
1 sin

(
2πy

x

)
dx in orange.

In order to recreate the proof of Theorem 1.1 for composite conductors, equations (6.8) and (6.9) suggest
that we need to analyse sums of imprimitive characters. The following lemma will be useful for that
purpose.

Lemma 6.1. If an imprimitive character χ mod N is induced by the primitive character χ1 mod
N1, then, we have

τ(χ) = μ

(
N
N1

)
χ1

(
N
N1

)
G (χ1) , (6.10)

where μ(n) is the Möbius function as before.

Proof. [12, Lemma 3.1]. �
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Fig. 7. Plot of T̃±(y, 2002, 0.51) for 0 ≤ y ≤ 2 with + in blue and (imaginary part of) − in red. We also show
5

π2 cos(2πy) in green and 5
π2 sin(2πy) in orange.

Inspired by equations (6.8) and (6.9), we introduce the following functions:

E±(y, X, c) = 1
X

∑
N∈[X,cX]

N�≡2 mod 4

1
N

∑
I±(N)

τ (χ)χ(�yX�p), (6.11)

Ẽ±(y, X, δ) = 1
Xδ

∑
N∈[X,X+Xδ ]
N�≡2 mod 4

1
N

∑
I±(N)

τ (χ)χ(�yX�p). (6.12)

One sees that it is natural to investigate:

T±(y, X, c) = Q±(y, X, c) ± E±(y, X, c), (6.13)

T̃±(y, X, δ) = Q̃±(y, X, δ) ± Ẽ±(y, X, δ). (6.14)

Remark 6.2. Figure 6 (resp. Figure 7) suggests that |T±(y, X, c)| and |Q±(y, X, c)| (resp. |̃T±(y, X, c)|
and |Q̃±(y, X, δ)|) are significantly larger than |E±(y, X, δ)| (resp. |̃E±(y, X, δ)|). Since there is a
canonical bijection between Dirichlet characters mod N and primitive Dirichlet characters with
conductor dividing N, E±(y, X, δ) (resp. Ẽ±(y, X, δ)) reduces to a sum over primitive characters
with conductor dividing N. Using Lemma 6.1, we see that this introduces a Möbius factor.
Consequently, we expect that this term is smaller due to additional cancellation.

Another complexity arising from equations (6.8) and (6.9) is the need to understand murmuration-
type limits for φ(N)/N, for which the following lemma will be useful.

Lemma 6.3. If a ∈ R>0 and b ∈ (0, 1], then

lim
X→∞

1
aXb

∑
N∈[X,X+aXb]
N�≡2 mod 4

φ(N)

N
= 5

π2
. (6.15)

Proof. It is known that

∑
0<N≤X

N∈Z

φ(N)

N
= 6

π2
X + O

(
(log X)2/3(log log X)4/3) , (6.16)
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Fig. 8. Let

�+(x) = 1(1,2)(x) exp
( −1

1−4(x−1.5)2

)
, �−(x) = 1(−2,−1)(x) exp

( −1
1−4(−x−1.5)2

)
.

We plot M†
�± (y, 219, 2/3) for y ∈ [0, 2] with + in blue (resp. − in red), and the right-hand side of equation (6.38) in

green (resp. orange).

from which it follows that

lim
X→∞

1
X

∑
0<N≤X

N∈Z

φ(N)

N
= 6

π2
(6.17)

(cf. [12, equation (1.74)]). Similarly, according to [15], we have that

lim
X→∞

1
X

∑
0<N≤X

N∈Z

φ(2N + 1)

2N + 1
= 8

π2
. (6.18)

Using equation (6.18) and the identity φ(4N + 2) = φ(2N + 1), we compute:

lim
X→∞

1
X

∑
0<N≤X

N≡2 mod 4

φ(N)

N
= lim

X→∞
1

4X

∑
0<N≤X

N∈Z

φ(4N + 2)

4N + 2
= 1

8
lim
X→∞

1
X

∑
0<N≤X

N∈Z

φ(2N + 1)

2N + 1
= 1

π2
. (6.19)

Subtracting equation (6.19) from equation (6.17), and noting the error term in equation (6.16), we
conclude

lim
X→∞

1
X

∑
0<N≤X

N�≡2 mod 4

φ(N)

N
= 5

π2
. (6.20)

Equation (6.20) implies that

∑
0<N≤X

N�≡2 mod 4

φ(N)

N
∼
∑

0<N≤X
N∈Z

5
π2

, (6.21)

from which equation (6.15) follows. �
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6.1.2 Geometric Intervals
In this subsection, we will prove the following theorem, which is visualised in Figure 6.

