CONSTANT TERMS OF CERTAIN EISENSTEIN SERIES
ON ARITHMETIC QUOTIENTS OF LOOP GROUPS

SEOK-JIN KANG!, KYU-HWAN LEE, AND EUIYONG PARK!?

ABSTRACT. In this paper, we construct Eisenstein series on arithmetic quotients of loop groups
for arbitrary standard parabolic subgroups, generalizing Garland’s construction for minimal
parabolic subgroups. We compute the constant terms to obtain a formula in the self-conjugate

case and work out some examples.

INTRODUCTION

In his papers [6, 7], Garland defined and studied certain Eisenstein series associated with
minimal parabolic subgroups on arithmetic quotients of loop groups. He computed the con-
stant terms and showed the absolute convergence of the series. This can be considered as a
generalization of Godement’s work in [8] and Langlands’ work in [11] to affine Kac-Moody
groups.

The Kac-Moody theory has undergone tremendous developments in connections with di-
verse areas—number theory, geometry, combinatorics and mathematical physics. However,
automorphic forms on Kac-Moody groups have not yet been well established. One of the main
difficulties is that Kac-Moody groups are infinite dimensional groups which are not locally
compact. Hence there are no Haar measures by Weil’s Theorem. This fact precludes many of
classical approaches and calls for new ideas.

On the other hand, there has been an increasing need and expectation for a theory of auto-
morphic forms on Kac-Moody groups. As indicated in [12], a satisfactory theory of Eisenstein
series on Kac-Moody groups would bring breakthroughs in Langlands’ functoriality conjecture.
Garland’s works have made important first steps in this direction.

The purpose of this paper is to extend Garland’s construction to arbitrary standard parabolic
subgroups. More precisely, we define Eisenstein series associated with cusp forms on the Levi
components of standard parabolic subgroups and compute their constant terms in the self-
conjugate case. As a main result, we obtain a formula (Theorem 3.7), which is an analogue of the
formula in the classical case. We also characterize the set of double coset representatives that
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appears in the formula of constant terms. We will consider the convergence of the Eisenstein
series in a subsequent paper, following the framework given by Garland in [7], and do not
discuss the issue in this paper.

The outline of this paper is as follows. In Section 1, we prove certain consequences of the
Iwasawa decomposition and define the Eisenstein series on the arithmetic quotient of a loop
group. In the next section, we make a lifting of a function on the arithmetic quotient to form
a function on the corresponding adelic space and consider measures on the unipotent part
of the adelic space. In Section 3, we compute the constant terms for self-conjugate parabolic
subgroups. In the last section, we describe the set of double coset representatives in the formula

of constant terms, and work out a couple of examples completely.

Acknowledgments. K.-H. Lee would like to thank Henry Kim and F. Shahidi for helpful

discussions.

1. CONSTRUCTION OF EISENSTEIN SERIES

In this section, we define Eisenstein series on loop groups, associated with cusp forms on
the Levi components of arbitrary standard parabolic subgroups. We keep all the notations in
Section 1 of [6] or [7]. In particular, we have the loop group G for any commutative ring R.
When R =R, we drop R from the notation.

Let H (resp. A) denote the subgroup of G generated by all ha(s), a € Aw, s € R* (resp.
s € Ryp). Suppose that v = (v4)i=1,.1+1,7 € C, is a family of complex numbers. We identify

v with an element v of (6%)* by
I+1

v = E Vilka,,
i=1

where A,, is the fundamental weight such that Aai(haj) = ;5. We also identify v with a
quasi-character v : A — C* of A defined by

(1.1) v(h) = v(ha, (51) - hayyy (s141)) = s7° s

where h = hm (31) ce hoéz+1
ve (6(%)* and h = hay (51) .. hayy, (8141) € A, we define

(si41) € A, and we write b = v(h). More generally, for any

) = )

Recall that we have the Iwasawa decomposition

A

G =KAU.
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For a subset § C {1,2,...,1 4+ 1}, we let Py be the subgroup of G generated by B and
Wq,(s),7 € 0, s € R*. Let Ly be the subgroup of G generated by X+a,;(s), 1 € 6, s € R. We
also define 4y9 C A to be the subgroup of all h € A such that k% =1 for all i € 8. Let N be
the subgroup of G generated by the elements wg, (s),s € R*,i =1,...,1+1, and let Ny be the
subgroup of N generated by H and Wq, (s),s € R*,i € 0. The group Wy is defined by

Wy = Ny/H.
Then we have ]59 = BW@B . Let wy € Wy be the element of maximal length in Wy, and set
ﬁg = wgﬁwg N U
We have, from [4], the decomposition
(1.2) G = KLgAyUy.
Using the decomposition (1.2) and the Iwasawa decomposition G = KAU, we obtain
(1.3) G = K(Ly N K)(Lg N AU)AgUy = KL, 33 AgUs,
where Le,AU =LyN AU.
Lemma 1.1. FEach component of an element g € G in the decomposition
G = KT, 1540Us.
1s uniquely determined.

