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Abstract: The quantum Grothendieck ring of a certain category of finite-dimensional
modules over a quantum loop algebra associated with a complex finite-dimensional
simple Lie algebra g has a quantum cluster algebra structure of skew-symmetric type.
Partly motivated by a search of a ring corresponding to a quantum cluster algebra of
skew-symmetrizable type, the quantum virtual Grothendieck ring, denoted by £, (g),
is recently introduced by Kashiwara and Oh (Math Z 303(2):42, 2023) as a subring
of the quantum torus based on the (g, t)-Cartan matrix specialized at ¢ = 1. In this
paper, we prove that £, (g) indeed has a quantum cluster algebra structure of skew-
symmetrizable type. This task essentially involves constructing distinguished bases of
R, (g) that will be used to make cluster variables and generalizing the quantum 7 -system
associated with Kirillov—Reshetikhin modules to establish a quantum exchange relation
of cluster variables. Furthermore, these distinguished bases naturally fitinto the paradigm
of Kazhdan—Lusztig theory and our study of these bases leads to some conjectures on
quantum positivity and g-commutativity.
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1. Introduction

1.1. Background. Let C = (C; ;)i jer be a Cartan matrix of finite type, and let g be the
finite-dimensional simple Lie algebra over C associated with C, where I is the index set
of the simple roots of g. Since its inception as trigonometric solutions to the quantum
Yang-Baxter equation [11,34], the quantum loop algebra U, (Lg) of g has been one of the
central objects in representation theory and mathematical physics, and various algebraic
and geometric approaches have been taken to study the finite-dimensional modules over
U, (Lg). Moreover, for the last 15 years or so, as categorification became one of the
major trends in representation theory and cluster algebra structures were discovered
ubiquitously, the category % of finite-dimensional U, (Lg)-modules became a focal
point of research where these new ideas and methods could be applied fruitfully, since
the quantum Grothendieck ring of % provides a categorification of a cluster algebra
and generalizes the Kazhdan—Lusztig(KL) theory.

To be more precise, the quantum cluster algebra A, introduced by Berenstein—Fomin—
Zelevinsky (BFZ) in [4,12], is a non-commutative Z[qil/ 2]-algebra contained in the
quantum torus Z[X kil |k € K] which is equipped with a distinguished set of generators
(quantum cluster variables) grouped into subsets (quantum clusters), where K is an index
set. Each cluster is defined inductively by a sequence of certain combinatorial algebraic
operations (mutations) from an initial cluster. Since then, numerous connections and
applications have been discovered in various fields of mathematics.

It is well-known that the quantum cluster algebra was introduced in an attempt to
create an algebraic framework for the dual-canonical/upper-global basis B* [40,41,54]
of the quantum group U, (g). Indeed, it is shown in [22,23] that the unipotent quantum
coordinate algebra A, (n) of U,(g), which is the graded dual of the half of U,(g),
has a quantum cluster algebra structure, and intensive research has been performed to
understand the structure in relation with B* (see [42] for a survey). In these efforts, it
turned out that categorification provides powerful methods [39,51,52,64].

When g is of simply-laced type with its set of positive roots denoted by CD;, we
can consider the path algebra CQ of the Dynkin quiver Q associated with g and obtain
the Auslander—Reiten (AR) quiver I'p of CQ. In turn, I'g can be understood as a
heart of the AR-quiver A of the derived category D”(Rep(CQ)), called the repetition
quiver. In [29], which culminates preceding works [25,28,54,60,63,66,67], Hernandez

and Leclerc defined the heart subcategory ‘ng of ¢ by using I'p, and proved that
the quantum Grothendieck ring Ky (%QQ) of %QQ is isomorphic to the integral form
AZ[qil 121(n) of A, (n) and that the isomorphism sends the basis of Kt(%gQ) consisting

of the elements corresponding to simple objects in %QQ to B* of A, (n) (cf. [61]).

