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Abstract: The quantum Grothendieck ring of a certain category of finite-dimensional
modules over a quantum loop algebra associated with a complex finite-dimensional
simple Lie algebra g has a quantum cluster algebra structure of skew-symmetric type.
Partly motivated by a search of a ring corresponding to a quantum cluster algebra of
skew-symmetrizable type, the quantum virtual Grothendieck ring, denoted by Kq(g),
is recently introduced by Kashiwara and Oh (Math Z 303(2):42, 2023) as a subring
of the quantum torus based on the (q, t)-Cartan matrix specialized at q = 1. In this
paper, we prove that Kq(g) indeed has a quantum cluster algebra structure of skew-
symmetrizable type. This task essentially involves constructing distinguished bases of
Kq(g) that will be used to make cluster variables and generalizing the quantum T -system
associated with Kirillov–Reshetikhin modules to establish a quantum exchange relation
of cluster variables. Furthermore, these distinguished bases naturally fit into the paradigm
of Kazhdan–Lusztig theory and our study of these bases leads to some conjectures on
quantum positivity and q-commutativity.
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1. Introduction

1.1. Background. Let C = (ci, j )i, j∈I be a Cartan matrix of finite type, and let g be the
finite-dimensional simple Lie algebra over C associated with C, where I is the index set
of the simple roots of g. Since its inception as trigonometric solutions to the quantum
Yang–Baxter equation [11,34], the quantum loop algebraUq(Lg) of g has been one of the
central objects in representation theory and mathematical physics, and various algebraic
and geometric approaches have been taken to study the finite-dimensional modules over
Uq(Lg). Moreover, for the last 15 years or so, as categorification became one of the
major trends in representation theory and cluster algebra structures were discovered
ubiquitously, the category Cg of finite-dimensional Uq(Lg)-modules became a focal
point of research where these new ideas and methods could be applied fruitfully, since
the quantum Grothendieck ring of Cg provides a categorification of a cluster algebra
and generalizes the Kazhdan–Lusztig(KL) theory.

To be more precise, the quantum cluster algebraA, introduced by Berenstein–Fomin–
Zelevinsky (BFZ) in [4,12], is a non-commutative Z[q±1/2]-algebra contained in the
quantum torus Z[˜X±1

k |k ∈ K] which is equipped with a distinguished set of generators
(quantum cluster variables) grouped into subsets (quantum clusters), whereK is an index
set. Each cluster is defined inductively by a sequence of certain combinatorial algebraic
operations (mutations) from an initial cluster. Since then, numerous connections and
applications have been discovered in various fields of mathematics.

It is well-known that the quantum cluster algebra was introduced in an attempt to
create an algebraic framework for the dual-canonical/upper-global basis B∗ [40,41,54]
of the quantum group Uq(g). Indeed, it is shown in [22,23] that the unipotent quantum
coordinate algebra Aq(n) of Uq(g), which is the graded dual of the half of Uq(g),
has a quantum cluster algebra structure, and intensive research has been performed to
understand the structure in relation with B∗ (see [42] for a survey). In these efforts, it
turned out that categorification provides powerful methods [39,51,52,64].

When g is of simply-laced type with its set of positive roots denoted by �+
g, we

can consider the path algebra CQ of the Dynkin quiver Q associated with g and obtain
the Auslander–Reiten (AR) quiver �Q of CQ. In turn, �Q can be understood as a
heart of the AR-quiver ̂� of the derived category Db(Rep(CQ)), called the repetition
quiver. In [29], which culminates preceding works [25,28,54,60,63,66,67], Hernandez
and Leclerc defined the heart subcategory C Q

g of Cg by using �Q , and proved that

the quantum Grothendieck ring Kt(C
Q
g ) of C Q

g is isomorphic to the integral form

AZ[q±1/2](n) of Aq(n) and that the isomorphism sends the basis of Kt(C
Q
g ) consisting

of the elements corresponding to simple objects in C Q
g to B∗ of Aq(n) (cf. [61]).

To extend the results of [29,30] to non-simply-laced types, the Q-datum Q is intro-
duced in [21] as a generalization of the Dynkin quivers of types ADE . Through the
Q-datum for any finite type, the (combinatorial) AR-quiver �Q , the repetition quiver
̂�σ , and the heart subcategory CQ

g of Cg are naturally defined, where σ is the Dynkin
diagram automorphism of simply-laced g whose orbits produce the Dynkin diagram
of g. One could possibly expect that Kt(CQ

g ) would be isomorphic to AZ[q±1/2](n) of
Uq(g) when g is of non-simply-laced type, generalizing the result in types ADE to all
types. However, further studies [18,31,46,62] show that the quantum Grothendieck ring
Kt(CQ

g ) is actually isomorphic to AZ[q±1/2](n) of Uq(g) associated with g of simply-

laced type. Hence the structure of Kt(CQ
g ) is intrinsically relevant to the counterpart of
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simply-laced type, and the quantum cluster algebra structure associated with Kt(CQ
g )

is still of skew-symmetric type.

1.2. Overview of this paper. Since there are quantum cluster algebras of skew-
symmetrizable type, a natural question arises:

Can we extend Kt(C
Q
g ) (or Kt(Cg))in such a way to have a quantum cluster

algebra structure of skew-symmetrizable type?

Partly motivated by this question, Kashiwara and Oh introduced the quantum
virtualGrothendieck ringKq(g) inside the quantum torusXq(g):=Z[X±1

i,p | (i, p) ∈ ̂�g
0 ],

where ̂�g
0 is the set of vertices (i, p) (i ∈ I , p ∈ Z) of the repetition quiver ̂�g with

valued arrows induced from the (q, t)-Cartan matrix specialized at q = 1 ([47], see
also Sect. 2.4). Pursuing the direction further, in this paper, we prove that Kq(g) indeed
has a quantum cluster algebra structure of skew-symmetrizable type. In a subsequent
paper, our result will be utilized to fully answer the above question and to genuinely
extend the results of [29] in the sense that Aq(n) is involved even for g of non-simply-
laced type. We remark that the evaluation of Kq(g) at q = 1 coincides with the folded
t-character ring (Remark 4.12), denoted by K1,t,d(g) (see (1.2) below), which is intro-
duced by Frenkel–Hernandez–Reshetikhin in [14] to explore a (conjectural) quantum
integrable model corresponding to what is called the folded Bethe Ansatz equation (see
Remark 3.13).

Though we do not yet have an actual category that will replace Cg for our purpose
(cf. [14, Remark 3.2, Remark 5.1]), we can still utilize an algebraic characterization of
Kt(C 0

g ) as the intersection of the kernels of screening operators in Yt(g), where C 0
g

is the skeleton subcategory of Cg and Yt(g) is the quantum torus with respect to the
(q, t)-Cartan matrix specialized at t = 1.

In order to give a quantum cluster algebra structure on Kq(g) in this paper, we need
to construct quantum cluster variables and exchange relations for mutations. The former
requires constructing distinguished bases forKq(g) and the latter amounts to generalizing
the quantum T -system associated with Kirillov–Reshetikhin (KR) modules as explained
briefly below.

We establish three bases of Kq(g), denoted by Fq ,Eq , and Lq respectively. The basis
Fq is constructed by a generalization of Frenkel–Mukhin (FM) algorithm [15], which
plays a crucial role in studying Kq(g). Furthermore, it induces two other important
bases Eq and Lq of Kq(g). For i ∈ I , let m(i)[p, s] := Xi,p Xi,p+2 · · · Xi,s (see (3.2)
for the notation). Then we denote by Fq(m(i)[p, s]) the element in Fq corresponding to
m(i)[p, s], and call it the KR-polynomial. Taking a q-commuting family consisting of
these KR-polynomials as the quantum cluster of initial seed, we develop aquantum folded
T -system to serve as the set of quantum exchange relations. After making compatible
pairs available for our use (cf. [47]), we establish a quantum cluster algebra structure on
a subalgebra and extend it to Kq(g).

It is worthwhile to remark that when g is simply-laced, the basis Lq (resp. Eq )
comes from simple (resp. standard) modules in C 0

g , and the entries of the transition
matrix between Lq and Eq are understood as analogues of the KL-polynomials. Thus
our construction of Lq and Eq for all the finite types extends the KL-theory for C 0

g .
Moreover, we have conjectures related to positivity on KR-polynomials in Fq and real
elements in Lq , and to BFZ-expectation that every quantum cluster monomial is an
element in the canonical basis (see Conjecture I below).
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Throughout this paper, the interplay between g and its simply-laced type counter-
part g and the Dynkin diagram automorphism σ (cf. (2.3) and (2.4)) provides important
viewpoints leading to natural definitions. However, we emphasize that none of our main
constructions, including bases Fq ,Eq , and Lq , is obtained merely from combining ob-
jects in each orbit of σ . That is, none of our results is a consequence of simple folding.
Rather, there seem to exist quite intriguing features of non-simply-laced type objects at
the quantum level.

In the following subsections, we will review known results in Sects. 1.3 and 1.4 with
some details, and present our results more rigorously in Sect. 1.5, and mention our future
work in Sect. 1.6.

1.3. Quantum Grothendieck ring and quantum loop analogue of KL-theory. From the
study for q-deformation of W-algebras, the q-character1 theory for C 0

g was invented
by Frenkel–Reshetikhin [17] and further developed by Frenkel–Mukhin [15], which
says that the (non-quantum) Grothendieck ring K (C 0

g ) of C 0
g is isomorphic to the com-

mutative ring generated by the q-characters of fundamental modules L(Yi,p) under
the Chari–Pressley’s classification [7,8]. For simply-laced type g, Nakajima [60] and
Varagnolo–Vasserot [67] constructed a non-commutative t-deformation of K (C 0

g ) in a
quantum torus Yt(g), denoted by Kt(C 0

g ), based on a geometrical point of view. Since
the specialization of Kt(C 0

g ) at t = 1 recovers K (C 0
g ), we call Kt(C 0

g ) the quantum

Grothendieck ring associated with C 0
g .

In particular, Nakajima established a KL-type algorithm to describe the composition
multiplicity Pm,m′ of a simple module L(m′) inside a standard module E(m) through
equations in K (C 0

g ): Denoting by M+ the parameterizing set of simple modules in C 0
g ,

we have

[E(m)] = [L(m)] +
∑

m′∈M+; m′≺N
m

Pm,m′ [L(m′)].

It is proved by Nakajima [59,60] that the multiplicity Pm,m′ is equal to the specializa-
tion at t = 1 of a polynomial Pm,m′(t) with non-negative coefficients, which can be
understood as a quantum loop analogue of KL-polynomial.

One step further, each q-character of simple module L(m) (resp. standard module
E(m)) allows a t-deformation in Kt(C 0

g ), denoted by Lt (m) (resp. Et (m)), whose
coefficients in Z[t±1/2] are non-negative. Its specialization at t = 1 recovers the q-
character of L(m) (resp. E(m)) and the transition map between Lt = {Lt (m)} and
Et = {Et (m)} in Kt(C 0

g ) satisfies the following equation:

Et (m) = Lt (m) +
∑

m′∈M+;m′≺N
m

Pm,m′(t) Lt (m
′) where Pm,m′(t) ∈ tZ�0[t]. (1.1)

We call Lt the canonical basis and Et the standard basis of Kt(C 0
g ), respectively

(see Remark 5.10 also). In what follows, positivity generally means that polynomials
of interest have non-negative coefficients as is the case with Pm,m′(t) ∈ tZ�0[t]. We
remark that, in these developments, the geometry of quiver varieties plays an essential
role.

1 In the main body of this paper, we sometimes call it t-character by replacing the role of q by t .
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Despite the absence of fully developed theory of quiver varieties for general type g,
Hernandez [24,25] constructed a conjectural KL-theory forC 0

g in a purely algebraic way.
Let us explain this more precisely. Using the quantum Cartan matrix C(q), Hernandez
constructed the quantum torus Yt(g) and defined Kt(C 0

g ) to be the intersection of the
kernels of the t-deformed screening operators Si,t’s on Yt(g). Then he constructed
a basis Ft = {Ft (m)} by deforming the FM-algorithm and proved the positivity of
Ft (Yi,p) = Lt (Yi,p). Then the basis Ft induces two other bases Et = {Et (m)} and Lt =
{Lt (m)} satisfying (1.1) that enable us to establish a conjectural KL-theory, expecting
the positivity of analogues of KL-polynomials and Lt (m)’s.

Recently, large parts of the conjectures for non-simply-laced g are proved by Fujita–
Hernandez–Oh–Oya through so-called propagation of positivity. Let g be an unfolding
of g as follows:

(g, g) = (Bn, A2n−1), (Cn, Dn+1), (F4, E6), (G2, D4).

Then it is proved in [18,29] that

Kt(C
0
g ) and Kt(C

0
g ) have the same presentation,

where Kt(C 0
g ) :=Q(q1/2)⊗Z[q±1/2]Kt(C 0

g ). Hence the ring Kt(C 0
g ) can be interpreted

as the boson-extension of Aq(n) of the simply-laced g. Then the KL-theory and positiv-
ity are established for type Bn using the quantum Schur–Weyl duality functor [37,43]
between C 0

A2n−1
and C 0

Bn
, and similar conjectures for CFG-types are mostly resolved

in [18,19] using the quantum Schur–Weyl duality functor [36,46,62] for these types
and the degrees (also called g-vectors) of (quantum) cluster algebra theory. As indicated
above, the presentation of Kt(C 0

g ) is of simply-laced type even for non-simply-laced g.

1.4. Quantum cluster algebra structure of skew-symmetric type onKt(C 0
g ). In the sem-

inal paper [30], Hernandez–Leclerc proved that K (C−g ) for a subcategory C−g of C 0
g has

a cluster algebra structure of skew-symmetric type for any g of finite type. To show the
cluster algebra structure, they employed the T-system among Kirillov–Reshetikhin (KR)
modules proved by Nakajima [59] for simply-laced types and by Hernandez [27] for non-
simply-laced types. Then the result of [30] is extended to Kt(C 0

g ) in [5,18,19,31,44,45]
to obtain quantum cluster algebras of skew-symmetric type. Some important features of
these works can be summarized as follows:

(a) The extension to whole category C 0
g in [44,45] involves a categorical language.

(b) The main idea of the extension to quantum cluster algebra in [5,18,31] is the quan-
tization of T-system among KR modules.

(c) The monoidal categorification result in [45] tells us that every quantum cluster mono-
mial of Kt(C 0

g ) corresponds to an element of Lt . This gives an affirmative answer
to the BFZ-conjecture [12] on B∗ and the quantum cluster monomials.

(d) As every KR-polynomial Ft (m) appears as a quantum cluster variable of Kt(C 0
g ), it

is proved in [19,45] that Ft (m) = Lt (m) for any KR-module L(m).

Here we remark that the result of [45] is for K (C 0
g ) and extended to Kt(C 0

g ) in [19].
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1.5. Main results of this paper. In this paper, we initiate a study of Kq(g) in the perspec-
tive of Sects. 1.3 and 1.4. Due to lack of a representation theory corresponding to Kq(g),
we approach the ring Kq(g) by analyzing its construction in [47] and by exploiting (I)
and (II), where

(I) Kq (g) is a q-deformation of the commutative ring K1,t,d (g), which is the specialization

of the refined ring Kq,t,α(g) of interpolating (q,t)-characters in [14] at (q,α) = (1, d),

(II) K1,t,d (g) 	 K (C 0
g ) if g is of simply-laced type, (1.2)

(see Sect. 3.4 and [47, Introduction]). Here α is a factor to interpolate several char-
acters (see [14, Remark 6.2(1)]) and d is the lacing number of g. In particular, if g is
of non-simply-laced type, there exist a simply-laced g containing g as a non-trivial Lie
subalgebra (e.g. see [35, Proposition 7.9] with (2.4)) and a surjective homomorphism

K1,t,d(g) � K1,t,d(g) 	 K(g), (1.3)

which is induced from the folding of generators of K1,t,d(g) 	 K (C 0
g ).

The main results of this paper can be summarized into two statements:

(A) we construct bases Fq , Eq , and Lq of Kq(g), which play similar roles of Ft , Et , and
Lt ,

(B) we establish skew-symmetrizable quantum cluster algebra structures on subrings of
Kq(g) (including itself) using the bases in (A).

Here we emphasize that our results can not be obtained from the folding in (1.3), as we
do not have a surjective homomorphism Aq(n) � Aq(n) from the canonical surjection
C[N]� C[N], where C[N ] denotes the unipotent coordinate ring of N of g.

1.5.1. Construction of bases and KL-paradigm for Kq(g) Let C(t) be the (q, t)-Cartan
matrix specialized at q = 1, which is called t-quantized Cartan matrix. To construct the
basis Fq of Kq(g), we apply a q-deformed version of FM-algorithm with respect to C(t).
However, there is no guarantee that the algorithm terminates in finite steps. To avoid
this problem, we prove that the monomials (not including coefficients) of Fq(Xi,p)

((i, p) ∈ ̂�g
0) in Fq are obtained from those of the q-character of L(Yı,p) of type g

via (1.3) for (ı, p) ∈ ̂�g
0. Furthermore, we prove that a similar phenomenon occurs for

a KR-polynomial Fq(m(i)[p, s]) (Proposition 5.20). This result implies that the outputs
of the algorithm are indeed contained in Kq(g) and form a basis Fq . The basis Fq nicely
characterizes an element in Kq(g) since each element in Fq has a unique dominant
monomial (Theorem 5.27). Here we emphasize once more that general elements in Fq
are not susceptible of similar manipulations based on (1.3) even in the specialization at
q = 1 (Example 3.11), and determining the Z[q±1/2]-coefficients of Fq(m(i)[p, s]) is
a completely different problem even for a KR-polynomial Fq(m(i)[p, s]).

We investigate properties of the KR-polynomials in Fq in detail, since they will be
used as the quantum cluster variables ofKq(g) (Propositions 5.23 and 5.29). By applying
the framework in [25], we construct the standard basis Eq = {Eq(m)} and the canonical
basis Lq = {Lq(m)} fitting into the paradigm of Kazhdan–Lusztig theory:

Eq(m) = Lq(m) +
∑

m′∈M;m′≺
N
m

Pm,m′(q) Lq(m
′) where Pm,m′(q) ∈ qZ[q].
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1.5.2. Quantum cluster algebra structure of skew-symmetrizable type on Kq(g) Based
on the construction of bases for Kq(g), we show quantum cluster algebra structures on
subrings of Kq(g) as the first task in the second part of this paper.

In [47], Kashiwara and Oh constructed a compatible pair (�, ˜B) arising from the iso-
morphism between the subtorusXq,Q(g) ofXq(g) and the torus containing AZ[q±1/2](n),
in which the exchange matrix ˜B is skew-symmetrizable. Here Q = (�, ξ) is a Dynkin
quiver of type g. Interpreting entries in � as pairing of KR-monomials (Theorem 8.1),
we form an initial quantum cluster consisting of certain KR-polynomials Fq(m) for each
Dynkin quiver Q = (�, ξ) and its corresponding subring Kq,ξ (g).

As a quantum cluster should consist of mutually q-commutative elements, we prove
that the family of Fq(m) in the initial cluster are mutually q-commutative, using the
truncation homomorphism (Proposition 6.3) and the properties of KR-polynomials. By
investigating q-commuting conditions (Lemmas 6.6, 6.7, and 6.8) and multiplicative
structure among KR-polynomials Fq(m), we obtain the quantum foldedT-systems among
KR-polynomials Fq(m) (Theorem 6.9):

Fq
(

m(i)[p, s))∗Fq
(

m(i)(p, s])=qα(i,k)Fq
(

m(i)(p, s)
)∗Fq

(

m(i)[p, s])

+ qγ (i,k)
∏

j; d(i, j)=1

Fq
(

m( j)(p, s)
)−c j,i .

Then we prove thatKq,ξ (g)has a quantum cluster algebra structure of skew-symmetrizable
type (Theorem 8.9) by using the quantum folded T-systems as mutation relations and
applying special sequences of mutations. In the proof, we adopt the setup of [5,30] and
use the valued quivers (Sect. 2.4) (equivalent to exchange matrices) for the sequences
of mutations. As applications, we obtain a quantum cluster algorithm to compute KR-
polynomials Fq(m) (Proposition 8.6) and a sufficient condition for q-commutativity of
certain pairs of KR-polynomials Fq(m) (Theorem 8.10).

As the second task, we extend the result on Kq,ξ (g) to the whole ring Kq(g). For
this purpose, we construct a new quantum seed, whose valued quiver is a “sink-source"
quiver reflecting features of g and whose initial quantum cluster consists of certain KR-
polynomials Fq(m). Here the q-commutativity of the initial quantum cluster follows
from Theorem 8.10. Finally, we prove that Kq(g) has a quantum cluster algebra structure
of skew-symmetrizable type by establishing (a) a mutation equivalence between the
valued quiver of Kq,ξ (g) and that of Kq(g), and finding out (b) special sequences of
mutations that yield every KR-polynomial Fq(m) as a cluster variable.

Since every KR-polynomial Fq(m) appears as a cluster variable and every quantum
cluster monomial is expected to be a canonical basis element and real, we have the
following conjecture:

Conjecture I. (a) Every quantum cluster monomial of Kq(g) is contained in Lq .
(b) For every KR-polynomial Fq(m), we have Fq(m) = Lq(m) and Fq(m) has non-

negative coefficients.
(c) If Lq(m) is real, that is, for any k ∈ Z�1, there exists t ∈ Z such that Lq(m)k =

qt Lq(mk), then it has non-negative coefficients.

Also, we have two more conjectures on the q-commutativity of KR-polynomials Fq(m)

in Conjectures 4 and 5, which can be understood as natural generalizations of the results
in [62] and [19,45], respectively.
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1.6. Future work. In a forthcoming paper [33], we study the heart subring Kq,Q(g)
of Kq(g) in terms of a generalization Q of the Dynkin quiver to non-simply-laced
type, where the AR-quiver �Q and the repetition quiver ̂� are defined for g of any
finite type including BCFG. Since it is shown in this paper that Kq(g) has a quantum
cluster algebra structure (of skew-symmetrizable type), as it is with Kt(C 0

g ) in [18,29],
it will be shown that each heart subring Kq,Q(g) is isomorphic to AZ[q±1/2](n) via a
certain isomorphism ψQ and that the normalized dual-canonical/upper-global basis of
AZ[q±1/2](n) corresponds to the subset Lq,Q := Lq ∩ Kq,Q(g) under ψQ . This justifies
the name of Lq , the canonical basis. Here we would like to make an emphasis on the
difference between the known result and our new result when g is non-simply-laced: in
the previous Kt(C

Q
g )-case, the corresponding Aq(n) is of simply-laced type g, while

in the new Kq,Q(g)-case, the type of Aq(n) is the same as that of g. Based on some
investigation of the heart subrings, we will also clarify the presentation of

Kq(g) :=Q(q1/2)⊗Z[q±1/2] Kq(g),

which says that Kq(g) can be understood as a boson-extension of Aq(n), as Kt(C 0
g ) is

for Aq(n) of simply-laced type g. Then we will show that the automorphisms of Kq(g),
arising from the reflections on Dynkin quivers Q and the isomorphisms ψQ , preserve
the canonical basis Lq of Kq(g) and induce the braid group action on Kq(g).

Convention. Throughout this paper, we use the following convention.

• For a statement P, we set δ(P) to be 1 or 0 depending on whether P is true or not.
As a special case, we use the notation δi, j := δ(i = j) (Kronecker’s delta).
• For k, l ∈ Z and s ∈ Z�1, we write k ≡s l if s divides k − l and k �≡s l, otherwise.
• For a monoidal abelian category C, we denote its Grothendieck ring by K (C). The

class of an object X ∈ C is denoted by [X ] ∈ K (C).
• A monomial in a Laurent polynomial ring Z[x±1

j | j ∈ J ] is said to be dominant
(resp. anti-dominant) if it is a product of non-negative (resp. non-positive) powers of
xi ’s.
• For elements {r j } j∈J in a ring (R, 
), parameterized by a totally ordered set J =
{· · · < j−1 < j0 < j1 < · · · }, we write

→


j∈J r j := · · · 
 r j−1 
 r j0 
 r j1 
 · · · .

• For integers a, b ∈ Z, we set

[a, b] := {x ∈ Z | a � x � b} (a, b] := {x ∈ Z | a < x � b}
[a, b) := {x ∈ Z | a � x < b} (a, b) := {x ∈ Z | a < x < b}

We refer to subsets of these forms as intervals.
• Let X = {x j | j ∈ J } be a parameterized by an index set J . Then for j ∈ J and a

subset J ⊂ J , we set

(X) j := x j and (X)J := {x j | j ∈ J }.
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2. Preliminaries

2.1. Cartan datum. Let g be a Kac–Moody algebra of a symmetrizable type. We denote
its Cartan matrix by C = (ci, j )i, j∈I , Dynkin diagram2 by �, weight lattice by P, set of
simple roots by � = {αi | i ∈ I } and set of simple coroots by �∨ = {hi | i ∈ I }.

Let D = diag(di ∈ Z�1 | i ∈ I ) denote a diagonal matrix such that

R = DC and R = CD−1 become symmetric.

We take D and the scalar product (·, ·) on P such that

(αi , α j ) = dici, j = d jc j,i ∈ Z and (αi , αi ) ∈ 2Z�1 for all i ∈ I. (2.1)

We also denote by �± the set of positive (resp. negative) roots of g. For each i ∈ I , we
choose �i ∈ P such that 〈hi ,� j 〉 = δi, j ( j ∈ I ). The free abelian group Q :=⊕

i∈I
Zαi

is called the root lattice.
Throughout this paper, we use the following convention of finite Dynkin diagrams:

An 2
1

2
2

2
3

2
n
2

n−1
, Bn 4

1
4
2

4
3

4
n
2

n−1
, Cn 2

1
2
2

2
3

2
n
4

n−1
,

Dn
2n−1

2
1

2
2

2
3

2
n
2

n−2

, E6
2 2

2
1

2
3

2
4

2
6
2

5

, E7
2 2

2
1

2
3

2
4

2
5

2
7
2

6

,

E8
2 2

2
1

2
3

2
4

2
5

2
6

2
8
2

7

, F4 4
1

4
2

2
4
2

3
, G2 2

1
6
2

.

Here t k means that (αk, αk) = t . For i, j ∈ I , we denote by d(i, j) the smallest number
of edges (i.e. the distance) between i and j in �. For example, in the finite Bn-case,
d(n, n − 1) = d(n − 1, n) = 1 and d(n, n − 2) = d(n − 2, n) = 2, and in the finite
Dn-case, d(n, n − 1) = d(n − 1, n) = 2 and d(n, n − 2) = d(n − 2, n) = 1.

We denote by �0 the set of vertices and �1 the set of edges of �, respectively.
Throughout this paper, we consider only connected Dynkin diagrams. We sometimes
use � for non-simply-laced types to distinguish them from those of simply-laced types,
and use�f for finite types and, when an emphasis is needed, �f for finite non-simply-laced
types. For each �f , our convention amounts to taking

D := diag((αi , αi )/2 | i ∈ �f 0) such that min((αi , αi )/2) = 1.

The Weyl group W of g is generated by the reflections si (i ∈ I ) acting on P by

si (λ) = λ− 〈λ, hi 〉αi (λ ∈ P, i ∈ I ).

A Coxeter element of W is a product of the form si1 · · · si|I | such that {ik | 1 � k �
|I |} = I . All Coxeter elements are conjugate in W when � is a tree [9,32], and their
common order in W is finite when W is finite [65], in which case the order is called the
Coxeter number and denoted by h.

2 Our convention is a variation of the Coxeter–Dynkin diagram in the sense that we connect vertices with
single edges only. See the examples for the finite types. We will call them Dynkin diagrams for simplicity.
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A bijection σ from �0 to itself is said to be a Dynkin diagram automorphism if
〈hi , α j 〉 = 〈hσ(i), ασ( j)〉 for all i, j ∈ �0. Throughout this paper, we assume that
Dynkin diagram automorphisms σ satisfy the following condition:

there is no i ∈ �0 such that d(i, σ (i)) = 1. (2.2)

The condition in (2.2) is referred to as an admissibility (see [55, §12.1.1]).
For each Dynkin diagram �f of finite type A2n−1, Dn or E6, there exists a unique

non-identity Dynkin diagram automorphism ∨ of order 2 (except D4-type, in which
case, there are three automorphism of order 2 and two non-identity automorphisms ∨̃
and ∨̃2 of order 3) satisfying the condition in (2.2).

A2n−1 2
1
��

∨
�

� �

��

� �
�

2
2
�� ��
� 	 


2 2
2n−1

2
2n−2

, Dn
2n−1
�� ∨�

��
�

2
1

2
2

2 2
n
2

n−2

,

E6
2 2

2
1
��

∨




 �

		

� �
�

2
3


 ��� 	 �

2
4

2
6
2

5

, D4
23
�� ∨̃�

�∨̃ �

�� �
2
1

∨̃
�
�




�
�

2
4
2

2

,

(2.3)
For a Lie algebra g of simply-laced finite type associated to�f and a Dynkin diagram

automorphism σ( �= id) on �f , we denote by g the Lie subalgebra of g such that it is
non-simply-laced type [35, Proposition 7.9] and obtained via σ :

(g | (g, σ )) : (Cn | (A2n−1,∨)), (Bn | (Dn+1,∨)), (F4 | (E6,∨)), (G2 | (D4, ∨̃)).

(2.4)

Note that there exists a natural surjective map from I g to I g sending I g � ı �→ ı ∈ I g,
where ı is an index in I g which can be also understood as the orbit of i under σ .

2.2. Dynkin quiver. A Dynkin quiver Q = (�, ξ) of � is an oriented graph, whose
underlying graph is �, together with a function ξ : �0 → Z, called a height function
of Q, which satisfies the following condition:

ξi = ξ j + 1 if d(i, j) = 1 and i → j in Q. (2.5)

Remark 2.1. We emphasize here that not every Dynkin diagram� has a Dynkin quiver.
For instance, if � is of affine type A(1)

2n , there is no Dynkin quiver associated with �.
Thus, when we mention a Dynkin quiver Q = (�, ξ), it implies that� has one (see also
[55, §14.1]).

Note that, since � is connected,

height functions of Q differ by integers. (2.6)

Conversely, to a Dynkin diagram � and a function ξ : � → Z satisfying |ξi − ξ j | = 1
for i, j ∈ I with d(i, j) = 1, we can define an orientation on � to obtain a Dynkin
quiver in an obvious way. Thus it is enough to specify a pair (�, ξ) of a Dynkin diagram
and a height function to present a Dynkin quiver.

For a Dynkin quiver Q = (�, ξ), we call i ∈ �0 a source (resp. sink) of Q (or ξ ) if
ξi > ξ j (resp. ξi < ξ j ) for all j ∈ �0 with d(i, j) = 1. For a Dynkin quiver Q = (�, ξ)
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and its source i , we denote by si Q the Dynkin quiver (�, siξ), where siξ is the height
function defined as follows:

(siξ) j = ξ j − 2× δi, j . (2.7)

We call the operation from Q to si Q the reflection of Q at a source i of Q. Note that for
Dynkin quivers Q = (�, ξ) and Q′ = (�, ξ ′) with ξi ≡2 ξ ′i for all i ∈ �0, there exists
a sequence i1, . . . , ir and an even integer u ∈ 2Z such that ik is a source of sik−1 . . . si1 Q
(1 � k � r) and sir . . . si1 Q − Q = u in the sense that (sir · · · si1ξ) j = ξ ′j + u for all
j ∈ �0.

For a reduced expression w = si1 · · · sil of w ∈ W or a sequence w̃ = (i1, . . . ,
il)i1,...,il∈�0 of indices, we say that w (or w̃) is adapted to Q = (�, ξ) if

ik is a source of sik−1sik−2 · · · si1 Q for all 1 � k � l.

For a Dynkin quiver Q = (�, ξ), let si1 · · · si|�0 | be a Q-adapted reduced expression
of a Coxeter element. Then the height function ξ ′ of the Dynkin quiver si|�0 | · · · si1 Q is
given by

ξ ′i = ξi − 2 for any i ∈ �0. (2.8)

Note that, for g of finite type, we can obtain a Dynkin quiver Q = (�f , ξ) of the
same type by assigning orientations to edges in�f . For each Dynkin quiver Q of a finite
type, there exists a unique Coxeter element τQ ∈ W whose reduced expressions are all
adapted to Q. Note that, in finite type, there exists a unique element w0 in W whose
length is the largest. Also the element w0 induces an involution ∗ : I → I given by
w0(αi ) = −αi∗ .

Convention 1. Throughout this paper, we take a height function ξ on a finite Dynkin
quiver �f such that ξ1 ≡2 0.

