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Abstract. In this paper, we construct Eisenstein series on arithmetic quotients of loop groups

for arbitrary standard parabolic subgroups, generalizing Garland’s construction for minimal

parabolic subgroups. We compute the constant terms to obtain a formula in the self-conjugate

case and work out some examples.

Introduction

In his papers [6, 7], Garland defined and studied certain Eisenstein series associated with

minimal parabolic subgroups on arithmetic quotients of loop groups. He computed the con-

stant terms and showed the absolute convergence of the series. This can be considered as a

generalization of Godement’s work in [8] and Langlands’ work in [11] to affine Kac-Moody

groups.

The Kac-Moody theory has undergone tremendous developments in connections with di-

verse areas—number theory, geometry, combinatorics and mathematical physics. However,

automorphic forms on Kac-Moody groups have not yet been well established. One of the main

difficulties is that Kac-Moody groups are infinite dimensional groups which are not locally

compact. Hence there are no Haar measures by Weil’s Theorem. This fact precludes many of

classical approaches and calls for new ideas.

On the other hand, there has been an increasing need and expectation for a theory of auto-

morphic forms on Kac-Moody groups. As indicated in [12], a satisfactory theory of Eisenstein

series on Kac-Moody groups would bring breakthroughs in Langlands’ functoriality conjecture.

Garland’s works have made important first steps in this direction.

The purpose of this paper is to extend Garland’s construction to arbitrary standard parabolic

subgroups. More precisely, we define Eisenstein series associated with cusp forms on the Levi

components of standard parabolic subgroups and compute their constant terms in the self-

conjugate case. As a main result, we obtain a formula (Theorem 3.7), which is an analogue of the

formula in the classical case. We also characterize the set of double coset representatives that
1This research was supported by KRF Grant # 2007-341-C00001.
2This research was supported by BK21 Mathematical Sciences Division.
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appears in the formula of constant terms. We will consider the convergence of the Eisenstein

series in a subsequent paper, following the framework given by Garland in [7], and do not

discuss the issue in this paper.

The outline of this paper is as follows. In Section 1, we prove certain consequences of the

Iwasawa decomposition and define the Eisenstein series on the arithmetic quotient of a loop

group. In the next section, we make a lifting of a function on the arithmetic quotient to form

a function on the corresponding adelic space and consider measures on the unipotent part

of the adelic space. In Section 3, we compute the constant terms for self-conjugate parabolic

subgroups. In the last section, we describe the set of double coset representatives in the formula

of constant terms, and work out a couple of examples completely.

Acknowledgments. K.-H. Lee would like to thank Henry Kim and F. Shahidi for helpful

discussions.

1. Construction of Eisenstein Series

In this section, we define Eisenstein series on loop groups, associated with cusp forms on

the Levi components of arbitrary standard parabolic subgroups. We keep all the notations in

Section 1 of [6] or [7]. In particular, we have the loop group ĜR for any commutative ring R.

When R = R, we drop R from the notation.

Let Ĥ (resp. Â) denote the subgroup of Ĝ generated by all hα(s), α ∈ ∆̂W , s ∈ R∗ (resp.

s ∈ R>0). Suppose that ν = (νi)i=1,...,l+1, νi ∈ C, is a family of complex numbers. We identify

ν with an element ν of (ĥeC)∗ by

ν =
l+1∑
i=1

νiΛαi ,

where Λαi is the fundamental weight such that Λαi(hαj ) = δij . We also identify ν with a

quasi-character ν : Â→ C∗ of Â defined by

(1.1) ν(h) = ν(hα1(s1) . . . hαl+1
(sl+1)) = sν11 . . . s

νl+1

l+1 ,

where h = hα1(s1) . . . hαl+1
(sl+1) ∈ Â, and we write hν = ν(h). More generally, for any

ν ∈ (ĥeC)∗ and h = hα1(s1) . . . hαl+1
(sl+1) ∈ Â, we define

hν = ν(h) = s
ν(hα1 )
1 · · · s

ν(hαl+1
)

l+1 .

Recall that we have the Iwasawa decomposition

Ĝ = K̂ÂÛ .
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For a subset θ ( {1, 2, . . . , l + 1}, we let P̂θ be the subgroup of Ĝ generated by B̂ and

wαi(s), i ∈ θ, s ∈ R∗. Let Lθ be the subgroup of Ĝ generated by χ±αi(s), i ∈ θ, s ∈ R. We

also define Aθ ⊆ Â to be the subgroup of all h ∈ Â such that hαi = 1 for all i ∈ θ. Let N̂ be

the subgroup of Ĝ generated by the elements wαi(s), s ∈ R∗, i = 1, . . . , l+ 1, and let N̂θ be the

subgroup of N̂ generated by Ĥ and wαi(s), s ∈ R∗, i ∈ θ. The group Wθ is defined by

Wθ = N̂θ/Ĥ.

Then we have P̂θ = B̂WθB̂. Let wθ ∈Wθ be the element of maximal length in Wθ, and set

Ûθ = wθÛwθ ∩ Û .

We have, from [4], the decomposition

(1.2) Ĝ = K̂LθAθÛθ.

Using the decomposition (1.2) and the Iwasawa decomposition Ĝ = K̂ÂÛ , we obtain

(1.3) Ĝ = K̂(Lθ ∩ K̂)(Lθ ∩ ÂÛ)AθÛθ = K̂Lθ,ÂÛAθÛθ,

where Lθ,ÂÛ := Lθ ∩ ÂÛ .

Lemma 1.1. Each component of an element g ∈ Ĝ in the decomposition

Ĝ = K̂Lθ,ÂÛAθÛθ,

is uniquely determined.

Proof. It follows from the uniqueness of expression in the Iwasawa decomposition Ĝ = K̂ÂÛ

and from [4, Theorem 6.1] that

K̂ ∩ Lθ,ÂÛAθÛθ = {1} and Lθ,ÂÛAθ ∩ Ûθ = {1}.

Moreover, the element h ∈ Lθ,ÂÛ ∩Aθ can be written as

h =
∏
i∈θ

hαi(si) with si ∈ R>0.