To extend the results of [29,30] to non-simply-laced types, the Q-datum 2 is intro-
duced in [21] as a generalization of the Dynkin quivers of types ADE. Through the
Q-datum for any finite type, the (combinatorial) AR-quiver I'" 9, the repetition quiver
A%, and the heart subcategory €2 of %y are naturally defined, where o is the Dynkin
diagram automorphism of simply-laced g whose orbits produce the Dynkin diagram
of g. One could possibly expect that Ky (‘559 ) would be isomorphic to Az g+1/2(0) of
U, (g) when g is of non-simply-laced type, generalizing the result in types ADE to all
types. However, further studies [18,31,46,62] show that the quantum Grothendieck ring
Ke (‘559 ) is actually isomorphic to Agg+1/21(m) of U, (g) associated with g of simply-
laced type. Hence the structure of i (‘55@ ) is intrinsically relevant to the counterpart of
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simply-laced type, and the quantum cluster algebra structure associated with Kt(‘gf )
is still of skew-symmetric type.

1.2. Overview of this paper. Since there are quantum cluster algebras of skew-
symmetrizable type, a natural question arises:

Can we extend Kt(‘fgg) (or K (6y))in such a way to have a quantum cluster
algebra structure of skew-symmetrizable type?

Partly motivated by this question, Kashiwara and Oh introduced the quantum
virtual Grothendieck ring £, (g) inside the quantum torus X (g)::Z[Xf; | (@, p) € Ag],

where Kg is the set of vertices (i, p) (i € I, p € Z) of the repetition quiver A9 with
valued arrows induced from the (g, #)-Cartan matrix specialized at ¢ = 1 ([47], see
also Sect. 2.4). Pursuing the direction further, in this paper, we prove that &, (g) indeed
has a quantum cluster algebra structure of skew-symmetrizable type. In a subsequent
paper, our result will be utilized to fully answer the above question and to genuinely
extend the results of [29] in the sense that A, (n) is involved even for g of non-simply-
laced type. We remark that the evaluation of &, (g) at ¢ = 1 coincides with the folded
t-character ring (Remark 4.12), denoted by Kl,t,d(g) (see (1.2) below), which is intro-
duced by Frenkel-Hernandez—Reshetikhin in [14] to explore a (conjectural) quantum
integrable model corresponding to what is called the folded Bethe Ansatz equation (see
Remark 3.13).

Though we do not yet have an actual category that will replace ¢ for our purpose
(cf. [14, Remark 3.2, Remark 5.1]), we can still utilize an algebraic characterization of
Ke (‘52?) as the intersection of the kernels of screening operators in V¢ (g), where ng
is the skeleton subcategory of € and ). (g) is the quantum torus with respect to the
(g, t)-Cartan matrix specialized at r = 1.

In order to give a quantum cluster algebra structure on £, (g) in this paper, we need
to construct quantum cluster variables and exchange relations for mutations. The former
requires constructing distinguished bases for £, (g) and the latter amounts to generalizing
the quantum 7 -system associated with Kirillov—Reshetikhin (KR) modules as explained
briefly below.

We establish three bases of &, (g), denoted by F,, E,, and L, respectively. The basis
F4 is constructed by a generalization of Frenkel-Mukhin (FM) algorithm [15], which
plays a crucial role in studying £, (g). Furthermore, it induces two other important
bases E, and L, of &,(g). Fori € I, let mP[p,s]:= X; ,Xi ps2--- Xis (see (3.2)
for the notation). Then we denote by F, (mD[p, s]) the element in F, corresponding to
m®[p, s], and call it the KR-polynomial. Taking a g-commuting family consisting of
these KR-polynomials as the quantum cluster of initial seed, we develop a quantum folded
T-system to serve as the set of quantum exchange relations. After making compatible
pairs available for our use (cf. [47]), we establish a quantum cluster algebra structure on
a subalgebra and extend it to £, (g).