Let Q = (�, ξ) be a Dynkin quiver and σ be a non-trivial Dynkin diagram automor-
phism of� satisfying (2.2). We call a Dynkin quiver Q σ -fixed if ξi = ξσ k (i) for all i ∈ I
and 0 � k < |σ |. For a σ -fixed Dynkin quiver Q = (�f g, ξ) of finite simply-laced type
g and the pair (g,g) obtained via σ in (2.4), we obtain a Dynkin quiver Q = (�f g, ξ) of
non-simply-laced type g by defining ξ ı = ξı for all ı ∈ I g.

2.3. t-quantized Cartan matrix. For an indeterminate x and integers k � l � 0, we set

[k]x := xk − x−k

x − x−1 , [k]x ! :=
k
∏

u=1

[u]x and

[

k
l

]

x
:= [k]x !
[k − l]x ![l]x ! .

For an indeterminate q and i ∈ I , we set qi = qdi where D = diag(di ∈ Z�1 | i ∈ I )
satisfies (2.1). For a given Cartan matrix C, we set I = (Ii, j )i, j∈I the adjacent matrix
of C by Ii, j = −δ(i �= j)ci, j .

In [16], the (q, t)-deformation C(q, t) = (ci, j (q, t))i, j∈I of finite Cartan matrix C
is introduced, where

ci, j (q, t) := (qi t
−1 + q−1

i t)δi, j − [Ii, j ]q .
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Then we have two kinds of specializations of C(q, t). One is C(q) :=C(q, 1), called the
quantum Cartan matrix, and the other is C(t) :=C(1, t), called the t-quantized Cartan
matrix.

Throughout this paper, we mainly consider the following symmetric matrix

R(t) := C(t)D−1. (2.9)

Note that R(t)|t=1 = R ∈ GL|I |(Q). We regard R(t) as an element of GL|I |(Q(t)) and
denote its inverse by ˜R(t) = (˜Ri, j (t))i, j∈I provided it exists. Let

˜Ri, j (t) =
∑

u∈Z
r̃i, j (u)tu (2.10)

be the Laurent expansion of ˜Ri, j (t) at t = 0. Note that ˜Ri, j (t) = ˜R j,i (t) for all i, j ∈ I .

The closed formulae of R(t) and ˜Ri, j (t) for all finite types can be found in [47,48] (see
also references therein)3.

Lemma 2.2 ([20,29,47]). Let ˜R(t) be associated with C of finite type. Then, for any
i, j ∈ I and u ∈ Z, we have

(1) r̃i, j (u) = 0 if u � d(i, j) or d(i, j) ≡2 u,
(2) r̃i, j (d(i, j) + 1) = max(di , d j ).

For a Dynkin quiver Q, we choose a subset ˜�0 of �0 × Z as follows:

˜�0 := {(i, p) ∈ I × Z | p − ξi ∈ 2Z}.
By Convention 1, ˜�0 does not depend on the choice of Q. For i, j ∈ ˜�f 0, we define an
even function η̃i, j : Z → Z as follows:

η̃i, j (u) = r̃i, j (u) + r̃i, j (−u) for u ∈ Z. (2.11)

Lemma 2.3 ([5,47]). We have

η̃i, j (u − 1) + η̃i, j (u + 1) +
∑

k; d(k, j)=1

〈hk, α j 〉̃ηi,k(u) = δu,1δi, j × 2di .

2.4. Valued quiver. Let K be a (possibly infinite) countable index set with a decomposi-
tion K = Kex �Kfr. We call Kex the set of exchangeable indices and Kfr the set of frozen
indices.

We call an integer-valued K×Kex matrix ˜B = (bi, j )i∈K, j∈Kex an exchange matrix if
it satisfies the following properties:

(a) For each j ∈ Kex, there exist finitely many i ∈ K such that bi, j �= 0.

(b) Its principal part B := (bi, j )i, j∈Kex is skew-symmetrizable; i.e., there exists

a sequence S = (ti | i ∈ Kex, ti ∈ Z�1) such that ti bi, j = −t j b j,i for all i, j ∈ Kex.

(2.12)

3 In [47,48],˜B and˜b are used instead of ˜R and r̃, respectively.
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For an exchange matrix ˜B, we associate a valued quiver Q
˜B whose set of vertices is

K and arrows between vertices are assigned by the following rules:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

• �a,b�
k

��•
l

if l, k ∈ Kex, l �= k, bkl = a � 0 and blk = b � 0,

◦ �a,0�
k

��•
l

(resp. ◦�� �0,b�
k

•
l

) if l ∈ Kex, k ∈ Kfr and bkl = a � 0 (resp. bkl = b � 0).

(2.13)

Here we do not draw an arrow between k and l if bkl = 0 (and blk = 0 when l, k ∈ Kex).
Note that ◦ denotes a vertex in Kfr, and We call �a, b� the value of an arrow.

Convention 2. For some special values �a, b�, we will use the following scheme to draw
a valued quiver for convenience: For l, k ∈ Kex l �= k,

(1) if bkl = 1 and blk = −b < 0, use • <b
k

��•
l
,

(2) if bkl = 2 and blk = −b < 0, use • <b
k

��•
l
,

(3) if bkl = 3 and blk = −b < 0, use • <b
k

��•
l
,

(4) we usually skip < 1 in an arrow when (�a,−1� and 1 � a � 3) for notational
simplicity,

and for l ∈ Kex and k ∈ Kfr,

(5) if bkl = 1 (resp. bkl = −1), use ◦
k

��•
l

(resp. ◦
k

•
l

�� ),

(6) if bkl = 2 (resp. bkl = −2), use ◦
k

��•
l

(resp. ◦
k

•
l

�� ),

(7) if bkl = 3 (resp. bkl = −3), use ◦
k

��•
l

(resp. ◦
k

•
l

�� ).

Throughout this paper, we always apply Convention 2.

Definition 2.4. Let� be a Dynkin diagram. We set ˜�0 ×˜�0-matrix ˜B
˜�0

whose entries
b(i,p),( j,s) are defined as follows:

b(i,p),( j,s) =

⎧

⎪

⎨

⎪

⎩

(−1)δ(s>p)ci, j if |p − s| = 1 and i �= j,
(−1)δ(s>p) if |p − s| = 2 and i = j,
0 otherwise.

(2.14)

Note that ˜B
˜�0

satisfies (2.12) with a sequence S := (si,p | si,p = di ) and without frozen

vertices. We denote by ˜� the valued quiver associated to ˜B
˜�0

.

We call the arrows (i, p) ← (i, p + 2) in ˜� the horizontal arrows and the arrows
between (i, p) and ( j, p + 1) for d(i, j) = 1 the vertical4 arrows.

Convention 3. We use dashed arrows �� for horizontal arrows in ˜� to distinguish
them with vertical arrows in ˜�.
Example 2.5. Under Conventions 2 and 3, when �f is of finite type B3, the valued quiver
˜�f is depicted as

(i \ p) −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

1 •
����

�� •
����

��
�� •

����
��

�� •
����

��
�� •

����
��

�� •
����

��
�� •

����
��

�� •
����

��
�� •

����
��

�� •
����

��
�� ��

2 •
�2
��

����

�������� •
�2
��

����

�������� •
�2
��

����

�������� •
�2
��

����

�������� •
�2
��

����

�������� •
�2
��

����

�������� •
�2
��

����

�������� •
�2
��

����

�������� •
�2
��

����

�������� •
�2
��

����

��������� ��

3 •
������ ���� •

������ ������ •
������ ������ •

������ ������ •
������ ������ •

������ ������ •
������ ������ •

������ ������ •
������ ������ •

������ ������ •��

(2.15)

4 Visually, they are slant.
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Remark 2.6. The valued quivers for simply-laced finite types coincide with the infinite
quivers in [30, Section 2.1.3] where the infinite quivers are denoted by �.

Definition 2.7 (cf. [18, Definition 5.5]).

(1) We denote by � the quiver obtained from ˜� by removing all horizontal arrows. We
call � the valued repetition quiver of �.5

(2) A subset R ⊂ ˜�0 = �0 is said to be convex if it satisfies the following condition:
For any oriented path (x1 → x2 → · · · → xl) consisting of (vertical) arrows in �,
we have {x1, x2, . . . , xl} ⊂ R if and only if {x1, xl} ⊂ R.

(3) We say that a convex subsetR ⊂ ˜�0 has a upper bound if there exists max(p | (i, p) ∈
R) for each i ∈ �0.

(4) For a convex subset R ⊂ ˜�0, we set Rfr := {(i, p) | p = min(k ∈ Z | (i, k) ∈
R)} and Rex := R\Rfr. We denote by R

˜� the valued quiver associated to R
˜B :=

(b(i,p),( j,s))(i,p)∈R,( j,s)∈Rex .
(5) For a height function ξ on �, let ξ

˜B := (b(i,p),( j,s))(i,p),( j,s)∈ξ
˜�0

and denote by ξ
˜�

the valued quiver associated to ξ
˜B, where

ξ
˜�0 := {(i, p) ∈ ˜�0 | p � ξi }.

Note that ξ
˜�f 0 is a convex subset of ˜�f for any height function ξ on �f .

3. tCharacters of Quantum Loop Algebra and Virtual Grothendieck Rings

In this section, we first review the important properties of t-characters of finite-dimensional
representations over quantum loop algebra briefly (see [15,17,25,27,59] for more de-
tails). Then we recall the virtual Grothendieck ringK(g) for any finite type g (see [14,47]
for non-simply-laced types).

3.1. Quantum loop algebras. Let t be an indeterminate. We denote by k := Q(t) the
algebraic closure of the field Q(t) inside

⋃

m∈Z�0
Q((t1/m)). Let g be a complex finite-

dimensional simple Lie algebra of simply-laced type. Note that, in this case, we can
identify C(q) with C(t) by exchanging q with t .

Convention 4. Throughout this paper, we often use bold symbols to emphasize that those
symbols are of simply-laced finite types. We also use ı, j for indices in I g for the same
purpose.

We denote byUt (Lg) the quantum loop algebra associated to g, which is the k-algebra
given by the set of infinite generators, called the Drinfeld generators, subject to certain
relations [1,10]. The quantum loop algebra Ut (Lg) is a quotient of the corresponding
(untwisted) quantum affine algebra U ′t (̂g) and hence has a Hopf algebra structure.

5 When we replace valued arrows with usual arrows, it is the usual repetition quiver ̂� (see [47] for non-
simply-laced types).
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3.2. Finite dimensional modules and their t-characters. We denote by Cg the category
of finite-dimensional Ut (Lg)-modules of type 1. The category Cg is a k-linear rigid
non-braided monoidal category. We say that V and W commute if V ⊗ W 	 W ⊗ V
as Ut (Lg)-modules. We denote by K (C ) the Grothendieck ring of Cg. Note that the set
of simple objects in K (Cg) are parameterized by the set (1 + zk[z])I g of I g-tuples of
monic polynomials, which is called Drinfeld polynomials.

In this paper, we usually consider the skeleton subcategory C 0
g of Cg. The subcate-

gory C 0
g contains every prime simple module in Cg up to parameter shifts. To explain

C 0
g , we need to consider the Laurent polynomial Y generated by the set of variables
{Y±1

ı,p }(ı,p)∈˜�f 0
. Let us denote by M (resp. M+ and M−) the set of all monomials

(resp. dominant monomials and anti-dominant monomials) of Y . For a monomial m in
Y , we write

m =
∏

(ı,p)∈˜�f 0

Y
uı,p(m)
ı,p and m− =

∏

(ı,p)∈˜�f 0

Y
−uı,p(m)
ı,p (3.1)

with uı,p(m) ∈ Z. For each m ∈ M+, we denote by L(m) the simple module in C

whose Drinfeld polynomial is
(∏

p(1− q p)uı,p(m)
)

ı∈I g . Then the subcategory C 0
g can

be characterized by the Serre subcategory of Cg generated by {L(m) |m ∈M+}. Note
that C 0

g is a monoidal rigid subcategory of Cg. In [17], Frenkel-Reshetikhin proved that
there exists an injective ring homomorphism

χt : K (C 0
g )→ Y,

called the t-character homomorphism.6 Note that each monomial of χt (L(m)) is of-
ten called a �-weight of L(m), since each monomial in Y±1

ı,p encodes the generalized
eigenvalues of the commuting family consisting of certain Drinfeld generators as en-
domorphisms of L(m) (see [17] for more detail). The existence of χt tells us that the
Grothendieck ring K (Cg) is commutative, even though Cg is not braided.

For an interval [a, b] ⊂ Z, ı ∈ I g, k ∈ Z�1 and (ı, p) ∈ ˜�f 0, we set dominant
monomials

m(ı)[a, b] :=
∏

(ı,s)∈˜�f 0; s∈[a,b]
Yı,s and m(ı)

k,p :=
k−1
∏

s=0

Yı,p+2s, (3.2)

and m(ı)(a, b], m(ı)[a, b), and m(ı)(a, b) are defined similarly.
The simple module L(m(ı)[p, s]) (p � s) is called a Kirillov–Reshetikhin (KR)

module. When p = s and (ı, p) ∈ ˜�f 0, we call L(Yı,p) a fundamental module. Note that
the Grothendieck ring K (C 0

g ) is a polynomial ring in the isomorphism classes of the
fundamental modules L(Yı,p) [17].

For (ı, p) ∈ I g × Z with (ı, p ± 1) ∈ ˜�f g0, we set

Aı,p := Yı,p−1Yı,p+1

∏

j : d(ı,j)=1

Y−1
j,p = Yı,p−1Yı,p+1

∏

j �=ı
Y
cj,ı
j,p . (3.3)

6 It is usually called the q-character homomorphism in the literature.
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Note that there is a partial ordering �
N

on the set of monomials M, called the
Nakajima order, defined as follows:

m �
N
m′ if and only if m−1m′ is a product of elements in {Aı,p+1 | (ı, p) ∈ ˜�f g0}.

(3.4)

Theorem 3.1 ([15,16]). For each dominant monomial m ∈ M+, the monomials ap-
pearing in χt (L(m))−m are strictly less that m with respect to �

N
.

The t-characters of KR-modules satisfies a system of functional equations called
T -systems:

Theorem 3.2 ([59, Theorem 1.1]). (See also [27, Theorem3.4].)For each (ı, p), (ı, s) ∈
˜�f g0 with p � s, we have

χt

(

L(m(ı)[p, s)))χt
(

L(m(ı)(p, s])) = χt

(

L(m(ı)[p, s]))χt
(

L(m(ı)(p, s))

+
∏

j : d(ı,j)=1

χt

(

L(m(j)(p, s)). (3.5)

Let ξ be a height function on �f g. We denote by ξM+ the set of all dominant mono-
mials in the variables Yı,p’s for (ı, p) ∈ ξ

˜�f 0.

Definition 3.3. We define the subcategory C ξ
g as the Serre subcategory of Cg such that

Irr C ξ
g = {L(m) |m ∈ ξM+}.

Since ξ
˜�f 0 is a convex subset of ˜�f 0, we have the following proposition:

Proposition 3.4. The category C ξ
g is a monoidal subcategory of Cg.

Proof. This assertion follows from the same argument of the proof of [30, Proposition
3.10]. ��

3.3. Truncation. We denote by Yξ the Laurent polynomial ring generated by Yı,p’s for
(ı, p) ∈ ξ

˜�f 0. We define a linear map (·)�ξ : Y → Yξ by sending the monomials which
contain some Yı,p with (ı, p) �∈ ξ

˜�f to zero and by keeping all the other terms.

Proposition 3.5. For a height function ξ , the Z-linear map (·)�ξ : K (C ξ
g )→ Yξ given

by

[V ] �→ ξχt (V ) := ((·)�ξ ◦ χt )(V )

gives an injective ring homomorphism K (C ξ
g ) ↪→ Yξ .

Proof. We can prove the assertion in the same way as in the proof of [28, Proposition
6.1]. ��
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3.4. (Virtual) Grothendieck rings. Recall that when g is of simply-laced finite type, the
t-character homomorphism χt is an injection from K (C 0

g ) into Yg. Thus we can identify
K (C 0

g ) with

K(g) := χt

(

K (C 0
g )
)

.

We call K(g) the Grothendieck ring of type g as well.

Proposition 3.6 ([15, Corollary 5.7]). When g is of simply-laced type, we have

K(g) =
⋂

ı∈I g

(

Z[Y±1
j,l | (j, l) ∈ ˜�f g0, j �= ı] ⊗ Z[Yı,l(1 + A−1

ı,l+1) | (ı, l) ∈ ˜�f g0]
)

� Yg.

Now we move on to non-simply-laced finite types. For g associated with (g, σ )

in (2.4), we consider the Laurent polynomial ring defined as follows: We first set

Yg := Z[X±1
i,p | (i, p) ∈ ˜�f g0].

Then there exists a surjective ring homomorphism

σ : Yg −−→ Yg sending Yσ k (ı),p �−→ Xı,p (3.6)

for any (ı, p) ∈ ˜�f g0 and 0 � k < |σ |. Finally, we set

K(g) := σ(K(g))

and call it the virtualGrothendieck ring of typeg. We call σ (L(m)) the folded t-character
of L(m).

Now we would like to unify the expression for K(g) for any finite type g by replacing
variables Yi,p’s with Xi,p’s. Let X g be the Laurent polynomial ring Z[X±1

i,p | (i, p) ∈
˜�f g0 ]. For (i, p + 1) ∈ ˜�f g0 , we set

Bi,p := Xi,p−1Xi,p+1

∏

j : d(i, j)=1

X
c j,i
j,p . (3.7)

Definition 3.7 [14, §3.4]. We define the commutative ring

K(g) =
⋂

i∈Ig

(

Z[X±1
j,l | ( j, l) ∈ ˜�f g0 , j �= i] ⊗ Z[Xi,l(1 + B−1

i,l+1) | (i, l) ∈ ˜�f g0 ]
)

� X g.

(3.8)

Remark 3.8. Even though, we unify the expression for K(g) by using Xi,p, X and Bi,p,
we sometimes use Yı,p, Y and Aı,p to emphasize that they are associated with g of
simply-laced finite type.

Theorem 3.9 ([14, Proposition 3.3, Theorem 4.3]).

(1) Every element of K(g) is characterized by the multiplicities of the dominant mono-
mials contained in it.

(2) For each m ∈ M+, there is a unique element F(m) of K(g) such that m is the
unique dominant monomial of F(m) with its coefficient 1. Therefore we have a basis
{F(m) | m ∈Mg

+} of K(g) parameterized by dominant monomials m.
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(3) For each pair (g,g) obtained via σ , the map σ induces a surjective ring homomor-
phism from K(g) to K(g).

An X -monomial m is said to be right-negative if the factors X j,l appearing in m, for
which l is maximal, have negative powers.

Corollary 3.10. For each pair (g,g) obtained via σ and m ∈Mg
+, assume that

every monomial in F(m)−m is right-negative. (3.9)

Then σ(F(m)) = F
(

σ(m)
) ∈ K(g).

Proof. By Theorem 3.9 (3) and (3.9), σ(F(m)) is an element in K(g) containing the
unique dominant monomial σ(m). Thus our assertion follows. ��
Example 3.11. For type Xn with X = A orC , we write the polynomial F(m) in Theorem
3.9 (2) by FXn (m) to emphasize the type.

One can check (see the formulas of FA5(Y4,−2) and FA5(Y2,0) below)

(1) FA5(Y4,−2Y2,0) is equal to FA5(Y4,−2)FA5(Y2,0), since FA5(Y4,−2)FA5(Y2,0) has a
unique dominant monomial Y4,−2Y2,0,

(2) FA5(Y4,−2)FA5(Y2,0) contains a monomial Y3,−1Y5,−1Y2,0Y
−1
4,0 ,

(3) FA5(Y2,−2Y2,0) is different from FA5(Y4,−2)FA5(Y2,0), since FA5(Y4,−2)FA5(Y2,0)

contains Y4,−2Y2,0.

In particular, (2) tells us that that σ(FA5(Y4,−2)FA5(Y2,0)) contains a monomial

σ(Y3,−1Y5,−1Y2,0Y
−1
4,0 ) = X3,−1X1,−1,

which is dominant but not equal to X2,−2X2,0. Hence σ(FA5(Y4,−2Y2,0)) can not be
FC3(X2,−2X2,0). Note that FA5(Y4,−2Y2,0) does not satisfy (3.9), while FA5(Y2,−2Y2,0)

satisfies that property. Therefore, σ(FA5(Y2,−2Y2,0)) = FC3(X2,−2X2,0) by Corollary
3.10.

Here we present FA5(Y4,−2) and FA5(Y2,0) explicitly for reader’s convenience:

FA5 (Y4,−2) = Y4,−2 + Y3,−1Y
−1
4,0Y5,−1 + Y2,0Y

−1
3,1Y5,−1 + Y3,−1Y

−1
5,1 + Y1,1Y

−1
2,2Y5,−1

+ Y2,0Y
−1
3,1Y4,0Y

−1
5,1 + Y−1

1,3Y5,−1 + Y1,1Y
−1
2,2Y4,0Y

−1
5,1 + Y2,0Y

−1
4,2 + Y−1

1,3Y4,0Y
−1
5,1

+ Y1,1Y
−1
2,2Y3,1Y

−1
4,2 + Y−1

1,3Y3,1Y
−1
4,2 + Y1,1Y

−1
3,3 + Y−1

1,3Y2,2Y
−1
3,3 + Y−1

2,4 ,

FA5 (Y2,0) = Y2,0 + Y1,1Y
−1
2,2Y3,1 + Y−1

1,3Y3,1 + Y1,1Y
−1
3,3Y4,2 + Y−1

1,3Y2,2Y
−1
3,3Y4,2 + Y1,1Y

−1
4,4Y5,3

+ Y−1
2,4Y4,2 + Y−1

1,3Y2,2Y
−1
4,4Y5,3 + Y1,1Y

−1
5,5 + Y−1

2,4Y3,3Y
−1
4,4Y5,3 + Y−1

1,3Y2,2Y
−1
5,5

+ Y−1
3,5Y5,3 + Y−1

2,4Y3,3Y
−1
5,5 + Y−1

3,5Y4,4Y
−1
5,5 + Y−1

4,6 ,

where the product of boxed monomials yields the non-right-native monomial
Y3,−1Y5,−1Y2,0Y

−1
4,0 .

Note that if m,m′ ∈Mg with m �
N
m′, then we have

σ(m) �
N

σ(m′) ∈Mg. (3.10)
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It is proved in [15,27] that, form(ı)[p, s] ∈Mg
+, F(m(ı)[p, s]) satisfies the condition

in (3.9) and

F(m(ı)[p, s]) = χt (L(m(ı)[p, s])).
Thus we have

σ(F(m(ı)[p, s])) = F(m(i)[p, s]) (3.11)

and (3.5) is changed into the following form: For any finite type g and (i, p), (i, s) ∈ ˜�f 0
with p � s, we have

F
(

m(i)[p, s))F(m(i)(p, s]) = F
(

m(i)[p, s])F(m(i)(p, s)
)

+
∏

j; d(i, j)=1

F
(

m( j)(p, s)
)−c j,i .

(3.12)

We call (3.12) the folded T -systems.

Definition 3.12. (1) For a height function ξ on �f g of simply-laced finite type, we set

ξK(g) := ξχt (K (C ξ )).

(2) For a height function ξ on �f g of non-simply-laced finite type, we set

ξK(g) := σ
(

ξK(g)
)

,

where ξ is the σ -fixed height function on �f g such that

ξ
σ k (ı)

= ξı for any 0 � k < |σ | and ı ∈ σ−1(ı).

We call ξK(g) the truncated virtual Grothendieck ring and ξχ t (m) the folded truncated
t-character of L(m) with respect to ξ , defined as below:

K (C ξ g)

ξχ t

��

ξ χt

�� ξK(g)
σ

�� ξK(g)

Remark 3.13. Let G be a simply-connected complex Lie group associated with g of non-
simply-laced type. In [14], the authors formulate (conjectural) folded integrable models
of g corresponding to folded Bethe Ansatz equations. Then K(g), denoted by K−t (g)

in [14],7 plays the role of describing the spectra of the transfer-matrix tV (z, u) with a
finite-dimensional Ut (Lg)-module V in the folded integrable model, as in the role of
K(g) 	 K (C 0

g ) in the integrable models for simply-laced types (cf. [13,14] for more
details). We remark that our main interest is to study the structure of the quantization of
K(g) introduced independently in [47] with other motivations related to canonical basis
and quantum cluster algebra structure. In contrast, the authors of [14] mainly focus on
a study of the folded integrable models associated with g. It would be interesting to find
connections between our results and those in [14].

7 In our introduction, we use K1,t,d (g) instead.
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4. Quantization

In this section, we quantize the Laurent polynomial ringX with the resulting ring denoted
by Xq , via the inverse matrix ˜R(t) of (2.9) associated with C(t) following [47] (see also
[14]), and define its subalgebra Kq(g) that is regarded as a quantization of K(g).

4.1. Quantum torus. Let q be an indeterminate. Let us recall that r̃i, j (u) (u ∈ Z) in
(2.10) and the even function η̃i, j : Z → Z defined in (2.11).

Definition 4.1 ([25,47,60,67]). Let (Xq , ∗) be the Z[q± 1
2 ]-algebra with the generators

{˜X±1
i,p | (i, p) ∈ ˜�f 0} with the defining relations

˜Xi,p ∗ ˜X−1
i,p = ˜X−1

i,p ∗ ˜Xi,p = 1 and ˜Xi,p ∗ ˜X j,s = qN (i,p; j,s)
˜X j,s ∗ ˜Xi,p,

where (i, p), ( j, s) ∈ ˜�f 0 and

N (i, p; j, s) := r̃i, j (p − s − 1)− r̃i, j (s − p − 1)− r̃i, j (p − s + 1) + r̃i, j (s − p + 1).

(4.1)
We call Xq the quantum torus associated with C(t) (see Definition 7.1 below).

Remark 4.2. For simply-laced finite types, the quantum torus Xq was already defined
in [25,60,67], whereas for non-simply-laced finite types, it is introduced in [47] very
recently.

Note that since ˜R(t) is symmetric,

N (i, p; j, s) = N ( j, p; i, s) = −N (i, s; j, p) = −N ( j, s; i, p),
and it follows from Lemma 2.2 that

N (i, p; j, s) = r̃i, j (p − s − 1)− r̃i, j (p − s + 1) if p > s. (4.2)

Moreover, for p ∈ Z and i, j ∈ �f 0 such that (i, p), ( j, p) ∈ ˜�f 0, Lemma 2.2 tells that

˜Xi,p ∗ ˜X j,p = ˜X j,p ∗ ˜Xi,p. (4.3)

By specializing q at 1, the quantum torus Xq recovers the commutative Laurent
polynomial ring X , while Xq is non-commutative; i.e., there exists a Z-algebra homo-

morphism evq=1 : Xq → X given by q
1
2 �→ 1 and ˜Xi,p �→ Xi,p.

We say that m̃ ∈ Xq is a Xq -monomial if it is a product of the generators ˜X±1
i,p and

q± 1
2 . For a Xq -monomial m̃ ∈ Xq , we set ui,p(m̃) := ui,p

(

evq=1(m̃)
)

(see (3.1)). An
Xq -monomial m̃ is said to be right-negative if evq=1(m̃) is right-negative. Note that a
product of right negative X -monomials (resp. Xq -monomials) is right negative. A Xq -
monomial m̃ is called dominant if evq=1(m̃) is dominant. Moreover, for Xq -monomials
m̃, m̃′ in Xq , we define

m̃ �
N
m̃′ if and only if evq=1(m̃) �

N
evq=1(m̃

′).

For i ∈ �f 0, we call X -monomial m (resp. Xq -monomial m̃) i-dominant if ui,p(m) �
0 (resp. ui,p(m̃) � 0) for all p such that (i, p) ∈ ˜�f 0. For J ⊂ �f 0, we call X -monomial
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m (resp. Xq -monomial m̃) J -dominant if m (resp. m̃) is j-dominant for all j ∈ J . For
monomials m̃, m̃′ in Xq , we define

N (m̃, m̃′) :=
∑

(i,p),( j,s)∈˜�0

ui,p(m̃)u j,s(m̃
′)N (i, p; j, s). (4.4)

There exists the Z-algebra anti-involution (·) on Xq ([25,47]) given by

q
1
2 �→ q−

1
2 , ˜Xi,p �→ qi˜Xi,p. (4.5)

Thus, for any Xq -monomial m̃ ∈ Xq , there exists a unique r ∈ 1
2 Z such that qr m̃ is

(·)-invariant. A monomial of this form is called bar-invariant and denoted by m̃. For an
example,

Xi,p := q
di
2 ˜Xi,p is bar-invariant.

More generally, for a family
(

ui,p
∣

∣ (i, p) ∈ ˜�f 0
)

of integers with finitely many non-zero
components, the expression

q
1
2

∑

(i,p)<( j,s) ui,pu j,sN ( j,s;i,p) →∗
(i,p)∈˜�f 0

X
ui,p
i,p (4.6)

does not depend on the choice of an ordering on ˜�f 0 and is bar-invariant.

Remark 4.3. Note that the relations in Definition 4.1 do not change when we replace ˜Xi,p
with Xi,p, and m̃ depends only on evq=1(m̃). Therefore, for every monomial m in X , we
denote by m the bar-invariant monomial in Xq corresponding to m. Also the notation
Yi,p of (Yt , ∗) in [29, Section 3] corresponds to Xi,p, the bar-invariant monomial, in this
paper.

For (i, p) ∈ ˜�f 0, we set
˜Bi,p := Bi,p ∈ Xq . (4.7)

Definition 4.4. LetB−q be the Z[q±1/2]-subalgebra ofXq generated by˜B−1
i,p ’s for (i, p) ∈

I×Z. For k ∈ Z�1, we denote byB−kq the Z[q±1/2]-span of the monomials
→∗

1�s�k
˜B−1
is ,ps

.

For bar-invariant Xq -monomials m1 and m2, we set m1 · m2 := m1m2, and for mk
(k ∈ Z�1), we set

∏

k

mk :=
∏

k

mk . (4.8)

Definition 4.5. (cf. [18, Definition 5.5]) For a subset S ⊂ ˜�f 0, we denote by SXq the
quantum subtorus of Xq generated by ˜X±1

i,p for (i, p) ∈ S ⊂ ˜�f 0. In particular, for a

height function ξ on �f , we denote by ξXq the quantum subtorus generated by ˜X±1
i,p for

(i, p) ∈ ξ
˜�f 0.
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Proposition 4.6. ([47, Proposition 5.7])For i, j ∈ I and p, s, t, u ∈ Zwith (i, p), ( j, s+
1), (i, t + 1), ( j, u + 1) ∈ ˜�f 0, we have

˜Xi,p ∗ ˜B−1
j,s = q β(i,p; j,s)

˜B−1
j,s ∗ ˜Xi,p and ˜B−1

i,t ∗ ˜B−1
j,u = q α(i,t; j,u)

˜B−1
j,u ∗ ˜B−1

i,t .

Here,

β(i, p; j, s) = δi, j (−δp−s,1 + δp−s,−1)(αi , αi ), (4.9)

α(i, t; j, u) =

⎧

⎪

⎨

⎪

⎩

±(αi , αi ) if (i, t) = ( j, u ± 2),

±2(αi , α j ) if d(i, j) = 1 and t = u ± 1,

0 otherwise.
(4.10)

4.2. Quantization Kq(g) of K(g). We briefly recall the construction of Kq(g), defined in
[25,47,60,67], by mainly following the argument in [24,25]. For each i ∈ I , we define
the free Xq -left module

LXi,q := ⊕

r : (i,r)∈˜�f 0

Xq ·̃si,r (4.11)

whose basis elements are denoted by s̃i,r . We also regard LXi,q as a Xq -bimodule by
defining right Xq -module action · as follows:

s̃i,r·m̃ = q
−2ui,r (m̃)

i m̃ ·̃si,r , (4.12)

where m̃ is an Xq -monomial (see Remark 4.11, cf. [25, Lemma 4.6]). Let Xi,q be the
quotient of LXi,q by the Xq -submodule generated by the elements

˜Bi,r+1 s̃i,r − qi s̃i,r+2 for (i, r) ∈ ˜�f 0. (4.13)

By following arguments in [25, Proposotion 4.8] and [5, Lemma 4.3.1], we have the
following lemma:

Lemma 4.7. For each l with (i, l) ∈ ˜�f 0, the Xq-left module Xi,q is free over any {̃si,r0},
where (i, r0) ∈ ˜�f 0.

