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ABSTRACT. In this short note, we will prove certain weakly modular forms of weight % with

respect to I'g(4) have positive Fourier coefficients.

We use the notations from [8]. If d is an odd prime, let () be the usual Legendre symbol. For

(ﬁ) ifd <0 and ¢ > 0,
positive odd d, define () by multiplicativity. For negative odd d, let (g) =

—(ﬁ) ifd<0andc<O0.

1 if d =1 mod 4,
We let (%) = 1. Define ¢4, for odd d, by ¢4 =

i ifd =3 mod 4.
Let M7 (To(4)) be the Kohnen plus-space of weakly homomorphic modular forms with integer
coefﬁcientzs of weight % with respect to I'g(4), namely, f € MI(F 0(4)) if f is holomorphic on H,
and meromorphic at the cusps of I'g(4), and i

/(22)- Qs

b
for all (a d) € I'p(4), and it has a Fourier expansion of the form
c

=Y ame

n=0,1(mod4)

Given such an f, Borcherds [1] proved that for some h, the infinite product
[e.e]
— 2
¢ " T —gm ",
n=1

is a meromorphic modular form with respect to SLs(Z). He also proved that for each nonnegative
integer d = 0,3 (mod 4), there exists a unique modular form f;(z) € M7 (Tg(4)) with a Fourier
2

expansion
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0.) =g Y g
nEO,T{(>n('))od4)

Here f4(2)’s form a Z-basis for M7 (I'g(4)). Also M7 (To(4)) is a free Z[j(4z)]-module of rank
2

2
2 with generators fy(z), f3(z), where

foz) = 0(z)=1+2¢+2¢"+2¢"+ -,
4 4 FEg(42)
f3(2) = F(2)0(2)(0(2)" — 2F(2))(0(2)" — 16F(z)) A(17) +566(2)
= ¢ — 248q + 26752¢* — 85995¢° + 1707264¢° — - - - .
(See Section 1 for the definitions of # and F.)
Now we consider fg with 4|d. In particular, we have

fa(z) = ¢+ 492¢+ 1433764 + 565760¢° + 18473000¢° + 51180012¢° + - - -
fs(2) = ¢+ 7256q + 261242564 + 1903564804° + 29071392966¢° + - - - .

The numerical calculation shows that the Fourier coefficients are all positive. In this short

note, we will prove the following result using the method of Hardy-Ramanujan-Rademacher.

Theorem 0.2. In (0.1), suppose 4|d and d > 0. Then a(n) is positive for all sufficiently large

n=0,1 (mod 4), and as n — o,

2 cosh(mv/dn)

Similarly, we can prove that if d = 3 (mod 4), (—1)"a(n) is positive for all sufficiently large

a(n)

n =0,1 (mod 4), and as n — oo,

a(n) ~ (_1)n2 cosh\(/% dn)'

If we write fy(2) = ¢ ¢+ > pso A(D, d)g”, we can also show that given D with 4|D, A(D,d)
is positive for all sufficiently large d. It is expected that a(n) is positive for all n for any fg, 4|d.
However, our method cannot prove it.

The positivity of Fourier coefficients plays an important role in our work on Gindikin-Karpelevich
formula for generalized Kac-Moody algebras and deformation of modular forms [3]. Also, the re-
sult is quite a contrast to some results in the literature. For example, it is proved (for example,

[4]) that for any holomorphic Hecke eigenforms with respect to I'o(IN), there are infinitely many
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coefficients which are positive, and infinitely many coefficients which are negative. In higher level

case, the positivity of Fourier coefficients of weakly modular forms does not seem to be true ([2]).

Acknowledgments. We would like to thank R. Borcherds for suggesting to use the method of

Hardy-Ramanujan-Rademacher for the proof.