From the definition of Aθ, we obtain

hαj =
∏
i∈θ

s
αj(hαi )
i = 1 for each j ∈ θ.

Taking logarithms, we get ∑
i∈θ

αj(hαi) log si = 0, j ∈ θ.
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Since θ is a proper subset of {1, 2, . . . , l+ 1}, the Cartan matrix corresponding to θ is positive-

definite, and we obtain si = 1 for all i ∈ θ, which implies that h = 1. Therefore,

Lθ,ÂÛ ∩Aθ = {1}.

�

We consider a family of complex numbers ν = (νi)i=1,...,l+1, νi ∈ C, such that νi = 0 for

i ∈ θ and the induced quasi-character ν : Aθ ⊂ Â → C∗ as in (1.1). Let f be a cusp form on

Lθ satisfying

(1.4) f(kgγ) = f(g) for any k ∈ K̂ ∩ Lθ and γ ∈ Γ̂ ∩ Lθ.

We define a function Φf,ν : Ĝ→ C by

Φf,ν(g) = Φf,ν(kmau) = f(m)aν ,

where the decomposition g = kmau, k ∈ K̂, m ∈ Lθ,ÂÛ , a ∈ Aθ, u ∈ Ûθ, is given in Lemma

1.1. We fix an element Dθ ∈ heC such that

αi(Dθ) = 0 for all i ∈ θ and ι(Dθ) = 1.

Then we set

Φf,ν(ge−rDθ) = Φf,ν(g) for g ∈ Ĝ, r ∈ R>0.

Recall that we have

P̂θ = RθÛθ,

where Rθ = LθĤ = ĤLθ. (See [4, Theorem 6.1].)

Lemma 1.2. Suppose that g, γ ∈ Ĝ and β ∈ Γ̂ ∩ P̂θ. Then we have

(1) Φf,ν(gβ) = Φf,ν(g) and

(2) Φf,ν(ge−rDθγβ) = Φf,ν(ge−rDθγ).

Proof. (1) Write β = γ1u1, γ1 ∈ Γ̂ ∩ Rθ, u1 ∈ Ûθ, and g = kmau, k ∈ K̂, m ∈ Lθ, a ∈ Aθ,
u ∈ Ûθ. Since Rθ normalizes Ûθ, we have

gβ = kmau γ1u1 = kmaγ1 u2

for some u2 ∈ Ûθ, and since γ1 ∈ Γ̂∩Rθ, we can write γ1 = k1m1, k1 ∈ K̂ ∩ Ĥ and m1 ∈ Γ̂∩Lθ.
Note that mk1 = k1m. Then we obtain

gβ = kmak1m1u2 = kk1mm1au2

and

Φf,ν(gβ) = Φf,ν(kk1mm1au2) = f(mm1)aν = f(m)aν = Φf,ν(g).
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(2) We write β = γ1u1 as before and observe that

e−rDθβerDθ = e−rDθγ1u1e
rDθ = γ1u3,

with u3 ∈ Ûθ. Since e−rDθγ = γ′e−rDθ for some γ′ ∈ Ĝ, we obtain

Φf,ν(ge−rDθγβ) = Φf,ν(gγ′e−rDθβ) = Φf,ν(gγ′γ1u3)

= Φf,ν(gγ′) = Φf,ν(gγ′e−rDθ) = Φf,ν(ge−rDθγ).

�

Definition 1.3. For g ∈ Ĝ, r ∈ R>0, we define

E(f, ν, ge−rDθ) =
∑

γ∈Γ̂/Γ̂∩P̂θ

Φf,ν(ge−rDθγ).

Note that there is no ambiguity in the sum thanks to Lemma 1.2. In the rest of this paper,

we will be mainly interested in the constant term in the Fourier expansion of the series.

2. Measure and Lifting

In this section, we consider a measure on the adelic space corresponding to the unipotent

part of an arithmetic quotient and liftings of functions from a real group to an adelic group,

which will be used later in Section 3.

The quotient space Ûθ/Γ̂ ∩ Ûθ is the projective limit of compact nilmanifolds and hence

inherits both a compact, Hausdorff, projective limit topology, and a projective limit, probability

measure, which is invariant with respect to left translation by elements of Ûθ. We denote this

measure on Ûθ/Γ̂ ∩ Ûθ by du∞. See [6] for details.

Let V be the set of all primes p ∈ Z>0. We set Ve = V ∪ {∞}. We have the group

Ĝp := ĜQp ⊆ Aut(V λ
Qp) for each p ∈ Ve. In particular, Ĝ∞ = ĜQ∞ = ĜR = Ĝ. For p ∈ V, let

K̂p ⊆ Ĝp be the subgroup

K̂p = {g ∈ Ĝp | g · V λ
Zp = V λ

Zp}.

We define the adele ring A = AQ and the finite adele ring Af = AQ,f in the usual way, and

also define

ĜA =
∏
p∈Ve

′
Ĝp and ĜAf =

∏
p∈V

′
Ĝp

to be the restricted products with respect to {K̂p}p∈V . We have the diagonal embedding

i : ĜQ ↪→
∏
p∈Ve

Ĝp,
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and set

Γ̂Q = i−1(ĜA).

Since i(ĜQ) 6⊆ ĜA, the group Γ̂Q is important to obtain suitable restrictions of Q-groups.

Fix θ ( {1, 2, . . . , l + 1}, and let Ûθ,A ⊆ ĜA and Ûθ,Af ⊆ ĜAf be the subgroups

Ûθ,A =
∏
p∈Ve

′
Ûθ,Qp and Ûθ,Af =

∏
p∈V

′
Ûθ,Qp ,

where we take the restricted direct products with respect to {K̂p ∩ Ûθ,Qp}p∈V . We set

K̂ =
∏
p∈Ve

K̂p ⊂ ĜA and K̂f =
∏
p∈V

K̂p ⊂ K̂ ⊂ ĜA.