For all i ∈ I , we define

Si,q : Xq
��

˜Si,q

�� LXi,q �� �� Xi,q , (4.14)

where each map is defined as follows (recall (4.11) for definition of LXi,q ):

(a) The map ˜Si,q is defined by

˜Si,q(m̃) = 1

q−2
i − 1

∑

r : (i,r)∈˜�f 0

T s̃i,r , m̃U

for an Xq -monomial m̃, where LXi,q is regarded as the Xq -bimodule. Here T U
denotes the commutator.

(b) The map from LXi,q to Xi,q , denoted by an double-headed arrow, is the surjective
map sending an element of LXi,q to its image in Xi,q (recall (4.13)).
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By direct computation, we have the following:

Proposition 4.8. The map Si,q is a Z[q± 1
2 ]-linear map and derivation with respect to

∗, that is,

Si,q(m̃1 ∗ m̃2) = m̃1·Si,q(m̃2) + Si,q(m̃1)·m̃2, (4.15)

where the · indicates the Xq-bimodule actions of Xi,q induced from LXi,q .

Definition 4.9. For i ∈ �f 0, we denote by Ki,q(g) the Z[q± 1
2 ]-subalgebra of Xq gener-

ated by

˜Xi,l ∗ (1 + q−1
i
˜B−1
i,l+1) and ˜X±1

j,s for j ∈ �f 0 \ {i} and (i, l), ( j, s) ∈ ˜�f 0.

By using the same arguments as in [15,24,25], we have

Ki,q(g) = Ker(Si,q). (4.16)

Therefore, we call Si,q the i-th q-screening operator with respect to Ki,q(g).

Definition 4.10. [47] We set

Kq(g) :=
⋂

i∈I
Ki,q(g)

and call it the quantum virtual Grothendieck ring associated to C(t).

Remark 4.11. Using the fact that Si,q is a Z[q± 1
2 ]-linear derivation (or by its definition

with (4.12)), one can check that Then it follows from the definition of Si,q , (4.12) and
(4.13) that

Si,q(˜X
−1
i,l + q−1

i
˜X−1
i,l ∗ ˜Bi,l−1) = (−˜X−1

i,l )̃si,l + (q−1
i
˜X−1
i,l ∗ ˜Bi,l−1)̃si,l−2 = 0.

In fact,Ki,q(g) is realized as the Z[q± 1
2 ]-subalgebra ofXq generated by ˜X−1

i,l +q−1
i
˜X−1
i,l ∗

˜Bi,l−1 and ˜X±1
j,s for j ∈ �f 0\{i} and (i, l), ( j, s) ∈ ˜�f 0 (cf. (4.16)).

Remark 4.12. Since the following diagram commutes (cf. [25])

Xq
Si,q ��

evq=1 ��

Xi,q
evq=1��

X
Si

�� Xi

(4.17)

where Si is the i-th screening operator with respect to C(t), we have evq=1
(

Kq(g)
) ⊂

K(g). However, the opposite inclusion evq=1
(

Kq(g)
) ⊃ K(g) is not trivial (for non-

simply-laced types). We resolve this issue in the next section.
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5. Bases of Kq(g) and Kazhdan–Lusztig Analogues

Let (g,g) be a pair in (2.4). It is known in [57,58] (see also [25]) that the basis Fq of
Kq(g)with properties (5.1) below can be constructed algorithmically by using a deformed
Frenkel–Mukhin (FM for short) algorithm (cf. [15]) with respect to C(q) (so-called t-
algorithm [25]). This basis enables us to construct other important bases of Kq(g) (see
(5.5), Theorem 5.9). In the second part of this section, we will construct a basis Fq of
Kq(g) by a deformed FM-algorithm with respect to C(t), and verify that it has similar
properties to (5.1) by following the framework in [25]. Moreover, we construct other
bases Eq and Lq of Kq(g) from the basis Fq in the spirit of [25,58], where analogues of
Kazhdan–Lusztig polynomials [49] were studied (see Theorem 5.31, Remarks 5.10 and
5.32).

5.1. Bases of Kq(g). Note that C(q) coincides with C(t) for simply-laced finite types,
when we replace q with t . Thus,

throughout this subsection, we switch the roles of q and t .

This makes our notations more compatible with the literature where only simply-laced
types are considered, and we presents previously known results in this subsection.

Remark 5.1. When g is of simply-laced type, the variable Aı,p in (3.3) coincides with
Bı,p in (3.7) by replacing Y with X . Since this subsection presents previously known
results for g, we do not introduce a new notation for B−q in this case, and just denote it

by B−t following the above convention. Namely, B−t is the Z[t±1/2]-subalgebra of Yt

generated by ˜A−1
ı,p’s for (ı, p) ∈ I g × Z. In a similar way, we write B−kt instead of B−kq

for g (see Definition 4.4).

Remark 5.2. Inevitably, we have used several notations for monomials. We recall those
notations for convenience of the reader. We say that m ∈ X is an X -monomial (or just
monomial if there is no confusion) if m is a product of X±1

i,p’s for (i, p) ∈ I × Z, while

m̃ ∈ Xq is said to be an Xq -monomial if m̃ is a product of ˜X±1
i,p’s and q±1/2 so that

evq=1(m̃) becomes an X -monomial. With regard to the Z-algebra anti-involution (4.5),
we frequently consider the bar-invariant monomial m̃ (4.6) corresponding to an X -
monomial m such that evq=1(m̃) = m and m̃ = m̃, which is denoted by m for simplicity
(see Remark 4.3). Under Convention 4, we denote by m ∈ Y and m̃,m ∈ Yt those
monomials for simply-lace types, replacing X±1

i,p , ˜X±1
i,p , q with Y±1

ı,p ,˜Y±1
ı,p , t , respectively.

In [25] (cf. [58,60]), the algorithm for constructing basis Ft := {Ft (m) | m ∈Mg
+}

was proposed, so called t-algorithm. The structure and properties of the algorithm can
be summarized as follows:
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(a) For each dominant Yt -monomial m̃, we construct an element Ft (m̃) by adding

monomials m̃′ ∈ m̃B−kt in an inductive way as k increases from 0. In the process,

the coefficient for each monomial is also determined in an inductive way.

(b) If there appears a unique m̃′ with the smallest k ∈ Z�1 satisfying

(i) m̃′ is anti-dominant and m̃′ ∈ m̃B−kt is generated in the performing step,

(ii) any monomial generated in the previous step is contained in m̃B−st

(0 � s < k), not anti-dominant, and strictly larger than m̃′ with respect to ≺
N
,

then, the coefficient of m̃′ is contained in t
1
2Z . Furthermore, the sum of all monomials

with coefficients obtained from the steps so far, denoted by Ft (m̃), is contained

in the kernel of Sı,t for all ı. Hence Ft (m̃) is an element of Kt (g) and the

t-algorithm terminates. (5.1)

Furthermore, each Ft (m̃) satisfies the following properties:

(1) Ft (m̃) ∈ Kt (g) ∩ m̃B−t .
(2) Ft (m̃) is bar-invariant if m̃ is bar-invariant.
(3) Every monomial of Ft (m̃)− m̃ is strictly less than m̃ with respect to ≺

N
.

Remark 5.3. Another characterization ofKı,t (g) in Remark 4.11 allows us to consider the
lowest �-weight version of the t-algorithm, that is, a t-deformation of reversed Frenkel–
Mukhin algorithm which is an algorithm starting from the lowest �-weight monomial.
For instance, the formulas in [25, Lemma 4.13] can be reformulated in terms of anti-
dominant monomial with ˜Aı,k’s. The reversed algorithm seems to be already known to
experts in the theory of q-characters (e.g. see [15], [56]).

Let m̃− be an anti-dominant (bar-invariant) Yt -monomial. We denote by Ft (m̃−)

the unique element of Kt (g) generated by the reversed t-algorithm (referred above)
with respect to m̃−. Then one can verify that Ft (m̃−) satisfies similar properties to
(5.1) after modifying notations and terminologies associated with m̃−. For example, the
property (3) in (5.1) associated with m̃− is restated as every monomial appearing in
Ft (m̃−)− m̃− is strictly greater than m̃− with respect to ≺

N
. Throughout this section,

we often refer to these properties.

Theorem 5.4. [59, Theorem 3.1] [27, Theorem 4.1, Lemma 4.4] For (ı, p), (ı, s) ∈ ˜�f 0
with p < s, the element Ft (m(ı)[p, s]) ∈ Kt (g) is of the form

Ft (m(ı)[p, s]) = m(ı)[p, s] ∗ (1 + ˜A−1
ı,s+1 ∗ χ),

where m(ı)[p, s] := m(ı)[p, s] and χ is a (non-commutative) Z[t± 1
2 ]-polynomial in

˜A−1
j,k+1 (j, k) ∈ ˜�f 0. In particular, we have

Ft (m(ı)[p, s]) = Ft (m
(ı∗)
− [p + h, s + h]),

where m(ı∗)
− [p + h, s + h] := (m(ı∗)[p + h, s + h])− and

(1) Ft (m(ı)[p, s]) has the unique dominant (resp. anti-dominant) monomial m(ı)[p, s]
(resp.m(ı∗)

− [p + h, s + h]),
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(2) all Yt -monomials of Ft (m(ı)[p, s]) −m(ı)[p, s] −m(ı∗)
− [p + h, s + h] are products

of ˜Y±1
j,u with p < u < s + h and right-negative.

(3) for ((ı, p), (j, p) ∈ ˜�f 0, j �= ı), Ft (m(ı)[p, s]) and Ft (m(j)[p, s]) commute; i.e.,
Ft (m(ı)[p, s]) ∗ Ft (m(j)[p, s]) = Ft (m(j)[p, s]) ∗ Ft (m(ı)[p, s]).
It is well known that, for r ∈ 2Z and ı ∈ �f 0,

Tr (Ft (m(ı)[p, s])) = Ft (m(ı)[p + r, s + r ]), (5.2)

where Tr is the Z[t± 1
2 ]-algebra automorphism of Yt sending ˜Yı,p to ˜Yı,p+r .

Theorem 5.5. [25, Theorem 5.11]

(a) For every dominant (resp. anti-dominant) monomial m̃ ∈ Yt , Ft (m̃) is the unique
element inKt (g) such that m̃ is the unique dominant (resp. anti-dominant)monomial
of Ft (m̃).

(b) Every monomial appearing in Ft (m̃)− m̃ is strictly less (resp. strictly greater) than
m̃ with respect to ≺

N
.

(c) The set Ft := {Ft (m) |m ∈Mg
+} forms a bar-invariant Z[t± 1

2 ]-basis of Kt (g).

Remark 5.6. We remark that an element in Kt (g) is characterized by the multiplicities
of its dominant (resp. anti-dominant) monomials by Theorem 5.5. Then it yields that
evt=1(Ft (m̃)) = F(evt=1(m̃)).

Example 5.7. We present Ft (˜Y2,0) of type D4 (cf. [58, Example 5.3.2]) by organizing
the monomials appearing in Ft (˜Y2,0) as a directed graph �(˜Y2,0) such that Ft (˜Y2,0) is
the sum of the monomials on the vertices of the directed graph, see (5.4). Note that in
this example, we write the Yt -monomials according to the order given by

(ı, p) < (j, s) ⇐⇒ ( p < s ) or ( p = s and ı < j ). (5.3)

We use the convention of [17,58] for the directed oriented graph �(˜Y2,0): For mono-

mials m̃1 and m̃2, we use an colored directed edge f (t) m̃1
ı,k−→ g(t) m̃2 if evt=1(m̃2) =

evt=1(m̃1˜A
−1
ı,k ), where f (t), g(t) ∈ Z[t± 1

2 ]. Then the directed colored graphs �(˜Y2,0)

of Ft (˜Y2,0) is given as below:



Quantum Virtual Grothendieck Rings Page 27 of 83   173 

˜Y2,0

t2
˜Y1,1 ∗ ˜Y3,1 ∗ ˜Y4,1 ∗ ˜Y−1

2,2

t ˜Y3,1 ∗ ˜Y4,1 ∗ ˜Y−1
1,3 t ˜Y1,1 ∗ ˜Y4,1 ∗ ˜Y−1

3,3 t ˜Y1,1 ∗ ˜Y3,1 ∗ ˜Y−1
4,3

t ˜Y4,1 ∗ ˜Y2,2 ∗ ˜Y−1
1,3 ∗ ˜Y−1

3,3 t ˜Y3,1 ∗ ˜Y2,2 ∗ ˜Y−1
1,3 ∗ ˜Y−1

4,3 t ˜Y1,1 ∗ ˜Y2,2 ∗ ˜Y−1
3,3 ∗ ˜Y−1

4,3

t ˜Y4,1 ∗ ˜Y4,3 ∗ ˜Y−1
2,4 t ˜Y3,1 ∗ ˜Y3,3 ∗ ˜Y−1

2,4 t ˜Y1,1 ∗ ˜Y1,3 ∗ ˜Y−1
2,4 t2

˜Y ∗2
2,2 ∗ ˜Y−1

1,3 ∗ ˜Y−1
3,3 ∗ ˜Y−1

4,3

˜Y4,1 ∗ ˜Y−1
4,5

˜Y3,1 ∗ ˜Y−1
3,5

˜Y1,1 ∗ ˜Y−1
1,5 (t−1 + t)˜Y2,2 ∗ ˜Y−1

2,4

˜Y2,2 ∗ ˜Y−1
4,3 ∗ ˜Y−1

4,5
˜Y2,2 ∗ ˜Y−1

3,3 ∗ ˜Y−1
3,5

˜Y2,2 ∗ ˜Y−1
1,3 ∗ ˜Y−1

1,5 t3
˜Y1,3 ∗ ˜Y3,3 ∗ ˜Y4,3 ∗ ˜Y ∗−2

2,2

t ˜Y1,3 ∗ ˜Y3,3 ∗ ˜Y−1
2,4 ∗ ˜Y−1

4,5 t ˜Y1,3 ∗ ˜Y4,3 ∗ ˜Y−1
2,4 ∗ ˜Y−1

3,4 t ˜Y3,3 ∗ ˜Y4,3 ∗ ˜Y−1
1,5 ∗ ˜Y−1

2,4

˜Y1,3 ∗ ˜Y−1
3,5 ∗ ˜Y−1

4,5
˜Y3,3 ∗ ˜Y−1

1,5 ∗ ˜Y−1
4,5

˜Y4,3 ∗ ˜Y−1
1,5 ∗ ˜Y−1

3,5

˜Y2,4˜Y
−1
1,5 ∗ ˜Y−1

3,5 ∗ ˜Y−1
4,5

t−1
˜Y−1

2,6

2, 1

1, 2 3, 2 4, 2

3, 1 4, 2
1, 2

4, 2
1, 2

3, 2

2, 3 2, 3
2, 34, 2

3, 2 1, 2

4, 4 3, 4 1, 4 2, 3

4, 2 3, 2 1, 2 2, 3

2, 3 2, 3 2, 3
4, 4

3, 4 1, 4

3, 4
1, 4

4, 4
1, 4

4, 4 3, 4

1, 4 3, 4 4, 4

2, 5

(5.4)

For a dominant monomial m ∈Mg
+, we set

Et (m) := ta
(

→∗
p∈Z

(

∗
ı∈I g;(ı,p)∈˜�f 0

Ft (˜Yı,p)
uı,p(m)

))

, (5.5)

where a is an element in 1
2 Z such that m appears in Et (m) with the coefficient 1. Here

∗
ı
Ft (˜Yı,p)uı,p(m) is well-defined by Theorem 5.4 (3). Note that Et (m) contains m as its

maximal monomial with respect to ≺
N
. In particular, by Theorem 5.5, we have

Et (m) = Ft (m) +
∑

m′≺
N
m

Cm,m′Ft (m
′) (5.6)

with Cm,m′ ∈ Z[t± 1
2 ]. Note that the set Et := {Et (m) |m ∈Mg

+} also forms a Z[t± 1
2 ]-

basis since

�{m′ ∈M+ | m′ ≺N
m} <∞ for each m ∈M+. (5.7)

We call Et the standard basis of Kt (g).

Remark 5.8. We should point out that the t-algorithm (explained in the beginning of
Sect. 5.1) might progress infinitely many times. In fact, Ft (m̃) was constructed in a
completion of Kt (g) at first. Interestingly, the property (1) in (5.1) is guaranteed once
we prove

Ft (˜Yı,p) ∈ Kt (g). (5.8)
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More precisely, (5.8) implies Et ⊂ Kt (g). Then it is known (e.g. see the proof of [25,
Proposition 6.3] for more detail) that Et has the unit-triangular property with Ft , that is,
Ft (m) can be written as a linear combination of elements in Et ⊂ Kt (g), so the proof
for (1) in (5.1) is reduced to prove (5.8). Then (5.8) is deduced from [58,60].

Note that Yı,p is a minimal element in M+ with respect to the partial order �
N
. Thus

(5.6) tells that

Et (Yı,p) = Ft (Yı,p).

Using the basesFt andEt , the third basisLt :={Lt (m)} ofKt (g) has been constructed
in an inductive way using �

N
such that

Et (Yı,p) = Ft (Yı,p) = Lt (Yı,p) (5.9)

and Lt (m) for general m ∈M+ is characterized as in the following theorem.

Theorem 5.9. [60] (see also [25]) For a dominant monomial m ∈ Mg
+, there exists a

unique element Lt (m) in Kt (g) such that Lt (m) = Lt (m) and

Et (m) = Lt (m) +
∑

m′≺
N
m

Pm,m′(t)Lt (m′) with Pm,m′(t) ∈ tZ[t].
(5.10)

We call Lt the canonical basis of Kt (g).

Remark 5.10. In a highly influential paper [49], Kazhdan and Lusztig conjectured a re-
alization of the composition multiplicities of Verma modules for g in terms of a certain
class of polynomials defined by Iwahori–Hecke algebras, so-called Kazhdan–Lusztig
polynomials (KL polynomials, for short). The Kazhdan–Lusztig conjecture states that
the specialization of the KL polynomials at 1 coincides with the composition multiplic-
ities of Verma modules. This is proved independently by Beilinson–Bernstein [2,3] and
Brylinski–Kashiwara [6]. Moreover, it is shown in [50] that the KL polynomials can be
interpreted as the Poincaré polynomials for local intersection cohomology of Schubert
varieties. This geometric interpretation gives the positivity of the KL polynomials.

A similar story has been developed in the representation theory of quantum loop
algebras. In [57,58,60], it is proved by Nakajima that the specialization of Pm,m′(t) at
t = 1 gives the composition multiplicity of L(m′) in the standard module E(m). Fur-
thermore, Pm,m′(t) coincides with the Poincaré polynomial of intersection cohomology
of graded quiver varieties, which implies the positivity of Pm,m′(t). Consequently, the
polynomials Pm,m′(t) may be viewed as analogs of KL polynomials. We also remark
that there have been recent developments ([18,19]) associated with Pm,m′(t) for the
quantum loop algebras beyond ADE-types.

Theorem 5.11. [60]

(a) For a dominant monomial m ∈ Mg
+, every monomial in Lt (m) has a quantum

positive coefficient; that means, each coefficient of a monomial in Lt (m) contained

in Z�0[t± 1
2 ]. In particular, we have evt=1(Lt (m)) = χq(L(m)).

(b) For each monomial m(ı)[p, s], we have Ft (m(ı)[p, s]) = Lt (m(ı)[p, s]).
(c) The coefficient Pm,m′(t) in (5.10) is actually contained in tZ�0[t].
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Remark 5.12. Let recapitulate the main points in this subsection. From the t-algorithm,
we obtain a basis {Ft (m) |m ∈Mg

+} ofKt (g). One crucial step is to prove that Ft (˜Yı,p) is
contained inKt (g). Then it is proved in [25,60] that there are frameworks for constructing
two other bases {Et (m) |m ∈Mg

+} and {Lt (m) |m ∈Mg
+} of Kt (g). In particular, the

basis {Lt (m) |m ∈Mg
+} is constructed using the two other bases through the induction

on M+ via �
N
, and there are uni-triangular transition maps (5.6) and (5.10) between

the three bases.

As Lt (m) can be understood as a t-quantization of L(m) by Theorem 5.11 (a), the
T -system among KR modules is also t-quantized as follows:

Theorem 5.13. [29, Proposition 5.6] (see also [59, Section 4]) For (ı, p), (ı, s) ∈ ˜�f 0
with p < s, there exists an equation in Kt (g):

Lt
(

m(ı)[p, s)) ∗ Lt
(

m(ı)(p, s]) = t x Lt
(

m(ı)[p, s]) ∗ Lt
(

m(ı)(p, s)
)

+ t y
∏

j ; d(ı,j)=1

Lt
(

m(j)(p, s)
)

, (5.11)

where Lt
(

m(j)(p, s)) and Lt
(

m(j ′)(p, s)) (j, j ′ ∈ I ) are pairwise commute and

y = r̃ı,ı (2(s − p) + 1) + r̃ı,ı (2(s − p)− 1)

2
and x = y − 1.

5.2. Bases of Kq(g). Assume that g is of non-simply-laced finite type. Since C(q) can
not be identified with C(t) anymore,

we come back to the convention of the previous sections (not the previous

subsection).

Let K∞i,q(g) is the completion of Ki,q(g) satisfying K∞i,q(g)∩Xq = Ki,q(g) = Ker(Si,q)
(see Lemma 5.36). Then we define

K∞q (g) =
⋂

i∈I
K∞i,q(g),

which can be viewed as a completion of Kq(g) as in [25, Section 5.2]. By following
the construction of {Ft (m) | m ∈ Mg

+} in [24,25], we can establish an analog of the
t-algorithm in [25, Definition 5.19] on K∞q (g), called q-algorithm in the setting of
Sect. 4.2.

Roughly speaking, the algorithm is given inductively by computing all possible quan-

tized i-expansions while determining “correct” coefficients in Z[q± 1
2 ]of resulting mono-

mials, so that the resulting element is contained in K∞q (g) (consequently, Kq(g)) (cf.
[15, Section 5.5], [25, Definition 5.19]).

Let us summarize the q-algorithm. For X -monomials m1 and m2, we use an colored

directed edge m1
i, p−→ m2 if m2 = m1B

−1
i,p . For X -monomials m and m′, we say that m′

is generated from m if there exists a finite sequence {(i1, p1), (i2, p2), · · · , (i�, p�)} ⊂
I × Z such that

m = m0
i1, p1 �� m1

i2, p2 �� · · · i�−1, p�−1 �� m� = m′,
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where mk is an X -monomial of EJ (mk−1) defined in (5.34) for 1 � k � � for some
J ⊂ I .

Let m̃ be a dominant Xq -monomial. Then we collect all possible X -monomials
generated from m̃, and then enumerate them by

· · · < mv < · · · < m0 = m̃, (5.12)

where < is a total order compatible with ≺
N

at q = 1. Let m̃v be an Xq -monomial
determined inductively from assuming the existence of

FJ,q(m̃u) ∈
⋂

i∈J
K∞i,q(g)

for some u < v and J ⊂ I , where FJ,q(m̃u) contains m̃u as a unique J -dominant

monomial. Note that m̃v is uniquely determined up to a coefficient in q
1
2Z . For this

reason, we fix an order defined as in (5.3) on spectral parameters to write them uniquely.
For J � I , we denote by (s(mv)(q))v∈Z�0

and (sJ (mv)(q))v∈Z�0
the sequences in

Z[q± 1
2 ]Z�0 defined inductively as follows:

sJ (mv)(q) =
∑

u<v

(s(mu)(q)− sJ (mu)) cJ (q)(mv),

s(mv)(q) =
{

sJ (mv)(q) if mv is not J -dominant,
0 if mv is dominant,

(5.13)

where s(m0)(q) = 1, sJ (m0)(q) = 0 and cJ (q)(mv) is a Z[q± 1
2 ]-coefficient of m̃v in

FJ,q(m̃u). Here we assume that FJ,q(m̃u) = 0 if mu is not J -dominant, so cJ (q)(mu) =
0 in this case. Note that the sequences (s(mv)(q))v∈Z�0

and (sJ (mv)(q))v∈Z�0
are well-

defined, and s(mv)(q) does not depend on the choice of J � I . This can be proved as
in [25, Lemma 5.20]. Finally, we define

Fq(m̃) :=
∑

v�0

s(m̃v)(q) m̃v. (5.14)

Remark 5.14. We need to make some remarks on the q-algorithm:

(1) One can prove the validity of the q-algorithm in our setting using the arguments in
[25]. More precisely, define

R(t) := DC(t) =
(

Ri j (t)
)

i, j∈Ig .

Then we consider the C-algebra H generated by bi [m] for i ∈ I,m ∈ Z \ {0} and
central elements cr for r > 0, with defining relations

T bi [m], b j [r ]U = δm,−r (tm − t−m)Ri j (t
m)c|m|,

where i, j ∈ I and m, r ∈ Z\{0}. Put x j [m] :=∑i∈I ˜Ci j (t
m)bi [m] ∈H for j ∈ I

and m ∈ Z. Note that

T xi [m], x j [r ]U = δm,−rR j i (t
m)(tm − t−m)c|m|.
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With these definitions, one can check that the formulations in [26] recover precisely
the quantum torus Xq (Definition 4.1), the q-deformed screening operators Si,q (in
the sense of Remark 4.12), the quantum virtual Grothendieck ring Kq(g) (Definition
4.10), and so on. Now the q-algorithm (inK∞q (g)) follows verbatim from [25] without
any complications.

(2) In the computational view point, the elements ˜Xi,p and qi˜Bi,p in the q-algorithm play
the roles of ˜Yi,p and t˜Ai,p in the t-algorithm. However, for a dominant Xq -monomial
m̃ such that evq=1(m̃) = σ(evt=1(m̃)), it does not mean that Fq(m̃) is obtained from
Ft (m̃) by the above replacement for non-simply-laced types (see also Remark 5.17).

(3) We emphasize that the set of monomials in (5.12) might be infinitely countable, but

that the number of nonzero Z[q± 1
2 ]-coefficients in (5.14) should be finite. Thus the

formula on the right-hand side of (5.14) makes sense, and it is actually a finite sum.
The proof is non-trivial. See Proposition 5.20 and (5.25) below (cf. [26]).

We say that

(a) the q-algorithm is well-defined for step r if there exist sJ (mv)(q) and s(mv)(q)

defined in (5.13) for 0 � v � r , and
(b) the q-algorithm never fails if it is well-defined for all steps.

When the q-algorithm never fails, it yields, for each dominant monomial m̃ in Xq ,

Fq(m̃) ∈ K∞q (g) (5.15)

containing m̃ as a unique dominant monomial. The q-algorithm is well-defined and never
fails by following the framework of [25, Section 5.3]. Since the proof is quite parallel
to [25] as indicated in Remark 5.14 (1), we do not provide a proof here. Instead, we
will detail the algorithm and its consequences in Example 5.16. Before presenting the
example, we record the following consequence.

Proposition 5.15. Let K∞, f
q (g) be the Z[q± 1

2 ]-submodule of K∞q (g) generated by ele-
ments in K∞q (g) with finitely many dominant monomials. Then the set

{

Fq(m̃) | m̃ is a dominant monomial in Xq
}

is a Z[q± 1
2 ]-basis of K∞, f

q (g). Indeed, K∞, f
q (g) is a Z[q± 1

2 ]-subalgebra of K∞q (g)

Example 5.16. We illustrate the q-algorithm by computing Fq(˜X2,5) for type G2. For
n ∈ Z \ {0}, we use ˜Xn

i,p to denote ˜X∗ni,p for simplicity. We compute all Xq -monomials

with non-zero Z[q± 1
2 ]-coefficients starting from ˜X2,5 as follows:

Step 1. For J = {2}, since EJ (X2,5) = FJ (X2,5) = X2,5(1 + B−1
2,6) = X2,5 +

X3
1,6X

−1
2,7, we will determine the Z[q± 1

2 ]-coefficient of X3
1,6X

−1
2,7. For this, we compute

F2,q(˜X2,5). Note that ˜X2,5 ∗ (1 + q−3
˜B−1

2,6) ∈ ker(S2,q) (see (4.16) and Remark 4.11).
We compute

˜B2,6 = X2,5X2,7X
−3
1,6 = q3

˜X−3
1,6 ∗ ˜X2,7 ∗ ˜X2,5.

It follows from Proposition 5.35 and Lemma 5.36 that F2,q (˜X2,5) = ˜X2,5∗(1+q−3
˜B−1

2,6).
Then we have

sJ (X
3
1,6X

−1
2,7)(q) = q3.
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Since X3
1,6X

−1
2,7 is not 2-dominant, we see that s(X3

1,6X
−1
2,7)(q) = q3. Hence, we obtain

the new term q3
˜X3

1,6 ∗ ˜X−1
2,7 in this step.

Step 2. Let us consider ˜X3
1,6 ∗ ˜X−1

2,7. In this step, set J = {1}. Since

EJ (X
3
1,6X

−1
2,7) = FJ (X1,6)

3X−1
2,7 =

(

X1,6(1 + B−1
1,7)
)3

X−1
2,7 = (X1,6 + X−1

1,8X2,7)
3X−1

2,7,

we will determine the Z[q± 1
2 ]-coefficients of X2

1,6X
−1
1,8, X1,6X

−2
1,8X2,7 and X−3

1,8X
2
2,7. Let

us only do the Z[q± 1
2 ]-coefficient of X2

1,6X
−1
1,8 explicitly because the computation for

the other monomials is almost identical. By Step 1, we know that

sJ (X
3
1,6X

−1
2,7)(q) = 0, s(X3

1,6X
−1
2,7)(q) = q3. (5.16)

On the other hand, since Si,q is a Z[q± 1
2 ]-derivation (see Proposition 4.8 and Remark

4.11) and (4.16) holds, we have

(˜X1,6 + q−1
˜X1,6 ∗ ˜B−1

1,7)
3 ∗ X−1

2,7 ∈ ker(S1,q).

Here ˜B1,7 = ˜X−1
2,7 ∗ ˜X1,8 ∗ ˜X1,6. Thus, it follows from Proposition 5.35 and Lemma

5.36 that
F1,q(˜X

3
1,6 ∗ ˜X−1

2,7) = (˜X1,6 + q−1
˜X1,6 ∗ ˜B−1

1,7)
3 ∗ ˜X−1

2,7.

The expansion of (˜X1,6 + q−1
˜X1,6 ∗ ˜B−1

1,7)
3 is

˜X3
1,6 + (q−2+1 +q2)˜X2

1,6 ∗ ˜X2,7 ∗ ˜X−1
1,8

+ (q3+q5+q7)˜X1,6 ∗ ˜X2
2,7 ∗ ˜X−2

1,8 + q15
˜X3

2,7 ∗ ˜X−3
1,8,

(5.17)

where ˜X2
1,6 ∗ ˜X2,7 ∗ ˜X−1

1,8 ∗ ˜X−1
2,7 = q−3

˜X2
1,6 ∗ ˜X−1

1,8 due to Definition 4.1. By (5.16) and
(5.17), we have

sJ (X
2
1,6X

−1
1,8)(q) = q3(q−5 + q−3 + q−1) = q−2 + 1 + q2.

Since X2
1,6X

−1
1,8 is not 1-dominant, we set s(X2

1,6X
−1
1,8)(q) = sJ (X2

1,6X
−1
1,8)(q). Hence,

we have a new term (q−2 + 1 + q2)˜X2
1,6 ∗ ˜X−1

1,8. Similarly, one can compute the Z[q± 1
2 ]-

coefficients of X1,6X
−2
1,8X2,7 and X−3

1,8X
2
2,7. As a result, we have the following terms in

this step:

(q−2 + 1 + q2)˜X2
1,6 ∗ ˜X−1

1,8, (1 + q2 + q4)˜X1,6 ∗ ˜X2,7 ∗ ˜X−2
1,8, q9

˜X2
2,7 ∗ ˜X−3

1,8.

Step 3. Let us consider the monomials X1,6X2,7X
−2
1,8 and X2

2,7X
−3
1,8. In this step, set

J = {2}. Then we observe

EJ (X1,6X2,7X
−2
1,8) = X1,6FJ (X2,7)X

−2
1,8 = X1,6X2,7X

−2
1,8 + X1,6X1,8X

−1
2,9,

EJ (X
2
2,7X

−3
1,8) =

(

FJ (X2,7)
)2

X−3
1,8 = X2

2,7X
−3
1,8 + 2X2,7X

−1
2,9 + X3

1,8X
−2
2,7.
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As in Step 1 and Step 2, we compute new terms obtained from them, respectively:

(1 + q2 + q4)˜X1,6 ∗ ˜X2,7 ∗ ˜X−2
1,8

2,8−−→(q−3 + q−1 + q)˜X1,6 ∗ ˜X1,8 ∗ ˜X−1
2,9,

q9
˜X2

2,7 ∗ ˜X−3
1,8

2,8−−→(q−3 + q3)˜X2,7 ∗ ˜X−1
2,9

2,8−−→q6
˜X3

1,8 ∗ ˜X−2
2,9.

