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Abstract. In this short note, we will prove certain weakly modular forms of weight 1
2

with

respect to Γ0(4) have positive Fourier coefficients.

We use the notations from [8]. If d is an odd prime, let ( c
d) be the usual Legendre symbol. For

positive odd d, define ( c
d) by multiplicativity. For negative odd d, let

(

c
d

)

=







( c
|d|) if d < 0 and c > 0,

−( c
|d|) if d < 0 and c < 0.

We let ( 0
±1 ) = 1. Define εd, for odd d, by εd =







1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4.

Let M+
1
2

(Γ0(4)) be the Kohnen plus-space of weakly homomorphic modular forms with integer

coefficients of weight 1
2 with respect to Γ0(4), namely, f ∈ M+

1
2

(Γ0(4)) if f is holomorphic on H,

and meromorphic at the cusps of Γ0(4), and

f

(

az + b

cz + d

)

=
( c

d

)

ε−1
d (cz + d)

1
2 f(z),

for all

(

a b

c d

)

∈ Γ0(4), and it has a Fourier expansion of the form

f(z) =
∑

n≥n0
n≡0,1(mod4)

a(n)qn.

Given such an f , Borcherds [1] proved that for some h, the infinite product

q−h
∞
∏

n=1

(1 − qn)a(n2),

is a meromorphic modular form with respect to SL2(Z). He also proved that for each nonnegative

integer d ≡ 0, 3 (mod 4), there exists a unique modular form fd(z) ∈ M+
1
2

(Γ0(4)) with a Fourier

expansion

? partially supported by an NSERC grant.
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(0.1) fd(z) = q−d +
∑

n>0
n≡0,1(mod4)

a(n)qn.

Here fd(z)’s form a Z-basis for M+
1
2

(Γ0(4)). Also M+
1
2

(Γ0(4)) is a free Z[j(4z)]-module of rank

2 with generators f0(z), f3(z), where

f0(z) = θ(z) = 1 + 2q + 2q4 + 2q9 + · · · ,

f3(z) = F (z)θ(z)(θ(z)4 − 2F (z))(θ(z)4 − 16F (z))
E6(4z)

∆(4z)
+ 56θ(z)

= q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 − · · · .

(See Section 1 for the definitions of θ and F .)

Now we consider fd with 4|d. In particular, we have

f4(z) = q−4 + 492q + 143376q4 + 565760q5 + 18473000q8 + 51180012q9 + · · ·

f8(z) = q−8 + 7256q + 26124256q4 + 190356480q5 + 29071392966q8 + · · · .

The numerical calculation shows that the Fourier coefficients are all positive. In this short

note, we will prove the following result using the method of Hardy-Ramanujan-Rademacher.

Theorem 0.2. In (0.1), suppose 4|d and d > 0. Then a(n) is positive for all sufficiently large

n ≡ 0, 1 (mod 4), and as n → ∞,

a(n) ∼ 2 cosh(π
√

dn)√
n

.

Similarly, we can prove that if d ≡ 3 (mod 4), (−1)na(n) is positive for all sufficiently large

n ≡ 0, 1 (mod 4), and as n → ∞,

a(n) ∼ (−1)n2 cosh(π
√

dn)√
n

.

If we write fd(z) = q−d +
∑

D>0 A(D, d)qD, we can also show that given D with 4|D, A(D, d)

is positive for all sufficiently large d. It is expected that a(n) is positive for all n for any fd, 4|d.

However, our method cannot prove it.

The positivity of Fourier coefficients plays an important role in our work on Gindikin-Karpelevich

formula for generalized Kac-Moody algebras and deformation of modular forms [3]. Also, the re-

sult is quite a contrast to some results in the literature. For example, it is proved (for example,

[4]) that for any holomorphic Hecke eigenforms with respect to Γ0(N ), there are infinitely many
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coefficients which are positive, and infinitely many coefficients which are negative. In higher level

case, the positivity of Fourier coefficients of weakly modular forms does not seem to be true ([2]).

Acknowledgments. We would like to thank R. Borcherds for suggesting to use the method of

Hardy-Ramanujan-Rademacher for the proof.