1. PRELIMINARIES ON MODULAR FORMS

Here we collect several modular forms we will use in this note. Let ¢ = *™* = e(2). Let j(2)

be the modular j-function:

J(2)=q T4+ e(n)g", (1) = 196884, c(2) = 21493760, - - - .

n=1

We let \/z be the branch of the square root having argument in (—%, 5]. Hence for z € H,
— 1=

(—z)% = (—l)_% = iz In particular, (—z)% = \/51 Recall the following from [9], page 177:

z

0z) = D.q7 0a(2) = ¢ (x) = (~1)g",

nez nez nez
(1.1) 0(—1) = V=iVEO(3), 6a(=1) = \/-5Vz0:(3).
Hence we have
(1.2) B(—1+3) =0(=1) =/ —5Vz6(3).

Recall the following from [5], pages 113 and 145. Let F3(z) be the Eisenstein series of weight
2. Then

o0
12
-2 1
Let
1 1 )
F(z) = _ﬂ(E2(Z) — 3E5(22) + 2E5(42)) = —E(Eg(z) — Ey(2+3))
= > o) =q+4¢* +6¢" + .
oddn>0

Then F(z) is a modular form of weight 2 with respect to I'g(4). We have

(1.3) dF(-1) = 2 TF(—1 + 3) = —@(%(z) — 6E5(3) + Ea(3))-
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2. METHOD OF HARDY-RAMANUJAN-RADEMACHER

In order to demonstrate our method, we first prove the Fourier coefficients ¢(n) of the modular
j-function are all positive for all n > 0. This is clear from the identity j(z) = %23, Ey(2) =
14240372, o3(n)q™, ﬁ =q M2, (1—¢™)~%1, but we want to show how our method works
in this example.

By [10], page 510,

h(mod k), (h,k)=1
hh/=—1(mod k)

We have (][9], page 291)
| A(n)| < 2k1.

Amy/n

When k = 1, it gives rise to It is the main term. We show that the sum of the other

2n% '
terms is smaller. We first have

2T — 4 o2r [ 4
777 3 21<;—i11< ”ﬁ) < \/—71 2$—%11< ”\/ﬁ> dx < 40007205,

Next we use the trivial estimate |Ax(n)| < k and obtain

N
225 1o ()| < 2enavi),
k=2

Since e2™V" > 2,/7n, we have ¢(n) > 0.

Now we recall the result of J. Lehner [7] on Fourier coefficients of modular forms using the
method of Hardy-Ramanujan-Rademacher. We refer to [7] for unexplained notations: Let f(z) be

a weakly homomorphic modular form of weight r > 0 with respect to I'. Let pg = 00, p1, ..., Ps—1

10 0 -1 .
Ay = , Aj = , 3 >0.
01 1 —Pj

b
d) for M €T'. Let

be the cusps of I', and

a

Let M* = A;M = (
C



POSITIVITY OF FOURIER COEFFICIENTS OF WEAKLY MODULAR FORMS OF WEIGHT % 5

Cj(] = {C| (C :)EAjF},

D, = {d|<' '>eAjr,0<d§c}.
c d

It can be shown ([6], page 313) that given such c, d, there is a unique a such that —cA; < a < 0.
For k=1,...,s—1, let

(z =) e(—r32) f(z) = Y am)Pgp,  a = e(52),
n=—pg

where kp, A\, are defined as in [7], page 398. By replacing Aiz by z, this can be written as

[T

foe =Y = (2% Y atm)Bg.
n=—pk

For k = 0, we have the usual Fourier expansion: (We assume that A\g =1, k9 =0 for T.)

f2)= Y a(n)q"
n=—4io
Theorem 2.1. [7] Forn >0,
s—1 My '
(2.2) a(n) =2mi~" Z Z a(—v)) Z c Y A(e,n, v)) M (c,n,vj, ) + E(n,r),
jIO v=1 CECjO
0<c<y/n
where v; = V;—fj, and
_ nd — vja IR
Ale,n,vj) = Z v H(M)e (%) , M:Ale ,
deD.
r—1
2 47\ /nv;
M(e,n,vj,r) = <£> I. 4 ( T J> .
vVj C
Here if r = %, then
(2.3) E(n,1) = O(n%).

Here the implied constant is independent of n.