Step 4. Set J = {1}. Let us consider the monomial X1,6X1,8X
−1
2,9 which is 1-

dominant. As in Step 2, one can check

F1,q (˜X1,6 ∗ ˜X1,8 ∗ ˜X−1
2,9) = ˜X1,6 ∗ ˜X1,8 ∗ (1 + q−1

˜B−1
1,9 + q−3

˜B−1
1,9 ∗ ˜B−1

1,7) ∗ ˜X−1
2,9

(∈ ker(S1,q )
)

= ˜X1,6 ∗ ˜X1,8 ∗ ˜X−1
2,9 + q−1

˜X1,6 ∗ ˜X−1
1,10 + q˜X2,7 ∗ ˜X−1

1,8 ∗ ˜X−1
1,10.

On the other hand, we have seen

s(X1,6X1,8X
−1
2,9)(q) = q−3 + q−1 + q and sJ (X1,6X1,8X

−1
2,9)(q) = 0.

Hence, we obtain new terms (q−4 +q−2 + 1)˜X1,6 ∗˜X−1
1,10 and (q−2 + 1 +q2)˜X2,7 ∗˜X−1

1,8 ∗
˜X−1

1,10.

Step 5. In the case of X3
1,8X

−2
2,9 which is 1-dominant, the computation in this step is

similar to Step 2 (up to shift of spectral parameter). As a result, we have

q6
˜X3

1,8 ∗ ˜X−2
2,9

1,9−−→(q−2 + 1 + q2)˜X2
1,8 ∗ ˜X−1

2,9 ∗ ˜X−1
1,10

1,9−−→(q−3 + q−1 + 1)

˜X1,8 ∗ ˜X−2
2,10

1,9−−→q3
˜X2,9 ∗ ˜X−3

1,10

Step 6. We consider X2,9X
−3
1,10 which is 2-dominant. One can check that we have

new term q−3
˜X−1

2,11 from X2,9X
−3
1,10 by similar computations as in Step 1.

Now the sum of all Xq -monomials obtained from the steps so far, denoted by
Fq(˜X2,5), can be read in (5.19) below. Then it follows fromStep1–Step6 that Fq (˜X2,5) ∈
ker(Si,q) for i = 1, 2. For example, Fq(˜X2,5) is written as

Fq (˜X2,5) = F1,q (˜X2,5) + q3F1,q (˜X3
1,6 ∗ ˜X−1

2,7) + (q−3 + q−1 + q)F1,q (˜X1,6 ∗ ˜X1,8 ∗ ˜X−1
2,9)

+ (q−3 + q3)F1,q (˜X2,7 ∗ ˜X−1
2,9) + q6F1,q (˜X3

1,8 ∗ ˜X−2
2,9) + q−3F1,q (˜X−1

2,11)

(5.18)
which is clearly in ker(S1,q) (recall Proposition 5.35). The case of i = 2 is similar.

The Xq -monomial q−3
˜X−1

2,11 satisfies the obvious counterpart of (b) in (5.1) with
respect to Fq(˜X2,5), that is, the q-algorithm terminates at this step and the Laurent poly-
nomial Fq(˜X2,5) is in Kq(g). Indeed, for a dominant Xq -monomial m̃, the q-algorithm

allows us to write Fq(m̃) as a linear combination of Fi,q( · )’s over Z[q± 1
2 ] as in (5.18).

This is a general fact that plays a key role in proving Proposition 5.20 (see Sect. 5.3 for
more details).

The directed colored graphs �(X2,5) and �(˜X2,5) of F(X2,5) ∈ K(g) and Fq(˜X2,5) ∈
Kq(g), respectively, are given as follows:
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X2,5

X3
1,6X

−1
2,7

3X2
1,6X

−1
1,8

3X1,6X2,7X
−2
1,8

X2
2,7X

−3
1,8 3X1,6X1,8X

−1
2,9

2X2,7X
−1
2,9 3X1,6X

−1
1,10

X3
1,8X

−2
2,9 3X2,7X

−1
1,8X

−1
1,10

3X2
1,8X

−1
2,9X

−1
1,10

3X1,8X
−2
1,10

X2,9X
−3
1,10

X−1
2,11

2, 8 1, 7

1, 9

2, 81, 7

1, 7

1, 9

2, 8

1, 9

2, 10

1, 7

2, 8

1, 9

2, 6

˜X2,5

q3
˜X3

1,6 ∗ ˜X−1
2,7

(q−2 + 1 + q2)˜X2
1,6 ∗ ˜X−1

1,8

(1 + q2 + q4)˜X1,6 ∗ ˜X2,7 ∗ ˜X−2
1,8

q9
˜X2

2,7 ∗ ˜X−3
1,8 (q−3 + q−1 + q)˜X1,6 ∗ ˜X1,8 ∗ ˜X−1

2,9

(q−3 + q3)˜X2,7 ∗ ˜X−1
2,9 (q−4 + q−2 + 1)˜X1,6 ∗ ˜X−1

1,10

q6
˜X3

1,8 ∗ ˜X−2
2,9 (q−2 + 1 + q2)˜X2,7 ∗ ˜X−1

1,8 ∗ ˜X−1
1,10

(q−2 + 1 + q2)˜X2
1,8 ∗ ˜X−1

2,9 ∗ ˜X−1
1,10

(q−3 + q−1 + 1)˜X1,8 ∗ ˜X−2
1,10

q3
˜X2,9 ∗ ˜X−3

1,10

q−3
˜X−1

2,11

2, 8 1, 7

1, 9

2, 81, 7

1, 7

1, 9

2, 8

1, 9

2, 10

1, 7

2, 8

1, 9

2, 6

(5.19)

Here F(X2,5) is obtained from evt=1(T5(Ft (˜Y2,0))) (see Example 5.7 for Ft (˜Y2,0)) by
folding the Y-monomials (recall Remark 5.6).

Remark 5.17. Let us recall that F(Xı,p) is obtained from F(Yı,p) by folding the mono-
mials of F(Yı,p) via (3.6) (see Corollary 3.10). However, we would like to emphasize
that we do not know yet whether Fq(˜Xı,p) could be obtained directly from Ft (˜Yı,p) by

folding Yt -monomials with some modification of coefficients in Z[q± 1
2 ].

Definition 5.18. For f ∈ Xq , we set

M( f ) := {evq=1(m̃) | m̃ is a monomial in f }, M( f ) := {m | m ∈M( f )},
M+( f ) := {evq=1(m̃) | m̃ is a dominant monomial in f }, M+( f ) := {m | m ∈ M+( f )}.

For P ∈ Kq(g), a monomial m in P is called maximal monomial (resp. minimal
monomial) if its �-weight is not lower (resp. not higher) than any other monomial in P
with respect to �

N
.

Lemma 5.19. (cf. [15, Lemma 5.6]) For P ∈ Kq(g), any maximal (resp. minimal)
monomial in P is dominant (resp. anti-dominant).

Proof. Let us first consider a maximal monomial in P , denoted by m̃. Take i ∈ I . By
Definition 4.9 and Proposition 4.6, we have

P ∈ Ki,q(g) = Z[q± 1
2 ][˜X±1

j,l ]( j,l)∈˜�f 0, j �=i ⊗ Z[q± 1
2 ][˜Xi,l + q−1

i
˜Xi,l ∗ ˜B−1

i,l+1](i,l)∈˜�f 0
.
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Hence, the element P can be written in the following form:

P =
∑

m̃(1) ∗ p̃(2),

where m̃(1) ∈ Z[q± 1
2 ][˜X j,l ]( j,l)∈˜�f 0, j �=i are monomials and, p̃(2) ∈ Z[q± 1

2 ][˜Xi,l +

q−1
i
˜Xi,l ∗ ˜B−1

i,l+1](i,l)∈˜�f 0
are of the form

p̃(2) = n c(q)
→∗

(i,l)∈˜�f 0,
finite

(˜Xi,l + q−1
i
˜Xi,l ∗ ˜B−1

i,l+1)
ni,l

for some ni,l ∈ Z�1, n ∈ Z and c(q) ∈ q
1
2Z . In particular, the maximal monomial m̃ is

a monomial in m̃(1) ∗ p̃(2). Since Xi,l B
−1
i,l+1 ≺N

Xi,l the monomial m̃ should be obtained

from m̃(1) and ˜Xi,l ’s,. Otherwise, it contradicts the assumption that m is a maximal
monomial. Since i ∈ I is arbitrary and P ∈ Kq(g), the maximal monomial m should be
dominant. In the case of minimal monomials, the proof is almost identical because of
another characterization of Ki,q(g) in Remark (4.11). ��

The following proposition plays a crucial role in proving fundamental results estab-
lished on Kq(g).

Proposition 5.20. For p < s, letm(i)[p, s]begiven such thatσ(m(ı)[p, s]) = m(i)[p, s]
(i.e. ı = i).

(1) For each m′ ∈ M(Fq(m(i)[p, s])), there exists m′ ∈ M(Ft (m(ı)[p, s])) such that
σ(m′) = m′.

(2) We have Fq(m(i)[p, s]) ∈ Kq(g).

Proof. We will give a proof of Proposition 5.20 in Sect. 5.3. ��
Definition 5.21. We call an element of the form Fq(m(ı)[p, s]) a KR-polynomial. In
particular, we call Fq(Xi,p) a fundamental polynomial. We also call a monomial of the
form m(ı)[p, s] a KR-monomial.

Corollary 5.22. For p < s, let m(i)[p, s] be such that σ(m(ı)[p, s]) = m(i)[p, s]
(i.e. ı = i). Then we have

σ
(

M(Ft (m(ı)[p, s]))
)

=M(Fq(m
(i)[p, s])).

Proof. The inclusion ⊃ follows from Proposition 5.20 (1). Let us prove the opposite
inclusion ⊂. Let m ∈ σ

(

M(Ft (m(ı)[p, s]))) be an X -monomial, where we write m =
σ(m) for some Y-monomial m ∈M(Ft (m(ı)[p, s])). We have seen

evt=1

(

Ft (m(ı)[p, s])
)

= F(m(ı)[p, s]) (5.20)

(see Remark 5.6), and then the quantum positivity for Ft (m(ı)[p, s]) in Theorem 5.11
with (5.20) implies that all the coefficients of F(m(ı)[p, s]) should be positive. In par-
ticular, the coefficient of m in F(m(ı)[p, s]) is positive. Since it follows from Corollary
3.10 and Theorem 5.4 that
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σ
(

F(m(ı)[p, s])
)

= F(m(i)[p, s]), (5.21)

the X -monomial m appears in F(m(i)[p, s]) with a positive coefficient. But, we have

evq=1

(

Fq(m
(i)[p, s])

)

= F(m(i)[p, s]) (5.22)

(see Corollary 5.28), which implies that there exists a term f (q)m in Fq(m(i)[p, s])
such that evq=1( f (q)m) = f (1)m is a term in F(m(i)[p, s]) with f (1) > 0. ��
Proposition 5.23. For each (i, p) ∈ ˜�f 0, we have

(a) Fq(Xi,p) = Fq(X
−1
i∗,p+h) contains only one anti-dominant monomial X

−1
i∗,p+h.

(b) All Xq-monomials of Fq(Xi,p) − Xi,p −X−1
i∗,p+h are products of ˜X±1

j,u with p < u
< p + h.

(c) Fq(˜Xi,p) and Fq(˜X j,p) ((i, p), ( j, p) ∈ ˜�f 0, j �= i) commute.

Proof. Since Fq(Xi,p) is an element inKq(g), it contains an anti-dominant monomial by
Lemma 5.19. Then Theorem 5.4 and Proposition 5.20 tell that Fq(Xi,p) has the unique
antidominant monomial X−1

i∗,p+h. Thus (a) follows. By (3.10), (b) follows from (a) and
Proposition 5.20. Finally, (c) follows from the same argument as in [25, Lemma 5.12
(iv)]. ��
Example 5.24. As in Example 5.16 for type G2, one may compute the formula of
Fq(˜X1,10) to obtain

˜X1,10 + q2
˜X2,11˜X

−1
1,12 + q2

˜X2
1,12
˜X−1

2,13 + (q−1 + q)˜X1,12˜X
−1
1,14 + q3

˜X2,13˜X
−2
1,14 + ˜X1,14˜X

−1
2,15 + q−1

˜X−1
1,16.

Then Fq(X1,10) = (X1,10 ∗ ˜X−1
1,10)Fq(˜X1,10) = q

1
2 Fq(˜X1,10) ∈ Kq(g) is bar-invariant.

Note that ˜X1,10 ∗ ˜X2,10 = ˜X2,10 ∗ ˜X1,10 and there is no dominant Xq -monomial in
M+(Fq(˜X1,10) ∗ Fq(˜X2,10)) except for ˜X1,10 ∗ ˜X2,10 (cf. Example 5.16). Hence we
have Fq(˜X1,10) ∗ Fq(˜X2,10) = Fq(˜X2,10) ∗ Fq(˜X1,10).

Example 5.25. By the q-algorithm starting from ˜Xi,p as in Example 5.16, one can com-
pute the explicit formulas of Fq(˜Xi,p) for 1 � i � 3 of the finite type B3 as follows:
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˜X1,p

˜X2,p+1 ∗ ˜X−1
1,p+2

q˜X2
3,p+2 ∗ ˜X−1

2,p+3

(q−2 + 1)˜X3,p+2 ∗ ˜X−1
3,p+4

q˜X2,p+3 ∗ ˜X−2
3,p+4

˜X1,p+4 ∗ ˜X−1
2,p+5

q−2
˜X−1

1,p+6

3, p + 3

1, p + 1

2, p + 2

1, p + 5

2, p + 4

3, p + 3

˜X2,p

q3
˜X1,p+1 ∗ ˜X2

3,p+1 ∗ ˜X−1
2,p+2

q˜X2
3,p+1 ∗ ˜X−1

1,p+3 (1 + q2)˜X1,p+1 ∗ ˜X3,p+1 ∗ ˜X−1
3,p+3

q3
˜X1,p+1 ∗ ˜X2,p+2 ∗ ˜X−2

3,p+3 (1 + q2)˜X3,p+1 ∗ ˜X2,p+2 ∗ ˜X−1
1,p+3 ∗ ˜X−1

3,p+3

q5
˜X2

2,p+2 ∗ ˜X−1
1,p+3 ∗ ˜X−2

3,p+3 q2
˜X1,p+1 ∗ ˜X1,p+3 ∗ ˜X−1

2,p+4 (q−1 + q)˜X3,p+1 ∗ ˜X3,p+3 ∗ ˜X−1
2,p+4

(q−2 + q2)˜X2,p+2 ∗ ˜X−1
2,p+4

q5
˜X1,p+3 ∗ ˜X2

3,p+3 ∗ ˜X−2
2,p+4

˜X1,p+1 ∗ ˜X−1
1,p+5

˜X2,p+2 ∗ ˜X−1
1,p+3 ∗ ˜X−1

1,p+5

(q−2 + 1)˜X3,p+1 ∗ ˜X−1
3,p+5

(q−1 + q)˜X2,p+2 ∗ ˜X−1
3,p+3 ∗ ˜X−1

3,p+5

q˜X2
3,p+3 ∗ ˜X−1

2,p+4 ∗ ˜X−1
1,p+5 (1 + q2)˜X1,p+3 ∗ ˜X3,p+3 ∗ ˜X−1

2,p+4 ∗ ˜X−1
3,p+5

q˜X1,p+3 ∗ ˜X−2
3,p+5 (q−2 + 1)˜X3,p+3 ∗ ˜X−1

1,p+5 ∗ ˜X−1
3,p+5

q˜X2,p+4 ∗ ˜X−1
1,p+5 ∗ ˜X−2

3,p+5

q−2
˜X−1

2,p+6

1, p + 4
3, p + 4

2, p + 3
3, p + 2

3, p + 4

1, p + 2
3, p + 2

2, p + 3

2, p + 3

3, p + 4

3, p + 2

3, p + 4
1, p + 4

1, p + 4

2, p + 3

2, p + 3

3, p + 2

2, p + 5

3, p + 4

1, p + 4

1, p + 2

1, p + 2
2, p + 3

3, p + 21, p + 2

2, p + 1 ˜X3,p

q˜X2,p+1 ∗ ˜X−1
3,p+2

q2
˜X1,p+2 ∗ ˜X3,p+2 ∗ ˜X−1

2,p+3

˜X3,p+2 ∗ ˜X−1
1,p+4 q˜X1,p+2 ∗ ˜X−1

3,p+4

q˜X2,p+3 ∗ ˜X−1
1,p+4 ∗ ˜X−1

3,p+4

˜X3,p+4 ∗ ˜X−1
2,p+5

q−1
˜X−1

3,p+6

3, p + 31, p + 3

1, p + 3

2, p + 4

3, p + 3

3, p + 5

2, p + 2

3, p + 1

For a dominant monomial m ∈Mg
+, we set

Eq(m) := qb
(

→∗
p∈Z

(

∗
i∈I ;(i,p)∈�f 0

Fq(Xi,p)
ui,p(m)

))

∈ Kq(g), (5.23)

where b is an element in 1
2 Z such that m appears in Eq(m) with the coefficient 1. By

Proposition 5.20, we have
Eq(m) ∈ Kq(g) (5.24)

and there are finitely many dominant monomials in Eq(m). As we regard Eq(m) as an

element of K∞, f
q (g) (recall Proposition 5.15), we obtain a uni-triangular transition map

as in (5.6) between {Eq(m)} and {Fq(m)} in K
∞, f
q (g) by Proposition 5.15:

Eq(m) = Fq(m) +
∑

m′≺
N
m

Cm,m′Fq(m
′) in K

∞, f
q (g),

(5.25)

where Cm,m′ ∈ Z[q± 1
2 ]. Note that the summation in (5.25) is finite since Eq(m) has

finitely many dominant monomials. Hence, (5.25) implies that Fq(m) can be written as
a linear combination of Eq(m′) for m′ �

N
m, so Fq(m) ∈ Kq(g) by (5.23) and (5.24).

Until now, we have proved the following.

Proposition 5.26. The sets

Eq := {Eq(m) | m ∈Mg
+} and Fq := {Fq(m) | m ∈Mg

+}

are Z[q± 1
2 ]-bases of Kq(g), respectively.

In particular, we call Eq the standard basis of Kq(g). Now let us further investigate
the basis Fq of Kq(g), which is characterized as follows:
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Theorem 5.27. Let m̃ ∈ Xq be a dominant (resp. anti-dominant) monomial.

(a) The Laurent (non-commutative) polynomial Fq(m̃) is the unique element in Kq(g)

such that m̃ is the unique dominant (resp. anti-dominant) monomial occurring in
Fq(m̃).

(b) Every monomial in Fq(m̃)− m̃ is strictly less (resp. greater) than m̃ with respect to
≺

N
.

(c) The set Fq forms a bar-invariant Z[q± 1
2 ]-basis of Kq(g).

Proof. We prove only the dominant case because the proof for the anti-dominant case
is almost identical.

Let us first prove (a). Thanks to (5.25), Fq(m̃) can be written as a linear combination
of Eq(m̃′) for m̃′ �

N
m̃, where the sum is finite due to Proposition 5.20(2). Hence,

Fq(m̃) ∈ Kq(g). Note that Fq(m̃) has the unique dominant Xq -monomial m̃ by its
construction through the q-algorithm (see (5.13)).

Let Gq(m̃) be another element in Kq(g) such that m̃ is the unique dominant Xq -
monomial occurring inGq(m̃). Suppose that Fq(m̃)−Gq(m̃) �= 0. Then Fq(m̃)−Gq(m̃)

contains a maximal Xq -monomial m̃′ different from m̃. Since Fq(m̃)−Gq(m̃) ∈ Kq(g),
it follows from Lemma 5.19 that the Xq -monomial m̃′ is dominant. This implies that
Gq(m̃) has a dominant Xq -monomial not equal to m̃, which contradicts the assumption
on Gq(m̃).

Second, (b) is a direct consequence of the q-algorithm. Finally, let us prove (c).
The linear independence follows from the uniqueness of the dominant Xq -monomial of
Fq(m). Take an element χ ∈ Kq(g). We enumerate M+(χ) bym0, m1, . . . , mL . Let us

write λk ∈ Z[q± 1
2 ] be the coefficients of mk in χ for k = 0, 1, . . . , L . Then, the element

χ −∑L
k=0 λk Fq(mk) ∈ Kq(g) has no dominant Xq -monomial. If it is non-zero, then it

has at least one dominant Xq -monomials by Lemma 5.19, which yields a contradiction.
Hence, we conclude that the set {Fq(m) | m ∈Mg

+} generates Kq(g). ��
Corollary 5.28. Let m̃ ∈ Xq be a dominant monomial. Then we have

evq=1(Fq(m̃)) = F(evq=1(m̃)).

Proof. It follows from (4.17) that evq=1(Fq(m̃)) ∈ K(g), where evq=1(Fq(m̃)) has the
unique dominant monomial evq=1(m̃) ∈ X by Theorem 5.27 (a). Thus our assertion is
proved from Theorem 3.9(2). ��

For an interval [a, b], i ∈ I , (i, t) ∈ ˜�0 and k ∈ Z�1, we define

m(i)[a, b] :=
∏

(i,p)∈˜�f 0
p∈[a,b]

Xi,p and m(i)
k,t :=

k−1
∏

s=0

Xi,t+2s . (5.26)

We define m(i)(a, b], m(i)[a, b), and m(i)(a, b) in a similar way. As in the simply-laced
cases (5.2), we have

Tr (Fq(m(i)[p, s])) = Fq(m
(i)[p + r, s + r ]) for any r ∈ 2Z, (5.27)

where r ∈ 2Z andTr is the Z[q± 1
2 ]-algebra automorphism ofXq sending ˜Xi,p to ˜Xi,p+r .
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Proposition 5.29. For (i, p), (i, s) ∈ ˜�f 0 with p < s, the element Fq(m(i)[p, s]) is of
the form

Fq(m
(i)[p, s]) = m(i)[p, s] ∗ (1 + ˜B−1

i,s+1 ∗ χ) (5.28)

where χ is a (non-commutative) Z[q± 1
2 ]-polynomial in ˜B−1

j,k+1, ( j, k) ∈ ˜�f 0. In partic-
ular, we have

Fq(m
(i)[p, s]) = Fq(m

(i∗)
− [p + h, s + h]) (5.29)

and

(1) Fq(m(i)[p, s]) contains the unique dominant monomial m(i)[p, s],
(2) Fq(m(i)[p, s]) contains the unique anti-dominant monomial m(i∗)

− [p + h, s + h],
(3) all Xq-monomials of Fq(m(i)[p, s])−m(i)[p, s] −m(i∗)

− [p + h, s + h] are product of
˜X±1

j,u with p < u < s + h and right-negative.

Proof. (1) follows from Theorem 5.27 (a). (2) and (5.29) follow from the reversed
version of the q-algorithm (see Remark 5.3) and (1). Finally, (5.28) and (3) are the
direct consequences of Theorem 5.4 and Proposition 5.20. ��
Conjecture 1. For (i, p), (i, s) ∈ ˜�f 0 with p < s, every monomial in Fq(m(i)[p, s])
has a quantum positive coefficient; that means, each coefficient of a monomial in

Fq(m(i)[p, s]) is contained in Z�0[q± 1
2 ].

Remark 5.30. In the proof of Corollary 5.22, we have seen that the coefficients of mono-
mials in F(m(i)[p, s]) are positive. In Sect. 8, we will provide a quantum cluster algebra
theoretic algorithm for computing Fq(m(i)[p, s]), which starts from an initial quantum
cluster variable m(i)[p, s] (see Proposition 8.6 below). This may be viewed as an evi-
dence of Conjecture 1, which is compatible with the quantum positivity conjecture of
quantum cluster algebras ([4]).

By the following theorem, we have the third basis, denoted by

Lq := {Lq(m) | m ∈Mg
+},

and called the canonical basis of Kq(g). We remark that the reason why we call it the
canonical basis is further explained in [33].

Theorem 5.31. For m ∈Mg
+, there exists a unique element Lq(m) in Kq(g) such that

(a) Lq(m) = Lq(m),

(b) Eq(m) = Lq(m) +
∑

m′≺Nm

Pm,m′(q)Lq(m
′) with Pm,m′(q) ∈ qZ[q].

Proof. For m ∈ Mg
+, we will construct Lq(m) inductively using some dominant Xq -

monomials below, which are all less than m with respect to the Nakajima order �
N
.

Step 1. Let us first collect all dominant Xq -monomials obtained from m in an inductive
way. Let M1 :=M+

(

Eq(m)
) = {m1,1, m1,2, . . . , m1,�1

= m
}

. Then we define

Mn :=
⋃

1�k��n−1

M+

(

Eq(mn−1,k)
)

,
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where Mn−1 =
{

mn−1,1, mn−1,2, . . . , mn−1,�n−1

}

for n � 2. Note that

M+

(

Eq(m)
) = M1 ⊂ M2 ⊂ M3 ⊂ · · ·

The above chain has finite length, that is, there exists N such that Mn = Mn+1 for
n � N because we can apply the same argument as in the proof of [25, Lemma 3.13
and Lemma 3.14]. For simplicity, let us relabel the dominant Xq -monomials in MN as
follows:

m1 < m2 < · · · < mM = m. (5.30)

where < is also a total order compatible with �
N
. In particular, Eq(m1) has no dominant

Xq -monomial other than m1 by construction.
Step 2. We construct Lq(m) by inductive argument on (5.30) as follows. Since Eq(m1)

has the unique dominantXq -monomialm1 by construction, we have Eq(m1) = Fq(m1).
If we set Lq(m1) = Eq(m1), then the initial step is done because Eq(m1) = Fq(m1) =
Fq(m1) = Eq(m1).

Suppose that Lq(mk) is well-defined and uniquely determined for 1 � k � M − 1.
By the property (b), one can write

Lq(mk) = Eq(mk) +
∑

ml≺N
mk

Qml ,mk
(q)Eq(ml).

By (5.25), Lq(mk) can be written as a linear combination of Fq(ml) for 1 � l � k. In
particular, the coefficient of Fq(mk) is 1 due to the property (a). Hence, the finiteness
described in (5.30) implies that

Fq(mk) can be written as a linear combination of Lq(ml) for 1 � l � k. (5.31)

By replacing Fq(m′) in (5.25) with (5.31), we have

Eq(m) = Fq(m) +
∑

1�l�M−1

αl(q)Lq(ml). (5.32)

Let us take βl(q) ∈ Z[q±1] such that βl(q) is symmetric in q and q−1, and αl(q)−
βl(q) ∈ qZ[q] for all 1 � l � L−1. This is possible by the following way. Let us write
αl(q) by α+

l (q) + α0
l (q) + α−l (q), where α±l (q) ∈ q±1

Z[q±1] and α0
l (q) ∈ Z. Then we

define βl(q) = β+
l (q) + β0

l (q) + β−l (q) by setting β+
l (q) = α−l (q−1), β−l (q) = α−l (q)

and β0
l (q) = α0

l (q). Now, we define

Lq(m) = Fq(m) +
∑

1�l�M−1

βl(q)Lq(ml) ∈ Kq(g).

Then, Lq(m) satisfies the properties (a) and (b) due to the our choice of βl(q), which is
the desired element of Kq(g). Note that it follows from Proposition 5.26 and (b) that Lq
is a Z[q± 1

2 ]-basis of Kq(g).
Step 3. Let us prove the uniqueness of Lq(m). Assume that L ′q(m) ∈ Kq(g) satisfies (a)
and (b). By (5.30) and (b), we have

L ′q(m1) = Eq(m1) = Lq(m1).
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By induction on (5.30), we suppose that Lq(mk) = L ′q(mk) for 1 � k � M − 1. By (b)
and induction hypothesis, Eq(m) is written as

Eq(m) = Lq(m)+
∑

1�k�M−1

Pm,mk (q)Lq(mk) = L ′q(m)+
∑

1�k�M−1

P ′m,mk
(q)Lq(mk),

where Pm,mk (q), P ′m,mk
(q) ∈ qZ[q]. Hence we have

Lq(m) = L ′q(m) +
∑

1�k�M−1

(

P ′m,mk
(q)− Pm,mk (q)

)

Lq(mk). (5.33)

By taking the bar involution on both sides of (5.33), it follows from (a) that for 1 � k �
M − 1,

P ′m,mk
(q)− Pm,mk (q) = Pm,mk (q)− P ′m,mk

(q) ∈ qZ[q] ∩ q−1
Z[q−1] = { 0 } .

This implies that L ′q(m) = Lq(m) by (5.33). ��
Remark 5.32. In the viewpoint of Kazhdan–Lusztig theory (explained briefly in Remark
5.10), we regard the polynomials Pm,m′(q)’s as new KL-type polynomials, which gener-
alize Nakajima’s KL-type polynomials, since the t-quantized Cartan matrices for types
ADE are equal to the quantum Cartan matrices and the basis in Theorem 5.31 essentially
coincides with Nakajima’s as explained in [25,26]. It would be very interesting to find
a geometric or representation theoretic interpretation behind Pm,m′(q) in the spirit of
Kazhdan–Lusztig theory.

Remark 5.33. We emphasize that the basis Lq = {Lq(m) | m ∈ Mg
+} of Kq(g) is

quite different from the Lt of Kt (g) 	 Kt(C 0
g ), that is, Lq(m) cannot be obtained from

Lt (m) by foldingYt -monomials with some modification of coefficients in Z[t± 1
2 ], where

m = σ(m). We give an example to illustrate this phenomenon. Let us consider Lt (˜Y1,1)

and Lt (˜Y4,−2) of the finite type A5. One may observe that Lt (˜Y1,1) q-commutes with
Lt (˜Y4,−2), which implies that Lt (˜Y1,1 ∗ ˜Y4,−2) coincides with Lt (˜Y1,1) ∗ Lt (˜Y4,−2) up
to qZ [29, Corollary 5.5]. On the other hand, for type C3, Lq(˜X1,1) does not q-commute
with Lq(˜X2,−2). This implies that Lq(˜X1,1∗˜X2,−2) is not equal to Lq(˜X1,1)∗Lq(˜X2,−2)

up to qZ . In fact, Lq(˜X1,1 ∗ ˜X2,−2) has two dominant Xq -monomials, while Lt (˜Y1,1 ∗
˜Y4,−2) has only one dominant Yt -monomial.

Conjecture 2. For (i, p), (i, s) ∈ ˜�f 0 with p < s, we have

Lq(m
(i)[p, s]) = Fq(m

(i)[p, s]),
where m(i)[p, s] := m(i)[p, s] denotes the bar-invariant Xq-monomial corresponding

to m(i)[p, s] (5.26) as in Remark 4.3.

Example 5.34. Let us illustrate Theorem 5.31 in the case of Lq(X2,5X1,10) for type G2.
Step 1. By (5.23), we have

Eq(X2,5X1,10) = q
3
2 Fq(X2,5) ∗ Fq(X1,10).

Let us recall the formulas of Fq(X2,5) and Fq(X1,10) in Examples 5.16 and 5.24, respec-
tively. Then we observe that there exist two bar-invariant dominant Xq -monomials with

Z[q± 1
2 ]-coefficients in Eq(X2,5X1,10), namely, X2,5X1,10 and

(

q−1 + q + q3
)

X1,6.
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Step 2. By Step 1, we have

Eq(X2,5X1,10) = Fq(X2,5X1,10) +
(

q−1 + q + q3
)

Fq(X1,6),

which corresponds to (5.32) in this case, that is, M = 2 and α1(q) = q−1 + q + q3. Set
β1(q) = q + q−1 by construction in the proof of Theorem 5.31. Then we have

Lq(X2,5X1,10) = Fq(X2,5X1,10) +
(

q−1 + q
)

Fq(X1,6),

which is bar-invariant. Note that Lq(X2,5X1,10)has two dominantXq -monomials X2,5X1,10

and X1,6. Moreover, we verify

Eq(X2,5X1,10) = Lq(X2,5X1,10) + PX2,5X1,10,X1,6(q)Lq(X1,6),

where PX2,5X1,10,X1,6(q) = q3 ∈ qZ�0[q], that is, Lq(X2,5X1,10) is the unique element
in Kq(g) satisfying the properties (a) and (b) in Theorem 5.31.

5.3. Proof of Proposition 5.20. To prove Proposition 5.20, we utilize some analogues
of the results in [25], where we will skip some proof of them when they can be obtained
from the corresponding arguments in [25].