It is worthwhile to remark that when g is simply-laced, the basis L, (resp. E,)
comes from simple (resp. standard) modules in €0, and the entries of the transition
matrix between L, and E, are understood as analogues of the KL-polynomials. Thus
our construction of L, and E, for all the finite types extends the KL-theory for %go .
Moreover, we have conjectures related to positivity on KR-polynomials in F, and real
elements in L, and to BFZ-expectation that every quantum cluster monomial is an
element in the canonical basis (see Conjecture I below).
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Throughout this paper, the interplay between g and its simply-laced type counter-
part g and the Dynkin diagram automorphism o (cf. (2.3) and (2.4)) provides important
viewpoints leading to natural definitions. However, we emphasize that none of our main
constructions, including bases F,, E,, and L, is obtained merely from combining ob-
jects in each orbit of o. That is, none of our results is a consequence of simple folding.
Rather, there seem to exist quite intriguing features of non-simply-laced type objects at
the quantum level.

In the following subsections, we will review known results in Sects. 1.3 and 1.4 with
some details, and present our results more rigorously in Sect. 1.5, and mention our future
work in Sect. 1.6.

1.3. Quantum Grothendieck ring and quantum loop analogue of KL-theory. From the
study for g-deformation of JV-algebras, the g-character! theory for ¥ was invented
by Frenkel-Reshetikhin [17] and further developed by Frenkel-Mukhin [15], which
says that the (non-quantum) Grothendieck ring K (%é)) of ‘Kg is isomorphic to the com-
mutative ring generated by the g-characters of fundamental modules L(Y; ;) under
the Chari—Pressley’s classification [7,8]. For simply-laced type g, Nakajima [60] and
Varagnolo—Vasserot [67] constructed a non-commutative ¢-deformation of K (‘ﬁgo )ina

quantum torus Y (g), denoted by ¢ (%go), based on a geometrical point of view. Since
the specialization of Kt(‘fgo) at t = 1 recovers K (<gg0), we call Kt(%go) the quantum

Grothendieck ring associated with %go .

In particular, Nakajima established a KL-type algorithm to describe the composition
multiplicity Py, ,v of a simple module L(m’) inside a standard module E (m) through
equations in K (‘ﬁgo ): Denoting by M, the parameterizing set of simple modules in €7,
we have

[Em]=[Lem)]+ Y. Puw L.
m’e/\/l+;m’<Nm

It is proved by Nakajima [59,60] that the multiplicity P, , is equal to the specializa-
tion at + = 1 of a polynomial P, ,/(¢) with non-negative coefficients, which can be
understood as a quantum loop analogue of KL-polynomial.

One step further, each g-character of simple module L(m) (resp. standard module
E(m)) allows a r-deformation in ICt(‘KgO), denoted by L;(m) (resp. E;(m)), whose
coefficients in Z[r*!/2] are non-negative. Its specialization at r = 1 recovers the ¢-
character of L(m) (resp. E(m)) and the transition map between L; = {L;(m)} and
E;, ={E;(m)}in Kt(%go) satisfies the following equation:

E;(m) = L;(m) + Z Py () Ly(m") where Py, (1) € tZ>o[t]. (1.1)
n1/e./\/l+;m’<Nm
We call L; the canonical basis and E, the standard basis of Kt(%é)), respectively
(see Remark 5.10 also). In what follows, positivity generally means that polynomials
of interest have non-negative coefficients as is the case with Py, ,,/(t) € tZ>o[t]. We
remark that, in these developments, the geometry of quiver varieties plays an essential
role.