Then we have (
(K̂f ∩ Ûθ,Af )× Ûθ

)/
Γ̂ ∩ Ûθ ∼= Ûθ,A/Γ̂Q ∩ Ûθ,Q,

the identification being induced by the inclusion

(K̂f ∩ Ûθ,Af )× Ûθ ↪→ Ûθ,A,

and Γ̂ ∩ Ûθ,Q being diagonally embedded in (K̂f ∩ Ûθ,Af )× Ûθ.
The compact group Ûθ,Zp , p ∈ V, has a unique Haar measure dup with total measure one.

Set

duf =
∏
p∈V

dup on K̂f ∩ Ûθ,Af =
∏
p∈V

Ûθ,Zp .

Through the identification Ûθ,A/Γ̂Q ∩ Ûθ,Q ∼=
(∏

p∈V Ûθ,Zp × Ûθ
)/

Γ̂ ∩ Ûθ, we have the induced

measure du = duf × du∞ on Ûθ,A/Γ̂Q ∩ Ûθ,Q; more precisely, if f is a continuous function on

Ûθ,A/Γ̂Q ∩ Ûθ,Q then we have∫
Ûθ,A/Γ̂Q∩Ûθ,Q

f(u)du =
∫
Ûθ/Γ̂∩Ûθ

[∫
Q
p∈V Ûθ,Zp

f(u)duf

]
du∞.

We define the conjugation by e−rDθ on ĜA to be its usual action on the factor Ĝ at ∞ and

the trivial action on each factor Ĝp at p ∈ V. Consider the natural maps

Ĝe−rDθ ↪→ ĜAe
−rDθ → K̂f\ĜAe

−rDθ/Γ̂Q,

where the first map is an injection and the second map is a projection. Then the composite of

the two maps induces a bijection

θ : Ĝe−rDθ/Γ̂→ K̂f\ĜAe
−rDθ/Γ̂Q.
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On the other hand, we have the bijection

β : (K̂f × Ĝe−rDθ)/Γ̂→ ĜAe
−rDθ/Γ̂Q

induced by the injection (K̂f × Ĝe−rDθ) ↪→ ĜAe
−rDθ , and we also have the projection

π : (K̂f × Ĝe−rDθ)/Γ̂→ Ĝe−rDθ/Γ̂.

We denote by ω the projection

ω : ĜAe
−rDθ/Γ̂Q → K̂f\ĜAe

−rDθ/Γ̂Q.

Then we obtain the following commutative diagram:

ĜAe
−rDθ/Γ̂Q

β−1

−→ (K̂f × Ĝe−rDθ)/Γ̂
ω ↓ ↓ π

K̂f\ĜAe
−rDθ/Γ̂Q

θ−1

−→ Ĝe−rDθ/Γ̂

.

If F is a function on Ĝe−rDθ/Γ̂, then we have a lifting F̌ on ĜAe
−rDθ/Γ̂Q defined by

(2.1) F̌ (g) = F ((π ◦ β−1)(g)).

Let f be a cusp form on Lθ satisfying (1.4). We obtain a lifting f̌ on Lθ,A/Lθ,Q using a similar

process as in the above constructions. We further assume that f̌ belongs to the representation

space of a cuspidal representation Π = ⊗Πp of Lθ,A and that f̌ can be written as f̌ = ⊗p∈Vefp,
where fp is a (K̂p∩Lθ,Qp)-fixed vector of the representation space of Πp for each p ∈ Ve. Recall

that we have the Iwasawa decomposition

Ĝp = K̂pLθ,QpĤQpÛθ,Qp for each p ∈ V.

Set

Lθ,A =
∏
p∈Ve

′
Lθ,Qp and Lθ,Af =

∏
p∈V

′
Lθ,Qp

( resp. Aθ,A =
∏
p∈Ve

′
Aθ,Qp and Aθ,Af =

∏
p∈V

′
Aθ,Qp )

with respect to {K̂p ∩ Lθ,Qp}p∈V (resp. {K̂p ∩ Aθ,Qp}p∈V). One obtains from the Iwasawa

decomposition of Ĝp that

ĜA = K̂Lθ,AÂAÛθ,A and ĜAf = K̂fLθ,Af ÂAf Ûθ,Af .

We define the function Φfp,ν on Ĝp by

Φfp,ν(gp) = Φfp,ν(kpmpapup) = fp(mp)|ap|ν ,
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where the decomposition gp = kpmpapup is given by the Iwasawa decomposition, and we define

the function Φf̌ ,ν on ĜA by

Φf̌ ,ν(g) =
∏
p∈Ve

Φfp,ν(gp).

Consider an element a =
∏
p∈Ve ap ∈ Aθ,A where ap =

∏l+1
i=1 hαi(sp,i) ∈ Aθ,Qp for some sp,i ∈ Qp.

Let si =
∏
p∈Ve sp,i for i = 1, . . . , l + 1. Then we have

|a|ν =

(
l+1∏
i=1

hαi(|si|)

)ν
=

l+1∏
i=1

|si|ν(hi)

=
l+1∏
i=1

∏
p∈Ve
|sp,i|p

ν(hi)

=
∏
p∈Ve

(
l+1∏
i=1

(|sp,i|p)ν(hi)

)

=
∏
p∈Ve
|ap|ν .

We obtain:

Lemma 2.1.

Φf̌ ,ν(g) = Φ̌f,ν(g).

Proof. Let g ∈ ĜA with the Iwasawa decomposition g = kmau. By definition, g can be written

as g =
∏
p∈Ve gp where gp ∈ ĜQp with the Iwasawa decomposition gp = kpmpapup. Note that

|a|ν = (π ◦ β−1(a))ν for any a ∈ Aθ,A(see [6, Section 5] for details). Thus we have

Φf̌ ,ν(g) =
∏
p∈Ve

Φfp,ν(gp) =
∏
p∈Ve

fp(mp)|ap|ν =
∏
p∈Ve

fp(mp)
∏
p∈Ve
|ap|ν

= f̌(m)|a|ν = f((π ◦ β−1(m)))(π ◦ β−1(a))ν = Φf,ν(π ◦ β−1(g))

= Φ̌f,ν(g).

�

Remark. From now on, if there is no peril of confusion, we will omitˇfrom the notations for

simplicity and for consistency with the notations in [6, 7].