Now we apply the theorem to f € M7 (Ig(4)), k¥ > 0. The group I'y(4) has three cusps:
2
po =00, p1 =0, po = 1 ([5], page 108).
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10
First, pg = co. In this case, \g = 1,k9 = 0, and Ay = ( > If ¢ € Cyo, then 4|c, and the
0 1

-3 -1 -1 -1
smallest ¢ € Cyg is 4, and M = M* = ( A > , ( A > Because of (0.1), we need only
1 3

to consider vy = pg:
3 3
A(4,m, o) = e (LZ MO) + ie (7711-#0) .

So if k =41, pg = 41, then A(4,n,ug) = 1+ for any n =0,1 (mod 4). If k =41+ 3, g = 41+ 3,
then A(4,n, pup) = (—=1)"(1+414) for n =0,1 (mod 4).
0 -1

Second, p; = 0. In this case, Ay =4,k =0, and A; = (
10

—4 =5 11
and M* = , M = . Hence
1 1 4 5

A(l,n,in)=en+v)=1, v=1,..., .

>. The smallest ¢ € Cg is 1,

The Fourier expansion at 0 is

fil=1) = —ivE Y almWet.

n=-—p1

0
Third, po = % In this case, Ao =4, k9 = i, and As = (1

-4 =3 3 2
and M* = , M = . Hence
1 4 3

A(l,n,1n) =1ie (% +v-— %) =™ = (—1)", v=1,.., 1.

1). The smallest ¢ € Cy is 1,
2

N[

The Fourier expansion at % is

f(=2+ 3 = —ivzgs Y a(n)Pgi.

n=-—p2

For fi(z), we write the main term of (2.2) as follows:
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i~z (%A(4,n,,u0) (4,n, kag ‘1‘2‘1 M(1,n, 11, 2 +Z M(1,n, 1/2,%)

2

K
+ Z c L A(e,n, k)M (e, n, k, %) + Z Z Za(—l/)(J)c_lA(c, n,v;)M(c,n, v}, %)) .
v=1

ceCpo ]:1 CEC]‘()
4<c<+/n,4|c 1<ce<y/n

Example 2.4. Consider f3(z) = ¢ +>.°%, a(n)q¢". By using (1.1, 1.2, 1.3), we can show

-
Tif(-1) = 5 ' (26752¢7 + 17072642 + - - -),

-
cafy(-Ll4l) = . g6 (q~T — 248 — 85995¢1 — 409624843 + - - -).

h
Here I_%(z) = \/g co\s/_z' If n=0,1 (mod 4), the main term for a(n) in (2.2) is
z

(—1)" 2 cosh(mv/3n)
V.
Ifn=29, it is —4096247.99.... It is very close to the actual value —4096248.

Example 2.5. Consider fi(z) = fo(2)j(42) — 2f3(2) — 746 fo(z) = ¢~ + >_°2; a(n)g™. In this

case, we can show that

1 1 1, _1 1 1
272 fa(=3) = —5—(q" 7 +143376¢% + 184730007 + - ),
L
Z‘%f4(—% +3) = 5 ! %(492+565760q4 —|—51180012q2 +en).

Hence if n = 0,1 (mod 4), the main term for a(n) is

2 cosh(mv/4n)
Vi

If n =29, it is 51184311.8.... It is very close to the actual value 51180012.

We consider fi;(2). Let J(2) = j(z) — 744 = ¢~ 1 + >°°°  ¢(n)g". Then

fa(2) = fo(2)J(42) — 2f3(2) — 2fo(2), fs(2) = fa(2)J(42) — 492 f3(2) — 340260 fo(z),

and for k > 3, if fy,_1)(2) = ¢ * =D £ a(1)g+ a(4)g* + - - -, then

-2

far(2) = fag—1)(2)J(42) — c(m) fak—m—1)(2) — a(1) f3(2) — (c(k — 1) +a(4)) fo(2).

N

3
I
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Now we can prove the following either by induction or by imitating the proof of Lemma 14.2

in [1].