1. Preliminaries on modular forms

Here we collect several modular forms we will use in this note. Let q = e2πiz = e(z). Let j(z)

be the modular j-function:

j(z) = q−1 + 744 +
∞
∑

n=1

c(n)qn, c(1) = 196884, c(2) = 21493760, · · · .

We let
√

z be the branch of the square root having argument in (−π
2 , π

2 ]. Hence for z ∈ H,

(−z)
1
2 = (−1

z
)−

1
2 = −iz

1
2 . In particular, (−i)

1
2 = 1−i√

2
. Recall the following from [9], page 177:

θ(z) =
∑

n∈Z

qn2
, θ2(z) =

∑

n∈Z

q(n+ 1
2
)2, θ4(z) =

∑

n∈Z

(−1)nqn2
,

θ(−1
z
) =

√

− i
2

√
z θ( z

4 ), θ4(−1
z
) =

√

− i
2

√
z θ2(

z
4 ).(1.1)

Hence we have

(1.2) θ(−1
z

+ 1
2 ) = θ4(−1

z
) =

√

− i
2

√
z θ2(

z
4 ).

Recall the following from [5], pages 113 and 145. Let E2(z) be the Eisenstein series of weight

2. Then

E2(z) = 1 − 24

∞
∑

n=1

σ1(n)qn, z−2E2(−1
z ) = E2(z) +

12

2πiz
.

Let

F (z) = − 1

24
(E2(z) − 3E2(2z) + 2E2(4z)) = − 1

48
(E2(z)− E2(z + 1

2 ))

=
∑

oddn>0

σ1(n)qn = q + 4q3 + 6q5 + · · · .

Then F (z) is a modular form of weight 2 with respect to Γ0(4). We have

(1.3) z−2F (−1
z ) = −z−2F (−1

z + 1
2) = − 1

192
(8E2(z)− 6E2(

z
2) + E2(

z
4)).
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2. Method of Hardy-Ramanujan-Rademacher

In order to demonstrate our method, we first prove the Fourier coefficients c(n) of the modular

j-function are all positive for all n > 0. This is clear from the identity j(z) = E4(z)
3

∆(z) , E4(z) =

1 + 240
∑∞

n=1 σ3(n)qn, 1
∆(z) = q−1

∏∞
n=1(1− qn)−24, but we want to show how our method works

in this example.

By [10], page 510,

c(n) =
2π√
n

∞
∑

k=1

Ak(n)

k
I1

(

4π
√

n

k

)

.

Here I1(z) ∼ ez√
2πz

and

Ak(n) =
∑

h(mod k), (h,k)=1

hh′≡−1(mod k)

e

(

−nh + h′

k

)

.

We have ([9], page 291)

|Ak(n)| < 2k
3
4 .

When k = 1, it gives rise to
e4π

√
n

√
2n

3
4

. It is the main term. We show that the sum of the other

terms is smaller. We first have

2π√
n

∞
∑

k=
√

n

2k− 1
4 I1

(

4π
√

n

k

)

≤ 2π√
n

∫ ∞

√
n

2x− 1
4 I1

(

4π
√

n

x

)

dx < 4000π2 n− 1
8 .

Next we use the trivial estimate |Ak(n)| ≤ k and obtain
∣

∣

∣

∣

∣

∣

2π√
n

√
n

∑

k=2

1

k
Ak(n)I1

(

4π
√

n

k

)

∣

∣

∣

∣

∣

∣

≤ 2πI1(2π
√

n).

Since e2π
√

n > 2
√

πn, we have c(n) > 0.

Now we recall the result of J. Lehner [7] on Fourier coefficients of modular forms using the

method of Hardy-Ramanujan-Rademacher. We refer to [7] for unexplained notations: Let f(z) be

a weakly homomorphic modular form of weight r > 0 with respect to Γ. Let p0 = ∞, p1, ..., ps−1

be the cusps of Γ, and

A0 =

(

1 0

0 1

)

, Aj =

(

0 −1

1 −pj

)

, j > 0.

Let M∗ = AjM =

(

a b

c d

)

for M ∈ Γ. Let
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Cj0 = {c |
(

· ·
c ·

)

∈ AjΓ},

Dc = {d |
(

· ·
c d

)

∈ AjΓ, 0 < d ≤ c}.