3. Constant Term

In this section, we prove some properties of affine root systems and obtain a formula for the

constant term of the Eisenstein series, which is the main result of this paper.
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For each i = 1, ..., l + 1, we define the simple reflection wi ∈ Aut(ĥe) by

wi(h) = h− αi(h)hi for h ∈ ĥe.

The affine Weyl group Ŵ ⊂ Aut(ĥe) is the group generated by wi, i = 1, ..., l + 1. Note that

the group Wθ is identified with the subgroup of Ŵ generated by wi, i ∈ θ. We denote by ∆+
θ

the set of elements in ∆̂+
W that are linear combinations of αi with i ∈ θ, and ∆−θ = −∆+

θ . For

w ∈ Ŵ , we define

(3.1) ∆θ,w = {α ∈ ∆̂+
W \∆+

θ | w
−1α ∈ ∆̂−W \∆−θ }.

For simplicity, we write ∆w for ∆∅,w. It is well-known that

∆w = {wirwir−1 · · ·wij+1αij | j = 1 . . . r},

where wirwir−1 · · ·wi1 is a reduced expression of w in terms of simple reflections.

Let θ′ ( {1, 2, . . . , l + 1} be a subset with Card(θ′) = Card(θ). There exists a set W (θ′, θ)

of double coset representatives of Wθ′\Ŵ/Wθ such that, for each w ∈ W (θ′, θ), the length

of w is minimal in Wθ′wWθ. (See, for example, [1].) Moreover, the set W (θ′, θ) is uniquely

determined. When θ = θ′, we simply write W (θ′, θ) = W (θ). Then we have W (θ) = W (θ)−1.

For each w ∈ Ŵ , there exist ẘ ∈ W (θ) and w1, w2 ∈ Wθ such that w = w1ẘw2 and l(w) =

l(w1) + l(ẘ) + l(w2), and the decomposition is unique.

Lemma 3.1. (1) For w ∈W (θ) and α ∈ ∆+
θ , we obtain

wα ∈ ∆̂+
W .

(2) For any w ∈W (θ), we have

∆θ,w = ∆w.

Proof. (1) Assume that w ∈ W (θ) and α ∈ ∆+
θ . Then there extists wα ∈ Wθ such that

α = wααi for some i ∈ θ. Since l(wαwi) = l(wα) + 1 (see [9, Lemma 3.11]),

l(wwαwi) = l(w) + l(wαwi) > l(w) + l(wα) = l(wwα).

Therefore,

wα = wwααi ∈ ∆̂+
W .(3.2)

(2) We fix w ∈ W (θ) and consider α ∈ ∆w. By definition, α ∈ ∆̂+
W and w−1α ∈ ∆̂−W .

Suppose that w−1α ∈ ∆−θ . Then there exists β ∈ ∆+
θ such that

w−1α = −β,
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and we obtain from (3.2)

α = −wβ ∈ ∆̂−W ,

which is a contradiction. Thus

w−1α ∈ ∆̂−W \∆−θ .

Since w−1 ∈W (θ), a similar argument yields

α = w(w−1α) ∈ ∆̂+
W \∆+

θ .

Thus we have shown that ∆w ⊆ ∆θ,w. Clearly, ∆θ,w ⊆ ∆w. Therefore,

∆θ,w = ∆w.

�

Let R be a commutative ring. As before, whenever the subscript R is omitted, it will be

understood that R = R. For any subgroup H of ĜR and g ∈ ĜR, we will write

gH = gHg−1 and Hg = g−1Hg.

We define Û−,θ,R to be the subgroup generated by χα(s), s ∈ R, α ∈ ∆̂−W \∆
−
θ . For w ∈W (θ′, θ),

we define

Uw,R = Ûθ′,R ∩ wU−,θ,R, U ′w,R = Ûθ′,R ∩ wLθ,R and Û ′′w,R = Ûθ′,R ∩ wÛθ,R.

Then we have

(3.3) Ûθ′,R = Uw,R U ′w,R Û ′′w,R.

Recall that the group ĜR has the Bruhat decomposition

ĜR =
⋃

w∈W (θ′,θ)

P̂θ′,R w P̂θ,R.

Definition 3.2. Suppose that g ∈ Ĝ and r ∈ R>0. The constant term Eθ′(f, ν, ge−rDθ) of the

series E(f, ν, ge−rDθ) is defined to be

Eθ′(f, ν, ge−rDθ) =
∫
Ûθ′/Ûθ′∩Γ̂

E(f, ν, ge−rDθu)du∞.

From now on in this section, we assume that ν is real; i.e., ν : Aθ → R>0. For each

w ∈W (θ′, θ), we set

Γ̂(w) = Γ̂ ∩ P̂θ′wP̂θ,

and define

Ew(f, ν, ge−rDθ) =
∑

γ∈Γ̂(w)/Γ̂∩P̂θ

Φf,ν(ge−rDθγ).
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It follows from the Bruhat Decomposition that

E(f, ν, ge−rDθ) =
∑

w∈W (θ′,θ)

Ew(f, ν, ge−rDθ).

By the monotone convergence theorem, we have

(3.4) Eθ′(f, ν, ge−rDθ) =
∑

w∈W (θ′,θ)

∫
Ûθ′/Ûθ′∩Γ̂

Ew(f, ν, ge−rDθu)du∞.

Remark. The assumption that ν is real should not be considered essential. After we prove that

the constant term is convergent for real ν (in a subsequent paper), we will have the equation

(3.4) for any complex ν.

We need to fix measures on various coset spaces. The measure du on Ûθ′,A/(Γ̂Q∩Ûθ′,Q∩wP̂θ,Q)

is obtained from the measure du on Ûθ′,A/Γ̂Q ∩ Ûθ′,Q through the projection

Ûθ′,A/(Γ̂Q ∩ Ûθ′,Q ∩ wP̂θ,Q)→ Ûθ′,A/Γ̂Q ∩ Ûθ′,Q.