Proof. 1t follows from the uniqueness of expression in the Iwasawa decomposition G =KAU
and from [4, Theorem 6.1] that

K N L97A0A9ﬁ9 = {1} and LO,AUAO N [j@ = {1}
Moreover, the element h € L, ;5 N Ag can be written as
h=]] ha(si) with s; € Rsg.

i€l

From the definition of Ay, we obtain
h = Hs?j(h%) =1 foreach j € 6.

€0

Taking logarithms, we get

Zaj(hai)log s; =0, jeéb.
€0
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Since 6 is a proper subset of {1,2,...,1+ 1}, the Cartan matrix corresponding to 6 is positive-

definite, and we obtain s; = 1 for all ¢ € 0, which implies that h = 1. Therefore,
LQ,AU N Ag = {1}
0

We consider a family of complex numbers v = (v4);=1,. 1+1, ¥i € C, such that v; = 0 for
i € 0 and the induced quasi-character v : 49 C A — C* as in (1.1). Let f be a cusp form on
Ly satisfying
(1.4) flkgy) = f(g) foranyk e KnNLgand v € T'N Ly.

We define a function @y, : G — C by

®y,(9) = @5, (kmau) = f(m)a”,

where the decomposition ¢ = kmau, k € K,me Ly ip» a € Ag, u € Uy, is given in Lemma
1.1. We fix an element Dy € h¢ such that

ai(Dg) =0 forallie® and «(Dy)=1.

Then we set
Ory(ge ™) = p,(9) forge G, reRs.
Recall that we have
Py = RyUpy,

where Ry = LoH = HLg. (See [4, Theorem 6.1].)
Lemma 1.2. Suppose that g,y € G and I6XS rn Py. Then we have

(1) (I)f,v(gﬁ) = (I)f,u(g) and

(2) ®fo(ge " Poyp) = @f, (g Poy).

Proof. (1) Write 8 = ~yiu1, 71 € I'N Ry, uy € Uy, and g = kmau, k € K, m € Ly, a € Ay,

u € Ug. Since Ry normalizes Ug, we have
g0 = kmauyrur = kma 1 us

for some ugy € Ug, and since y1 € f‘ﬂRg, we can write y; = kymy, k1 € KNH and my € f‘ﬂLg.
Note that mk; = kym. Then we obtain

g0 = kmakimius = kkymmiaus

and
P, (98) = Pru(kkimmiaug) = f(mmi)a” = f(m)a” = g, (g).
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(2) We write 8 = y1u1 as before and observe that

—rD rD, —rD, rD,
e pe" 0 = e yure”0 = yus,

with ug € Uy. Since e "Poy = ~/e~"Do for some ' € G, we obtain

Dr,(ge " PyB) = @p,(97 e PB) = @4 (g7 Y1us)

—TDg) —rDg

= Dr,(97) =Pru(g7e =D, (ge "70).

Definition 1.3. For g € G’, r € Ry, we define

E(fv,ge ™) = Y p,(ge "P0).
’Yef‘/f‘ﬂpg
Note that there is no ambiguity in the sum thanks to Lemma 1.2. In the rest of this paper,

we will be mainly interested in the constant term in the Fourier expansion of the series.

2. MEASURE AND LIFTING

In this section, we consider a measure on the adelic space corresponding to the unipotent
part of an arithmetic quotient and liftings of functions from a real group to an adelic group,

which will be used later in Section 3.

The quotient space Up /f N Uy is the projective limit of compact nilmanifolds and hence
inherits both a compact, Hausdorff, projective limit topology, and a projective limit, probability
measure, which is invariant with respect to left translation by elements of Up. We denote this
measure on Up/T' N Uy by dus,. See [6] for details.