It can be shown ([6], page 313) that given such c, d, there is a unique a such that −cλj ≤ a < 0.

For k = 1, ..., s− 1, let

(z − pk)re(−κk
Akz
λk

)f(z) =

∞
∑

n=−µk

a(n)(k)qn
k , qk = e(Akz

λk
),

where κk, λk are defined as in [7], page 398. By replacing Akz by z, this can be written as

f(pk − 1
z
) = (−z)rq

κk
λk

∞
∑

n=−µk

a(n)(k)q
n

λk .

For k = 0, we have the usual Fourier expansion: (We assume that λ0 = 1, κ0 = 0 for Γ.)

f(z) =

∞
∑

n=−µ0

a(n)qn.

Theorem 2.1. [7] For n > 0,

(2.2) a(n) = 2πi−r
s−1
∑

j=0

µj
∑

ν=1

a(−ν)(j)
∑

c∈Cj0
0<c<

√
n

c−1A(c, n, νj)M(c, n, νj, r) + E(n, r),

where νj =
ν−κj

λj
, and

A(c, n, νj) =
∑

d∈Dc

v−1(M) e

(

nd − νja

c

)

, M = A−1
j M∗,

M(c, n, νj, r) =

(

n

νj

)
r−1
2

Ir−1

(

4π
√

nνj

c

)

.

Here if r = 1
2 , then

(2.3) E(n, 1
2 ) = O(n

1
4 ).

Here the implied constant is independent of n.

Now we apply the theorem to fk ∈ M+
1
2

(Γ0(4)), k > 0. The group Γ0(4) has three cusps:

p0 = ∞, p1 = 0, p2 = 1
2 ([5], page 108).
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First, p0 = ∞. In this case, λ0 = 1, κ0 = 0, and A0 =

(

1 0

0 1

)

. If c ∈ C00, then 4|c, and the

smallest c ∈ C00 is 4, and M = M∗ =

(

−3 −1

4 1

)

,

(

−1 −1

4 3

)

. Because of (0.1), we need only

to consider ν0 = µ0:

A(4, n, µ0) = e

(

n + 3µ0

4

)

+ ie

(

3n + µ0

4

)

.

So if k = 4l, µ0 = 4l, then A(4, n, µ0) = 1 + i for any n ≡ 0, 1 (mod 4). If k = 4l + 3, µ0 = 4l + 3,

then A(4, n, µ0) = (−1)n(1 + i) for n ≡ 0, 1 (mod 4).

Second, p1 = 0. In this case, λ1 = 4, κ1 = 0, and A1 =

(

0 −1

1 0

)

. The smallest c ∈ C10 is 1,

and M∗ =

(

−4 −5

1 1

)

, M =

(

1 1

4 5

)

. Hence

A(1, n, ν1) = e(n + ν) = 1, ν = 1, ..., µ1.

The Fourier expansion at 0 is

fk(−1
z
) = −i

√
z

∞
∑

n=−µ1

a(n)(1)q
n
4 .

Third, p2 = 1
2 . In this case, λ2 = 4, κ2 = 1

4 , and A2 =

(

0 −1

1 −1
2

)

. The smallest c ∈ C20 is 1,

and M∗ =

(

−4 −3

1 1
2

)

, M =

(

3 2

4 3

)

. Hence

A(1, n, ν2) = i e
(

n
2 + ν − 1

4

)

= eπin = (−1)n, ν = 1, ..., µ2.

The Fourier expansion at 1
2 is

fk(−1
z

+ 1
2) = −i

√
zq

1
16

∞
∑

n=−µ2

a(n)(2)q
n
4 .

For fk(z), we write the main term of (2.2) as follows:
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2πi−
1
2

(

1
4A(4, n, µ0)M(4, n, k, 1

2 ) +

µ1
∑

ν=1

a(−ν)(1)M(1, n, ν1,
1
2 ) +

µ2
∑

ν=1

(−1)na(−ν)(2)M(1, n, ν2,
1
2 )

+
∑

c∈C00
4<c<

√
n,4|c

c−1A(c, n, k)M(c, n, k, 1
2) +

2
∑

j=1

∑

c∈Cj0
1<c<

√
n

µj
∑

ν=1

a(−ν)(j)c−1A(c, n, νj)M(c, n, νj,
1
2)

)

.