We obtain from (3.3) the decomposition

Ûθ′,A = Uw,A U
′
w,A Û

′′
w,A

and by the definition, we have

Uw,Q ∩ wP̂θ,Q = ∅ and U ′w,Q Û
′′
w,Q ⊆ wP̂θ,Q.

We define left-invariant probability measures du2 and du3 on

U ′w,A
/

Γ̂Q ∩ Ûθ′,Q and Û ′′w,A
/

Γ̂Q ∩ Ûθ′,Q,

respectively, using the same construction as in Section 2. Since Uw,A is locally compact, there

exists a left Haar measure du1 on Uw,A such that∫
Ûθ′,A/Γ̂Q∩Ûθ′,Q∩wP̂θ,Q

F (u)du(3.5)

=
∫
Uw,A

∫
U ′w,A/Γ̂Q∩Ûθ′,Q

∫
Û ′′w,A/Γ̂Q∩Ûθ′,Q

F (u1u2u3)du3du2du1.

The following lemma will be useful in later calculations.

Lemma 3.3. Assume that g ∈ Ĝ and r ∈ R>0.

(1) For any unipotent radical Ũ of a parabolic subgroup of Lθ,A, we have∫
Ũ

Φf,ν(ge−rDθ ũ)dũ = 0.
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(2) If a ∈ Aθ then Φf,ν(ge−rDθa) = aνΦf,ν(ge−rDθ).

Proof. (1) Write g = kgmgagug according to the Iwasawa decomposition. Then we have

Φf,ν(ge−rDθ ũ) = Φf,ν(gũ) = Φf,ν(kgmgagugũ)

= Φf,ν(kgmgagũ u
′) = f(mgagũ)

for some u′ ∈ Ûθ, since e−rDθ commutes with ũ and Lθ normalizes Ûθ. Now the assertion

follows from the cuspidality of f .

(2) Using the same notations, we obtain

Φf,ν(ge−rDθa) = Φf,ν(mgaguge
−rDθa) = Φf,ν(mgaguga)

= Φf,ν(mgaga) = f(mga
ν
g)aν = aνΦf,ν(ge−rDθ).

�

We define

C(θ′, θ) = {w ∈W (θ′, θ) | Lθ′ = wLθ} = {w ∈W (θ′, θ) | ∆±θ′ = w∆±θ }.

Lemma 3.4. Assume that g ∈ Ĝ and w ∈W (θ′, θ). If w ∈ C(θ′, θ), we have∫
Ûθ′/Ûθ′∩Γ̂

Ew(f, ν, ge−rDθu)du∞ =
∫
Uw,A

Φf,ν(ge−rDθu1w)du1.

Otherwise, ∫
Ûθ′/Ûθ′∩Γ̂

Ew(f, ν, ge−rDθu)du∞ = 0.

Proof. We have the projection

Ûθ′,A/Γ̂Q ∩ Ûθ′,Q ∼= ((Kf ∩ Ûθ′,Af )× Ûθ′)/Γ̂ ∩ Ûθ′
π→ Ûθ′/Γ̂ ∩ Ûθ′ .

If we consider Ew(f, ν, ge−rDθu) as a function on Ûθ′/Γ̂ ∩ Ûθ′ , we can pull it back through

the projection π to obtain a function on Ûθ′,A/Γ̂Q ∩ Ûθ′,Q, which we will denote by the same

notation Ew(f, ν, ge−rDθu). Then we have

(3.6)
∫
Ûθ′/Γ̂∩Ûθ′

Ew(f, ν, ge−rDθu)du∞ =
∫
Ûθ′,A/Γ̂Q∩Ûθ′,Q

Ew(f, ν, ge−rDθu)du.

We define

Γ̂Q(w) = Γ̂Q ∩ (P̂θ′,Qw P̂θ,Q).

Then we have

Γ̂Q(w) = Γ̂(w)(P̂θ,Q ∩ Γ̂Q),



EISENSTEIN SERIES ON LOOP GROUPS 13

since Γ̂Q = Γ̂(P̂θ,Q ∩ Γ̂Q) and Γ̂(w) = Γ̂ ∩ P̂θ′wP̂θ = Γ̂ ∩ P̂θ′,QwP̂θ,Q. So we obtain

Ew(f, ν, ge−rDθ) =
∑

γ∈Γ̂(w)/Γ̂∩P̂θ

Φf,ν(ge−rDθγ) =
∑

γ∈Γ̂Q(w)/Γ̂Q∩P̂θ,Q

Φf,ν(ge−rDθγ).

Now we have ∫
Ûθ′,A/Γ̂Q∩Ûθ′,Q

Ew(f, ν, ge−rDθu) du

=
∫
Ûθ′,A/Γ̂Q∩Ûθ′,Q

∑
γ∈Γ̂Q(w)/Γ̂Q∩P̂θ,Q

Φf,ν(ge−rDθuγ) du

=
∑

m∈Rθ′,Q∩Γ̂Q/Rθ′,Q∩Γ̂Q∩wP̂θ,Q

∑
n∈Γ̂Q∩Ûθ′,Q/Γ̂Q∩Ûθ′,Q∩mwP̂θ,Q∫

Ûθ′,A/Γ̂Q∩Ûθ′,Q
Φf,ν(ge−rDθunmw) du

=
∑

m∈Rθ′,Q∩Γ̂Q/Rθ′,Q∩Γ̂Q∩wP̂θ,Q

∫
Ûθ′,A/Γ̂Q∩Ûθ′,Q∩mwP̂θ,Q

Φf,ν(ge−rDθumw) du

=
∑

m∈Rθ′,Q∩Γ̂Q/Rθ′,Q∩Γ̂Q∩wP̂θ,Q

∫
Ûθ′,A/Γ̂Q∩Ûθ′,Q∩wP̂θ,Q

Φf,ν(ge−rDθmuw) du,(3.7)

where the measure du on Ûθ′,A/(Γ̂Q∩Ûθ′,Q∩wP̂θ,Q) is explained above. Using the decomposition