Let V be the set of all primes p € Zso. We set V¢ = V U {occ}. We have the group
Gp = GQP C Aut(Vé‘p) for each p € V. In particular, Go, = é@m =Ggr =G. For p eV, let
K, € G, be the subgroup

Ry=1{o€Gylg- V2 =12}
We define the adele ring A = Ag and the finite adele ring Ay = Ag,; in the usual way, and

also define

peEVE peEY
to be the restricted products with respect to {Kp}pey. We have the diagonal embedding
iGo— I[ G

peVe
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and set
f@ = ifl(éA).
Since z(é@) z C;‘A, the group f‘@ is important to obtain suitable restrictions of Q-groups.
Fix 0 € {1,2,...,14+ 1}, and let UQ7A C G and (A]gAf C G’Af be the subgroups

A /PN A~ /RPN
Upn= [ Usg, and Usa, =[] Usg,.
peEVE peEY
where we take the restricted direct products with respect to {f{p N U@Qp tpev. We set
K= [ &ycGu and & =][& cRcan
peVE peY

Then we have

((Kf N UQAJ,) X Ug) /f N Ug = UaA/f‘Q N Ug@,
the identification being induced by the inclusion

(Kf N ingf) X U@ — UQA,

and I'N (A](;,Q being diagonally embedded in (Kf N UGAf) x U,.
The compact group U@yzp, p € V, has a unique Haar measure du, with total measure one.
Set

duy = H du, on Kf N (A]gAf = H Uvgyzp.
pEV peEV

Through the identification ﬁg,A/f‘Q N Ug,@ = (HpEV ﬁgzp X Ug) /f‘ N (79, we have the induced
measure du = duf X dis, on UQ’A /f’@ N UQ’Q; more precisely, if f is a continuous function on
UQ,A/fQ N [A]g,Q then we have

/ L f(u)du:/ o /  flu)duy | duse.
Ug,a/ToNUg g Up/TTp | T,ey Us.z,

We define the conjugation by "¢ on G to be its usual action on the factor G at co and

the trivial action on each factor @p at p € V. Consider the natural maps
G«efng — GAeiTDG — Kf\éAGﬂnDe/f‘Q,

where the first map is an injection and the second map is a projection. Then the composite of

the two maps induces a bijection

0:Ge P01 — Kf\éAe_TD9/fQ.
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On the other hand, we have the bijection
G: (Kf x Ge Do) )T — Gpe ™0 T
induced by the injection (Kf X Ge_TDG) < Gpe P and we also have the projection
m: (Ky x Ge™™Po) )T — Ge™"Po T,
We denote by w the projection
w: Gpe P )Tg — K \Gpe P /Tg.

Then we obtain the following commutative diagram:

—1

Gue Do /Tg 25 (R x GemPoy /T
wl Il
A A~ A~ —1 N A
Kf\GAefrD" /FQ 0 Ge Do /F
If F is a function on Ge "9 /T, then we have a lifting ' on Gype "P0 /f@ defined by

(2.1) F(g) = F((ro57")(9))-

Let f be a cusp form on Ly satisfying (1.4). We obtain a lifting f on Lo a/Lg g using a similar
process as in the above constructions. We further assume that f belongs to the representation
space of a cuspidal representation II = ®II, of Lg 5 and that f can be written as f = ®peve fp,
where f, is a (R'p N Lg,q,)-fixed vector of the representation space of II,, for each p € V°. Recall

that we have the Iwasawa decomposition
é'p = RpLg’QpI{I@pﬁg’Qp for each p € V.
Set

! !
Loa = H Log, and Ly, = H Lo,

peVe peV
! !

(resp. Aga = H A97Qp and AgAf = H Ay, )
peVe peV

with respect to {Kp N Ly, }pev (resp. {Kp N Ap,g,}pev). One obtains from the Iwasawa

decomposition of Gp that
GA = KLQAAA[)YQA and GAf = KfLG,AfAAfﬁG,Af-
We define the function @ , on Gp by

‘bfp,u(gp) = @fpm(kpmpapup) = fp(myp)lap|”,
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where the decomposition g, = k,mpa,u, is given by the Iwasawa decomposition, and we define

the function ®;, on Ga by

o ,(9) =[] @swlon).
peVE

Consider an element a = [[ . ap € Ag s where a, = Hii% ha;(8p,i) € Ag,g, for some s, ; € Q.
Let s; = [[ eye sp;i for i =1,...,1+ 1. Then we have

1+1 v
lal” = (H hai(lsil)> = [ Isa"
i=1 i=1

I+1 v(hi) I+1

- H H |5pilp = H (H(|5p,i|p)y(hi)>
i=1 \peve peve \i=1

= H |ap|”.
peVE

We obtain:

Lemma 2.1.