Lemma 2.6. Suppose fix(z) =q * +5°°° a(n)g™. Then

_1 l—i, & n
i (-1 = (a7 + ) _aldn)gh),
n=1
1 1—i 1 —
2Eifg(-1+d) = 5 qi Za(4n + 1)q7.
n=0
Proof. Let
[e.e] [e.e] L
ho(2) = ¢ "+ a(dn)q", hi(2) =Y a(dn+1)g"*7.
n=1 n=0

Then fir(2) = ho(4z) + h1(42). Since fip € M7 (To(4)), we have
2

Fa <4ZZ+1> — (42 +1)7 f(2).

By replacing 4z + 1 by z, and noting that ho(z £ 1) = ho(z), h1(z+ 1) = ihi(z), and hy(z —1) =
—ih1(z), we have

ho(—L) + ihy(—1) = 22 (ho(2) — iha(2)).

Now let z = iy and note that hg(iy) and hy(iy) are real. Hence

ho (5) — %(ho(iy) + hi(iy)), M (5) = %(ho(iy) — h1(iy)).

Since hg and hy are meromorphic functions, the above equalities are true by replacing iy by z

with I'm(z) > 0. Hence

ho(=1) = S Vllho() + hu(2)), a(—1) = VAo (2) — a(2)).
Therefore,
Fu(=1) = ho(=2) (%) = T Vzho(3)
For fir(—21 + 1), note that hy(z +2) = —hy(2). Then
Far(=2 4 3) = ho(=4) — (=) = T VEm(3).
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So pu1 =k, pp =0, and a(—v)1) =0 for v = 1, ..., k — 1. Therefore, the main term of (2.2) is

(27) 2mit [ A %I (wV/Am) + 21 L %I gy [T | 2 2cosh(mvidkn)
' 4 n 2 2 4n -3 4 - Jn .

We consider the other terms:

14
(2.8) o2 Z c_lA(c,n,4k‘)M(c,n,4k‘,%)—|— —2H Z c T A(e, n,i)M(c,n,%,%)

ceCpo ceCig
4<c<y/n,4lc 1<e<n

We will prove that the above sum is smaller than the main term. By the trivial estimate, we

obtain [A(c,n,v;)| < ¢ for any j =0, 1,2. Hence

1
28) <2n| Y M(endk,3)+—= > M(en%3)

ceCoo \/5 ceCio
4<c<\/n, 4lc 1<e<ym
<9 Z <n >—i 7 (877\/nk‘> N 1 Z <4n>_%l (277\/11]@)
> 24T -7 _1 = . _1
ceCo 4k ? ¢ \/5 ceCio k ? ¢
4<c<y/n, 4|c 1<ec</m

< 2mvn (g) % I_y (wVnk) = 2v/2 cosh(mv/nk).

It is clearly smaller than (2.7).
Let fa1(2) = ¢~ +3°2°°  a(n)q¢"™. In the same way as in Lemma 2.6, let

z):Za(4n)qn, hi(z) = _ki Z (4n+ 1)q
n=0

n=1

We can prove

1 1—i n
i (=) = > a(4n)qi,

. o0
1 _k n
2 fg (14 3) = qi6 (¢~ % + E a(4n+1)q7).
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Therefore, the main term of (2.2) is

~ 1N\t i (k-1\7
2~ (_1)“1IZ<4’“” 1> Iy(n (41<:—1)n)+(—1)"1—2F <k4n4> I_y (277\/7%(1@—%))

_ (_1)n2 cosh(m \/(ﬁélk‘ - 1)n)

Now we are left to deal with the error term (2.3). Unfortunately, we cannot make the implied

constant explicit. It is expected since fyr(z) and fix(2) + N fo(z) have the same main term in
(2.2) for any N. So we can only conclude that the main term is bigger than the error term for

n > ng for some ng. This concludes the proof of Theorem 0.2.