(3.5), the integral in (3.7) equals∫
Uw,A

∫
U ′w,A/Γ̂Q∩Ûθ′,Q

∫
Û ′′w,A/Γ̂Q∩Ûθ′,Q

Φf,ν(ge−rDθmu1u2u3w)du3du2du1

=
∫
Uw,A

∫
U ′w,A/Γ̂Q∩Ûθ′,Q

∫
Û ′′w,A/Γ̂Q∩Ûθ′,Q

Φf,ν(ge−rDθmu1u2w(w−1u3w))du3du2du1

=
∫
Uw,A

∫
U ′w,A/Γ̂Q∩Ûθ′,Q

Φf,ν(ge−rDθmu1u2w)du2du1

=
∫
Uw,A

∫
U ′w,A/Γ̂Q∩Ûθ′,Q

Φf,ν(ge−rDθmu1w(w−1u2w))du2du1

=
∫
Uw,A

∫
(U ′w,A)w/Lθ,Q

Φf,ν(ge−rDθmu1wu
′
2)du′2du1,(3.8)

where the measure du′2 on (U ′w,A)w is the Haar measure induced from du2 by conjugation. We

also note that (U ′w,A)w ⊂ Lθ,A. One can see that, unless (U ′w,A)w = {1},∫
(U ′w,A)w/Lθ,Q

Φf,ν(ge−rDθmu1wu
′
2)du′2 = 0
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by Lemma 3.3 (1). Since

(U ′w,A)w = {1} ⇐⇒ Lθ′ = wLθ ⇐⇒ w ∈ C(θ′, θ),

we have proven the second part of the assertion.

If w ∈ C(θ′, θ), then Rθ′,Q ⊂ wP̂θ,Q, and we have from (3.7) and (3.8)∫
Ûθ′,A/Γ̂Q∩Ûθ′,Q

Ew(f, ν, ge−rDθu) du =
∫
Uw,A

Φf,ν(ge−rDθu1w)du1,

which yields the first part of the proposition by (3.6). �

From now on, we mainly consider the case when θ′ = θ, and write C(θ) = C(θ, θ). We define

the shifted action of Ŵ on by

w · ν = w(ν + ρ)− ρ,

and we write

mw = w−1mw.

In the following lemma, we further simplify the integral.

Lemma 3.5. For g ∈ Ĝ, r ∈ R>0 and w ∈ C(θ), we have∫
Uw,A

Φf,ν(ge−rDθu1w)du1 = (age−rDθ)w·νf(mw
g )
∫
Uw,A

Φf,ν(u1w)du1,

where ag ∈ Aθ and mg ∈ Lθ are given by the Iwasawa decomposition of g.

Proof. We write g = kgmgagug with respect to the Iwasawa decomposition. We set ũg =

erDθuge
−rDθ and write ũg = ũg,1ũg,2ũg,3 with respect to the decomposition (3.3). Since w ∈

C(θ), we have U ′w,A = {1} and ũg,2 = 1. Then we have

Φf,ν(ge−rDθu1w) = Φf,ν(mgaguge
−rDθu1w) = Φf,ν(mgage

−rDθ ũgu1w)

= Φf,ν(mgage
−rDθ ũg,1ũg,3u1w)

= Φf,ν(mgage
−rDθ ũg,1 (ũg,3u1ũ

−1
g,3)w (w−1ũg,3w) )

= Φf,ν(mgage
−rDθ ũg,1u1ûg,3w)

= Φf,ν(mgage
−rDθ ũg,1u1w (w−1ûg,3w) )

= Φf,ν(mgage
−rDθ ũg,1u1w),
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where u1ûg,3 = ũg,3u1ũ
−1
g,3 with ûg,3 ∈ Û ′′w,A. Now we obtain∫

Uw,A

Φf,ν(ge−rDθu1w)du1

=
∫
Uw,A

Φf,ν(mgage
−rDθ ũg,1u1w)du1

=
∫
Uw,A

Φf,ν(mgage
−rDθu1w)du1 (by the invariance of the measure)

=
∫
Uw,A

Φf,ν(mgage
−rDθu1e

rDθa−1
g w (w−1age

−rDθw) )du1.(3.9)

We observe that, since w ∈ C(θ),

(w−1age
−rDθw)αi = (age−rDθ)wαi = 1 for each i ∈ θ,

and so w−1age
−rDθw ∈ Aθ. Applying Lemma 3.3 (2) to (3.9), we obtain∫

Uw,A

Φf,ν(ge−rDθu1w)du1 = (age−rDθ)wν
∫
Uw,A

Φf,ν(mgage
−rDθu1e

rDθa−1
g w)du1.

Using Lemma 3.1 and the identity ∑
α∈∆w

α = ρ− wρ,

we continue to calculate and obtain∫
Uw,A

Φf,ν(ge−rDθu1w)du1 = (age−rDθ)wν (age−rDθ)wρ−ρ
∫
Uw,A

Φf,ν(mgu1w)du1,

= (age−rDθ)w(ν+ρ)−ρ
∫
Uw,A

Φf,ν(mgu1w)du1

= (age−rDθ)w(ν+ρ)−ρ
∫
Uw,A

Φf,ν(u1mgw)du1

= (age−rDθ)w(ν+ρ)−ρ
∫
Uw,A

Φf,ν(u1ww
−1mgw)du1

= (age−rDθ)w(ν+ρ)−ρ f(mw
g )
∫
Uw,A

Φf,ν(u1w)du1.

This completes the proof. �

The following lemma can be proved in a standard way using the Gindikin-Karpelevich for-

mula.
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Lemma 3.6. [11, 6] We have∫
Uw,A

Φf,ν(u1w)du1 =
∏

α∈∆w−1

Λ(−(ν + ρ)(hα))
Λ(−(ν + ρ)(hα) + 1)

,

where Λ(s) is the completed L-function associated to f .

Now we obtain the following theorem from (3.4), Lemma 3.4, Lemma 3.5 and Lemma 3.6.

Theorem 3.7.

Eθ(f, ν, ge−rDθ) =
∑

w∈C(θ)

(age−rDθ)w·νf(mw
g )

∏
α∈∆w−1

Λ(−(ν + ρ)(hα))
Λ(−(ν + ρ)(hα) + 1)

.