Proof. Let g € G with the Iwasawa decomposition g = kmau. By definition, g can be written
as g = Hpeve gp Where g, € G’Qp with the Iwasawa decomposition g, = kpmpa,u,. Note that

la]* = (m o B71(a))” for any a € Ag a(see [6, Section 5] for details). Thus we have

(I'f,y(g) = H ®,0(9p) = H fo(mp)lap|” = H fp(mp) H |ap|”

peVe peVe peVe peYe
= f(m)|al” = f((x o 87" (m))) (w0 B~ (a))” = @p, (70 57" (g))
= &5, (9)-

O

Remark. From now on, if there is no peril of confusion, we will omit ~ from the notations for

simplicity and for consistency with the notations in [6, 7].

3. CONSTANT TERM

In this section, we prove some properties of affine root systems and obtain a formula for the

constant term of the Eisenstein series, which is the main result of this paper.
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For each i = 1,...,1 + 1, we define the simple reflection w; € Aut(bAe) by
wi(h) = h — a;(h)h; for h € pe.

The affine Weyl group W C Aut(hAe) is the group generated by w;, i = 1,...,1 + 1. Note that
the group Wy is identified with the subgroup of W generated by w;, i € 6. We denote by A;
the set of elements in A% that are linear combinations of a; with i € 6, and A, = —A;. For

w e W, we define
(3.1) Ngw ={a € A, \Af |wlae Ay, \ Ay}
For simplicity, we write A,, for Ay ,,. It is well-known that

Ay = {wiwi,_y - wiy 0 [ =101}

where w;, w;, , ---w;, is a reduced expression of w in terms of simple reflections.

Let 0" € {1,2,...,1+ 1} be a subset with Card(#") = Card(f). There exists a set W (6, 6)
of double coset representatives of Wy \W /Wj such that, for each w € W (#',6), the length
of w is minimal in WywWy. (See, for example, [1].) Moreover, the set W (€', 6) is uniquely
determined. When 6 = ¢’, we simply write W (#',0) = W(6). Then we have W (8) = W (§)~L.
For each w € W, there exist @ € W(0) and wy, wy € Wy such that w = witbws and (w) =

I(wy) + I(w) + l(ws), and the decomposition is unique.
Lemma 3.1. (1) For w € W(0) and a € A, we obtain
wa € A;,.

(2) For any w € W(0), we have
AV AN

Proof. (1) Assume that w € W(0) and a € AJ. Then there extists w, € Wy such that

a = wea; for some i € 0. Since [(waw;) = l(wq) + 1 (see [9, Lemma 3.11]),
lwwaw;) = l(w) + lwaw;) > H(w) + H(wy) = H(wwy).

Therefore,

(3.2) WO = WWa o € AITV

(2) We fix w € W(#) and consider o € A,. By definition, a € A% and wla € A;V
Suppose that wla € Ay . Then there exists 3 € A; such that

wla = -4,
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and we obtain from (3.2)

a=—wl € Aa,,
which is a contradiction. Thus

wla € AI;/ \A,.
Since w—! € W(#), a similar argument yields

a=w(w la) e A;, \AS.
Thus we have shown that A, C Ag,,. Clearly, Ag,, € A,. Therefore,
Agw = Ay.
]

Let R be a commutative ring. As before, whenever the subscript R is omitted, it will be

understood that R = R. For any subgroup H of Gr and g e Gr, we will write
9H = gHg* and H9 =g 'Hyg.
We define (A]_797R to be the subgroup generated by x4(s), s € R, a € AQ/\AG_ For w € W(¢',0),
we define
Uor=UprN"“U_gr,  U,r=UprN"Lor and U} p="Uyrn"Upnr.
Then we have
(3.3) Up.r=Upr Uw.r A{;,R'
Recall that the group G has the Bruhat decomposition
Gn= U Brawbin
weWw (¢',0)

Definition 3.2. Suppose that g € G and r € Rwg. The constant term Eo (f,v,ge "P¢) of the
series E(f,v, ge""P?) is defined to be

E@’(fa v, ge_TDG) = / E(f, v, 96_TD9U)duOO.
Ug//Uelﬂf

From now on in this section, we assume that v is real; i.e., v : A9 — Rsy. For each
w e W(0',0), we set
D(w) =T N PywPy,
and define
Ey(fiv,ge7 ™) = Y @p,(ge7 0.
el (w)/I'NFy
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It follows from the Bruhat Decomposition that

E(f’y’ge_rDG): Z E’U)(f’”’.ge_rDG)'
wEW (0 ,0)

By the monotone convergence theorem, we have

(3.4) Ev(fvge )= Y [ Bu(fmgePrudun
weW (0/,0) Uy /Ugr NI

Remark. The assumption that v is real should not be considered essential. After we prove that
the constant term is convergent for real v (in a subsequent paper), we will have the equation

(3.4) for any complex v.