Example 2.4. Consider f3(z) = q−3 +
∑∞

n=1 a(n)qn. By using (1.1, 1.2, 1.3), we can show

z−
1
2 f3(−1

z
) =

1 − i

2
(26752q

1
4 + 1707264q

1
2 + · · · ),

z−
1
2 f3(−1

z
+ 1

2 ) =
1 − i

2
q

1
16 (q−

1
4 − 248 − 85995q

1
4 − 4096248q

1
2 + · · · ).

Here I− 1
2
(z) =

√

2
π

cosh z√
z

. If n ≡ 0, 1 (mod 4), the main term for a(n) in (2.2) is

(−1)n 2 cosh(π
√

3n)√
n

.

If n = 9, it is −4096247.99 . . . . It is very close to the actual value −4096248.

Example 2.5. Consider f4(z) = f0(z)j(4z) − 2f3(z) − 746f0(z) = q−4 +
∑∞

n=1 a(n)qn. In this

case, we can show that

z−
1
2 f4(−1

z ) =
1− i

2
(q−

1
4 + 143376q

1
4 + 18473000q

1
2 + · · · ),

z−
1
2 f4(−1

z + 1
2) =

1− i

2
q

1
16 (492 + 565760q

1
4 + 51180012q

1
2 + · · · ).

Hence if n ≡ 0, 1 (mod 4), the main term for a(n) is

2 cosh(π
√

4n)√
n

.

If n = 9, it is 51184311.8 . . . . It is very close to the actual value 51180012.

We consider f4k(z). Let J(z) = j(z)− 744 = q−1 +
∑∞

n=1 c(n)qn. Then

f4(z) = f0(z)J(4z) − 2f3(z)− 2f0(z), f8(z) = f4(z)J(4z)− 492f3(z)− 340260f0(z),

and for k ≥ 3, if f4(k−1)(z) = q−4(k−1) + a(1)q + a(4)q4 + · · · , then

f4k(z) = f4(k−1)(z)J(4z) −
k−2
∑

m=1

c(m)f4(k−m−1)(z) − a(1)f3(z)− (c(k − 1) + a(4))f0(z).
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Now we can prove the following either by induction or by imitating the proof of Lemma 14.2

in [1].

Lemma 2.6. Suppose f4k(z) = q−4k +
∑∞

n=1 a(n)qn. Then

z−
1
2 f4k(−1

z ) =
1 − i

2
(q−

k
4 +

∞
∑

n=1

a(4n)q
n
4 ),

z−
1
2 f4k(−1

z + 1
2) =

1 − i

2
q

1
16

∞
∑

n=0

a(4n + 1)q
n
4 .

Proof. Let

h0(z) = q−k +
∞
∑

n=1

a(4n)qn, h1(z) =
∞
∑

n=0

a(4n + 1)qn+ 1
4 .

Then f4k(z) = h0(4z) + h1(4z). Since f4k ∈ M+
1
2

(Γ0(4)), we have

f4k

(

z

4z + 1

)

= (4z + 1)
1
2 f(z).

By replacing 4z + 1 by z, and noting that h0(z ± 1) = h0(z), h1(z + 1) = ih1(z), and h1(z − 1) =

−ih1(z), we have

h0(−1
z ) + ih1(−1

z ) = z
1
2 (h0(z)− ih1(z)).

Now let z = iy and note that h0(iy) and h1(iy) are real. Hence

h0

(

i

y

)

=

√
y√
2
(h0(iy) + h1(iy)), h1

(

i

y

)

=

√
y√
2
(h0(iy) − h1(iy)).

Since h0 and h1 are meromorphic functions, the above equalities are true by replacing iy by z

with Im(z) > 0. Hence

h0(−1
z
) =

1 − i

2

√
z(h0(z) + h1(z)), h1(−1

z
) =

1 − i

2

√
z(h0(z)− h1(z)).

Therefore,

f4k(−1
z
) = h0(−4

z
) + h1(−4

z
) =

1 − i

2

√
zh0(

z
4).

For f4k(−1
z + 1

2 ), note that h1(z + 2) = −h1(z). Then

f4k(−1
z

+ 1
2) = h0(−4

z
) − h1(−4

z
) =

1− i

2

√
zh1(

z
4).