Remark 2.9. We can apply the same technique to j,,(z) in [8], page 23. It is defined as
jo(z) =1, ji(2) = j(2) — 744, and for m > 2,

d—1
n(@) =i @ITm = 3 i ().

dim =0

ad=m

It has the g-expansion
[e.e]
Jm(2) = ¢+ ) em(n)g".
n=1

From the definition, it is clear that ¢,,(n) are all positive integers. We have the following series

expression for ¢,,(n) ([6], page 314):

cm(n) = QWi 714(]{:’]?’ m) (@f I (477\2%) . A(k,n,m) = Z e (—Ll —th/> .

n
h(mod k), (h,k)=1
hh/=—1(mod k)

1
) mze47r\/mn
Hence we obtain ¢, (n) ~ ————
\/Enl

Remark 2.10. For each positive integer D = 0, 1(mod 4), let gp(z) € M7 (To(4)) be the unique
2

modular form with a Fourier expansion of the form ([8], page 72)

+ ). B(Dd)q"
d>0
d=0,3 (mod 4)

Zagier [11] proved that B(D,d) = —A(D,d), where f;(z) = ¢~¢ + > pso A(D, d)¢”. Using our
method, we can prove that if 4|D, the coefficient B(D, d) is a negative integer for all sufficiently

gp(z) =q
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large d. Since B(D,d) = —A(D, d), this shows that given D with 4|D, A(D, d) is positive for all
sufficiently large d.
More precisely, we can get an asymptotic expression for B(D,d). For simplicity, let g4r(z) =

g+ Sl pa(n)g”. In this case, k1 = 0,ky = %. So it has a Fourier expansion at the other

cusps:
.3 > n .3 3 s 9) n
gae(—2) =izx Y a(m)Vgh, gu(-L+3)=iz2¢w Y a(n)Pgi.
n=—p1 n=—pz
Let
[e.e] [e.e] 3
ho(2) = ¢ "+ a(dn)q", hi(2) =Y a(dn+3)q"*5,
n=0 n=0
Then g4x(2) = ho(4z) + h1(42). In the same way as for fir, we can show
1+ 3 141 3
gi(—1) = = abho(3), gu(—1+d) = (3.

Here in (2.2), po = 4k, and A(4,n, uo) = 1 —i. Hence

s (1 —1 1 1—4 1 1
a(n) ~ 2mi~? 4\/5 (%) ! I%(27T\/’I’Lk‘) + 5 ‘2 (%) ! I%(27T\/’I’Lk‘)> = - (%) ! I%(27T\/’I’Lk‘).
. __/2sinh(z) .
Since I% (2) =1/2 7 we obtain
2 sinh(7v/4kn)
a(n) ~ ——————=.
Vak
In the same way, we can show that if gsp1(2) = ¢ 41 + ool a(n)g”,
n_12sinh(m\/(4k + 1)n)
a(n) ~ (=1)"! .
Vak +1
For example, when k = 2,n = 7, we have a(n) ~ 22505067826.5.... The actual value is

22505066244.

Remark 2.11. For each positive integer d = 0,1 (mod4), consider vqg € M™, (To(4)) which is

2
the unique modular form with a Fourier expansion of the form ([11], page 19)

va(z)=q "+ Y aln)g"
n>0
n=0,3 (mod 4)

If fe M (To(4)), f(gzzj_'s) = (£)tea(cz + d)_%f(z). In this case, k1 = 0, k2 = 2. So this case
2
is similar to gp in the above remark. Let vax(z) = ¢~ + Y% ja(n)g". In this case, we have a

series representation of a(n) without the error term ([6], page 313):
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2 W
a(n) = 2miz Z Z a(—v)W) Z c Y A(e,n, v)) M (e, n, vj, 7).
j=0v=1 0<celCjo

In this case, we can show that a(n) is positive for all n, and

a(n) ~ 4r <5> % I_%(27T\/n_k‘).

n

inh(z) — cosh
Since 1_s(2) = \/gzsm (2) — cos (z)’ we have

3
Z2

2wV 4kn sinh(7v4kn) — 2 cosh(mv4kn)

3
2

a(n)

™
Similarly, if vag41(2) = ¢~ + 3502 a(n)q”,
(_1)n27n/(4k‘ + 1)n sinh(my/(4k 4+ 1)n) — 2 cosh(m+/(4k + 1)n)

s '
For example, when k = 2,n = 7, we obtain a(n) ~ —27774695413.6.... The actual value is
—27774693612.

a(n) ~
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