We need to fix measures on various coset spaces. The measure du on (,79/, A/ (f@ﬂﬁeg@ N“Py o)

is obtained from the measure du on 09/7 A/ fQ N UGQQ through the projection

Up a/(ToNUpoN " Pog) — Uya/TonUsg.
We obtain from (3.3) the decomposition

Up s = Una N UZ,A

and by the definition, we have

UwoN"Ppg=0 and UwqUlgyC Pog.
We define left-invariant probability measures dus and dus on

U{UA/IA“@ N (79/,@ and U&A/IA“@ N (79/,@,

respectively, using the same construction as in Section 2. Since U, a is locally compact, there

exists a left Haar measure du; on U, 4 such that

(3.5) F(u)du

/(;9/71&/12‘@009/7@0“’?9,@

= / / . . / . . F(U1UQU3)dU3d’LL2dU1.
Uw,A U{U,A/FQHUG’,Q UZ,A/FQOUQ’,@

The following lemma will be useful in later calculations.

Lemma 3.3. Assume that g € G and r € Rsy.

(1) For any unipotent radical U of a parabolic subgroup of Lg s, we have

/ &, (ge "Pow)da = 0.
U
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(2) Ifa € Ag then @4, (ge "Poa) = a¥ Py, (ge"P7).
Proof. (1) Write g = kgmgaqu, according to the Iwasawa decomposition. Then we have
Opu(geu) = @y, (g0) = Oy (kgmgaguga)
= @y, (kgmgaguu’) = f(mgagu)
for some u’ € Ug, since e P commutes with @ and Lg normalizes Ug. Now the assertion

follows from the cuspidality of f.

(2) Using the same notations, we obtain

(I)fvv(ge_rDGa) = ¢f7u(mgaguge_rD9a) = &y, (mgaguya)

v

= ®pu(mgaga) = f(mgay)a” = a"@y,(ge™"").

We define
C0,0)={weW(@,0)| Ly =Ly} = {w e W(0,0) | A = wAF}.
Lemma 3.4. Assume that g € G and w € W(0',0). If w € C(0',0), we have
/ - Ey(f, v, ge""Po0u) duse :/ q)ﬁ,,(ge_TDf’ulw)dul.
Ugr /UgrN* Uw,a

Otherwise,

/ Eu(f v, ge ™Pou)dus = 0.
Ug//Ug/ﬂf‘

Proof. We have the projection
Uy a/To N Uy g = (Kf NOpay) x Up) /T 0 Uy 5 Up /T 0 Uy,

If we consider E,(f,v,ge "P%u) as a function on Uy / I' N Uy, we can pull it back through
the projection 7 to obtain a function on UQI7A / f‘Q N 09/7(@, which we will denote by the same
notation E,(f,v,ge”"Péu). Then we have
(3.6) / - By(fiv, ge "Pou)dug, = / - Eu(f,v, ge "Pou)du.

Ugr /TNUg UQ/yA/FQmUQ/,Q

We define

FQ(w) = f‘@ N (pgl,(@ w ]597(@).

Then we have

~

Tg(w) = T(w)(PygNTg),
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since Tg = I'(Ppg NTg) and T(w) = TN PpwPy =T'N ]59/7(@10]59,@. So we obtain
Ey(fivge™™) = Y ®p(geP0y) = > O, (ge 7).
~vel(w)/TNPy velo(w)/TonFy g

Now we have

/ R R Ew(fv v, ge—ngu) du
UG’,A/FQOUG’,Q

= / o Z <I>f7y(ge_TD9u7) du
UQ,A/FQQUO,’Q ’Yef‘(@(w)/f‘(@ﬁPg’Q

= D 2.

mERQ/’QI"IfQ/Rg/’QﬂfQﬂ wpg}@ nef‘@ﬂﬁg/’@/f@ﬂﬁg/,@ﬂ mwpgy@

/ By (ge " Prunmw) du
UQ/’A/FQﬂUQI’@

= Z @, (ge "Poumuw) du

mER9/ 7me@/R9/ 7@01;@0“’ ]59’@

(3.7) = >

meRy ’Qﬂf‘Q/RG/ ,Qﬂf‘(@ﬂwpgﬁ@

»/[:](_)/’A/f‘(@ﬂifgl,@ﬂ meQ’Q

/ o A Qf,y(ge_rDGmuw) du,
UQ/VA/F@OUQ/@Q”PQ’Q

where the measure du on 09/7 A/ (f@ﬂﬁy@ N™ Py q) is explained above. Using the decomposition
(3.5), the integral in (3.7) equals