For J g ⊂ I g, we set J g = { ı | ı ∈ J g } ⊂ I g. Let J ⊂ I be given such that J = J g

for some J g ⊂ I g. Let us define KJ (g) ⊂ X as follows:

KJ (g) =
⋂

j∈J

(

Z[X±1
k,l | (k, l) ∈ ˜�f g0, j �= k ∈ I ] ⊗ Z[X j,l(1 + B−1

j,l+1) | ( j, l) ∈ ˜�f g0]
)

.

Note that KI (g) = K(g). We also define KJ,q(g) ⊂ Xq as above by replacing the letters
X and B with ˜X and ˜B, respectively.

Proposition 5.35. Let J ⊂ I with |J | � 2. For a J -dominant monomial m, there exists
a unique FJ,q(m) ∈ KJ,q(g) such that m is the unique J -dominant Xq-monomial of
FJ,q(m). Moreover,

{FJ,q(m) |m is J -dominant } is a Z[q± 1
2 ]-basis of KJ,q(g).

Proof. If |J | = 1, then our assertion is a folded version of [25, Proposition 4.12],
where its proof is parallel with the replacement in Remark 5.14 (2). If |J | = 2, one
may construct FJ,q(Xi,p) ∈ KJ,q(g) for i ∈ J by explicit computation in rank 2. Note
that the computation in this case is done by [25, Appendix] for types A1 × A1 and A2,
Examples 5.16, 5.24 for type G2, Example A.1 for type C2, and Example A.2 for type
B2. Hence our assertion is proved by a similar argument to the proof of Proposition 5.26
with the q-deformation of (5.34) defined similarly as in (5.23). ��

For m ∈MJ
+ , we define

EJ (m) =
∏

j∈J ;( j,p)∈�f 0

FJ (X j,p)
u j,p(m) ∈ KJ (g), (5.34)

where FJ (X j,p) := evq=1(FJ,q(Xi,p)) is a unique element in KJ (g) such that X j,p is
the unique dominant monomial of FJ (X j,p) (cf. Remark 4.12 and Remark 5.6). Let
K∞i,q(g) be the completion of Ki,q(g) given by the method in [25, Section 5.2.2]. Put
K∞J,q(g) =⋂ j∈J K∞j,q(g).
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Lemma 5.36. (1) A non-zero element ofK∞J,q has at least one J -dominantXq-monomial.
(2) We have

KJ,q(g) = K∞J,q(g)
⋂Xq .

Proof. Part (1) follows from an analog of the proof of Lemma 5.19 (cf. [15, Lemma
5.6]), and part (2) follows from the same argument as in the proof of [25, Lemma 5.7]
by using Proposition 5.35. ��

For i ∈ I g, take ı ∈ I g such that ı = i and put

• Dg
m(ı)[p,s] = (m(k))k�0: the countable set as in [25, Section 5.2.3] associated with

m(ı)[p, s],
• Dg

m(i)[p,s] = (m(k))k�0: the analogue of the above one for m(i)[p, s] in terms of
(5.34).

Remark 5.37. The set Dg
m(ı)[p,s] may be an infinitely countable set. If we enumerate the

monomials in the countable set as follows:

· · · < m(2) < m(1) < m(0) = m(ı)[p, s].
Then the t-algorithm determines Z[t± 1

2 ]-coefficients of the monomials m(k)’s. Let

(cg(m(r)))r�0 be the sequence of Z[t± 1
2 ]-coefficients for m(r)’s determined by the t-

algorithm starting from m(ı)[p, s]. It was known in [26] that the sequence (cg(mk))k�0

should have finitely many non-zero coefficients, that is, Ft (m(ı)[p, s]) ∈ Kt (g). Note
that M(Ft (m(ı)[p, s])) ⊂ {m(k) | k � 0 }.

Let us enumerate the finite set M(Ft (m(ı)[p, s])) as follows:

mN < · · · < m2 < m1 < m0 = m(ı)[p, s],
where < is a total order compatible with ≺

N
. In particular, mN is an anti-dominant Y-

monomial, i.e. mN = m(ı∗)
− [p+h, s +h] by Theorem 5.4. It follows from Corollary 3.10

and Theorem 5.4 that

M := { σ(mk) | 1 � k � N } ⊂ Dg
m(i)[p,s].

Then we enumerate the X -monomials in M by

m(i)
− [p + h, s + h] = mN ′ <′ · · · <′ m1 <′ m0 = m(i)[p, s], (5.35)

where <′ is a total order compatible with ≺
N
.

Definition 5.38. Set c̃g(m(i)[p, s]) = 1 and c̃gJ (m
(i)[p, s]) = 0. For J ⊂ I with |J | � 2

and m ∈ M such that m �= m(i)[p, s], we define

c̃gJ (m) =
∑

m∈M
m<′m′

(

c̃g(m′)− c̃gJ (m
′)
)

[

FJ,q(m′)
]

m ,

c̃g(m) =
{

c̃J (m) if m is not J -dominant,
0 if m is dominant,

where
[

FJ,q(m′)
]

m is a Z[q± 1
2 ]-coefficient of m in FJ,q(m′). Here FJ,q(m′) is assumed

to be 0 when m′ is not J -dominant.
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Lemma 5.39. The sequences ( c̃gJ (m) )m∈M and ( c̃g(m) )m∈M are well-defined, and
( c̃g(m) )m∈M is not depend on the choice of J with |J | � 2.

Proof. We prove our assertion by induction on (5.35). Suppose that our assertion holds
for the X -monomials mk with 0 < k < N ′. The well-definedness of c̃gJ (mk+1) follows
from its definition.

For J1, J2 ⊂ I such that J1 �= J2 and max {|J1|, |J2|} � 2, if mk+1 is not both
J1-dominant and J2-dominant, then we should verify

c̃gJ1
(mk+1) = c̃gJ2

(mk+1).

For J ⊂ I with |J | � 2, we set

χk
J =
∑

l�k

(

c̃g(ml)− c̃gJ (mk)
)

FJ,q(ml).

For simplicity, put

χk
i := χk

J and c̃gi (m) := c̃gJ (m)

when J = {i} for i ∈ I . Note that χk
J is well-defined by induction hypothesis. In

particular, χk
J ∈ KJ,q(g) by Proposition 5.35.

Let us take j1 ∈ J1 and j2 ∈ J2 such that mk+1 is not both j1-dominant and j2-
dominant. Set J = { j1, j2 }. Since mk+1 is not J -dominant, we have

χk
J − χk

j1 ∈
∑

l>k+1

Z[q± 1
2 ]Fj1,q(ml) and c̃gJ (mk+1) = c̃gj1(mk+1)

by similar computations in the proof of [25, Lemma 5.21] under the current setting.
Similarly, we also have

c̃gJ (mk+1) = c̃gj2(mk+1), c̃gJ1
(mk+1) = c̃gj1(mk+1), c̃gJ2

(mk+1) = c̃gj2(mk+1).

Hence, we conclude that c̃gJ1
(mk+1) = c̃gJ2

(mk+1). This completes the proof. ��
By Proposition 5.35 and Lemma 5.39, we set

χ :=
∑

m∈M
c̃g(m)m ∈ Xq and χi :=

∑

m∈M
μi (m)Fi,q(m) ∈ Ki,q(g),

where μi (m) = c̃g(m)− c̃gi (m).

Remark 5.40. It follows from Corollary 3.10 and Theorem 5.4 that

σ(F(m(ı)[p, s])) = F(m(i)[p, s]) ∈ K(g). (5.36)

On the other hand, it follows from Corollary 5.28 and Proposition 5.35 that F(m(i)[p, s])
should be written as a finite linear combination of evq=1(FJ,q(m)) for J ⊂ I with
|J | � 2. Combining this fact with (5.36), we conclude that each m (m ∈ M) appears
in both χ and χi for all i ∈ I , so it makes sense to compare their coefficients (e.g. see
Example 5.7 and Examples 5.16).

Now, we are ready to prove Proposition 5.20.
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Proof of Proposition 5.20. Let us compute the coefficient of m′ in χ − χi for m′ ∈ M.
Case 1. m′ is not i-dominant. By definition of c̃g(m′), we have

(coefficient of m′ in χ − χi ) = c̃g(m′)−
∑

m∈M
m′�′m

μi (m)
[

Fi,q(m)
]

m′

= (̃cg(m′)− c̃gi (m
′))
[

Fi,q(m′)
]

m′ = 0,

where Fi,q(m′) = 0 since m′ is not i-dominant.
Case 2. m′ is i-dominant. By uniqueness of i-dominant Xq -monomial for Fi,q(m)

with m′ �′ m, we have c̃gi (m
′) = 0, and the coefficient of m′ in χi is μi (m′) =

c̃g(m′)− c̃gi (m
′) = c̃g(m′). This implies that the coefficient of m′ in χ − χi is 0 in this

case.
By Case 1 and Case 2, we have χ = χi ∈ Ki,q(g) and then χ ∈ Kq(g). Note that

χ has unique dominant Xq -monomial m(i)[p, s] by Definition 5.38 (or our choice of
M). Since Fq(m(i)[p, s]) − χ ∈ K∞q (g) has no dominant Xq -monomial, we conclude

Fq(m(i)[p, s]) = χ ∈ Kq(g) by Lemma 5.36. ��

6. Subrings of Kq(g) nd the Quantum Folded T -Systems

In this section, we prove the quantum folded T -systems, which play a crucial role in this
paper. To do this, we consider a subring Kq,ξ (g) of Kq(g) for a height function ξ . We
mainly employ the framework in [29,30] (see also [5]).

6.1. Subring. Let S be a convex set of ˜�f 0 (recall Definition 2.7 (2)). We denote by SX
(resp. SXq ) the subring of X (resp. Xq ) generated by X±1

i,p (resp. ˜X±1
i,p) for (i, p) ∈ S.

Let SM+ be the set all dominant monomials in the variables Xi,p’s for (i, p) ∈ S. We

define the Z[q± 1
2 ]-module Kq,S(g) as the Z[q± 1

2 ]-submodule of Kq(g) given by

Kq,S(g) := ⊕

m∈SM+

Z[q± 1
2 ]Fq(m). (6.1)

Lemma 6.1. (cf. [18, Lemma 5.6]) The set SM+ is an ideal of the partially ordered set
(M+,�

N
); i.e., it is closed under taking smaller elements inM+ with respect to �

N
.

Proof. Let m ∈ SM+ and mM ∈M+ where M ∈ B−kq for some k ∈ Z�1. For a factor

B−1
i,p of M , the monomial m should have factors Xi,p−1 and Xi,p+1 due to (3.7). Thus

we have an oriented path from (i, p + 1) to a vertex in S and another oriented path from
a vertex in S to (i, p − 1) (these paths are possibly of length zero) in �f 0. Hence we
have an oriented path whose end points are in S factoring through both (i, p − 1) and
(i, p + 1). By convexity of S and the definition of Bi,p (3.7), M ∈ SX and mM ∈ SM+
as we desired. ��
Proposition 6.2. For a convex subsetS in˜�f 0, theZ[q± 1

2 ]-moduleKq,S(g) is aZ[q± 1
2 ]-

subalgebra of Kq(g). Moreover, we have

Kq,S(g) = ⊕

m∈SM+

Z[q± 1
2 ]Eq(m) = ⊕

m∈SM+

Z[q± 1
2 ]Lq(m). (6.2)
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Proof. Let m1,m2 ∈ SM+. By Theorem 5.27 and Proposition 5.29, Fq(m1)∗ Fq(m2) ∈
Kq(g) is written as shown below.

Fq(m1) ∗ Fq(m2) =
∑

m∈M+
m �

N
m1m2

cmFq(m), (6.3)

where cm ∈ Z[q± 1
2 ] \ { 0 }. Then it follows from Lemma 6.1 that m ∈ SM+ for a

monomial m �
N
m1m2 above. Hence, we conclude that Kq,S(g) is a Z[q± 1

2 ]-subalgebra
of Kq(g) by definition (6.1) of Kq,S(g).

Since Kq,S(g) is given by (6.1), (6.2) follows from Kq(g)-analogue of (5.6) and (b)
in Theorem 5.31. ��

6.2. Truncation. Let ξ be a height function of�f and set ξXq := ξ
˜�f 0Xq for simplicity. For

a (non-commutative) Laurent polynomial x ∈ Xq , we denote by x�ξ the element of ξXq

obtained from x by discarding all the monomials containing ˜X±1
i,p with (i, p) ∈ ˜�f 0\ξ

˜�f 0.
The map

(·)�ξ : Xq −→ ξXq given by x �−→ x�ξ

is a Z[q± 1
2 ]-linear map, which is not Z[q± 1

2 ]-algebra homomorphism. For m ∈ M+,
we denote by Fq(m)�ξ the image of Fq(m) under the map (·)�ξ .

Let us recall Definition 2.7 and (6.1). We set

Kq,ξ (g) := Kq,ξ˜�f 0
(g). (6.4)

Proposition 6.3. For a height function ξ on �f , the map (·)�ξ restricts to the injective

Z[q± 1
2 ]-algebra homomorphism

(·)�ξ : Kq,ξ (g) ↪→ ξXq .

Proof. The injectivity follows from Theorem 5.27. Let us take m1,m2 ∈ ξM+ :=
(M+)�ξ . We consider a linear expansion of Fq(m1) ∗ Fq(m2) as in (6.3). Then we
claim that

Fq(m1)�ξ ∗ Fq(m2)�ξ =
∑

m∈ξM+
m �

N
m1m2

cmFq(m)�ξ (cm �= 0).
(6.5)

Take a Xq -monomial m̃′ (resp. m̃′′) appearing in Fq(m1)�ξ (resp. Fq(m2)�ξ ). If
evq=1(m̃′m̃′′) ∈M+, then evq=1(m̃′m̃′)′ ∈ ξM+ by Lemma 6.1. Furthermore, by Theo-
rem 5.27 and definition of ξXq , Fq(m1)�ξ ∗Fq(m2)�ξ is written as a linear combination
of {Fq(m)�ξ | m ∈ ξM+}. Thus, Fq(m̃′m̃′′)�ξ appears in the right-hand side of (6.5)

up to Z[q± 1
2 ]. This proves the above claim.

Finally, we have

(·)�ξ (Fq(m1) ∗ Fq(m2)) =
∑

m∈ξM+
m �

N
m1m2

cmFq(m)�ξ = Fq(m1)�ξ ∗ Fq(m2)�ξ .

by Proposition 6.2 and (6.5), which completes the proof. ��
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Definition 6.4. For m ∈M+, we say Lq(m) (resp. Fq(m)) real if, for any k ∈ Z�1, we
have (Lq(m))k = qt Lq(mk) (resp. (Ft (m))k = qt Fq(mk)) for some t ∈ Z.

Corollary 6.5. For each KR-monomial m(i)[p, s], Fq(m(i)[p, s]) is real.
Proof. Let ξ be a height function with ξi = s. Then we have

(Fq(m
(i)[p, s]))�ξ = m(i)[p, s],

by (5.28) in Proposition 5.29. Since

evq=1

(

(

Fq(m
(i)[p, s])∗n)�ξ

)

= (m(i)[p, s])n = evq=1

(

(

Fq(m
(i)[p, s]∗n))�ξ

)

,

our assertion follows from Proposition 6.3. ��
In accordance with Theorem 5.11 for simply-laced type g, one can also expect that

Lq(m) has quantum positivity. Moreover, it is proved in [19,45] that every cluster mono-
mial in Kq(g) corresponds to a real element in Lt . Based on some computational evi-
dence, we suggest the following conjecture:

Conjecture 3. For m ∈ M+, if Lq(m) is real, then Lq(m) has a quantum positive
coefficient.

6.3. Quantum folded T -system. For f, g ∈ Xq , we say that f and g q-commute or are
q-commutative if f g = qkg f for some k ∈ 1

2 Z. In this subsection, we shall prove
the functional equations among KR-polynomials Fq(m(i)[p, s])’s, called the quantum
folded T -system. For simply-laced finite type, the quantum folded T -system is nothing
but the quantum T -system, investigated in [29] (see also [18,31]).

Lemma 6.6. For (i, p), (i, s) ∈ ˜�0 with p < s, let j, j ′ ∈ �f 0 such that d(i, j) =
d(i, j ′) = 1. Then we have

Fq
(

m( j)(p, s)
) ∗ Fq

(

m( j ′)(p, s)
) = Fq

(

m( j ′)(p, s)
) ∗ Fq

(

m( j)(p, s)
)

.

Proof. Note that one can take a height function ξ of �f satisfying (a) ξ j = max{ ξi | i ∈
I } = s and (b) ξ j = ξ j ′ = s − 1. Then, by (5.28), we have

Fq
(

m( j)(p, s)
)

�ξ
= m( j)(p, s) and Fq

(

m( j ′)(p, s)
)

�ξ
= m( j ′)(p, s).

By Proposition 6.3, we have

Fq
(

m( j)(p, s)
) ∗ Fq

(

m( j ′)(p, s)
) = qβFq

(

m( j ′)(p, s)
) ∗ Fq

(

m( j)(p, s)
)

for some β ∈ 1
2 Z.

Now, let us prove that β = 0 by induction on k = (p − s)/2. When k = 1, we have
m( j)(p, s) = ˜X j,p+1. In this case, β = 0 by (4.3). Suppose that k > 1. By the induction
hypothesis, we have

m( j)(p, s − 2) ∗ m( j ′)(p, s − 2) = m( j ′)(p, s − 2) ∗ m( j)(p, s − 2).
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Then we have

m( j)(p, s) ∗ m( j ′)(p, s) = qN (˜X j,s−1,m( j ′)(p,s))+N (m( j)(p,s),˜X j ′,s−1))m( j)(p, s) ∗ m( j ′)(p, s).

Since

N (˜X j,s−1,m
( j ′)(p, s)) =

(p−s)/2−1
∑

i=0

N ( j, s − 1; j ′, p + 1 + 2i)

=
(p−s)/2−1
∑

i=0

r̃ j, j ′ (s − p − 2i − 3)− r̃ j, j ′ (s − p − 2i − 1),

N (m( j)(p, s), ˜X j ′,s−1) = −N (˜X j ′,s−1,m
( j)(p, s)) = −

(p−s)/2−1
∑

i=0

N ( j ′, s − 1; j, p + 1 + 2i)

=
(p−s)/2−1
∑

i=0

−̃r j ′, j (s − p − 2i − 3) + r̃ j ′, j (s − p − 2i − 1),

our assertion follows from the fact that r̃ j, j ′(u) = r̃ j ′, j (u) for all u ∈ Z (cf. [47, Section
4]). ��
Lemma 6.7. For (i, p), (i, s) ∈ ˜�f 0 with p < s, we have

Fq
(

m(i)[p, s]) ∗ Fq
(

m(i)(p, s)
) = Fq

(

m(i)(p, s)
) ∗ Fq

(

m(i)[p, s]).
Proof. Let ı ∈ I g such that ı = i . By Theorem 3.9 and (3.11), we have

σ
(

F(m(ı)[p, s])F(m(ı)(p, s))
)

= F(m(i)[p, s])F(m(i)(p, s)). (6.6)

Put M = m(i)[p, s]m(i)(p, s). It follows from [27, Lemma 5.6 (2)] and (6.6) that the set
of dominant X -monomials in F(m(i)[p, s])F(m(i)(p, s)) is given by

M, MB−1
i,s−1, MB−1

i,s−1B
−1
i,s−3, . . . , MB−1

i,s−1B
−1
i,s−3 . . . B−1

i,p+3 (6.7)

with multiplicity 1. By (5.22) (see also Remark 4.12), we have the set of dominant Xq -
monomials in Fq(m(i)[p, s]) ∗ Fq(m(i)(p, s)) and the set of those in Fq(m(i)(p, s)) ∗
Fq(m(i)[p, s])); namely, their specialization at q = 1 is (6.7).

Now, it follows from Theorem 5.27 that it is enough to compare the dominant Xq -
monomials of Fq(m(i)[p, s]) ∗ Fq(m(i)(p, s)) with those of Fq(m(i)(p, s)) ∗ Fq(m(i)

[p, s]) to prove our assertion. At this point, we can apply the sl2-reduction argument as
in [31, Remark 9.10] based on Proposition 4.6 (see also the proof of [18, Proposition
6.10]). Consequently, we conclude that

Fq(m
(i)[p, s]) ∗ Fq (m(i)(p, s)) = qa Fq(m

(i)(p, s)) ∗ Fq(m(i)[p, s]) for some a ∈ Z/2.

(6.8)

Finally, to complete our assertion, it suffices to show that a in (6.8) vanishes, that is,

m(i)[p, s] ∗ m(i)(p, s) = m(i)(p, s) ∗ m(i)[p, s].
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By an induction on (p − s)/2, we have

N (m(i)[p, s],m(i)(p, s)) = N (˜Xi,s,m
(i)(p, s − 2]) + N (m(i)[p, s − 2), ˜Xi,s−2)


= N (˜Xi,s,m
(i)(p, s]) + N (m(i)[p, s), ˜Xi,s−2)

†= N (˜Xi,s,m
(i)(p, s]) + N (m(i)(p, s], ˜Xi,s) = 0,

where

= follows from N (˜Xi,t , ˜Xi,t ) = 0 and

†= follows from N (˜Xi,t , ˜Xi,t ′)
= N (˜Xi,t±2, ˜Xi,t ′±2). ��

For (i, p), (i, s) ∈ ˜�0 with p < s, we set m(i; p, s) :=∏ j; d(i, j)=1 m
( j)(p, s)−c j,i ,

where m( j)(p, s) is given as in (5.26).

Lemma 6.8. For (i, p), (i, s) ∈ ˜�0 with p < s, we have

Fq(m(i; p, s)) =
∏

j; d(i, j)=1

Fq(m
( j)(p, s))−c j,i ,

where the order of the product does not matter.

Proof. By Lemma 6.6,
∏

j; d(i, j)=1 Fq(m
( j)(p, s))−c j,i is well-defined. Let ξ be a height

function on �f such that ξi = s and ξ j = s − 1 for j ∈ �f 0 with d(i, j) = 1. Then we
have

⎛

⎝

∏

j; d(i, j)=1

Fq(m
( j)(p, s))−c j,i

⎞

⎠

�ξ

= m(i; p, s),

which implies the assertion. ��
Now, we are in a position to state and prove the quantum folded T -system (cf. The-

orem 5.13).

Theorem 6.9 (Quantum folded T -system). For (i, p), (i, s) ∈ ˜�f 0 with p < s and
k = (s − p)/2 ∈ Z�1, we have

Fq
(

m(i)[p, s)) ∗ Fq
(

m(i)(p, s]) = qα(i,k)Fq
(

m(i)(p, s)
) ∗ Fq

(

m(i)[p, s])

+ qγ (i,k)
∏

j; d(i, j)=1

Fq
(

m( j)(p, s)
)−c j,i ,

where γ (i, k) = 1

2

(

r̃i,i (2k − 1) + r̃i,i (2k + 1)
)

and α(i, k) = γ (i, k)− di .

Proof. First, we claim that

Fq
(

m(i)[p, s)) ∗ Fq
(

m(i)(p, s]) = qαFq
(

m(i)[p, s]) · Fq
(

m(i)(p, s)
)

+ qγ Fq
(

m(i; p, s))

for some α, γ ∈ 1

2
Z. By using the q-algorithm and the argument in [27, Lemma 5.6]

(or [31, Theorem 9.6, Lemma 9.9]), the product of Fq
(

m(i)[p, s)) and Fq
(

m(i)(p, s])
has exactly distinct k dominant monomials

M1, M2, . . . , Mk,
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where evq=1(M1) = m(i)[p, s)m(i)(p, s]. Moreover, M1, . . . , Mk−1 exhaust the domi-
nant monomials occurring in Fq(m(i)[p, s])Fq(m(i)(p, s)) and

evq=1(Mk) =
(

m(i)[p, s)B−1
i,s−1B

−1
i,s−3 · · · B−1

i,p+1

)

m(i)(p, s] = m(i; p, s).
Hence, our claim follows from Theorem 5.27 and Lemma 6.8.

Second, we compute α = α(i, k) and γ = γ (i, k) explicitly. By Theorem 5.27,
Lemma 6.6 implies that

Fq
(

m(i; p, s)) =
∏

j; d(i, j)=1

Fq
(

m( j)(p, s)
)−c j,i .

Also, by Lemma 6.7, we also have

Fq
(

m(i)[p, s]) ∗ Fq
(

m(i)(p, s)
) = Fq

(

m(i)(p, s)
) ∗ Fq

(

m(i)[p, s]).
Thus it suffices to compute α, γ such that

m(i)[p, s) ∗ m(i)(p, s] = qαm(i)[p, s] ∗ m(i)(p, s) = qαm(i)(p, s) ∗ m(i)[p, s]
and

(

m(i)[p, s) · ˜B−1
i,s−1 · ˜B−1

i,s−3 · · · ˜B−1
i,p+1

)

∗ m(i)(p, s] = qγ m(i; p, s).
The coefficient α can be computed as follows:

α =
k−1
∑

a=1

N (i, p; i, p + 2a) +
1

2
N (i, p; i, p + 2k)

=
k−1
∑

a=1

(

r̃i,i (2a + 1)− r̃i,i (2a − 1)
)

+
1

2

(

r̃i,i (2k + 1)− r̃i,i (2k − 1)
)

= −̃ri,i (1) +
1

2

(

r̃i,i (2k + 1) + r̃i,i (2k − 1)
) = −di +

1

2

(

η̃i,i (2k + 1) + η̃i,i (2k − 1)
)

.

Note that m :=
(

m(i)[p, s) · ˜B−1
i,s−1 · ˜B−1

i,s−3 · · · ˜B−1
i,p+1

)

is contained in Fq(m(i)[p, s))
with coefficient 1, and m · m(i)(p, s] =

∏

j; d(i, j)=1

m( j)(p, s)−c j,i . Thus we have

m ∗ m(i)(p, s] =
⎛

⎝

(

m(i)(p, s])−1 ·
∏

j; d(i, j)=1

m( j)(p, s)−c j,i

⎞

⎠ ∗ m(i)(p, s]

= qγ
∏

j; d(i, j)=1

m( j)(p, s)−c j,i ,

where

γ = 1

2

∑

j; d(i, j)=1

−c j,i

k
∑

a=1

k
∑

b=1

N ( j, p + 2a − 1; i, p + 2b)
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= 1

2

∑

j; d(i, j)=1

−c j,i

k
∑

a=1

k
∑

b=1

(

r̃ j,i (2(a − b)− 2)− r̃ j,i (2(a − b))− r̃ j,i (2(b − a))

+̃r j,i (2(b − a) + 2)
)

= 1

2

∑

j; d(i, j)=1

−c j,i

k
∑

a=1

(

r̃ j,i (2(a − k)− 2)− r̃ j,i (2(a − 1))− r̃ j,i (2(1− a))

+̃r j,i (2(k − a) + 2)
)

= 1

2

∑

j; d(i, j)=1

−c j,i

k
∑

a=1

(−̃r j,i (2(a − 1)) + r̃ j,i (2(k − a) + 2)
) = 1

2

∑

j; d(i, j)=1

−c j,i r̃ j,i (2k)

= 1

2

∑

j; d(i, j)=1

−c j,i η̃ j,i (2k) = 1

2

∑

j; d(i, j)=1

−c j,i η̃i, j (2k).

Then our proof is completed by Lemma 2.3. ��
Example 6.10. Let us recall the formula of Fq(˜X2,5) in (5.19). Also, Fq(X2,5) = q

3
2

Fq(˜X2,5) ∈ Kq(g) and it is bar-invariant with respect to (4.5). Note that Fq(˜X2,7) =
T2(Fq(˜X2,5)) and Fq(X2,7) = q

3
2 Fq(˜X2,7). Clearly, these computations implies that

Fq(X2,5) ∗ Fq(X2,7) has two dominant Xq -monomials, namely, X2,5X2,7 and X3
1,6. By

Theorem 5.27, we should have

Fq(X2,5) ∗ Fq(X2,7) = q
3
2 Fq(X2,5X2,7) + q

9
2 Fq(X1,6)

3. (6.9)

On the other hand, we obtain

d2 = 3, γ (2, 1) = 1

2

(

r̃2,2(1) + r̃2,2(3)
) = 9

2
, α(2, 1) = γ (2, 1)− d2 = 3

2
,

− c1,2 = 3,

where r̃2,2(1) = 3 and r̃2,2(3) = 6 from (2.10). Hence (6.9) illustrates Theorem 6.9.

7. Quantum Cluster Algebra

In this section we recall the definition of skew-symmetrizable quantum cluster algebras
of infinite rank, following [4], [22, §8], [30] and [45].

7.1. Quantum seed. Let K be an index set described in Sect. 2.4. Let L = (λi, j )i, j∈K be
a skew symmetric integer-valued K × K-matrix. Let q be an indeterminate.

Definition 7.1. We define (P(L), 
) as the Z[q± 1
2 ]-algebra, called the quantum torus

associated to L , generated by a family of elements {Zi }i∈K with the defining relations

Zi 
 Z j = qλi, j Z j 
 Zi (i, j ∈ K).

We denote by F(L) the skew field of fractions of P(L).
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For a = (ai )i∈K ∈ Z
⊕K, we define the element Za of F (L) as

Za := q
1
2

∑

i> j ai a jλi, j
→



i∈K
Zai
i (7.1)

(cf. (4.6)). Here we take a total order < on the set K. Note that Za does not depend on
the choice of a total order on K. We have

Za 
 Zb = q
1
2

∑

i, j∈K ai b jλi, j Za+b.

Let (A, 
) be a Z[q± 1
2 ]-algebra. We say that a family {zi }i∈K of elements of A is

L-commuting if it satisfies zi 
 z j = qλi, j z j 
 zi for any i, j ∈ K. In that case we can
define za for any a ∈ Z

⊕K
�0 as in (7.1). We say that an L-commuting family {zi }i∈K is

algebraically independent if the algebra mapP(L) → A given by Zi �→ zi is injective.
Let ˜B = (bi, j )i∈K, j∈Kex be an integer-valued K × Kex-exchange matrix satisfying

(2.12). We say that the pair (L , ˜B) is compatible with a diagonal matrix diag(di ∈
Z�1 | i ∈ K), if we have

∑

k∈K
bkiλk j = δi, jdi , equivalently, (L˜B) j i = −δi, jdi , (7.2)

for any i ∈ Kex and j ∈ K. We also call the pair (L , ˜B) a compatible pair for short.
Let (L , ˜B) be a compatible pair and A a Z[q±1/2]-algebra. We say that S =

({zi }i∈K, L , ˜B) is a quantum seed in A if {zi }i∈K is an algebraically independent L-
commuting family of elements of A. The set {zi }i∈K is called the quantum cluster of
S and its elements the quantum cluster variables. The quantum cluster variables zi
(i ∈ Kfr) are called the frozen variables. The elements za (a ∈ Z

⊕K
�0 ) are called the

quantum cluster monomials.

7.2. Mutation. For k ∈ Kex, we define a K×K-matrix E = (ei, j )i, j∈K and a Kex×Kex-
matrix F = ( fi, j )i, j∈Kex as follows:

ei, j =

⎧

⎪

⎨

⎪

⎩

δi, j if j �= k,
−1 if i = j = k,
max(0,−bi,k) if i �= j = k,

fi, j =

⎧

⎪

⎨

⎪

⎩

δi, j if i �= k,
−1 if i = j = k,
max(0, bk, j ) if i = k �= j.

The mutation μk(L , ˜B) := (μk(L), μk(˜B))of a compatible pair (L , ˜B) in direction k is
given by

μk(L) := (ET ) L E, μk(˜B) := E ˜B F.

We define

a′i =
{

−1 if i = k,
max(0, bi,k) if i �= k,

a′′i =
{

−1 if i = k,
max(0,−bi,k) if i �= k.

(7.3)

and set a′ := (a′i ) and a′′ := (a′′i ) ∈ Z
⊕K.
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Let A be a Z[q±1/2]-algebra contained in a skew field K . Let S = ({zi }i∈K, L , ˜B)

be a quantum seed in A. Define the elements μk(z)i of K by

μk(z)i :=
{

za
′
+ za

′′
if i = k,

zi if i �= k.
(7.4)

Then {μk(z)i } is an algebraically independent μk(L)-commuting family in K . We call

μk(S ) := ({μk(z)i }i∈K, μk(L), μk(˜B)
)

the mutation of S in direction k. It becomes a new quantum seed in K ; that means,

(1)
(

μk(L), μk(˜B)
)

is compatible with the diagonal matrix of (L , ˜B),
(2) {μk(z)i }i∈K is μk(L)-commuting.