Theorem 6.4. If c ∈ R>1 and y ∈ R>0, then

lim
X→∞

T±(y, X, c) =
⎧⎨⎩

5
π2

∫ c
1 cos

(
2πy

x

)
dx, if +,

−i 5
π2

∫ c
1 sin

(
2πy

x

)
dx, if − .

(6.22)

Proof. We will prove the case of T+(y, X, c), and simply note that T−(y, X, c) is similar. Applying equations
(2.17), (6.1), and (6.11) to equation (6.8), we deduce

lim
X→∞

T+(y, X, δ) = lim
X→∞

1
X

∑
N∈[X,cX]

N�≡2 mod 4

φ(N)

N
cos

(
2πyX

N

)
− lim

X→∞
E+(y, X, δ)

= lim
X→∞

1
X

n∑
i=1

∑
N∈Ii

N�≡2 mod 4

φ(N)

N
cos

(
2πyX

N

)
− lim

X→∞
E+(y, X, δ),

(6.23)

where, for each X, we put n =
⌈√

X
⌉

and, for i ∈ {1, . . . , n}, we write

Ii =
[
X + i − 1

n
(c − 1)X, X + i

n
(c − 1)X

)
. (6.24)

Fix γ ∈ (0, 1] and, for each X, choose i = �γ n� ∈ {1, . . . , n}. We have

lim
X→∞

i − 1
n

= lim
X→∞

i
n

= γ . (6.25)

For N ∈ Ii, equation (6.25) implies that

1
1 + γ (c − 1)

= lim
X→∞

X
X + i(c − 1)X/n

≤ lim
X→∞

X
N

≤ lim
X→∞

X
X + (i − 1)(c − 1)X/n

= 1
1 + γ (c − 1)

. (6.26)

Combining equations (6.13), (6.23), and (6.26), we deduce

lim
X→∞

T+(y, X, δ) = lim
X→∞

c − 1√
X

n∑
i=1

cos
(

2πy
1 + γ (c − 1)

)
1

(c − 1)
√

X

∑
N∈Ii

N�≡2 mod 4

φ(N)

N
. (6.27)

Using Lemma 6.3 and equation (6.27), we are led to

lim
X→∞

T+(y, X, δ) = lim
n→∞

c − 1
n

n∑
i=1

5
π2

cos
(

2πy
1 + i(c − 1)/n

)
. (6.28)

Now equation (6.22) follows upon recognising equation (6.28) as a Riemann sum. �

6.1.3 Short intervals
We first prove the following theorem, which is visualised in Figure 7.
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Theorem 6.5. If δ ∈ (0, 1) and y ∈ R>0, then

lim
X→∞

T̃±(y, X, δ) =
⎧⎨⎩ 5

π2 cos(2πy), if +,

−i 5
π2 sin(2πy), if − .

(6.29)

Proof. We will prove the case of T̃+(y, X, δ) and simply note that T̃−(y, X, δ) is similar. Mimicking the proof
of equation (1.4) leads to

lim
X→∞

T̃+(y, X, δ) = lim
X→∞

cos(2πy)

Xδ

∑
N∈[X,X+Xδ ]
N�≡2 mod 4

φ(N)

N
. (6.30)

In light of equation (6.30), the result follows from Lemma 6.3. �

We next obtain an extension of equation (1.4) by considering a set of special conductors specified as
follows. Let S denote the set of positive integers that are not congruent to 2 mod 4 and are either prime
or squarefull (A positive integer is squarefull if all its prime factors exponents are at least 2.). By equation
(6.10), this is precisely the set S of integers such that, if N ∈ S, then

∑
I±(N)

τ (χ)χ(p) = 0, (N ∈ S). (6.31)

Using equations (2.17) and (6.31), we deduce that, for N ∈ S, equation (6.8) reduces to

∑
χ∈D±(N)

χ(p)

τ (χ)
= φ(N)

N
cos

(
2πp
N

)
, (N ∈ S). (6.32)

Now define

f (X) =
∑
N≤X
N∈S

φ(N)

N
, (6.33)

and consider

Q̃S
±(y, X, δ) = 1

f (X + Xδ) − f (X)

∑
N∈[X,X+Xδ ]

N∈S

∑
χ∈D±(N)

χ(�yX�p)

τ (χ)
. (6.34)

This leads to the following corollary.