�
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So µ1 = k, µ2 = 0, and a(−ν)(1) = 0 for ν = 1, ..., k− 1. Therefore, the main term of (2.2) is

(2.7) 2πi−
1
2

(

1 + i

4

(

4k

n

) 1
4

I− 1
2
(π

√
4kn) +

1 + i

2

(

k

4n

)1
4

I− 1
2

(

4π

√

nk

4

))

=
2 cosh(π

√
4kn)√

n
.

We consider the other terms:

(2.8) 2πi−
1
2







∑

c∈C00
4<c<

√
n,4|c

c−1A(c, n, 4k)M(c, n, 4k, 1
2 ) +

1 + i

2

∑

c∈C10
1<c<

√
n

c−1A(c, n, k
4 )M(c, n, k

4 , 1
2 )







We will prove that the above sum is smaller than the main term. By the trivial estimate, we

obtain |A(c, n, νj)| ≤ c for any j = 0, 1, 2. Hence

|(2.8)| ≤ 2π







∑

c∈C00
4<c<

√
n, 4|c

M(c, n, 4k, 1
2 ) +

1√
2

∑

c∈C10
1<c<

√
n

M(c, n, k
4 , 1

2 )







≤ 2π







∑

c∈C00
4<c<

√
n, 4|c

( n

4k

)− 1
4
I− 1

2

(

8π
√

nk

c

)

+
1√
2

∑

c∈C10
1<c<

√
n

(

4n

k

)− 1
4

I− 1
2

(

2π
√

nk

c

)







≤ 2π
√

n

(

k

n

)1
4

I− 1
2
(π

√
nk) = 2

√
2 cosh(π

√
nk).

It is clearly smaller than (2.7).

Let f4k−1(z) = q−4k+1 +
∑∞

n=1 a(n)qn. In the same way as in Lemma 2.6, let

h0(z) =
∞
∑

n=1

a(4n)qn, h1(z) = q−k+ 1
4 +

∞
∑

n=0

a(4n + 1)qn+ 1
4 .

We can prove

z−
1
2 f4k−1(−1

z ) =
1 − i

2

∞
∑

n=1

a(4n)q
n
4 ,

z−
1
2 f4k−1(−1

z
+ 1

2) =
1 − i

2
q

1
16 (q−

k
4 +

∞
∑

n=0

a(4n + 1)q
n
4 ).
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Therefore, the main term of (2.2) is

2πi−
1
2



(−1)n 1 + i

4

(

4k − 1

n

)
1
4

I− 1
2
(π
√

(4k − 1)n) + (−1)n1 + i

2

(

k − 1
4

4n

) 1
4

I− 1
2

(

2π

√

n(k − 1

4
)

)





= (−1)n 2 cosh(π
√

(4k − 1)n)√
n

.

Now we are left to deal with the error term (2.3). Unfortunately, we cannot make the implied

constant explicit. It is expected since f4k(z) and f4k(z) + Nf0(z) have the same main term in

(2.2) for any N . So we can only conclude that the main term is bigger than the error term for

n ≥ n0 for some n0. This concludes the proof of Theorem 0.2.

Remark 2.9. We can apply the same technique to jm(z) in [8], page 23. It is defined as

j0(z) = 1, j1(z) = j(z)− 744, and for m ≥ 2,

jm(z) = j1(z)|T0(m) =
∑

d|m
ad=m

d−1
∑

b=0

j1

(

az + b

d

)

.

It has the q-expansion

jm(z) = q−m +

∞
∑

n=1

cm(n)qn.

From the definition, it is clear that cm(n) are all positive integers. We have the following series

expression for cm(n) ([6], page 314):

cm(n) = 2π

∞
∑

k=1

A(k, n, m)

k

(m

n

) 1
2
I1

(

4π
√

mn

k

)

, A(k, n, m) =
∑

h(mod k), (h,k)=1

hh′≡−1(mod k)

e

(

−nh + mh′

k

)

.

Hence we obtain cm(n) ∼ m
1
4 e4π

√
mn

√
2n

3
4

.