Definition 7.2. Let S = ({zi }i∈K, L , ˜B) and S ′ = ({z′i }i∈K′ , L ′, ˜B ′) be quantum seeds
in a Z[q±1/2]-algebra A.

(i) We say that S ′ is mutated from S if the following condition is satisfied: For any
finite subset J of K′, there exist
(a) a finite sequence (k1, k2, . . . , kr ) in Kex,
(b) an injective map σ : J→ K, depending on the choice of J, such that

(1) σ(Jex) ⊂ Kex, where Jex := J ∩ (K′)ex,
(2) z′j = μ(z)σ( j) for all j ∈ J,

(3) (˜B ′)(i, j) = μ(˜B)σ(i),σ( j) for any (i, j) ∈ J× Jex,
where μ := μkr ◦ · · · ◦ μk1 .
(ii) We say that the quantum seeds S and S ′ are mutation equivalent if S ′ is mutated

from S and S is also mutated from S ′. In this case, we write S 	 S ′.

7.3. Mutation of valued quiver. Recall that we can associate the valued quiver Q
˜B to

an exchange matrix ˜B. Here we describe the algorithm transforming a valued quiver Q
into a new valued quiver μk(Q) (k ∈ Kex), which corresponds to μk(˜B).

Algorithm 7.3. For k ∈ Kex, the valued quiver mutation μk transforms Q into a new
valued quiver μk(Q) via the following rules, where we assume (i) ac > 0 or bd > 0,
and (ii) we do not perform (NC) and (C) below, if i and j are frozen at the same time:

(NC) For each full-subquiver i �a,b�
��

�e, f �
��k �c,d�
�� j in Q, we change the value of the

arrow from i to j into �e + ac, f − bd� :
i �e+ac, f−bd�

�� j .

(C) For each full-subquiver i �a,b�
�� k �c,d�

�� j

�e, f �
�� with (e, f ) �= (0, 0) in Q, we

change the valued arrow between i and j as follows:
⎧

⎨

⎩

i �� �e−bd, f +ac� j if f + ac � 0 � e − bd,

i � f +ac,e−bd�
�� j if f + ac � 0 � e − bd.
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(R) Reverse the direction of each arrow incident to the vertex k and change the value
�a, b� of each arrow into �−b,−a�.

Here if there is no arrow between i and j in (NC) and (C), then put e = f = 0 and
follow the same rule.

Example 7.4. Consider the following 9× 6 integer-valued matrix:

˜B =

⎛

⎜

⎜

⎜

⎝

0 −1 0 1 0 0
1 0 −1 −1 1 0
0 2 0 0 −2 1
−1 1 0 0 −1 0

0 −1 1 1 0 −1
0 0 −1 0 2 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1

⎞

⎟

⎟

⎟

⎠

(7.5)

By taking Kex = {1, 2, 3, 4, 5, 6} and Kfr = {7, 8, 9}, one can see that its principal part
is skew-symmetrizable with S = diag(2, 2, 1, 2, 2, 1).

Using Convention 2, the valued quiver Q associated to ˜B in (7.5) can be drawn as

Q =

7

���
��

��
4

���
��

��
�� 1��

8

���
��

��
5

�2
��

���
�



�����
�� 2



�����
��

9 6

������
������ 3

������
������

Here k denotes k ∈ Kfr. Then μ2(Q) and μ5(Q) are depicted as follows:

μ2(Q) =

7

���
��

��
4�� 1

����
��
�

8

���
��

��
5�� �� 2

�������

2��
�

����
9 6

������
������ 3��

��

μ5(Q) =

7

��

4

����
��
�

1��

8 �� 5 ��
��

��
��

��

�������

2��
�

����

�� 2
��



�����

9 6

��

���� 3

7.4. Quantum cluster algebra. Let S = ({zi }i∈K, L , ˜B) be a quantum seed in a Z

[q±1/2]-algebra A. The quantum cluster algebra Aq1/2(S ) associated to the quantum

seedS is the Z[q± 1
2 ]-subalgebra of the skew field K generated by all the quantum cluster

variables in the quantum seeds obtained from S by any finite sequence of mutations.
Here we call S the initial quantum seed of the quantum cluster algebra Aq1/2(S ).

Lemma 7.5. Let S and S ′ be quantum seeds in A. If S ′ is mutated from S , then

Aq1/2(S ′) is isomorphic to Z[q± 1
2 ]-subalgebra of Aq1/2(S ). Furthermore, if S and

S ′ are mutation equivalent to each other, then we have

Aq1/2(S ′) 	 Aq1/2(S ).
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Proof. This assertion follows from Definition 7.2. ��
Definition 7.6. A quantum cluster algebra structure associated with a quantum seed S
in a Z[q±1/2]-algebra A, contained in a skew field K , is a family F of quantum seeds
in A satisfying the following conditions:

(a) For any quantum seed S in F , the quantum cluster algebra Aq1/2(S ) is isomorphic
to A as a Z[q±1/2]-algebra.

(b) Any mutation of a quantum seed in F is in F .
(c) For any pair S , S ′ of quantum seeds in F , we have S ′ 	 S .

8. Quantum Cluster Algebra Structure on Kq,ξ (g)

In this section, we will prove that the ringKq,ξ (g) has a quantum cluster algebra structure
based on the recent work [47] by Kashiwara–Oh. As applications, we obtain

• a quantum cluster algebra algorithm to compute the KR-polynomials Fq(m(i)[a, b])
for KR-monomials m(i)[a, b],
• a q-commutativity for KR-polynomials Fq(m

(i)
k,r ) and Fq(m

( j)
l,t ) satisfying certain

conditions on the pair of their KR-monomials (m(i)
k,r , m

( j)
l,t ).

Note that, in this section, we shall employ the framework in [5,30] for our goal.

8.1. Compatible pair. Let S be a convex subset of ˜�f 0 with an upper bound (recall
Definition 2.7). For each j ∈ �f 0, we set

ξ j :=max(s | ( j, s) ∈ S).

Recall the exchange matrices ˜B
˜�0

and ξ
˜B in Definition 2.4 and Definition 2.7.

Theorem 8.1. [47, Theorem 7.1] (see also [19]) Define

�(i,p),( j,s) = N (m(i)[p,ξi ],m( j)[s,ξ j ]) (i, p), ( j, s) ∈ S.

Then the pair ((�(i,p),( j,s))(i,p),( j,s)∈S, S˜B) is compatible with diag(2di,p :=2di | (i, p)
∈ S).

Recall that the subset ξ
˜�f 0 is convex without frozen indices. Thus the pair (ξL , ξ

˜B)

is compatible with diag(2di,p := 2di | (i, p) ∈ ξ
˜�f 0), where

ξL = (�(i,p),( j,s)
)

(i,p),( j,s)∈ξ
˜�f 0

and �(i,p),( j,s) = N
(

m(i)[p, ξi ],m( j)[s, ξ j ]
)

.

(8.1)
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8.2. Sequence of mutations. Let us consider the valued quiver ξ
˜� associated to the

height function ξ of Q. Note that, for a source i of Q,

(i) the vertex (i, ξi ) is located at the boundary of ξ
˜� determined by ξ, and

vertically sink and horizontally source,

(ii) siξ is a height function defined as in (2.7). (8.2)

For a source i of Q, we set an infinite sequence of mutations

i
ξμ := · · · ◦ μ(i,ξi−4) ◦ μ(i,ξi−2) ◦ μ(i,ξi ) (8.3)

and call it the forward shift at i (see [30] for Kt(C 0
g )-cases).

Proposition 8.2. For a Dynkin quiver Q = (�, ξ) and a source i , we have

i
ξμ(ξ˜�) 	 si ξ

˜�.

Proof. We shall prove our assertion by an inductive argument on the sequence i
ξμ. For

this, we observe first two steps μ(i,ξi ) and μ(i,ξi−2) ◦ μ(i,ξi ).
Step 1. Let us consider μ(i,ξi )(

ξ
˜�). In this case, the vertex (i, ξ) in ξ

˜� (marked with ∗
below) is vertically sink and horizontally source in ξ

˜� by (2.14) and (8.2) (i) as follows:

( j, ξ j − 4)

�−c j,i ,ci, j�
��

 ���

( j, ξ j − 2)

�−c j,i ,ci, j�
��

 ���

�� ( j, ξ j )

�−c j,i ,ci, j�
��

 ���

��

(i, ξi − 4)

�−ci j ′ ,c j ′i�
��

 ���

�−ci, j ,c j,i���

! ��

�� (i, ξi − 2)

�−ci j ′ ,c j ′i�
��

 ���

�−ci, j ,c j,i���

! ��

�� (i, ξi )∗��

( j ′, ξ j ′ − 4)

�−c j ′i ,ci j ′���

! ��

( j ′, ξ j ′ − 2)

�−c j ′i ,ci j ′���

! ��

�� ( j ′, ξ j ′)

�−c j ′i ,ci j ′���

! ��

��

Here j and j ′ are indices in �0 such that d(i, j) = d(i, j ′) = 1. Note that, in order
to observe the behavior with respect to μ(i,ξi ), it suffices to consider the full-subquiver
described as above.

Applying Algorithm 7.3, μ(i,ξi )(
ξ
˜�) can be depicted as follows:

( j, ξ j − 4)

�−c j,i ,ci, j�
��

 ���

( j, ξ j − 2)

�−c j,i ,ci, j�
��

 ���

�� ( j, ξ j ) "!
�−ci, j ,c j,i�
��

��

��

(i, ξi − 4)

�−ci j ′ ,c j ′i�
��

 ���

�−ci, j ,c j,i���

! ��

�� (i, ξi − 2)∗�� �� (i, ξi )

( j ′, ξ j ′ − 4)

�−c j ′i ,ci j ′���

! ��

( j ′, ξ j ′ − 2)

�−c j ′i ,ci j ′���

! ��

�� ( j ′, ξ j ′)
#"

�−ci j ′ ,c j ′i���

��

��

in which the vertex (i, ξi − 2) (marked with ∗ above) becomes vertically sink and
horizontally source.
Step 2. Let us consider (μ(i,ξi−2)◦μ(i,ξi ))(

ξ
˜�). Applying Algorithm 7.3 again, (μ(i,ξi−2)◦

μ(i,ξi ))(
ξ
˜�) becomes

( j, ξ j − 4)

�−c j,i ,ci, j�
��

 ���

( j, ξ j − 2)
"!

�−ci, j ,c j,i�
��

��

��

�−c j,i ,ci, j�
������

��

$#�����
�����

( j, ξ j ) "!
�−ci, j ,c j,i�
��

��

��

(i, ξi − 4)∗ ���� (i, ξi − 2) (i, ξi )��

( j ′, ξ j ′ − 4)

�−c j ′i ,ci j ′���

! ��

( j ′, ξ j ′ − 2)

�−c j ′i ,ci j ′���

! ��

��

�−c j ′i ,ci j ′��������

%$���������

( j ′, ξ j ′)
#"

�−ci j ′ ,c j ′i���

��

��
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which is isomorphic to

( j, ξ j − 4)

�−c j,i ,ci, j�
��

 ���

�� ( j, ξ j − 2)��

�−c j,i ,ci, j�
��

 ���

( j, ξ j )��

(i, ξi − 6)

�−ci, j ,c j,i���

! ��

�−ci j ′ ,c j ′i�
��

 ���

(i, ξi − 4)∗ ���� (i, ξi − 2)

�−ci, j ,c j,i���

! ��

�−ci j ′ ,c j ′i�
��

 ���

(i, ξi )

�−ci, j ,c j,i���

! ��

�−ci j ′ ,c j ′i�
��

 ���

��

( j ′, ξ j ′ − 4)

�−c j ′i ,ci j ′���

! ��

�� ( j ′, ξ j ′ − 2)

�−c j ′i ,ci j ′���

! ��

�� ( j ′, ξ j ′)��

(8.4)

Here the vertex (i, ξi − 4) (marked with ∗ in (8.4)) becomes also vertically sink and
horizontally source.

By Step 1 and Step 2, we observe that the full-subquiver consisting of the rightmost
6-vertices in (8.4) are isomorphic to the rightmost 6-vertices of si ξ˜�. Furthermore, since
the local circumstance of (i, ξi − 4) in (μ(i,ξi−2) ◦μ(i,ξi ))(

ξ
˜�) is the same as the one of

(i, ξi − 2) in μ(i,ξi )(
ξ
˜�), we can apply an induction on k for the valued quiver

(μ(i,ξi−2k) · · · ◦ μ(i,ξi−4) ◦ μ(i,ξi−2) ◦ μ(i,ξi ))(
ξ
˜�) for all k ∈ Z�1.

Finally, our assertion comes from the definition of si ξ˜�. ��
The following proposition is a direct consequence of Proposition 8.2 and the definition

of ξ
˜�.

Proposition 8.3. Let i, j be sources of Q = (�, ξ). Then we have

(
j
si ξ

μ ◦ i
ξμ)(ξ˜�) 	 (is j ξμ ◦ j

ξμ)(ξ˜�).

Thus, for any Q-adapted reduced expression si1 · · · sin of the Coxeter element τQ,
Qμ := in

sin ···si1 ξμ ◦ · · · ◦ i2
si1 ξμ ◦ i1

ξ μ is well-defined. (8.5)

Theorem 8.4. For Dynkin quivers Q = (�, ξ) and Q = (�, ξ ′), there exists a sequence
of mutations μ such that

μ(ξ˜�) 	 ξ ′
˜� as valued quivers.

In particular, we have

Qμ(ξ˜�) 	 ξ
˜� as valued quivers.

Proof. This assertion follows from (2.6), (2.8) and Proposition 8.2. ��

8.3. Quantum cluster algebra structure on Kq,ξ (g). For each s ∈ Z, we denote by (s)ξ

the height function such that (s)ξi ∈ {s, s − 1} for all i ∈ �f 0 and (s)Q = (�f , (s)ξ ). Note
that (s)ξ is uniquely determined by Convention 1.

Example 8.5. For g of type A5 and s = 3, the height function (3)ξ of (s)Q is given as
follows:

(3)ξ1 = (3)ξ3 = (3)ξ5 = 2 and (3)ξ2 = (3)ξ4 = 3.

Here we choose (3)ξ1 = 2 by Convention 1.
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For a height function ξ , we set

ξKq(g) := ⊕

m∈ξM+

Z[q± 1
2 ](Fq(m))�ξ ⊂ ξXq .

Note that ξKq(g) = (·)�ξ

(

Kq,ξ (g)
) 	 Kq,ξ (g).

For simplicity of notations, we set

(a) s
˜�f := (s)ξ

˜�f , sXq := (s)ξXq , (−)�s := (−)�(s)ξ ,

(b) sL := (s)ξ L , sB := (s)ξ
˜B,

(c) sμ := (s)Qμ, sKq(g) := (s)ξKq(g) and Kq,s(g) := Kq,(s)ξ (g).

From now on, we fix s ∈ Z and ˜�f . Let us denote by sAq the quantum cluster algebra
whose initial seed is

sS := ({vi,p := m(i)[p, s]}(i,p)∈s˜�f 0
, sL , sB). (8.6)

For n � 0, let v
(n)
i,p be the quantum cluster variable obtained at vertex (i, p) after

applying the sequence of mutations sμ n-times. Then we give a quantum cluster alge-
bra algorithm to compute Fq(m(i)[a, b]) for KR-monomials m(i)[a, b]. The following
proposition establishes an analogue of [30, Theorem 3.1] and [5, Proposition 6.3.1].

Proposition 8.6. For each (i, p) ∈ s
˜�f 0 and n � 0,

v
(n)
i,p = sFq(m

(i)[p − 2n, s − 2n]) := (Fq(m
(i)[p − 2n, s − 2n]))�s . (8.7)

In particular, if 2n � h, we have

v
(n)
i,p = Fq(m

(i)[p − 2n, s − 2n]).
Proof. Let us apply induction on n for this assertion. For n = 0, it follows from (5.28)
in Proposition 5.29. Let n � 0 and (i, p) ∈ s

˜�f 0. Suppose we have applied sμ n-times
on sS, and (n + 1)-times on all vertices preceding (i, p) in the sequence sμ, and that all
those previous vertices satisfy (8.7).

Thanks to Theorem 8.4, the corresponding valued quivers coincide up to a shift of
spectral parameters in labeling of vertices. Then, the argument in the proof of Proposi-
tion 8.2 tells us that the vertex (i, p) is vertically sink or horizontally source, that is, one
of the following configurations:

( j, p + (s)ξ j,i )

�−c j,i ,ci, j�
��

&%�
�

(i, p − 2) (i, p)�� �� (i, p + 2)

( j ′, p + (s)ξ j ′i )

�−c j ′i ,ci j ′�
�&  

( j, p + (s)ξ j,i )

�−c j,i ,ci, j�
��

&%�
�

(i, p − 2) (i, p)�� �� (i, p + 2) (i, p − 2) (i, p)�� �� (i, p + 2)

( j ′, p + (s)ξ j ′i )

�−c j ′i ,ci j ′�
�&  

(8.8)

where (s)ξk,i := (−1)
δ
(

(s)ξk<
(s)ξi

)

for k ∈ �f 0 with d(i, k) = 1. In this proof, we only
consider the first case in (8.8) since the computation below is almost identical for the
other cases.
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By the definition of (s)ξ , we have (s)ξ j,i = (s)ξ j ′,i for all j, j ′ ∈ �f 0 with d( j, i) =
d( j ′, i) = 1. Now let us assume that i is a source of (s)ξ since the proof for the cases
when i is a sink of (s)ξ is similar. Then the quantum exchange relation has the form

v
(n+1)
i,p ∗ v

(n)
i,p = qαv

(n+1)
i,p+2 · v(n)

i,p−2 + qβ
∏

j; d( j,i)=1

(

v
(n)
i,p−1

)−c j,i

(8.9)

for some α, β ∈ 1
2 Z, where

qα
(

v
(n+1)
i,p+2 · v(n)

i,p−2

)

∗ (v(n)
i,p

)−1 and qβ

⎛

⎝

∏

j; d( j,i)=1

(

v
(n)
i,p−1

)−c j,i

⎞

⎠

∗ (v(n)
i,p

)−1 are bar-invariant. (8.10)

Here the dot product · is given in (4.8).
The rest of this proof is devoted to show that the above quantum exchange relation

coincides with the truncated image of the quantum folded T -system in Theorem 6.9.
For this, it suffices to assume that s = 0 and hence p ∈ Z�0. For each (i, p) ∈ 0

˜�f 0, we
set k :=max(u | p + 2u � 0). By the induction hypothesis, we have

u(n+1)
i,p ∗ 0Fq(m

(i)
k,p−2n) = qα

(

0Fq(m
(i)
k−1,p−2n) · 0Fq(m

(i)
k+1,p−2n−2)

)

+ qγ
∏

j; d( j,i)=1

0Fq(m
( j)
k,p−1−2n)

−c j,i

On the other hand, the corresponding truncated image of the quantum folded T -
system in Theorem 6.9 is

0Fq(m
(i)
k,p−2n−2) ∗ 0Fq(m

(i)
k,p−2n) = qα′

(

0Fq(m
(i)
k−1,p−2n) · 0Fq(m

(i)
k+1,p−2n−2)

)

+ qγ ′ ∏

j; d( j,i)=1

0Fq(m
( j)
k,p−1−2n)

−c j,i ,

(8.11)
where

γ ′ = 1

2

(

r̃i,i (2k − 1) + r̃i,i (2k + 1)
)

and α′ = γ ′ + di .

By using the dominant monomials in (8.11) and bar-invariance in (8.10),

qα
(

m(i)
k−1,p−2n · m(i)

k+1,p−2n−2

) ∗ (m(i)
k,p−2n

)−1 and qγ

⎛

⎝

∏

j; d( j,i)=1

(

m( j)
k,p−1−2n

)−c j,i

⎞

⎠

∗ (m(i)
k,p−2n

)−1

are bar-invariant. Thus we have

α = 1

2

k−1
∑

a=0

(

k−2
∑

b=0

(

η̃i,i (2(a − b) + 1)− η̃i,i (2(a − b)− 1)
)

+
k
∑

b=0

(

η̃i,i (2(a − b) + 3)

−η̃i,i (2(a − b) + 1)
))
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= 1

2

k−1
∑

a=0

(

η̃i,i (2a + 1)− η̃i,i (2a − 2k + 3) + η̃i,i (2a + 3)− η̃i,i (2a − 2k + 1)
)

= 1

2

(

η̃i,i (2k + 1) + η̃i,i (2k − 1)
)

+ η̃i,i (1) = α′

and

γ = 1

2

∑

j;d(i, j)=1

−c j,i

(

k−1
∑

a=0

(

k−1
∑

b=0

η̃i,i (2(a − b) + 2)− η̃i,i (2(a − b))

))

= 1

2

∑

j;d(i, j)=1

−c j,i

(

k−1
∑

a=0

(

η̃i,i (2a + 2)− η̃i,i (2a − 2k + 2)
)

)

= 1

2

∑

j;d(i, j)=1

−c j,i η̃i,i (2k)

†= 1

2

(

η̃i,i (2k + 1) + η̃i,i (2k − 1)
) = γ ′.

Here
†= holds by Lemma 2.3.

Since 0Fq(m
(i)
k,p−2n) is invertible in the skew-field of fractions 0Fq of the quantum

torus 0Xq , we conclude that

v
(n+1)
i,p = 0Fq(m

(i)
k,p−2n−2),

as desired. The second assertion follows from Proposition 5.29. ��
Let (s)Tq be the quantum torus associated with s L generated by vi,p for (i, p) ∈ s

˜�f 0.

Then, (s)Tq is isomorphic to sXq . Thus, sAq can be understood as a Z[q± 1
2 ]-subalgebra

in (s)Tq .
By following the argument in the proof of [5, Lemma 6.4.1], we have the following

lemma:

Lemma 8.7. The assignment

Ω : vi,p �→ Fq(m
(i)[p, s])

extends to a well-defined injective Z[q± 1
2 ]-algebra homomorphism

Ω : (s)Tq �→ Xq .

Moreover, the restriction of Ω to the quantum cluster algebra sAq has its image in

the quantum torus Xq and the Z[q± 1
2 ]-algebra homomorphisms Ω and (·)�s satisfy the

following commutative diagram:

sAq

sΩ ��



















Ω �� Xq

sXq ,
��
(·)�s (8.12)

where sΩ is the map induced from the assignment vi,p → m(i)[p, s].



Quantum Virtual Grothendieck Rings Page 61 of 83   173 

Let sRq be the image of the quantum cluster algebra sAq under the map Ω:

Rq,s :=Ω(sAq).

We prove an analogue of [30, Theorem 5.1] and [5, Proposition 6.4.2] below.

Proposition 8.8. We have

Rq,s = Kq,s(g).

Proof. Let us recall vi,p := m(i)[p, s] and (s)ξi ∈ {s − 1, s}. By Proposition 8.6 and
Lemma 8.7, we have

�
(

v
(n)

i,(s)ξi

)

= Fq
(

Xi,(s)ξi−2n

)

for i ∈ �f 0 and n ∈ Z�0.

Since Kq,s(g) is generated by Fq
(

Xi,p
)

for all (i, p) ∈ s
˜�f as a Z[q± 1

2 ]-algebra by
Theorem 5.27 (see also (5.23) below), we have the following inclusion:

Kq,s(g) ⊂ Rq,s .

Next, let us prove the reverse inclusion. As we see in Sect. 4.2, there exist Z[q± 1
2 ]-

derivations Si,q : Xq → Xi,q such that
⋂

i∈˜�f 0

Ker(Si,q) = Kq(g). (8.13)

Let us prove by induction that all cluster variables Z in sAq satisfy Ω(Z) ∈ Kq,s(g).
Let Z be a quantum cluster variable in sAq . If Z belongs to the initial cluster variables,
it is done by definition of Ω. Let us assume that Z does not belong to the initial cluster
variables. Then Z is obtained from a finite sequence of mutations. Then we have

Z Z1 = qαM1 + qβM2,

where Z1, M1 and M2 are quantum cluster monomials of sAq . By the induction hypoth-
esis,

Ω(Z1), Ω(M1), Ω(M2) ∈ Kq,s(g). (8.14)

Note that Ω(Z1) �= 0. By Lemma 8.7, we have

Ω(Z) ∗Ω(Z1) = qαΩ(M1) + qβΩ(M2).

Since Si,q (i ∈ �f 0) is a Z[q± 1
2 ]-linear derivation (Proposition 4.8),

Si,q(Ω(Z) ∗Ω(Z1)) = Ω(Z)·Si,q(Ω(Z1)) + Si,q(Ω(Z))·Ω(Z1)

= qαSi,q(Ω(M1)) + qβ Si,q(Ω(M2)).

By the induction hypothesis and (8.13), we have

Si,q(Ω(Z1)) = Si,q(Ω(M1)) = Si,q(Ω(M2)) = 0.

Then Lemma 4.7 tells us that Si,q(Ω(Z)) = 0, that is, Ω(Z) ∈ Ki,q(g) for all i ∈ �f 0.
Hence, Ω(Z) ∈ Kq,s(g) due to (8.13) and (8.14), as we desired. ��
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Now, we present the main result in this section.

Theorem 8.9. For each height function ξ on �f , the ring Kq,ξ (g) has a quantum cluster
algebra structure whose initial quantum seed is

Sξ =
({Fq(m(i)[p, ξi ])}(i,p)∈ξ

˜�f 0
, ξL , ξ

˜B
)

. (8.15)

Proof. Our assertion for (s)ξ already holds by Proposition 8.8. Let j ∈ s
˜�f 0 be a source

of (s)ξ . Then we have

j
(s)ξ

μ
(

S(s)ξ

) =
(

{Fq(m(i)[p − 2δi, j ,
(s)ξi − 2δi, j ])}(i,p)∈s˜�f 0

, s j
(s)ξL , s j

(s)ξ
˜B
)

= Ss j (s)ξ ,

(8.16)

by Proposition 8.2 and Proposition 8.6. Let Q (resp. (s)Q) be the Dynkin quiver of �f
corresponding to ξ (resp. (s)ξ ). Since any Dynkin quivers of�f are connected by a finite
sequence of reflections (up to constant on their height functions), so are Q and (s)Q.
Then the quantum seed S(s)ξ is mutation equivalent to Sξ by (8.16) and Tr (r ∈ 2Z)

(see (5.27) for the definition ofTr ). Hence, it follows from Lemma 7.5 and Proposition 8.8
that Kq,s(g) 	 Aq1/2(S(s)ξ ) 	 Aq1/2(Sξ ) 	 Kq,ξ (g), so Kq,ξ (g) has a quantum cluster
algebra structure. ��

As an application of Theorem 8.9, we obtain q-commutativities of Fq(m
(i)
k,r ) and

Fq(m
( j)
l,t ) satisfying certain conditions as follows.

Theorem 8.10. For a pair (m(i)
k,r , m

( j)
l,t ),

(

Fq(m
(i)
k,r ), Fq(m

( j)
l,t )
)

is a q-commuting pair if

(a) r − d(i, j) � t � t + 2(l − 1) � r + 2(k − 1) + d(i, j) or
(b) t − d(i, j) � r � r + 2(k − 1) � t + 2(l − 1) + d(i, j).

In particular, Fq(m
(i)
k,r ) q-commutes with Fq(X j,p) if

r − d(i, j) � p � r + 2(k − 1) + d(i, j).

Proof. Under the conditions (a) and (b), there exists a height function ξ on�f such that
ξi = r + 2(k − 1) and ξ j = t + 2(l − 1). Then we have

Fq(m
(i)
k,r ) = Fq(m

(i)[ξi − 2(k − 1), ξi ]) and Fq(m
( j)
l,t ) = Fq(m

(i)[ξ j − 2(l − 1), ξ j ])
which can be viewed as initial quantum cluster variables in Sξ . Thus our assertion
follows from Theorem 8.9. ��

The conjecture below is proved in [62] when g is of finite AD-type.

Conjecture 4. For a pair (m(i)
k,r , m

( j)
l,t ), Fq(m

(i)
k,r ) and Fq(m

( j)
l,t ) q-commute unless there

exist 1 � u � h and 0 � s � min(k, l)− 1 satisfying

|k + r − l − t | = u + |k − l| + 2s and r̃i, j (u − 1) �= 0. (8.17)

9. Extension to Kq(g)

In this section, we will extend Theorem 8.9 to Kq(g), that is, the quantum virtual
Grothendieck ringKq(g)has also a quantum cluster algebra structure (of skew-symmetrizable
type) isomorphic to its subalgebra Kq,ξ (g) for each height function ξ on ˜�f .
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9.1. Sink-source quiver. For an integer s ∈ Z, recall the height function (s)ξ on�f . Now

let us consider a new valued quiver s← whose set of vertices is s
˜�f 0 and the exchange

matrix sB is given as follows:

b(i,p),( j,t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−ci, j if either (a) t − p = 1, i �= j and p ≡4 ξi = s − 1,

or (b) p − t = 1, i �= j and p �≡4 ξi = s,
ci, j if either (a′) p − t = 1, i �= j and p ≡4 ξi = s,

or (b′) t − p = 1, i �= j and p �≡4 ξi = s − 1,

1 if either (A) |p − t | = 2, i = j and p ≡4 ξi = s,
or (B) |p − t | = 2, i = j and p �≡4 ξi = s − 1,

−1 if either (A′) |p − t | = 2, i = j and p �≡4 ξi = s,
or (B′) |p − t | = 2, i = j and p ≡4 ξi = s − 1,

0 otherwise.

(9.1)

Note that sB satisfies (2.12) with the sequence S = (si,p | si,p = di ) and without frozen
vertices.

Example 9.1. Here are a couple of examples of s← for non-simply-laced types:

(1) Let us assume that s = 0 and g is of type B3. By Convention 1, we have

ξ1 = ξ3 = 0, ξ2 = −1.

Recall that s
˜�f 0 = {(i, p) ∈ Ig × Z | p − ξi ∈ 2Z and p � ξi }. Let us compute

b(i,p),( j,t) in (9.1) for (i, p) = (2,−1). If ( j, t) = (1, 0) or (3, 0), then this is the
case (a), so we have b(i,p),( j,t) = −ci, j . If ( j, t) = (1,−2) or (3,−2), then the
pair of (i, p) and ( j, t) does not satisfies (b) and (a′). Thus, b(i,p),( j,t) = 0 in this
case. Finally, if ( j, t) = (2,−3), then this is the case (B′), so b(i,p),( j,t) = −1.

Consequently, the valued quiver 0← can be depicted as follows:

· · · (1,−4)�� �� (1,−2)

#"���
���

�
(1, 0)��

· · · �� (2,−5)

! �������

�2





 �





(2,−3) ���� (2,−1)

! �������

�2





 �





· · · (3,−4) ���� (3,−2)

'' 

















(3, 0)��

(9.2)

(2) For s = 0 and g of type G2, 0← can be depicted as follows:

· · · (1,−4)�� �� (1,−2)

(( ���
���

�
���

���
�

(1, 0)��

· · · �� (2,−5)

3����

! ���

(2,−3)

�������
���� (2,−1)

3����

! ���

Remark 9.2. Note that every vertex (i, p) in s←
0 is either

(i) vertically sink and horizontally source, or

(ii) vertically source and horizontally sink. (9.3)

More precisely, when

(i)′ ξi = s and p ≡4 s, or ξi = (s − 1) and p �≡4 s − 1, (i, p) satisfies (i),
(ii)′ ξi = s and p �≡4 s, or ξi = (s − 1) and p ≡4 s − 1, (i, p) satisfies (ii).
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Thus, comparing with the quiver (2.15) of type B3 in Example 2.5, every vertex in (9.2)
satisfies (9.3), while none in (2.15) does.

For each (i, p) ∈ s←
0 = s

˜�f 0, we assign sui,p ∈ Kq(g) at (i, p), which is defined by

sui,p := Fq
(

m(i)[soi,p, soi,p + 2 sli,p]
)

, (9.4)

where

sli,p :=
(

(s)ξi − p
)

/2 ∈ Z�0 and soi,p := (s)ξi−2×
⌊

sli,p + δ
(

(s)ξi = s
)

2

⌋

. (9.5)

Example 9.3. By replacing vertices (i, p)’s in s←
0 with ui,p in Example 9.1, we can

obtain the following pictures:

(1) For s = 0 and g of type B3, we have

· · · Fq(m(1)[−2, 2])�� �� Fq(m(1)[−2, 0])
#"���

���
�

Fq(m(1)[0, 0])��

· · · �� Fq(m(2)[−3, 1])

! �������

�2





 �





Fq(m(2)[−1, 1]) ���� Fq(m(2)[−1,−1])

! �������

�2





 �





· · · Fq(m(3)[−2, 2]) ���� Fq(m(3)[−2, 0])

'' 

















Fq(m(3)[0, 0])��

(2) For s = 0 and g of type G2, we have

· · · Fq(m(1)[−2, 2])�� �� Fq(m(1)[−2, 0])
(( ���

���
�

���
���

�
Fq(m(1)[0, 0])��

· · · �� Fq(m(2)[−3, 1])
3����

! ���

Fq(m(2)[−1, 1])

�������
���� Fq(m(2)[−1,−1])

3����

! ���

Let us define a matrix sΛ = (sΛ(i,p),( j,t))(i,p),( j,t)∈s˜�f 0
such that

sΛ(i,p),( j,t) = N (m(i)[soi,p, soi,p + 2 sli,p],m( j)[so j,t ,
so j,s + 2 sl j,t ]).