/ / o / o <I>f7,,(ge_TD9mu1u2u;),w)du;3du2du1
Uw,a UZU,A/F@QUG’,@ UgA/FQI"IUgl’Q

/[\]w,A
‘/Uw,A

@, (ge”"Pomugugw(w ™ ugw) ) dugdusduy

S

Zu,A\./f‘@mUW,Q /[;YSA/IA_‘QQUGCQ

®f,V(9€7TD9mu1u2w)du2du1

=

U;A/f@ﬂﬁel@

:/U /U St <I>f7l,(ge_TDGmulw(w_IUQw))duzdul
wa YUy, 4/ToNUgr g
(3.8) = / / @1, (ge"Pomuywub)dulduy,

Uw,a (U, 2)"/Lo0

where the measure dub on (U], ,)" is the Haar measure induced from dus by conjugation. We

also note that (U, ,)" C Lg . One can see that, unless (U, ,)* = {1},

/ O, (ge”"Pomugwul)dub, = 0
(Up )/ Lo,0
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by Lemma 3.3 (1). Since
(Upa) ={1} = Lp="Ly = wecC(?,0),

we have proven the second part of the assertion.
If w € C(#,6), then Ry g C “Pp g, and we have from (3.7) and (3.8)

E’w(f> v, ge—'ngu) du = / (I)f,V(ge_ngulw)dula

/UOIA/IC‘@QUO/Q UUJA

which yields the first part of the proposition by (3.6). O

From now on, we mainly consider the case when 6’ = 0, and write C(6) = C(6,0). We define
the shifted action of W on by

w-v=w(+p) - p,

and we write

m¥ = w 'muw.

In the following lemma, we further simplify the integral.

Lemma 3.5. For g € G, r € Rog and w € C(6), we have
/ @5, (g Prurw)duy = (age ") f(mY) / Dy (vw)duy,
Uw,A Uw,A

where ag € Ag and my € Ly are given by the Iwasawa decomposition of g.

Proof. We write g = kymgagu, with respect to the Iwasawa decomposition. We set @, =
e"Pouge=mPo and write @y = 1g,17g21,3 With respect to the decomposition (3.3). Since w €
C(0), we have U, , = {1} and 12 = 1. Then we have

nyy(ge_rDeulw) = &5, mgaguge_rDeulw) = <I>f,l,(mgage_rD9ﬁgu1w)

3

gage” POty 11y suiw)
gagefrD"ﬁgJ (ﬂg73ulﬁ;é) w (wilﬂgﬁw) )

_ —rDg ~ ~
= Oy, (mgage Uig,1u1lg,3w)

I
e

]
3
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N ~ 1 . N - .
where w1y 3 = Ug3u1ly, 5 with g3 € Uw’A. Now we obtain

/ @, (ge"Pousw)duy
Uw,A

—rDgy ~
Q¢ (mgage "0 Ug 1uw)duy

I
S~

w,A

@, (mgage”"Pousw)dug (by the invariance of the measure)
w,A

(3.9) -

T T

B, (mgage Pouger e a;lw (wage "Pow) )duy .
w,A

We observe that, since w € C(6),
(wage " Pow)Y = (age POy =1 for each i € 0,
and so w™lagze "Pow € Ag. Applying Lemma 3.3 (2) to (3.9), we obtain

/ O, (ge "Pousw)duy = (age "P0) @f,y(mgage*rD"ulerD"a;lw)dul.
Uw,A Uw,A

Using Lemma 3.1 and the identity

Z Q= p—wp,

aeAw
we continue to calculate and obtain
/ (I)f,v(ge_rDeulw)dul = (age PO (age Do) PP / Dy (mgurw)duy,
Uw,A Uw,A

— (agefT‘Da)W(V‘Fp)*p / ©f71/ (mgulw)dul
U’w,A

_ (age—rDe)w(u—l—p)—P / (I)f,y(ulmgw)dul
Uw,A

— (age-rDoyulvAn)— / B, (uyww mgw)du
Uw,A

_ (ageTDe)w(”+p)pf(m;”)/ cbf’y(ulw)dul'

Uw,A

This completes the proof. O

The following lemma can be proved in a standard way using the Gindikin-Karpelevich for-

mula.
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Lemma 3.6. [11, 6] We have

—(v+p)(ha))
/Uw7A (I)ﬁ (U1w dU1 aE]A_Il A V+,0)( a)‘i‘l)’

where A(s) is the completed L-function associated to f.
Now we obtain the following theorem from (3.4), Lemma 3.4, Lemma 3.5 and Lemma 3.6.