Remark 2.10. For each positive integer D ≡ 0, 1(mod 4), let gD(z) ∈ M+
3
2

(Γ0(4)) be the unique

modular form with a Fourier expansion of the form ([8], page 72)

gD(z) = q−D +
∑

d≥0
d≡0,3 (mod 4)

B(D, d)qd.

Zagier [11] proved that B(D, d) = −A(D, d), where fd(z) = q−d +
∑

D>0 A(D, d)qD. Using our

method, we can prove that if 4|D, the coefficient B(D, d) is a negative integer for all sufficiently
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large d. Since B(D, d) = −A(D, d), this shows that given D with 4|D, A(D, d) is positive for all

sufficiently large d.

More precisely, we can get an asymptotic expression for B(D, d). For simplicity, let g4k(z) =

q−4k +
∑∞

n=0 a(n)qn. In this case, κ1 = 0, κ2 = 3
4 . So it has a Fourier expansion at the other

cusps:

g4k(−1
z
) = iz

3
2

∞
∑

n=−µ1

a(n)(1)q
n
4 , g4k(−1

z
+ 1

2 ) = iz
3
2 q

3
16

∞
∑

n=−µ2

a(n)(2)q
n
4 .

Let

h0(z) = q−k +

∞
∑

n=0

a(4n)qn, h1(z) =

∞
∑

n=0

a(4n + 3)qn+ 3
4 .

Then g4k(z) = h0(4z) + h1(4z). In the same way as for f4k, we can show

g4k(−1
z
) =

1 + i

8
z

3
2 h0(

z
4), g4k(−1

z
+ 1

2) =
1 + i

8
z

3
2 h1(

z
4).

Here in (2.2), µ0 = 4k, and A(4, n, µ0) = 1 − i. Hence

a(n) ∼ 2πi−
3
2

(

1 − i

4
√

2

(n

k

) 1
4
I 1

2
(2π

√
nk) +

1 − i

8

√
2
(n

k

) 1
4
I 1

2
(2π

√
nk)

)

= −π
(n

k

) 1
4
I 1

2
(2π

√
nk).

Since I 1
2
(z) =

√

2
π

sinh(z)√
z

, we obtain

a(n) ∼ −2 sinh(π
√

4kn)√
4k

.

In the same way, we can show that if g4k+1(z) = q−4k−1 +
∑∞

n=0 a(n)qn,

a(n) ∼ (−1)n−1 2 sinh(π
√

(4k + 1)n)√
4k + 1

.

For example, when k = 2, n = 7, we have a(n) ∼ 22505067826.5 . . . . The actual value is

22505066244.

Remark 2.11. For each positive integer d ≡ 0, 1 (mod 4), consider vd ∈ M+
− 1

2

(Γ0(4)) which is

the unique modular form with a Fourier expansion of the form ([11], page 19)

vd(z) = q−d +
∑

n≥0
n≡0,3 (mod 4)

a(n)qn.

If f ∈ M+
− 1

2

(Γ0(4)), f(az+b
cz+d

) = ( c
d
)−1εd(cz + d)−

1
2 f(z). In this case, κ1 = 0, κ2 = 3

4 . So this case

is similar to gD in the above remark. Let v4k(z) = q−4k +
∑∞

n=0 a(n)qn. In this case, we have a

series representation of a(n) without the error term ([6], page 313):
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a(n) = 2πi
1
2

2
∑

j=0

µj
∑

ν=1

a(−ν)(j)
∑

0<c∈Cj0

c−1A(c, n, νj)M(c, n, νj, r).

In this case, we can show that a(n) is positive for all n, and

a(n) ∼ 4π

(

k

n

)3
4

I− 3
2
(2π

√
nk).

Since I− 3
2
(z) =

√

2
π

z sinh(z)− cosh(z)

z
3
2

, we have

a(n) ∼ 2π
√

4kn sinh(π
√

4kn) − 2 cosh(π
√

4kn)

πn
3
2

.

Similarly, if v4k+1(z) = q−4k−1 +
∑∞

n=0 a(n)qn,

a(n) ∼ (−1)n 2π
√

(4k + 1)n sinh(π
√

(4k + 1)n) − 2 cosh(π
√

(4k + 1)n)

πn
3
2

.

For example, when k = 2, n = 7, we obtain a(n) ∼ −27774695413.6 . . . . The actual value is

−27774693612.
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