Theorem 9.4. The pair (sΛ, sB) is compatible with diag(2di,p := 2di | (i, p) ∈ s←
0).

Proof. Let (i, p), ( j, t) ∈ s←
0. In this proof, we only consider the case of ξ j = s and

t ≡4 ξ j , since the other cases are similar. Set a1 = soi,p, a2 = a1 + 2sli,p, b1 = so j,t
and b2 = b1 + 2sll,t . By (9.1), we have

−(sΛsB)(i,p),( j,t) = δ(t �= ξ j )
sΛ(i,p),( j,t+2) + sΛ(i,p),( j,t−2) +

∑

k; d( j,k)=1

ck, j sΛ(i,p),(k,t−1)

= δ(t �= ξ j )
sN (m(i)[a1, a2],m( j)[b1, b2 − 2])

+ N (m(i)[a1, a2],m( j)[b1 − 2, b2])
+

∑

k; d( j,k)=1

ck, jN (m(i)[a1, a2],m(k)[b1 − 1, b2 − 1])

∗= N (m(i)[a1, a2], Bj,b1−1Bj,b1+3 · · · Bj,b2−1)

where
∗= holds by (3.7) and (4.4). Then it follows from (4.9) in Proposition 4.6 that

−(sΛsB)(i,p),( j,t) = N (m(i)[a1, a2], Bj,b1−1Bj,b1+3 · · · Bj,b2−1)
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=
a2−a1

2
∑

x=0

b2−b1
2
∑

y=0

δi, j (−δ(a1 + 2x − b1 − 2y = −2)

+ δ(a1 + 2x − b1 − 2y = 0))2di

= δi, j

a2−a1
2
∑

x=0

(−δ(a1 + 2x − b1 = −2) + δ(a1 + 2x − b2 = 0))2di .

If i = j , we have the following:

(1) [a1, a2] and [b1, b2] are inclusive, that is, either [a1, a2] ⊂ [b1, b2] or [b1, b2] ⊂
[a1, a2];

(2) if ak = bk , then bl − al = 2 or 0 for {k, l} = {1, 2}.
Thus we can conclude that

−(sΛsB)(i,p),( j,t) = δ((i, p) = ( j, t))2di ,

as we desired. ��
Lemma 9.5. The set {sui,p}∈s˜�f 0

forms a q-commuting family in Kq(g).

Proof. From Theorem 8.10, our assertion easily follows. ��
Theorem 9.6. The family of quantum seeds

Ss = ({sui,p}(i,p)∈s˜�f 0
, sΛ, sB) for s ∈ Z, (9.6)

gives a quantum cluster algebra structure on Kq(g).

The rest of this paper will be devoted to proving Theorem 9.6. Let sAq(g) be the
quantum cluster algebra generated by the quantum seed Ss . To prove Theorem 9.6, we
need to show that

sAq(g) = Kq(g). (9.7)

Then the proof of (9.7) is separated into two steps as follows:
Step 1. For the inclusion sAq(g) ⊂ Kq(g), we will prove the following proposition

in Sect. 9.2.

Proposition 9.7. For any finite sequence μ of mutations, a cluster variable in μ
(

Ss
)

is
contained in Kq(g).

The key observation for proving Proposition 9.7 is that the mutated variables from Ss
are understood as the ones from Ss′ for some s′ ∈ Z, which implies sAq(g) ⊂ Kq(g).

Step 2. The opposite inclusion will be proved as the following proposition is shown
in Sect. 9.3.

Proposition 9.8. For (i, p) ∈ ˜�f 0, there exists a finite sequence μ of mutations such that
μ
(

Ss
)

contains Fq(Xi,p) as its cluster variable.

Since Kq(g) is generated by Fq(Xi,p) for (i, p) ∈ ˜�f 0 by Theorem 5.27 (see also (5.23)
above ), the opposite inclusion for proving (9.7) follows from Proposition 9.8.
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9.2. Proof of Theorem 9.6: Step 1: proof of Proposition 9.7. For k � s, we set

〈k〉 := {(i, k) ∈ s
˜�f 0} and 〈k, s〉 := {(i, p) ∈ s

˜�f 0 | k � p � s}.
We understand 〈k, s〉 = ∅ for k > s.

Lemma 9.9. For the valued quiver s
˜�f , we have

μ(i1,s) ◦ μ(i2,s) ◦ · · · ◦ μ(ir ,s)(
s
˜�f ) 	 μ( j1,s) ◦ μ( j2,s) ◦ · · · ◦ μ( jr ,s)(

s
˜�f ),

where {(it , s)}1�t�r = {( jt , s)}1�t�r = 〈s〉. Thus, μ〈s〉 is well-defined on s
˜�f , that is,

μ〈s〉(s˜�f ) is uniquely determined.
Proof. Note that (a) each (ik, s) ∈ 〈s〉 is vertically sink and horizontally source, (b) all
the length 2 paths passing through (ik, s) start from (i ′, s − 1) and end at (ik, s − 2)

where d(i ′, ik) = 1, and (c) there is no arrow between (ik, s) and (ik′ , s) for ik �= ik′ .

s
˜�f =

· · · (ik, s − 4)��

�−cik ,i ′ ,ci ′,ik �
��

))��

(ik, s − 2)

�−cik ,i ′ ,ci ′,ik �
��

))��

�� (ik, s)��

· · · (i ′, s − 3)

�−ci ′,ik′ ,cik′ ,i ′�
��

))��

�−ci ′,ik ,cik ,i ′���

**��

�� (i ′, s − 1)

�−ci ′,ik′ ,cik′ ,i ′�
��

))��

�−ci ′,ik ,cik ,i ′���

**��

��

· · · (ik′, s − 4)��

�−cik′ ,i ′ ,ci ′,ik′ ���

**��

(ik′ , s − 2)

�−cik′ ,i ′ ,ci ′,ik′ ���

**��

�� (ik′, s)��

Thus the mutation μ(ik ,s) of s
˜�f at (ik, s) does not affect the local circumstance of (ik′ , s)

and the arrows between (ik, s − 2) and (i ′, s − 1) for d(ik, i ′) = 1 are canceled out by
the mutation μ(ik ,s).

μ(ik ,s)−→
· · · (ik, s − 4)��

�−cik ,i ′ ,ci ′,ik �
��

))��

(ik, s − 2)�� (ik, s)��

· · · (i ′, s − 3)

�−ci ′,ik′ ,cik′ ,i ′�
��

))��

�−ci ′,ik ,cik ,i ′���

**��

�� (i ′, s − 1)

�−ci ′,ik′ ,cik′ ,i ′�
��

))��

++
�−cik ,i ′ ,ci ′,ik �

��

��

��

· · · (ik′ , s − 4)��

�−cik′ ,i ′ ,ci ′,ik′ ���

**��

(ik′ , s − 2)

�−cik′ ,i ′ ,ci ′,ik′ ���

**��

�� (ik′ , s)��

μ(ik′ ,s)−→
· · · (ik, s − 4)��

�−cik ,i ′ ,ci ′,ik �
��

))��

(ik, s − 2)�� (ik, s)��

· · · (i ′, s − 3)

�−ci ′,ik′ ,cik′ ,i ′�
��

))��

�−ci ′,ik ,cik ,i ′���

**��

�� (i ′, s − 1),,
�−cik′ ,i ′ ,ci ′,ik′ �

��

��

++
�−cik ,i ′ ,ci ′,ik �

��

��

��

· · · (ik′ , s − 4)��

�−cik′ ,i ′ ,ci ′,ik′ ���

**��

(ik′ , s − 2)�� (ik′ , s)��

(9.8)

Hence the assertions follow. ��
Lemma 9.10. For the valued quiver s

˜�f and k � s, the valued quiver

μ〈k,s〉(s˜�f ) := μ〈k〉 ◦ μ〈k+1〉 ◦ · · · ◦ μ〈s〉(s˜�f ) is uniquely determined. (9.9)

Thus μ〈k〉 is well-defined on μ〈k+1,s〉(s˜�f ) and hence μ〈k,s〉 is well-defined on s
˜�f .

Proof. The assertion for k = s holds by the previous lemma. As we can observe in (9.8),
(a) each (i ′, s−1) ∈ 〈s − 1〉 is vertically sink and horizontally source, (b) all the length
2 paths passing through (i ′, s−1) start from (i, s) and end at (i ′, s−3) where d(i ′, i) = 1
and (c) there is no path between (i ′, s − 1) and (i ′′, s − 1). Thus μ(i ′,s−1) ◦μ(i ′′,s−1) =
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μ(i ′′,s−1) ◦ μ(i ′,s−1) on μ〈s〉(s˜�f ). Thus the assertion holds for k = s − 1, and μ〈s−1〉
yields arrows from (i, s) to (i ′, s−3), and hence μ〈s−1,s〉(s˜�f ) can be depicted as follows:

· · · (ik, s − 4)��

�−cik ,i ′ ,ci ′,ik �
!!!

��!!
!

(ik, s − 2)�� (ik, s)��

�−cik ,i ′ ,ci ′,ik ���
������

�����

--�������
����

(i ′, s − 5)

�−ci ′,ik′ ,cik′ ,i ′�
!!!

��!!
!

�−ci ′,ik ,cik ,i ′�"""

.."""

(i ′, s − 3)

�−ci ′,ik′ ,cik′ ,i ′�
!!!

��!!
!

�−ci ′,ik ,cik ,i ′�"""

.."""

�� (i ′, s − 1)

�−ci ′,ik′ ,cik′ ,i ′�
!!!

��!!
!

�−ci ′,ik ,cik ,i ′�"""

.."""

��

· · · (ik′ , s − 4)��

�−cik′ ,i ′ ,ci ′,ik′ �"""

.."""

(ik′ , s − 2)�� (ik′ , s)��

�−cik′ ,i ′ ,ci ′,ik′ �������������

//�����������

(9.10)

By the same reasons for μ〈s〉 and μ〈s−1〉, the sequence of mutations μ〈s−2〉 is well-
defined. Furthermore, by the mutation rules, the arrows between (ik, (s − 2) ± 2) and
(i ′, s − 3) for d(ik, i ′) = 1 are canceled out by the mutation μ〈s−1〉. Thus μ〈s−2,s〉(s˜�f )
can be depicted as follows:

· · · (ik, s − 6)��

�−cik ,i ′ ,ci ′,ik �
���

 ���
�

(ik, s − 4)�� (ik, s − 2)�� (ik, s)��

(i ′, s − 7)

�−ci ′,ik′ ,cik′ ,i ′�
���

 ���
�

�−ci ′,ik ,cik ,i ′����

! ���

(i ′, s − 5)��

�−ci ′,ik′ ,cik′ ,i ′�
���

 ���
�

�−ci ′,ik ,cik ,i ′����

! ���

(i ′, s − 3)"!
�−cik′ ,i ′ ,ci ′,ik′ �

���

���

#"
�−cik ,i ′ ,ci ′,ik �

���

���

�� (i ′, s − 1)

�−ci ′,ik′ ,cik′ ,i ′�
���

 ���
�

�−ci ′,ik ,cik ,i ′����

! ���

��

· · · (ik′ , s − 6)��

�−cik′ ,i ′ ,ci ′,ik′ ����

! ���

(ik′ , s − 4)�� (ik′ , s − 2)�� (ik′ , s)��

(9.11)

As in the previous cases, μ〈s−3〉 is well-defined, μ〈s−3〉 yields arrows from (i, s − 2)

to (i ′, s − 3± 2) as μ〈s−1〉 did, and hence μ〈s−3,s〉(s˜�f ) can be depicted as follows:

· · · (ik, s − 6)��

�−cik ,i ′ ,ci ′,ik �
!!!

��!!
!

(ik, s − 4)�� (ik, s − 2)

�−cik ,i ′ ,ci ′,ik �
!!!

��!!
!�−cik ,i ′ ,ci ′,ik ���

������
���

--�������
����

�� (ik, s)��

· · · (i ′, s − 5)��

�−ci ′,ik′ ,cik′ ,i ′�
!!!

��!!
!

�−ci ′,ik ,cik ,i ′�"""

.."""

(i ′, s − 3)

�−ci ′,ik′ ,cik′ ,i ′�
!!!

��!!
!

�−ci ′,ik ,cik ,i ′�"""

.."""

�� (i ′, s − 1)

�−ci ′,ik′ ,cik′ ,i ′�
!!!

��!!
!

�−ci ′,ik ,cik ,i ′�"""

.."""

��

· · · (ik′ , s − 6)��

�−cik′ ,i ′ ,ci ′,ik′ �"""

.."""

(ik′, s − 4)�� (ik′ , s − 2)

�−cik′ ,i ′ ,ci ′,ik′ �"""

.."""�−cik′ ,i ′ ,ci ′,ik′ �����������

//�����������

�� (ik′, s)��

(9.12)

Then one can see that

(i) the full-subquiver of μ〈s−2,s〉(s˜�f ) obtained by excluding vertices in 〈s〉 is isomorphic

to the valued quiver μ〈s〉(s˜�) in (9.8),

(ii) the full-subquiver of μ〈s−3,s〉(s˜�f ) obtained by excluding vertices in 〈s − 1, s〉 is

isomorphic to the valued quiver μ〈s−1,s〉(s˜�) in (9.10).

Thus the induction works. ��
Remark 9.11. In the previous lemmas, we observe the following:

(1) Each μ(i,p) in μ〈k,s〉 happens when (i, p) is vertically sink and horizontally source,
and the arrows adjacent to (i, p) are given as follows: for any j with d(i, j) = 1,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(i, p − 2) (i, p)�� �� (i, p + 2)

( j, p − 1)

�−c j,i ,ci, j����

! ��� if p ≡2 s,

(i, p − 2) (i, p)�� �� (i, p + 2)

( j, p + 1)

�−c j,i ,ci, j����

"!��� if p �≡2 s.

(2) Each μ(i,p) in μ〈k,s〉 does not affect on the local circumstance of the vertex ( j, s) for
|s − p| > 2 in the valued quiver obtained by applying the preceding mutations on
s
˜�f .
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Example 9.12. By applying μ〈s−4〉 on the valued quiver μ〈s−3,s〉(s˜�f ) in (9.12), we
observe that the local circumstance of vertices in 〈s − 1, s〉 are preserved as explained
in Remark 9.11 (2):

μ〈s−4,s〉(s˜�f ) =
· · · (ik, s − 6)�� (ik, s − 4)�� (ik, s − 2)

�−cik ,i ′ ,ci ′,ik �
���

 ���
�

�� (ik, s)��

(i ′, s − 7)

�−ci ′,ik′ ,cik′ ,i ′�
���

 ���
�

�−ci ′,ik ,cik ,i ′����

! ���

(i ′, s − 5)��
"!

�−cik′ ,i ′ ,ci ′,ik′ �
���

���

#"
�−cik ,i ′ ,ci ′,ik �

���

���

(i ′, s − 3)

�−ci ′,ik′ ,cik′ ,i ′�
���

 ���
�

�−ci ′,ik ,cik ,i ′����

! ���

�� (i ′, s − 1)

�−ci ′,ik′ ,cik′ ,i ′�
���

 ���
�

�−ci ′,ik ,cik ,i ′����

! ���

��

· · · (ik′ , s − 6)�� (ik′ , s − 4)�� (ik′, s − 2)

�−cik′ ,i ′ ,ci ′,ik′ ����

! ���

�� (ik′ , s)��

(9.13)

For notational simplicity, let us keep the following notations:

• ϒs(〈k, s〉) := μ〈k,s〉(s˜�f ) (in (9.9)), ϒs := s
˜�f , �s := s←, �s := s→,

• for a valued quiver Γ , a quiver XΓ denotes the full-subquiver of Γ whose vertices
are in X ⊆ Γ0,

where s→ is the quiver obtained from s← by reversing the orientation of arrows in s←.
By Remark 9.11 (2), we have

〈−∞,k−3〉ϒs(〈k, s〉) 	 〈−∞,k−3〉ϒs, (9.14)

for any k � s. The lemma below concerns 〈k−3,s〉ϒs(〈k, s〉).
Lemma 9.13. For r ∈ Z�0, as a finite quiver,

(a) 〈s−2r+1,s〉ϒs(〈s − 2r + 1, s〉) 	 〈s−2r+1,s〉ϒs .
(b) 〈s−2r+1,s〉ϒs(〈s − 2r, s〉) 	 〈s−2r+1,s〉ϒs and

〈s−2r−3,min(s−2r+2,s)〉ϒs(〈s − 2r, s〉) 	
{〈s−3,s〉�s if r = 0,

〈s−5,s〉�s otherwise.

Proof. (a) Recall 〈s − 2r + 1, s〉 = ∅ if r = 0, so this case trivially holds. The cases of
r = 1 and r = 2 are already verified in (9.10) and (9.12), respectively. One observes
that in the general case (i.e. r � 3), the mutation patterns in the intermediate steps are
identical with (9.8) and (9.11) up to the shift of the second parameters. This completes
the proof of (a).
(b) Let us consider the cases of 0 � r � 2 precisely as follows:
Case 1. r = 0. By (9.8), 〈s−3,s〉ϒs(〈s〉) and 〈s+1,s〉ϒs(〈s〉) are

(ik, s − 2) (ik, s)��

(i ′, s − 3)

�−ci ′,ik′ ,cik′ ,i ′�
###

00##
#

�−ci ′,ik ,cik ,i ′�$$

11$$$

(i ′, s − 1)22
�−cik′ ,i ′ ,ci ′,ik′ �

###

###

33
�−cik ,i ′ ,ci ′,ik �

$$

$$$

��

(ik′ , s − 2) (ik′ , s)��

and ∅, (9.15)

Case 2. r = 1. By (9.11), 〈s−5,s〉ϒs(〈s − 2, s〉) and 〈s−1,s〉ϒs(〈s − 2, s〉) are

(ik, s − 4) (ik, s − 2)�� (ik, s)��

(i ′, s − 5)

�−ci ′,ik′ ,cik′ ,i ′�
###

00##
#

�−ci ′,ik ,cik ,i ′�$$

11$$$

(i ′, s − 3)22
�−cik′ ,i ′ ,ci ′,ik′ �

###

###

33
�−cik ,i ′ ,ci ′,ik �

$$

$$$

�� (i ′, s − 1)

�−ci ′,ik′ ,cik′ ,i ′�
###

00##
#

�−ci ′,ik ,cik ,i ′�$$

11$$$

��

(ik′ , s − 4) (ik′ , s − 2)�� (ik′ , s)��

and

(ik, s)

(i ′, s − 1)

�−ci ′,ik′ ,cik′ ,i ′�
���

 ���
�

�−ci ′,ik ,cik ,i ′����

! ���

(ik′ , s)
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Case 3. r = 2. By (9.13), 〈s−7,s−2〉ϒs(〈s − 4, s〉) and 〈s−3,s〉ϒs(〈s − 4, s〉) are

(ik, s − 6) (ik, s − 4)�� (ik, s − 2)��

(i ′, s − 7)

�−ci ′,ik′ ,cik′ ,i ′�
###

00##
#

�−ci ′,ik ,cik ,i ′�$$

11$$$

(i ′, s − 5)��
22

�−cik′ ,i ′ ,ci ′,ik′ �
###

###

33
�−cik ,i ′ ,ci ′,ik �

$$

$$$

�� (i ′, s − 3)

�−ci ′,ik′ ,cik′ ,i ′�
###

00##
#

�−ci ′,ik ,cik ,i ′�$$

11$$$

(ik′ , s − 6) (ik′ , s − 4)�� (ik′ , s − 2)��

and

(ik, s − 2)

�−cik ,i ′ ,ci ′,ik �
���

 ���
�

(ik, s)��

(i ′, s − 3)

�−ci ′,ik′ ,cik′ ,i ′�
���

 ���
�

�−ci ′,ik ,cik ,i ′����

! ���

(i ′, s − 1)

�−ci ′,ik′ ,cik′ ,i ′�
���

 ���
�

�−ci ′,ik ,cik ,i ′����

! ���

��

(ik′ , s − 2)

�−cik′ ,i ′ ,ci ′,ik′ ����

! ���

(ik′ , s)��

(9.16)

One may further observe from Case 1–Case 3 that

• 〈s−2r+1,s〉ϒs(〈s − 2r, s〉) 	 〈s−2r+1,s〉ϒs for r � 1 (by a similar argument as in
(a)),
• 〈s−2r−3,s−2r+2〉ϒs(〈s − 2r, s〉) for r � 1 is isomorphic to 〈s−5,s〉�s as finite quiv-

ers, where 〈s−3,s〉ϒs(〈s〉) 	 〈s−3,s〉�s .

Hence we complete the proof of (b). ��
For r ∈ Z�1, we define

μ〈s−2r,s〉〉 :=
{

μ〈s〉 ◦ μ〈s−4,s〉 ◦ · · · ◦ μ〈s−2r+4,s〉 ◦ μ〈s−2r,s〉 if r ≡2 0,

μ〈s−2,s〉 ◦ μ〈s−6,s〉 ◦ · · · ◦ μ〈s−2r+4,s〉 ◦ μ〈s−2r,s〉 if r ≡2 1.

By Lemma 9.13 (b), 〈s−2r+1,s〉ϒs(〈s − 2r, s〉) 	 〈s−2r+1,s〉ϒs . By Lemma 9.10 and
Remark 9.11 (2), μ〈s−2r+4,s〉 is well-defined on 〈s−2r+1,s〉ϒs(〈s − 2r, s〉). Thus it makes
sense to define

ϒs(〈s − 2r, s〉〉) := μ〈s−2r,s〉〉(s˜�f ).
Then we have a generalization of Lemma 9.13.

Proposition 9.14. For r ∈ Z�0, we have

〈s−2r−3,s〉ϒs(〈s − 2r, s〉〉) 	
{〈s−2r−3,s〉�s if r ≡2 0,

〈s−2r−3,s〉�s if r ≡2 1.

Proof. We first consider the case 0 � r � 2, and then the general case r � 3.
Case 1. 0 � r � 2. The assertion for r = 0 and r = 1 is shown by (9.8) and
(9.11), respectively. Let us consider the case r = 2. By (9.13), we may consider
〈s−7,s〉ϒs(〈s − 4, s〉) by separating it into two parts 〈s−7,s−2〉ϒs(〈s − 4, s〉) and 〈s−2,s〉
ϒs(〈s − 4, s〉), where each one is shown in (9.16). Then 〈s−7,s〉ϒs(〈s − 4, s〉〉) is under-
stood as a concatenation of 〈s−7,s−2〉ϒs(〈s − 4, s〉) andμ〈s〉

(〈s−2,s〉ϒs(〈s − 4, s〉)
)

due
to Remark 9.11 (2), where the common vertices are overlapped. Since μ〈s〉
(〈s−2,s〉ϒs(〈s − 4, s〉)

)

is isomorphic to the valued quiver in (9.15), the assertion for
r = 2 is proved.
Case 2. r � 3. The proof idea in this case is identical with Case 1, that is, by using the
same argument as in Case 1, we observe that the finite valued quiver

Γ1 := 〈s−2r−3,s−2r+6〉 (μ〈s−2r+4,s〉 ◦ μ〈s−2r,s〉(s˜�f )
)
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is a concatenation of

(ik, s − 2r − 2) (ik, s − 2r)�� (ik, s − 2r + 2)��

(i ′, s − 2r − 3)

�−ci ′,ik′ ,cik′ ,i ′�
###

00##
#

�−ci ′,ik ,cik ,i ′�$$

11$$$

(i ′, s − 2r − 1)��
22

�−cik′ ,i ′ ,ci ′,ik′ �
###

###

33
�−cik ,i ′ ,ci ′,ik �

$$

$$$

�� (i ′, s − 2r + 1)

�−ci ′,ik′ ,cik′ ,i ′�
###

00##
#

�−ci ′,ik ,cik ,i ′�$$

11$$$

(ik′ , s − 2r − 2) (ik′ , s − 2r)�� (ik′ , s − 2r + 2)��

and

(ik, s − 2r + 2) (ik, s − 2r + 4)�� (ik, s − 2r + 6)��

(i ′, s − 2r + 1)

�−ci ′,ik′ ,cik′ ,i ′�
###

00##
#

�−ci ′,ik ,cik ,i ′�$$

11$$$

(i ′, s − 2r + 3)��
22

�−cik′ ,i ′ ,ci ′,ik′ �
###

###

33
�−cik ,i ′ ,ci ′,ik �

$$

$$$

�� (i ′, s − 2r + 5)

�−ci ′,ik′ ,cik′ ,i ′�
###

00##
#

�−ci ′,ik ,cik ,i ′�$$

11$$$

(ik′ , s − 2r + 2) (ik′, s − 2r + 4)�� (ik′ , s − 2r + 6)��

where we regard the common vertices to be overlapped in the concatenation. Since

〈s−2r+5,s〉 (μ〈s−2r+4,s〉 ◦ μ〈s−2r,s〉(s˜�f )
)

	 〈s−2r+5,s〉ϒs by Lemma 9.13 (b),

and μ〈s−2r+8,s〉 does not contribute to Γ1, we complete the proof by applying the same

argument to 〈s−2r+5,s〉ϒs as in Case 1. ��
Let us write μ in Proposition 9.7 as

μ = μ(il ,pl ) ◦ μ(il−1,pl−1) ◦ · · · ◦ μ(i1,p1). (9.17)

Take t ∈ Z such that t � min(pk | 1 � k � l) and s − t ≡4 2. By our choice of t , it
follows from Proposition 9.14 that

〈t−3,s〉ϒs(〈t, s〉〉) 	 〈t−3,s〉�s as a valued quiver,

where

s − t = 4u + 2 for some u ∈ Z�0. (9.18)

Recall the quantum seeds

Ss =
({svi,p := Fq(m

(i)[p, (s)ξi ])}(i,p)∈s˜�f 0
, sL , s˜B

)

associated to (s)ξ in (8.15),

Ss =
(

{

sui,p = Fq
(

m(i)[soi,p, soi,p + 2 sli,p]
)

}

(i,p)∈s˜�f 0

, sΛ, sB

)

in (9.6). (9.19)

Proposition 9.15. Every mutation μ(i,p) in μ〈t,s〉〉 on the cluster {svi,p} corresponds to
the quantum folded T-system in Theorem 6.9, and furthermore,

the mutation μ(i,p) sends Fq (m(i)[a, b]) to T−2(Fq (m(i)[a, b])) = Fq (m(i)[a − 2, b − 2]),

when Fq(m(i)[a, b]) is the quantum cluster variable sitting at (i, p) and obtained from
the subsequence of mutations previous to the μ(i,p) in μ〈t,s〉〉.

Proof. First, let us consider a mutation μ(i,p) in μ〈t,s〉. When (i, p) = (i, s) (i.e. one of

the vertices located in the right-most of s
˜�f 0), the local circumstance of (i, s) described

in Remark 9.11 (1) tells us that the quantum exchange relation is given by

μ(i,s)
(

Fq(Xi,s)
) ∗ Fq(Xi,s) = qα(i,1)Fq(m

(i)[s − 2, s]) + qγ (i,1)
∏

j; di, j=1

Fq(X j,s−1)
−c j,i ,

where qα(i,1) and qγ (i,1) are determined to be bar-invariant as in the sense of (8.9).
Consequently, it corresponds to the quantum folded T-system in Theorem 6.9 and hence
μ(i,s)(Fq(Xi,s)) = Fq(Xi,s−2) as we desired. Note that another mutation at (i ′, s) does
not affect the mutation at (i, s) as shown in Lemma 9.9.
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Second, let us consider a mutation at ( j, s− 1), which appears later than any (i, s) in
μ〈t,s〉. Let us keep in mind that the cluster variable located at (i ′, s) is already mutated
by former mutations, which is Fq(Xi ′,s−2). Then the quantum exchange relation is given
as follows (recall Remark 9.11 (1)):

μ( j,s−1)

(

Fq(X j,s−1)
) ∗ Fq(X j,s−1) = qα( j,1)Fq(m

( j)[s − 3, s − 1])
+ qγ ( j,1)

∏

i; d j,i=1

Fq(Xi,s−2)
−ci, j ,

which coincides with the quantum folded T-system in Theorem 6.9. Hence
μ( j,s−1)(Fq(X j,s−1)) = Fq(X j,s−3), as we desired.

Finally, by using this argument and the local circumstance of (k, p) in the order for
applying μ(k,p), described in Remark 9.11 (1), one can conclude that each mutation
μ(i,p) in μ〈t,s〉 corresponds to shifting the second parameters of cluster variables by
−2. The assertion for mutations in μ〈t+4r,s〉 (r � 1) follows from Lemma 9.13 (b),
Remark 9.11 (2) and the argument for mutations in μ〈t,s〉. ��

Recall u ∈ Z�0 in (9.18) depending on 〈t, s〉. For ( j, a) ∈ s
˜�f 0 with t � a � s, we

remark that

(A) there exists 0 � e � u such that s − 4e − 2 � a < min(s + 1, s − 4e + 2), equivalently

a ∈ {s − 4e − 2, s − 4e − 1, s − 4e, s − 4e + 1},
(B) (s)ξ j = s if a = s − 4e − 2 or s − 4e, and (s)ξ j = s − 1, otherwise. (9.20)

Proposition 9.16. For ( j, a) ∈ s
˜�f 0 with t � a � s,

(

μ〈t,s〉〉({svk,p})
)

( j,a)
= Fq

(

m( j)[s′o j,a′ ,
s′o j,a′ + 2s

′
l j,a′ ]),

where s′ = s − 2(u + 1) and a′ = a − 2(u + 1) for u ∈ Z�0 in (9.18).

Proof. Since μ( j,a) appears (u + 1 − e)-times in μ〈t,s〉〉 and sv j,a = Fq(m( j)[a, s −
δ((s)ξ j �= s)]), it tells that Proposition 9.15 that

(

μ〈t,s〉〉({svk,p})
)

( j,a)
= Fq(m

( j)[a′ + 2e, s′ + 2e − δ(a �≡2 s)]),
On the other hand, we have

(s′o j,a′ ,
s′l j,a′

) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(

s′ − 2(e + 1), 2e + 1
)

if s − a = 4e + 2,
(

s′ − 2e, 2e
)

if s − a = 4e,
(

s′ − 2e, 2e
)

if (s − 1)− a = 4e,
(

s′ − 2(e − 1), 2e − 1
)

if (s − 1)− a = 4e − 2,

where the integers on the left-hand side are defined in (9.5). Then one can easily check
that

s′o j,a′ = a′ + 2e and s′o j,a′ + 2 s′l j,a′ = s′ + 2e − δ(a �≡2 s),

which implies our assertion. ��
Now, we are ready to prove Proposition 9.7.
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Proof of Proposition 9.7. Write μ in Proposition 9.7 as in (9.17). Let us set

Z := (μ({suk,p}))(il ,pl ).
By Proposition 9.14 and Proposition 9.16, we have

({s′vk′,p′ })〈t ′,s′〉 = ({suk,p})〈t,s〉,

where t ′ = t + 2(u + 1), s′ = s + 2(u + 1) and (k′, p′) denotes an element in s′
˜�0. That

is, Z can be understood as a mutated variable from {s′vk′,p′ } as follows:

Z = (μ ◦ μ〈t ′,s′〉〉({s′vk′,p′ })
)

(il ,p′l )
,

where p′l = pl + 2(u + 1) for u ∈ Z�0 in (9.18).
Since

Ss′ =
({Fq(m(i)[p, (s′)ξi ])}(i,p)∈s′˜�f 0

, s
′
L , s

′
˜B
)

is an initial quantum seed of the quantum cluster algebra Kq,s′(g) ⊂ Kq(g), the element
Z is contained in Kq(g), which completes the proof. ��

In the above proof, we show that any finite sequence μ of mutations acting on Ss
can be understood as a sequence μ′ of mutations acting on Ss′ for some s′ ∈ Z. Since
we proved the corresponding statement for Ss′ in Sect. 8 (Proposition 8.8 and Theorem
8.9), the assertion for Ss follows. This kind of idea is also presented in [45, Definition
8.3 (1)], which can be understood as a local isomorphism of infinite quivers.