Theorem 3.7.

~ _ ha))
Eg(f,l/,ge T'DQ): (a rDy wle V+p)( )
P L I

4. EXAMPLES

In this section, we characterize the set C(6) of double coset representatives when 6 C
{1,2,...,1} and determine the constant terms explicitly in some non-maximal cases. It is known

that there is no maximal self-conjugate parabolic subgroups (See [12]).

Let g be the affine Kac-Moody algebra and W the Weyl group corresponding to g. It is
well-known that
W =W x T,
where W is the subgroup of W generated by {w1,...,w;}, which is the Weyl group correspond-

ing to g, and T is the translation group which is isomorphic to some lattice M C b (see [9,

(1)

Proposition 6.5]). In the case of type A; ", for example, M = ®!_,Za; and the translation ty

by ¢ := Z _, @; is written as
ty = Wi Wi1W2 . .. W 1WW_1 - . . WoW].
Assume that § C {1,...,l} and we set
€(0) == {w € W| wAy = A7},
¢(0) == {w € W| wA; = Ay},
M(0) := {a € M| a(h;) =0 i € 6}.

By definition, C(f) is the set of double coset representatives of Wy\€(6)/Wy such that, for each
w € €(6), the length of w in WywWj is minimal in Wy\&(0)/Wp.

Proposition 4.1. We have
¢(0) = {wty| w € €(0), a € M()}.
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Proof. Let € = {wt,| w € €(#), o € M(#)}. For any element wt, € ¢ and a € AF, we have
wto(a) = w(a — (ala)) = w(a) € AL,

which implies ¢ C ¢(6). Now we fix some element 2 € €(6). Then  can be written as z = wtq,

for some w € W and o« € M. Since

wte(a) = w(a — (afa)) = w(a) — (ala)e € Aoi

for all a € A;t, we have a(h;) = 0 and wa; € Ay for all i € §. Hence, ¢(h) C ¢. O
Corollary 4.2. [12] If 0 ={1,2,...,1}, then C(0) = {id}.

Proof. Note that €(0) = Wy and M(0) = 0 if 6 = {1,...,l}. Applying Proposition 4.1 to this

case proves our assertion. U

Example 4.3. Let g be the affine Kac-Moody algebra of type Agl) and let § = (). Then the
cusp form f on Ly satisfying (1.4) must be constant. We take f to be 1, and set

A~

b% = Chy @ Chy @ CD, (65)* — CA, & CAy & CAp,
where
Ai(hj) =65, ANi(D)=0, Ap(h;)=0 and Ap(D)=1 (i,j=1,2).
The simple roots are given by
a1 = 2A1 —2As, o = —2A1 +2A5 + Ap.

Set p = A1 + Aa. The Weyl group W can be described as

~

W = (wy,welw? =1,ws =1)

= {w (wow)"wi?|e1,e2 =0 0r 1, n € Z>p}.
Let w = wS! (wawy)"ws? € W. Then
Aw = A+ NwA_

= {e1a1, eowi (wowy) az, Wi (wows) as, wit(wews)waaq |0 <4, <n—1}\{0}.

We fix v = aAy + bAg + cAp with Re(a), Re(b) < —2. Recall the definition of é(v, w):

— (v +p)(ha))
- I g

i u+p< SET)

Let K = (v+ p)(h1 + h2) =a+b+2.
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(1) Assume that w = (wawq)™ (n >1). Then w™! = wy (wow:)"  wo,

~

A1 ={(2t+2)as + (2t + 1)ava, (2s+1)ag + 2sa2 |0 < s,t <n—1},

S w) = H E(—kKt —a— 1),

and we get

w(v +p) —p=(26n+a)A; + (=260 4 b)Ay + (—kn? — (a + 1)n + ¢)Ap.

(2) Assume that w = wy(wowy)™ (n > 0). Then w™! = wy(wowy)",

Ayt ={(2t+2)ay + (2t 4+ Dag, (254 1Dag +2saz|0<t<n—1, 0<s<n},

and we get
wv+p)—p=(=26n—a—2)A1 + (2k(n+1) —b—2)Ay
+ (—=xn? — (a+1)n +c)Ap.
(3) Assume that w = (wowq)"wg (n > 0). Then w™! = (wow;) ws,

Ayt ={2tar + (2t + Do, (25 +1)ay + (25 +2)az|0<t<n, 0<s<n—1},
&( Ht—b—l)
e, w) H —kt —0b)
and we get
wv+p)—p=02kn+1)—a—2)A1 + (=261 —b—2)A,y
+ (=kn? — (@a+2b+3)n—b+c—1)Ap.