4. Examples

In this section, we characterize the set C(θ) of double coset representatives when θ ⊆
{1, 2, ..., l} and determine the constant terms explicitly in some non-maximal cases. It is known

that there is no maximal self-conjugate parabolic subgroups (See [12]).

Let ĝ be the affine Kac-Moody algebra and Ŵ the Weyl group corresponding to ĝ. It is

well-known that

Ŵ = W n T,

where W is the subgroup of Ŵ generated by {w1, . . . , wl}, which is the Weyl group correspond-

ing to g, and T is the translation group which is isomorphic to some lattice M ⊂
◦

h∗R (see [9,

Proposition 6.5]). In the case of type A(1)
l , for example, M = ⊕li=1Zαi and the translation tϑ

by ϑ :=
∑l

i=1 αi is written as

tϑ = wl+1w1w2 . . . wl−1wlwl−1 . . . w2w1.

Assume that θ ⊆ {1, . . . , l} and we set

Ĉ(θ) := {w ∈ Ŵ | w∆±θ = ∆±θ },

C(θ) := {w ∈W | w∆±θ = ∆±θ },

M(θ) := {α ∈M | α(hi) = 0 ∀i ∈ θ}.

By definition, C(θ) is the set of double coset representatives of Wθ\Ĉ(θ)/Wθ such that, for each

w ∈ Ĉ(θ), the length of w in WθwWθ is minimal in Wθ\Ĉ(θ)/Wθ.

Proposition 4.1. We have

Ĉ(θ) = {wtα| w ∈ C(θ), α ∈M(θ)}.



EISENSTEIN SERIES ON LOOP GROUPS 17

Proof. Let Ĉ = {wtα| w ∈ C(θ), α ∈M(θ)}. For any element wtα ∈ Ĉ and a ∈ ∆±θ , we have

wtα(a) = w(a− (α|a)ι) = w(a) ∈ ∆±θ ,

which implies Ĉ ⊆ Ĉ(θ). Now we fix some element x ∈ Ĉ(θ). Then x can be written as x = wtα

for some w ∈W and α ∈M . Since

wtα(a) = w(a− (α|a)ι) = w(a)− (α|a)ι ∈ ∆±θ

for all a ∈ ∆±θ , we have α(hi) = 0 and wαi ∈ ∆+
θ for all i ∈ θ. Hence, Ĉ(θ) ⊆ Ĉ. �

Corollary 4.2. [12] If θ = {1, 2, ..., l}, then C(θ) = {id}.

Proof. Note that C(θ) = Wθ and M(θ) = ∅ if θ = {1, . . . , l}. Applying Proposition 4.1 to this

case proves our assertion. �

Example 4.3. Let ĝ be the affine Kac-Moody algebra of type A(1)
1 and let θ = ∅. Then the

cusp form f on Lθ satisfying (1.4) must be constant. We take f to be 1, and set

ĥeC = Ch1 ⊕ Ch2 ⊕ CD,
(
ĥeC

)∗
= CΛ1 ⊕ CΛ2 ⊕ CΛD,

where

Λi(hj) = δij , Λi(D) = 0, ΛD(hj) = 0 and ΛD(D) = 1 (i, j = 1, 2).

The simple roots are given by

α1 = 2Λ1 − 2Λ2, α2 = −2Λ1 + 2Λ2 + ΛD.

Set ρ = Λ1 + Λ2. The Weyl group Ŵ can be described as

Ŵ = 〈w1, w2|w2
1 = 1, w2

2 = 1〉

= {wε11 (w2w1)nwε22 |ε1, ε2 = 0 or 1, n ∈ Z≥0}.

Let w = wε11 (w2w1)nwε22 ∈ Ŵ . Then

∆̂w = ∆̂+ ∩ w∆̂−

= {ε1α1, ε2w
ε1
1 (w2w1)nα2, w

ε1
1 (w2w1)iα2, w

ε1
1 (w2w1)jw2α1 | 0 ≤ i, j ≤ n− 1} \ {0}.

We fix ν = aΛ1 + bΛ2 + cΛD with Re(a),Re(b) < −2. Recall the definition of c̃(ν, w):

c̃(ν, w) =
∏

α∈∆̂w−1

ξ(−(ν + ρ)(hα))
ξ(−(ν + ρ)(hα) + 1)

.

Let κ = (ν + ρ)(h1 + h2) = a+ b+ 2.
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(1) Assume that w = (w2w1)n (n ≥ 1). Then w−1 = w1(w2w1)n−1w2,

∆̂w−1 = {(2t+ 2)α1 + (2t+ 1)α2, (2s+ 1)α1 + 2sα2 | 0 ≤ s, t ≤ n− 1},

c̃(ν, w) =
2n−1∏
t=0

ξ(−κt− a− 1)
ξ(−κt− a)

,

and we get

w(ν + ρ)− ρ = (2κn+ a)Λ1 + (−2κn+ b)Λ2 + (−κn2 − (a+ 1)n+ c)ΛD.

(2) Assume that w = w1(w2w1)n (n ≥ 0). Then w−1 = w1(w2w1)n,

∆̂w−1 = {(2t+ 2)α1 + (2t+ 1)α2, (2s+ 1)α1 + 2sα2 | 0 ≤ t ≤ n− 1, 0 ≤ s ≤ n},

c̃(ν, w) =
2n∏
t=0

ξ(−κt− a− 1)
ξ(−κt− a)

,

and we get

w(ν + ρ)− ρ = (−2κn− a− 2)Λ1 + (2κ(n+ 1)− b− 2)Λ2

+ (−κn2 − (a+ 1)n+ c)ΛD.

(3) Assume that w = (w2w1)nw2 (n ≥ 0). Then w−1 = (w2w1)nw2,

∆̂w−1 = {2tα1 + (2t+ 1)α2, (2s+ 1)α1 + (2s+ 2)α2 | 0 ≤ t ≤ n, 0 ≤ s ≤ n− 1},

c̃(ν, w) =
2n∏
t=0

ξ(−κt− b− 1)
ξ(−κt− b)

,

and we get

w(ν + ρ)− ρ = (2κ(n+ 1)− a− 2)Λ1 + (−2κn− b− 2)Λ2

+ (−κn2 − (a+ 2b+ 3)n− b+ c− 1)ΛD.