Corollary 6.6. Under the Riemann hypothesis, if δ ∈ ( 1
2 , 1) and y ∈ R>0, then

lim
X→∞

Q̃S
±(y, X, δ) =

⎧⎨⎩cos(2πy), if +,

−i sin(2πy), if − .
(6.35)

Proof. We prove the case of Q̃S+(y, X, δ) and simply note that Q̃S−(y, X, δ) is similar. Using equation (6.32)
and mimicking the proof of equation (1.4) yields

lim
X→∞

Q̃S
+(y, X, δ) = lim

X→∞
cos(2πy)

f (X + Xδ) − f (X)

∑
N∈[X,X+Xδ ]

N∈S

φ(N)

N
, (6.36)

from which the result follows by equation (6.33). �
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6.2 Zubrilina density for
(

d
·
)

Using the techniques from Section 4, we may investigate the following variation of equation (1.5).
Assuming that yX > 2, we have:

M†
�(y, X, δ) = log X

X1+δ

∑
p∈[yX,yX+Xδ ]

p prime

⎛⎜⎝ ∑
d∈G

d≡1 mod 4

�

(
d
X

)
χd(p) +

∑
d∈G

d≡3 mod 4

�

(
d
X

)
χ4d(p)

⎞⎟⎠√
p

= log X
X1+δ

∑
p∈[yX,yX+Xδ ]

p prime

∑
d∈G

�

(
d
X

)(
d
p

)√
p.

(6.37)

We note that M†
�(y, X, δ) involves

(
d
·
)
, whereas M�(y, X, δ) involves

(
8d
·
)
. For plots of the function

M†
�(y, X, δ), see Figure 8.
In this section, we calculate the following limit, which yields Zubrilina density associated to

M†
�(y, X, δ):

Corollary 6.7. Fix y ∈ R>0. If δ ∈ ( 3
4 , 1) and � ≥ 0 is a smooth Schwartz function with compact

support, then, assuming the Generalized Riemann hypothesis, we have

M†
�(y, δ) := lim

X→∞
M†

�(y, X, δ) = 1
2

∞∑
a=1

(a,2)=1

μ(a)

a2

∞∑
m=1

�̃

(
m2

a2y

)
. (6.38)

Proof. Applying Lemma 2.11 to equation (6.37), we get

M†
�,A(y, X, δ) = log X

Xδ

∑
p∈[yX,yX+Xδ ]

p prime

∑
0<a≤A
(a,2p)=1

μ(a)

2a2

∑
k∈Z

(−1)k
(

2k
p

)
�̃

(
kX

2a2p

)
. (6.39)

Following the argument in Section 4.2, we observe that terms corresponding to 2k �= � vanish in
equation (6.39). On the other hand, if 2k = �, then writing k = 2m2 yields

∑
k∈Z

2k=�

(−1)k
(

2k
p

)
�̃

(
kX

2a2p

)
=

∞∑
m=1

(−1)2m2
(

2m
p

)2

�̃

(
m2X
a2p

)
=

∞∑
m=1

(2m,p)=1

�̃

(
m2X
a2p

)
. (6.40)

Comparing equation (6.40) with equation (4.25), we notice the following simplification to what remains
of the argument from Section 4.2. Namely, we do not need to introduce Ha(w) since (−1)m is missing in
the final expression of equation (6.40). In fact, it is enough to use H(w) = �̃(w2). With this modification,
we finish the proof by mimicking Section 4.2. �

Unfolding the function �̃, we may recover the analogue of equation (1.9) for M†
�(y, X, δ). Subsequently,

one may compute the Zubrilina density for the family
{(

d
·
)

: d ∈ G
}
. Following the proof in Section 5,

we also obtain the following analogue of Corollary 1.3.

Corollary 6.8. Let � be a Schwartz function with compact support and let δ ∈ ( 3
4 , 1). Assuming

the Generalized Riemann hypothesis, we have

lim
y→0+

M†
�(y, δ) = 0, and lim

y→∞ M†
�(y, δ) = − 2

π2
�̃(0), (6.41)

where M†
�(y, δ) is defined in (6.38).
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Proof. Recall from the proof of Corollary 6.7 that, when modifying the argument from Section 4.2, we
do not need to introduce Ha(w). In particular, we see that the equation corresponding to equation (5.1)
is given by

M†
�(y, δ) = − 2

π2
�̃(0) +

√
y

2

∞∑
n=1

⎛⎜⎜⎝ ∑
a|n

(a,2)=1

μ(a)

a

⎞⎟⎟⎠ Ĥ
(
n
√

y
)

. (6.42)

For all n ∈ Z≥1, set

b†
n =

∑
a|n

(a,2)=1

μ(a)

a
.

In particular, we have b†
2k = 1. We also set B†(s) =∑∞

n=1 b†
nn−s, so that Ress=1B†(s) = 8/π2. Using the same

argument as in Section 5, we find:

√
y

2

∞∑
n=1

⎛⎜⎜⎝ ∑
a|n

(a,2)=1

μ(a)

a

⎞⎟⎟⎠ Ĥ(n
√

y) ∼
√

y
2

4�̃(0)

π2√y
= 2

π2
�̃(0), (6.43)

and we deduce the limit as y → 0+. The limit as y → ∞ follows from Lemma 2.12 as before. �
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