9.3. Proof of Theorem 9.6: Step 2: proof of Proposition 9.8. For k � s, we set

〈k〉− := {(i, k) ∈ s←
0 | (i, k) is vertically sink and horizontally source in s←

0 },
〈k〉+ := {(i, k) ∈ s←

0 | (i, k) is vertically source and horizontally sink in s←
0 }.

For k ∈ Z�s � {−∞},

〈k, s〉− :=
⊔

k�t�s

〈t〉− and 〈k, s〉+ :=
⊔

k�t�s

〈t〉+
.

If k > s, then we understand those sets as empty set. Note that there is no arrows between
vertices within 〈k, s〉± for any k ∈ Z�s � {−∞}.
Lemma 9.17. For {(it , pt )}1�t�r = {( jt , qt )}1�t�r = 〈k, s〉±, as a valued quiver,

μ(i1,p1) ◦ μ(i2,p2) ◦ · · · ◦ μ(ir ,pr )(
s←) 	 μ( j1,q1) ◦ μ( j2,q2) ◦ · · · ◦ μ( jr ,qr )(

s←),

that is, μ〈k,s〉±(s
←

) is uniquely determined.
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Proof. In this proof, we only consider the case of 〈k, s〉+ since the proof of 〈k, s〉− is
similar. Let us take (i, p), ( j, s) ∈ 〈k, s〉+ such that (i, p) �= ( j, s) and d(i, j) = 1. The

neighborhood of (i, p) on the valued quiver s← is depicted as follows:

s← =
· · · ( j, p − 3) ���� ( j, p − 1)

�−c j,i ,ci, j
$$$

33$$$

( j, p + 1) ���� ( j, p + 3)

�−c j,i ,ci, j
$$$

33$$$

· · ·��

· · · �� (i, p − 4)

�−ci, j ′ ,c j,i ′�
###

00##
#

�−ci, j ,c j,i�$$$

11$$$

(i, p − 2)�� �� (i, p)

�−ci, j ′ ,c j,i ′�
###

00##
#

�−ci, j ,c j,i�$$$

11$$$

(i, p + 2)�� �� · · ·

· · · ( j ′, p − 3) ���� ( j ′, p − 1)

�−c j ′,i ,ci, j ′###

22###

( j ′, p + 1) ���� ( j ′, p + 3)

�−c j ′,i ,ci, j ′###

22###

· · ·��

By Algorithm 7.3, we have

μ(i,p)(
s←) =

· · · ( j, p − 3) ���� ( j, p − 1)

�−c j,i ,ci, j�
%%%

��%%%

( j, p + 1) ���� ( j, p + 3)

�−c j,i ,ci, j�
%%%

��%%%

· · ·��

· · · �� (i, p − 4)

�−ci, j ′ ,c j,i ′�
&&&

��&&
&

�−ci, j ,c j,i�%%%

		%%%

(i, p − 2)��

�−ci, j ,c j,i�''''''''

4�''''''''

�−ci, j ′ ,c j ′,i�
(((((

(((

�4((((
(((

(i, p)�� ��
��

�−c j,i ′ ,ci, j ′�
&&&

&&&

��
�−c j,i ,ci, j�%%%

%%%

(i, p + 2) ��

�−ci, j ,c j,i�)))

��)))

�−ci, j ′ ,c j ′,i�
***

��***

· · ·

· · · ( j ′, p − 3) ���� ( j ′, p − 1)

�−c j ′,i ,ci, j ′�&&&

��&&&

( j ′, p + 1) ���� ( j ′, p + 3)

�−c j ′,i ,ci, j ′�&&&

��&&&

· · ·��

Here one can observe that

• μ(i,p)(
s←) has arrows between (i, p ± 2) and ( j, p + 1) for d(i, j) = 1, where

(i, p ± 2), ( j, p + 1) ∈ 〈k, s〉−,
• the arrows adjacent to ( j, p − 1) and ( j, p + 3) are not changed by μ(i,p).

Hence, for (x, y) ∈ {( j, p−1), ( j, p+3) | d(i, j) = 1}, the mutation μ(x,y)(μ(i,p)(
s
←

))

yields arrows between (x, y±2) and (k, y + 1) for d(x, k) = 1, one of which disappears

due to an arrow from μ(i,p)(
s←). For instance,

μ( j ′,p−1)(μ(i,p)(
s←)) =

·· · ( j, p − 3) ���� ( j, p − 1)

�−c j,i ,ci, j�
%%%

��%%%

( j, p + 1) ���� ( j, p + 3)

�−c j,i ,ci, j�
%%%

��%%%

· · ·��

· · · �� (i, p − 4)

�−ci, j ′ ,c j,i ′�
&&&

��&&
&

�−ci, j ,c j,i�%%%

		%%%

(i, p − 2)��

�−ci, j ,c j,i�''''''''

4�''''''''

(i, p)�� ��
��

�−c j,i ′ ,ci, j ′�
&&&

&&&

��
�−c j,i ,ci, j�%%%

%%%

(i, p + 2) ��

�−ci, j ,c j,i�)))

��)))

�−ci, j ′ ,c j ′,i�
***

��***

· · ·

· · · ( j ′, p − 3)��

�−c j ′,i ,ci, j ′�***

		***

( j ′, p − 1)�� ��
��

�−ci, j ′ ,c j ′,i�&&&

&&&

( j ′, p + 1) �� ( j ′, p + 3)

�−c j ′,i ,ci, j ′�&&&

��&&&

· · ·��

Here the arrow from (i, p − 2) to ( j ′, p + 1) on μ(i,p)(
s←) disappeared by the new

arrow from ( j ′, p + 1) to (i, p − 2) generated when we apply the mutation μ( j ′,p−1) to

(μ(i,p)(
s←)). In fact, one may observe that

μ(i,p) ◦ μ( j ′,p−1) = μ( j ′,p−1) ◦ μ(i,p) on s←,

and the arrows among (i, p), (i, p−2), ( j ′, p+1) and ( j ′, p−1) in μ( j ′,p−1)◦μ(i,p)(
s←)

are reversed.
Furthermore, one may generalize the above as follows:

μ(i,p) ◦ μ( j,s) = μ( j,s) ◦ μ(i,p) on μ(ik ,pk ) ◦ · · · ◦ μ(ir ,pr )(
s←) (9.21)

for (i, p), ( j, s) ∈ 〈k, s〉+\{(ik, pk), (ik+1, pk+1), . . . , (ir , pr )}. This proves that the
order of mutations is not important and completes the proof. ��
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We remark that an analog of Lemma 9.17 by replacing s← with s→ also holds.
For s ∈ Z and k ∈ Z�s � {−∞}, put

�s(〈k, s〉±) := μ〈k,s〉±(s
←

), �s(〈k, s〉±) := μ〈k,s〉±(s
→

).

Lemma 9.18. We have

�s(〈−∞, s〉±) 	 �s and �s(〈−∞, s〉±) 	 �s as valued quivers.

Proof. We only prove the second isomorphism for 〈k, s〉+ since the proof of the other
cases is almost identical. In the proof of Lemma 9.17, we have seen that a mutation
μ(i,p) for (i, p) ∈ 〈k, s〉+ generates arrows between vertices in 〈k, s〉− and then they
disappear in the course of the mutations μ( j,p′)’s for ( j, p′) ∈ 〈k, s〉+ located near
(i, p). Moreover, the arrows adjacent to (i, p) are reversed during the mutations. Hence
we have �s(〈−∞, s〉+

) 	 �s . ��
Proposition 9.19. Every mutationμ(i,p) inμ〈−∞,s〉± on the cluster {sui,p} corresponds
to the quantum folded T-system in Theorem 6.9. Furthermore, each mutation μ(i,p) on
sui,p in μ〈−∞,s〉± corresponds to T±2.

Proof. For (i, p) �= ( j, t) ∈ 〈−∞, s〉±, recall that the mutation μ(i,p) does not affect
the arrows adjacent to ( j, s). Thus it suffices to consider (i, p) and vertices connected
to (i, p) by arrows. Assume first that (i, p) ∈ 〈−∞, s〉+. Then by replacing vertices in
s← with suk,q ’s, we have the following:

Fq(m(k)[a + 1, b + 1])

Fq(m(i)[a, b + 2]) �� Fq(m(i)[a, b])
�−ci, j ,c j,i�

���

55���

�−ci,k ,ck,i����

66���

Fq(m(i)[a + 2, b])��

Fq(m( j)[a + 1, b + 1])

for j, k with d(i, j), d(i, k) � 1

where sui,p = Fq(m(i)[a, b]). Note that suk,q for (k, q) ∈ 〈−∞, s〉− never mutate by
μ〈−∞,s〉+ . Hence the mutation rule for cluster variables can be expressed as

Fq(m
(i)[a, b]) ∗ μ(i,p)(Fq (m

(i)[a, b])) = qα(i,(b+2−a)/2)Fq (m
(i)[a + 2, b]) · Fq (m(i)[a, b + 2])

+ qγ (i,(b+2−a)/2)
∏

j;d(i, j)=1

Fq(m
( j)[a + 1, b + 1])−c j,i .

Here qα(i,(b+2−a)/2) and qγ (i,(b+2−a)/2) are computed by bar-invariance. Hence, as in
Proposition 8.6, and the above equation coincides with the formula in Theorem 6.9.
Thus we have

μ(i,p)(Fq(m
(i)[a, b])) = Fq(m

(i)[a + 2, b + 2]).
Thus the assertion for 〈−∞, s〉+ follows.

Similarly, the arrows adjacent to (i, p) for (i, p) ∈ 〈−∞, s〉− can be depicted as
follows:

Fq(m(k)[a − 1, b − 1])

Fq(m(i)[a − 2, b]) Fq(m(i)[a, b])��
55

�−ck,i ,ci,k����

���

�� Fq(m(i)[a, b − 2])

Fq(m( j)[a − 1, b − 1])
�−c j,i ,ci, j����

66���

for j, k with d(i, j), d(i, k) � 1.
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Then as in 〈−∞, s〉+, we can conclude that

μ(i,p)(Fq(m
(i)[a, b])) = Fq(m

(i)[a − 2, b − 2]),
which proves our assertion. ��
Example 9.20. By replacing vertices (i, p) in μ〈−∞,0〉±(0←) with μ〈−∞,0〉±(0ui,p) ob-
tained from Example 9.3 (1) for type B3 and s = 0, we have the following by Lemma 9.18
and Proposition 9.19:

Case 1. μ〈−∞,0〉+(0←).

· · · �� Fq(m(1)[−2, 2])
55���

���
�

Fq(m(1)[0, 2])�� �� Fq(m(1)[0, 0])
55���

���
�

· · · Fq(m(2)[−1, 3])�� �� Fq(m(2)[−1, 1])
2�
���

����
�

���������
Fq(m(2)[1, 1])��

· · · �� Fq(m(3)[−2, 2])


7 ������

������

Fq(m(3)[0, 2])�� �� Fq(m(3)[0, 0])


7������

������

	
·· · �� Fq(m(1)[−2, 2])

����
���

��
Fq(m(1)[0, 2])�� �� Fq(m(1)[0, 0])

����
���

��

· · · Fq(m(2)[−1, 3])�� �� Fq(m(2)[−1, 1])
�2
���

55���

66�������

Fq(m(2)[1, 1])��

· · · �� Fq(m(3)[−2, 2])

��������
������

Fq(m(3)[0, 2])�� �� Fq(m(3)[0, 0])

��������
������

where the parameters of quantum cluster variables located at vertices that are vertically
sink and horizontally source are shifted by 2, and the orientation of all arrows is reversed.

Case 2. μ〈−∞,0〉−(0←).

· · · �� Fq(m(1)[−4, 0])
55���

���
�

Fq(m(1)[−2, 0])�� �� Fq(m(1)[−2,−2])
55���

���
�

· · · Fq(m(2)[−3, 1])�� �� Fq(m(2)[−3,−1])
2�
���

����
�

���������
Fq(m(2)[−1,−1])��

· · · �� Fq(m(3)[−4, 0])


7 ������

������

Fq(m(3)[−2, 0])�� �� Fq(m(3)[−2,−2])


7 ������

������

	
·· · �� Fq(m(1)[−4, 0])

����
���

��
Fq(m(1)[−2, 0])�� �� Fq(m(1)[−2,−2])

����
���

��

· · · Fq(m(2)[−3, 1])�� �� Fq(m(2)[−3,−1])
�2
���

55���

66�������

Fq(m(2)[−1,−1])��

· · · �� Fq(m(3)[−4, 0])

��������
������

Fq(m(3)[−2, 0])�� �� Fq(m(3)[−2,−2])

��������
������

where the parameters of quantum cluster variables located at vertices that are vertically
sink and horizontally source are shifted by −2, and the orientation of all arrows is
reversed.
Thus we can conclude that

μ〈−∞,0〉+(S0) 	 S1 and μ〈−∞,0〉−(S0) 	 S−1.

Following Example 9.20, it is straightforward to check the following proposition.

Proposition 9.21. For s ∈ Z, we have

μ〈−∞,s〉±(Ss) 	 Ss±1.

For s ∈ Z, put
U := μ〈−∞,s〉±({sui,p}).

Proposition 9.22. Every mutation μ(i,p) in μ〈−∞,s〉± on the cluster U corresponds to
the quantum folded T-system in Theorem 6.9. Furthermore, each mutation μ(i,p) on the
quantum cluster variable at (i, p) in μ〈−∞,s〉± corresponds to T∓2.

Proof. Set

{sz+
i,p} := μ〈−∞,s〉+({sui,p}) and {sz−i,p} := μ〈−∞,s〉−({sui,p}).

In this proof, we only consider the case of {sz+
i,p} since the proof of {sz−i,p} is parallel.

Let (i, p) ∈ 〈−∞, s〉±.
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Case 1. (i, p) ∈ 〈−∞, s〉+. By replacing vertices in s→with sz+
k,q ’s, we have the follow-

ing:

Fq(m(k)[a + 1, b + 1])
�−ck,i ,ci,k�

��
�

����
�

Fq(m(i)[a, b + 2]) Fq(m(i)[a + 2, b + 2]) ���� Fq(m(i)[a + 2, b])

Fq(m( j)[a + 1, b + 1])
�−c j,i ,ci, j����

�����

for j, k with d(i, j), d(i, k) � 1

where sz+
i,p = Fq(m(i)[a + 2, b + 2]). Hence the mutation rule for quantum cluster

variables can be expressed as

μ(i,p)(Fq(m
(i)[a + 2, b + 2])) ∗ Fq(m(i)[a + 2, b + 2]) = qα(i,(b+2−a)/2)Fq(m

(i)[a + 2, b])
· Fq(m(i)[a, b + 2])

+ qγ (i,(b+2−a)/2)
∏

j;d(i, j)=1

Fq(m
( j)[a + 1, b + 1])−c j,i .

Thus we have

μ(i,p)(Fq(m
(i)[a + 2, b + 2])) = Fq(m

(i)[a, b]).
Case 2. (i, p) ∈ 〈−∞, s〉−. The arrows adjacent to (i, p) for (i, p) ∈ 〈−∞, s〉− are
depicted as follows:

Fq(m(k)[a + 1, b + 1])

Fq(m(i)[a, b + 2]) �� Fq(m(i)[a, b])
�−ci,k ,ck,i����

�����

Fq(m(i)[a + 2, b])��

Fq(m( j)[a + 1, b + 1])
��

�−ci, j ,c j,i����

���

for j, k with d(i, j), d(i, k) � 1

where sz+
i,p = Fq(m(i)[a, b]). Then as in Case 1, we have

μ(i,p)(Fq(m
(i)[a, b])) = Fq(m

(i)[a + 2, b + 2]).
��

Now, we are ready to prove Proposition 9.8.

Proof of Proposition 9.8. Let us define

μ+ := μ〈−∞,s+1〉− ◦ μ〈−∞,s〉+ and μ− := μ〈−∞,s−1〉+ ◦ μ〈−∞,s〉− .

It follows from Propositions 9.19, 9.21 and 9.22 that

μ+(Ss) 	 Ss+2 and μ−(Ss) 	 Ss−2.

By applying μ+ repeatedly, we obtain Fq(Xi,p) for (i, p) ∈ ˜�f 0 with p � s as a cluster
variable of sAq(g). Similarly, we obtain every Fq(Xi,p) for (i, p) ∈ ˜�f 0 with p � s as a
cluster variable of sAq(g) by using the repetition of μ−. Thus the cluster algebra sAq(g)

contains every Fq(Xi,p) associated to ˜�f 0 as its cluster variables. ��
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Conjecture 5. Let s be an arbitrary integer. If Fq(m( j)[a, b]) ∈ Kq(g) q-commutes with
sui,p for all sui,p ∈ Ss , then there exists ( j, l) ∈ ˜�f 0 such that

su j,l = Fq(m
( j)[a, b]).

When we replace g in Conjecture 5 with g of type ADE , the conjecture can be
interpreted as the problem on the maximal commuting families of Kirillov–Reshetikhin
modules over the quantum affine algebras U ′q(g). It is proved in [45] for type ADE by
using the monoidal categorification (see [38,53] for the notion of maximal commuting
family). As a non-symmetric analog, we propose the above conjecture.
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Appendix A. Examples for (Quantum) Positivity

A.1. Quantum positivity and speciality of KR-polynomials. In this subsection, we pro-
vide examples for Conjecture 1 and Conjecture 2. Recall that

Fq(Xi,p) = Eq(Xi,p) = Lq(Xi,p),

and the quantum positivity of Fq(Xi,p) for types B3 and G2 are already verified (up to
shift of spectral parameters) in Example 5.16, Example 5.24 (for type G2), and Example
5.25 (for type B3). In what follows, we provide the formulas for fundamental polynomials
for type C3. Those elements may be obtained from the q-algorithm (cf. Example 5.16)
or the quantum cluster algebra algorithm in Proposition 8.6, so we skip the details.
The explicit formulas of Fq(Xi,0)’s for type C3 are given as follows (under the same



  173 Page 78 of 83 I.-S. Jang, K.-H. Lee, S. Oh

convention in the previous examples):

q
1
2 ˜X1,0

q
1
2 ˜X2,1 ∗ ˜X−1

1,2

q
3
2 ˜X3,2 ∗ ˜X−1

2,3

q
1
2 ˜X2,3 ∗ ˜X−1

3,4

q
1
2 ˜X1,4 ∗ ˜X−1

2,5

q
−1
2 ˜X−1

1,6

1, 1

2, 2

1, 5

2, 4

3, 3

q
1
2 ˜X2,0

q
5
2 ˜X1,1 ∗ ˜X3,1 ∗ ˜X−1

2,2

q
3
2 ˜X3,1 ∗ ˜X−1

1,3 q
3
2 ˜X1,1 ∗ ˜X2,2 ∗ ˜X−1

3,3

q
5
2 ˜X2

2,2 ∗ ˜X−1
1,3 ∗ ˜X−1

3,3 q
3
2 ˜X1,1 ∗ ˜X1,3 ∗ ˜X−1

2,4

(

q
−1
2 + q

3
2

)

˜X2,2 ∗ ˜X−1
2,4 q

1
2 ˜X1,1 ∗ ˜X−1

1,5

q
7
2 ˜X1,3 ∗ ˜X3,3 ∗ ˜X−2

2,4 q
1
2 ˜X2,2 ∗ ˜X−1

1,3 ∗ ˜X−1
1,5

q
3
2 ˜X3,3 ∗ ˜X−1

2,4 ∗ ˜X−1
1,5 q

1
2 ˜X1,3 ∗ ˜X−1

3,5

q
1
2 ˜X2,4 ∗ ˜X−1

1,5 ∗ ˜X−1
3,5

q
−1
2 ˜X−1

2,6

2, 3

3, 4

1, 4

1, 4

2, 3

2, 3

3, 2

2, 5

3, 4

1, 4

1, 2

1, 2 2, 3

1, 2 3, 2

2, 1

q˜X3,0

q2
˜X2

2,1 ∗ ˜X−1
3,2

(

1 + q2
)

˜X2,1 ∗ ˜X1,2 ∗ ˜X−1
2,3

q5
˜X2

1,2 ∗ ˜X3,2 ∗ ˜X−2
2,3

(

q−1 + q
)

˜X2,1 ∗ ˜X−1
1,4

(

q + q3
)

˜X1,2 ∗ ˜X3,2 ∗ ˜X−1
2,3 ∗ ˜X−1

1,4

q2
˜X3,2 ∗ ˜X−2

1,4

q2
˜X2

1,2 ∗ ˜X−1
3,4

q3
˜X1,2 ∗ ˜X2,3 ∗ ˜X−1

1,4 ∗ ˜X−1
3,4

q3
˜X2

2,3 ∗ ˜X−2
1,4 ∗ ˜X−1

3,4

(

q−1 + q
)

˜X1,2 ∗ ˜X−1
2,5

(

q−1 + q
)

˜X2,3 ∗ ˜X−1
1,4 ∗ ˜X−1

2,5

q2
˜X3,4 ∗ ˜X−2

2,5

q−1
˜X−1

3,6

2, 41, 3

3, 31, 3

1, 3

1, 32, 2

2, 4

2, 2
1, 3

3, 3

1, 3

2, 4

3, 3

3, 5

2, 2

3, 1

(A.1)

Since Fq(Xi,p) = Tp(Fq(Xi,0)), we verify the quantum positivity of all fundamental
polynomials for type C3. We further remark that the quantum positivity of Fq(Xi,p) for
type F4 also holds (with the help of computer program).

For type G2, one may compute

Lq(X
3
1,6) = Eq(X

3
1,6) = Fq(X

3
1,6), Lq(X2,5X2,7) = Fq(X2,5X2,7),

Eq(X2,5X2,7) = Lq(X2,5X2,7) + PX2,5X2,7,X3
1,6

(q)Lq(X
3
1,6),

(A.2)

where PX2,5X2,7,X3
1,6

(q) = q3 ∈ qZ�0[q]. Then the quantum positivity of Lq(X3
1,6)

follows from Example 5.24 and the definition of Eq(X3
1,6). Moreover, it follows from

(A.2), Example 5.16, and Example 5.24 that the quantum positivity of Lq(X2,5X2,7)

also holds.
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In general, form(i)[p, s]with |p−s| � 2, the computation of Lq(m(i)[p, s]) is similar
with the one for (A.2), since Eq(m(i)[p, s]) has only two dominant monomials thanks
to Theorem 6.9. It follows from Proposition 5.23 that this implies that Lq(m(i)[p, s]) =
Fq(m(i)[p, s]). For example, when g is of type B3,

Eq(X1,0X1,2) = qFq(X1,0) ∗ Fq(X1,2) = Lq(X1,0X1,2) + q2Lq(X2,1),

Eq(X2,0X2,2) = q−1Fq(X2,0) ∗ Fq(X2,2) = Lq(X2,0X2,2) + q2Lq(X1,1X
2
3,1),

Eq(X3,0X3,2) = Fq(X3,0) ∗ Fq(X3,2) = Lq(X3,0X3,2) + qLq(X2,1).

(A.3)
Here Lq(X1,1X2

3,1) = Eq(X1,1X2
3,1) = Fq(X1,1X2

3,1). Furthermore, one may check that

the quantum positivity of Lq(Xi,0Xi,2) holds from Example 5.25 and (A.3). Similarly,
one may have an analog of (A.3) for type C3 with (A.1), which implies the quantum
positivity of Lq(Xi,0Xi,2) in this case. However, we cannot use the same argument in
general because it does not seem to be easily determined by direct computation how
many dominant monomials Eq(m(i)[p, s]) have for higher levels.

A.2. Quantum positivity of non KR-polynomials. In this subsection, we observe some
examples in which Lq(m) has the quantum positivity for a dominant monomial m dif-
ferent from the KR-monomials.

Example A.1. Let us consider the case of type C2. Then the fundamental polynomials
Fq(X1,2) and Fq(X2,5) are given as follows:

Fq(X1,2) = q
1
2 ˜X1,2 + q

3
2 ˜X2,3 ∗ ˜X−1

1,4 + q
1
2 ˜X1,4 ∗ ˜X−1

2,5 + q−
1
2 ˜X−1

1,6,

Fq(X2,5) = q˜X2,5 + q2
˜X2

1,6 ∗ ˜X−1
2,7 + (q−1 + q)˜X1,6˜X

−1
1,8 + q2

˜X2,7 ∗ ˜X−2
1,8 + q−1

˜X−1
2,9.

(A.4)
It follows from (A.4) that

Eq(X1,2X2,5) = qFq(X1,2) ∗ Fq(X2,5) = Lq(X1,2X2,5) + q2Lq(X1,4), (A.5)

where Lq(X1,2X2,5) = Fq(X1,2X2,5) and PX1,2X2,5, X1,4(q) = q2 ∈ qZ[q]. Then the
quantum positivity of Lq(X1,2X2,5) follows from the formula (that may be computed
with (A.4) and (A.5)) as shown below:

q
5
2 ˜X1,2 ∗ ˜X2,5 + q

7
2 ˜X2,3 ∗ ˜X−1

1,4
˜X2,5 + q

7
2 ˜X1,2 ∗ ˜X2

1,6 ∗ ˜X−1
2,7 + q

9
2 ˜X2,3 ∗ ˜X−1

1,4 ∗ ˜X2
1,6 ∗ ˜X−1

2,7

+ q
7
2 ˜X1,4 ∗ ˜X−1

2,5 ∗ ˜X2
1,6 ∗ ˜X−1

2,7

+ (q
1
2 + q

5
2 )˜X1,2 ∗ ˜X1,6 ∗ ˜X−1

1,8 + q
7
2 ˜X1,2 ∗ ˜X2,7 ∗ ˜X−2

1,8 + (q
3
2 + q

7
2 )˜X2,3 ∗ ˜X−1

1,4 ∗ ˜X1,6 ∗ ˜X−1
1,8

+ q
9
2 ˜X2,3 ∗ ˜X−1

1,4 ∗ ˜X2,7 ∗ ˜X−2
1,8

+ (q
1
2 + q

5
2 )˜X1,4 ∗ ˜X−1

2,5 ∗ ˜X1,6 ∗ ˜X−1
1,8 + q

7
2 ˜X1,4 ∗ ˜X−1

2,5 ∗ ˜X2,7 ∗ ˜X−2
1,8 + q−

1
2 ˜X−1

1,8 + q
5
2 ˜X−1

1,6 ∗ ˜X2,7 ∗ ˜X−2
1,8

+ q
1
2 ˜X1,2 ∗ ˜X−1

2,9

+ q
3
2 ˜X2,3 ∗ ˜X−1

1,4 ∗ ˜X−1
2,9 + q

1
2 ˜X1,4 ∗ ˜X−1

2,5 ∗ ˜X−1
2,9 + q−

1
2 ˜X−1

1,6
˜X−1

2,9
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Example A.2. Let us consider the case of type B2. Then the fundamental polynomials
Fq(X1,2) and Fq(X2,5) are given as follows (cf. (A.4)):

Fq(X1,2) = q˜X1,2 + q2
˜X2

2,3 ∗ ˜X−1
1,4 + (q−1 + q)˜X2,3 ∗ ˜X−1

2,5 + q2
˜X1,4 ∗ ˜X−2

2,5 + q−1
˜X−1

1,6,

Fq(X2,5) = q
1
2 ˜X2,5 + q

3
2 ˜X1,6 ∗ ˜X−1

2,7 + q
1
2 ˜X2,7 ∗ ˜X−1

1,8 + q−
1
2 ˜X−1

2,9.

(A.6)
It follows from (A.6) that

Eq(X1,2X2,5) = qFq(X1,2) ∗ Fq(X2,5) = Lq(X1,2X2,5) + q2Lq(X2,3), (A.7)

where Lq(X1,2X2,5) = Fq(X1,2X2,5) + Fq(X2,3) and PX1,2X2,5, X2,3(q) = q2 ∈ qZ[q].
As in Example A.1, it follows from (A.6) and (A.7) that the quantum positivity of
Lq(X1,2X2,5) holds. Note that Lq(X1,2X2,5) has two dominant monomials.

Let us also consider Eq(X1,2X2
2,5). By (A.6), Eq(X1,2X2

2,5) has three dominant

monomials, namely,

X1,2X
2
2,5 = q4

˜X1,2∗˜X2
2,5, (q2+q4)˜X2,3∗˜X2,5 = (q+q3)X2,3X2,5, q5

˜X1,4 = q4X1,4.

Then we have

Eq(X1,2X
2
2,5) = Lq(X1,2X

2
2,5) + (q + q3)Lq(X2,3X2,5) + q4Lq(X1,4), (A.8)

where Lq(X1,2X2
2,5) = Fq(X1,2X2

2,5), Lq(X2,3X2,5) = Fq(X2,3X2,5), and

PX1,2X2
2,5, X2,3X2,5

(q) = q + q3, PX1,2X2
2,5, X1,4

(q) = q4 ∈ qZ[q].

We provide the formula of Lq(X2,3X2,5) = Fq(X2,3X2,5) as follows:

q˜X2,3 ∗ ˜X2,5 + q2
˜X2,3 ∗ ˜X1,6 ∗ ˜X−1

2,7 + q3
˜X1,4 ∗ ˜X−1

2,5 ∗ ˜X1,6 ∗ ˜X−1
2,7 + q˜X2,3 ∗ ˜X2,7 ∗ ˜X−1

1,8

+ q2
˜X1,4 ∗ ˜X−1

2,5 ∗ ˜X2,7 ∗ ˜X−1
1,8

+ q˜X2,5 ∗ ˜X−1
1,6 ∗ ˜X2,7 ∗ ˜X−1

1,8 + ˜X2,3 ∗ ˜X−1
2,9 + q˜X1,4 ∗ ˜X−1

2,5 ∗ ˜X−1
2,9 + ˜X2,5 ∗ ˜X−1

1,6 ∗ ˜X−1
2,9 + q−1

˜X−1
2,7 ∗ ˜X−1

2,9

(A.9)
Then one may compute the formula of Lq(X1,2X2

2,5) by using (A.8) with (A.6) and

(A.9) (or the q-algorithm directly), and then the quantum positivity of Lq(X1,2X2
2,5)

also follows.

A.3. Positivity of Kazhdan–Lusztig polynomials. This subsection presents examples for
the positivity of the KL-type polynomials Pm,m′(q) ∈ qZ[q] with at least 2 terms.

Example A.3. In Example A.2 (for type B2), we have seen the positivity of KL-type
polynomial given by

PX1,2X2
2,5, X2,3X2,5

(q) = q + q3 ∈ qZ[q],

which is an example for the positivity of KL-type polynomials with 2-terms. Let us
consider the case of type G2 to investigate more complicated examples.
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For m = X2,0X2
1,5, we have

Eq(m) = Lq(m) + (q2 + q4)Lq(X1,1X1,5) + q6Lq(X1,3),

where Lq(m) = Fq(m) + Lq(X1,1X1,5) and Lq(X1,1X1,5) = Fq(X1,1X1,5) + Lq(X1,3)

and the KL-type polynomials are

PX2,0X2
1,5, X1,1X1,5

(q) = q2 + q4, PX2,0X2
1,5, X1,3

(q) = q6 ∈ qZ[q].

For m = X2
2,0X1,1X1,3, we have

Eq(m) = Lq(m) + qLq(X
2
2,0X2,2) +

(

2q4 + q6 + q8 + q10
)

Lq(X2,0X
3
1,1),

where Lq(m) = Fq(m) + (q−2 + 1 + q2)Fq(X2,0X3
1,1) and the KL-type polynomials are

PX2
2,0X1,1X1,3, X2

2,0X2,2
(q) = q, PX2

2,0X1,1X1,3, X2,0X3
1,1

(q) = 2q4 +q6 +q8 +q10 ∈ qZ[q].

For m = X2
2,0X2,4, we have the expansion of Eq(m)− Lq(m) in terms of Lq as follows:

(q4 + q6 + q8)Lq(X2,0X1,1X1,3) + (q3 + q6)Lq(X2,0X2,2) + (2q2 + 6q4 + 6q6 + 4q8 + 2q10 + q12)

Lq(X
3
1,1),

where Lq(X2,0X1,1X1,3) = Fq(X2,0X2,2) + (q−2 + 1 + q2)Lq(X3
1,1) and the KL-type

polynomials (in qZ[q]) are

PX2
2,0X2,4, X2,0X1,1X1,3

(q) = q4 + q6 + q8, PX2
2,0X2,4, X2,0X2,2

(q) = q3 + q6,

PX2
2,0X2,4, X3

1,1
(q) = 2q2 + 6q4 + 6q6 + 4q8 + 2q10 + q12.
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