(4) Assume that w = w1(w2w1)nw2 (n ≥ 0). Then w−1 = (w2w1)n+1,

∆̂w−1 = {2tα1 + (2t+ 1)α2, (2s+ 1)α1 + (2s+ 2)α2 | 0 ≤ t, s ≤ n},

c̃(ν, w) =
2n+1∏
t=0

ξ(−κt− b− 1)
ξ(−κt− b)

,

and we get

w(ν + ρ)− ρ = (−2κ(n+ 1) + a)Λ1 + (2κ(n+ 1) + b)Λ2

+ (−κn2 − (a+ 2b+ 3)n− b+ c− 1)ΛD.
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Let g ∈ Ĝ, ag = h1(s1)h2(s2), s1, s2 ∈ R>0. Then we obtain

Eθ(1, ν, ge−rD) =
∑
w∈Ŵ

(age−rD)w(ν+ρ)−ρc̃(ν, w)

=
∞∑
i=0

{
(age−rD)(w2w1)i(ν+ρ)−ρ c̃(ν, (w2w1)i)

+(age−rD)w1(w2w1)i(ν+ρ)−ρ c̃(ν, w1(w2w1)i)

+(age−rD)(w2w1)iw2(ν+ρ)−ρ c̃(ν, (w2w1)iw2)

+(age−rD)w1(w2w1)iw2(ν+ρ)−ρ c̃(ν, w1(w2w1)iw2)
}

=
∞∑
i=0

sa1sb2e−rcer(κi2+(a+1)i)
2i−1∏
j=0

sκ1ξ(−κj − a− 1)
sκ2ξ(−κj − a)

+sb1s
a
2e
−rcer(κi

2+(a+1)i)
2i∏
j=0

sκ2ξ(−κj − a− 1)
sκ1ξ(−κj − a)

+sb1s
a
2e
−rcer(κi

2+(a+2b+3)i+b+1)
2i∏
j=0

sκ1ξ(−κj − b− 1)
sκ2ξ(−κj − b)

+sa1s
b
2e
−rcer(κi

2+(a+2b+3)i+b+1)
2i+1∏
j=0

sκ2ξ(−κj − b− 1)
sκ1ξ(−κj − b)

 .

Example 4.4. Let ĝ be the affine Kac-Moody algebra of type A(1)
2 and let θ = {2}. Choose a

cusp form f on Lθ satisfying (1.4), and set

Dθ := D + c1(2h1 + h2) + c2(h2 + 2h3)

for some c1, c2 ∈ C. Since tα1+α2 = w3w1w2w1, we obtain

tα1 = tw2(α1+α2) = w2tα1+α2w2 = w2w3w2w1,

tα2 = tw1(α1+α2) = w1tα1+α2w1 = w1w3w1w2.

Let σ := 2α1 + α2. Then, by Proposition 4.1, we have

C(θ) = {w ∈W | ∆±θ = w∆±θ } = {id, w2},

M(θ) = {α ∈M | α(hi) = 0 ∀i ∈ θ} = {kσ| k ∈ Z},
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which implies

Ĉ(θ) = {wtα| w ∈ C(θ), α ∈M(θ)}

= {tkσ, w2tkσ| k ∈ Z}

= {(t2α1
tα2)k, w2(t2α1

tα2)k| k ∈ Z}

= {(w3w2w1w3w2w1)k, w2(w3w2w1w3w2w1)k| k ∈ Z}.

Therefore

C(θ) = {(w3w2w1w3w2w1)k| k ∈ Z}.

Note that (w3w2w1w3w2w1)k is a reduced expression of tkσ since l(tkσ) = 6k.

Set ν := aΛ1 + bΛ3, K := h1 + h2 + h3, ρ := Λ1 + Λ2 + Λ3 and ` := a+ b+ 3. Then

∆t−1
kσ

= { t−1
(i−1)σα1, (w2w3w1w2w3tiσ)−1α2, (w3w1w2w3tiσ)−1α3,

(w1w2w3tiσ)−1α1, (w2w3tiσ)−1α2, (w3tiσ)−1α3| 1 ≤ i ≤ k},

and, by using [9, (6.5.2)], we have

tkσ(ν + ρ) = ν + ρ+ 〈ν + ρ,K〉kσ −
(

(ν + ρ|kσ) +
1
2
k2|σ|2〈ν + ρ,K〉

)
ι

= ν + ρ+ `kσ −
(

3`
2
k2 + (2a+ b+ 3)k

)
ι,

which yields

tkσ(ν + ρ)(hi) =


a+ 1 + 3`k if i = 1,

1 if i = 2,

b+ 1− 3`k if i = 3.

Since (ν + ρ)(ht−1
kσ (α)) = tkσ(ν + ρ)(hα) for any α ∈ (ĥe)∗, we obtain∏

α∈∆
t−1
kσ

Λ(−(ν + ρ)(hα))
Λ(−(ν + ρ)(hα) + 1)

=
∏

1≤i≤|k|

∏
1≤j≤6

Λ(aj − 3sgn(k)`i)
Λ(aj + 1− 3sgn(k)`i)

,

where Λ(s) is the completed standard L-function associated to f , sgn(k) = k
|k| and

a1 = −a− 1, a2 = 2a+ 3b+ 7, a3 = a+ 2b+ 5,

a4 = a+ 2b+ 4, a5 = b+ 2, a6 = b+ 1.

Consequently,

Eθ(f, ν, ge−rDθ) =
∑
k∈Z

(ag)ν+`kσedθf(mw(k)
g )

∏
1≤i≤|k|

∏
1≤j≤6

Λ(aj − 3sgn(k)`i)
Λ(aj + 1− 3sgn(k)`i)

,
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where

dθ = r

(
3`
2
k2 + (2a+ b+ 3)k − (6`(c1 − c2)k + 2ac1 + 2bc2)

)
and w(k) = (w3w2w1w3w2w1)k.
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