(4) Assume that w = wy(wowy)"wz (n > 0). Then w=! = (wowy )",

A1 = {2tar + (2t + 1)ag, (25 +1)ag + (25 +2)az |0 < t,5 < n},
2ﬁ1 E(—kt—b—1)
kt—1b) ’
and we get
wv+p)—p=(—2c(n+1)+a)A; + 2c(n+1) +b)As
+(=kn® —(@+2b+3)n—b+c—1)Ap.
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Let g € G, ag = hi(s1)ha(s2), s1,52 € Rsg. Then we obtain

Ey(1,v,ge7 ") = Z (age TPy HR=PE(y, )
wew
= 3 {(age ) 0 (o, ()
i=0

+(ag€_7"D)w1(w2w1)i(V+p)_p (v, wl(w2w1)i)
+(age™ D)W w20 =0 &1 (wow awy)

+(age TP ywrlwrw) wa () =p gy, w1(w2w1)iw2)}

— Z S%Sge—rc r(Kki2+(a+1)i) H 315 H] —a- 1)
i=0 —rj —a)
b —re, r(ki2+(a+1)i) 52§( Kj —a— 1)
+s1s5e" e .
o 1:[ st€(—rj —a)
7=0
2% .
b.a, —rc, r(ki2+(a+2b+3)i+b+1) 315(_H] —b— 1)
+sis9e e -
v J%s%em—w
2141 .
+8(1188efrcer(m'2+(a+2b+3)i+b+1 H 526( Kj —b— 1)

W= se=wi=n)

Example 4.4. Let g be the affine Kac-Moody algebra of type Agl) and let 8 = {2}. Choose a
cusp form f on Ly satisfying (1.4), and set

Dy =D+ Cl(2h1 + hg) + CQ(hQ + 2h3)
for some c;,ca € C. Since tq;+q, = Wswijwawi, we obtain

tog = twg(a1+a2) = w2to¢1+a2w2 = W2w3wawi,
tas = tuy (a1 tas) = Wita;+ap, W1 = WIW3W1W2.

Let 0 := 2a; 4+ a2. Then, by Proposition 4.1, we have

¢0) ={weW|Af = wA;t} = {id, wa},
M) = {a e M| a(h;) =0"ic 0} = {ko| k € 7},
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which implies
¢(0) = {wts| w e €(0), a € M(H)}

= {tko, wolps| k € Z}

= {(tiltw)ka w2(t31ta2)k’ kel

= {(wgwgwlwgwgwl)k, ’U)Q(U)3U]2wl’w3’w2w1>k| kelZ}.
Therefore

C(0) = {(wswowiwzwowy )¥| k € Z}.

Note that (wswswjwswsw;)¥ is a reduced expression of ¢y, since I(ty,) = 6k.
Set v:=alA; +bAs, K :=h1+hos+hg, p:=A1+As+Asand £ :=a+ b+ 3. Then

At;gl =1 t&l_l)aab (wawswiwawstic) " aa, (wswiwawstis) o,
(wiwawstic) tou, (wowstic) o2, (wstie) las| 1< i <k},

and, by using [9, (6.5.2)], we have

1
bl ) =4 0 (0t Bk = (04 plko) + GIoP 4. K) )

=v+p+lho — <?’;k2+(2a+b+3)k> L,
which yields
a+14+30k ifi=1,

tho(v +p)(hi) = { 1 if i =2,
b+1—3tk ifi=3.

Since (v + p)(h 1(a )) = tyo (v + p)(ha) for any a € (h¢)*, we obtain

(h
(v+ p )(ha)) — 3sgn(k)li)
H A V+p ho)+1) H H Aaj+173sgn(k) i)’

€A 1 1<i<|k| 1<j<6
where A(s) is the completed standard L-function associated to f, sgn(k) = % and
ap = —a—1, as=2a+3b+7, az=a+2b+5,
as=a+2b+4, as=0b+2, ag=b+1.
Consequently,
Ey(f,v,ge ™P%) = Z(ag)yj%’m 4 f(m H H — sen(k)fi)

kEZ 1<i<|k| 1<5<6 af + 1 — 3sgn(k)4i)
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where Ny
dg=r <2k2 + (2a+b+3)k — (66(c1 — c2)k + 2acy + 2502))

and w(k) = (w3wwiwzwaw ).
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