! In the main body of this paper, we sometimes call it #-character by replacing the role of ¢ by ¢.
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Despite the absence of fully developed theory of quiver varieties for general type g,
Hernandez [24,25] constructed a conjectural KL-theory for ‘Kg in a purely algebraic way.
Let us explain this more precisely. Using the quantum Cartan matrix C(q), Hernandez
constructed the quantum torus YV (g) and defined K¢ (‘ﬁg ) to be the intersection of the
kernels of the ¢-deformed screening operators S; ’s on Ve (g). Then he constructed
a basis F; = {F;(m)} by deforming the FM-algorithm and proved the positivity of
Fi(Y; p) = L;(Y; p). Then the basis F; induces two other bases E; = {E;(m)} and L, =
{L,(m)} satisfying (1.1) that enable us to establish a conjectural KL-theory, expecting
the positivity of analogues of KL-polynomials and L, (m)’s.

Recently, large parts of the conjectures for non-simply-laced g are proved by Fujita—
Hernandez—Oh—-Oya through so-called propagation of positivity. Let g be an unfolding
of g as follows:

(gv g) = (Bn,AZn—l), (CVlan+l)’ (F47 E6)7 (G27D4)'

Then it is proved in [18,29] that

Kt(%go ) and K¢ (‘Kgo ) have the same presentation,

where K¢ (‘Kgo) :=Q(q'"?) Qzg+121 Ke (Cﬁg). Hence the ring K¢ (%1,9) can be interpreted
as the boson-extension of A, (n) of the simply-laced g. Then the KL-theory and positiv-
ity are established for type B, using the quantum Schur—Weyl duality functor [37,43]
between (522%1 and ‘fgn, and similar conjectures for C F G-types are mostly resolved
in [18,19] using the quantum Schur—Weyl duality functor [36,46,62] for these types
and the degrees (also called g-vectors) of (quantum) cluster algebra theory. As indicated
above, the presentation of K¢ (‘55(,) ) is of simply-laced type even for non-simply-laced g.

1.4. Quantum cluster algebra structure of skew-symmetric type on K¢ (%g). In the sem-

inal paper [30], Hernandez—Leclerc proved that K (‘fg_ ) for a subcategory ng_ of Cﬁgo has
a cluster algebra structure of skew-symmetric type for any g of finite type. To show the
cluster algebra structure, they employed the T-system among Kirillov—Reshetikhin (KR)
modules proved by Nakajima [59] for simply-laced types and by Hernandez [27] for non-
simply-laced types. Then the result of [30] is extended to K¢ (%go )in[5,18,19,31,44,45]
to obtain quantum cluster algebras of skew-symmetric type. Some important features of
these works can be summarized as follows:

(a) The extension to whole category ng in [44,45] involves a categorical language.

(b) The main idea of the extension to quantum cluster algebra in [5,18,31] is the quan-
tization of T-system among KR modules.

(c) The monoidal categorification result in [45] tells us that every quantum cluster mono-
mial of K¢ (%”g ) corresponds to an element of L;. This gives an affirmative answer
to the BFZ-conjecture [12] on B* and the quantum cluster monomials.

(d) Asevery KR-polynomial F;(m) appears as a quantum cluster variable of ¢ (‘fgo), it
is proved in [19,45] that F;(m) = L;(m) for any KR-module L (m).

Here we remark that the result of [45] is for K (%g) and extended to Kt(‘fg) in [19].



173 Page 6 of 83 I.-S. Jang, K.-H. Lee, S. Oh

1.5. Main results of this paper. In this paper, we initiate a study of & (g) in the perspec-
tive of Sects. 1.3 and 1.4. Due to lack of a representation theory corresponding to £, (g),
we approach the ring &, (g) by analyzing its construction in [47] and by exploiting (I)
and (IT), where

(I) R4(g) is a g-deformation of the commutative ring K1.t.4(g), which is the specialization
of the refined ring Kq,t,(x(g) of interpolating (g, t)-characters in [14] at (g, &) = (1, d),
(ID) Ky, ¢.q(g) =~ K(%go) if g is of simply-laced type, (1.2)

(see Sect.3.4 and [47, Introduction]). Here « is a factor to interpolate several char-
acters (see [14, Remark 6.2(1)]) and d is the lacing number of g. In particular, if g is
of non-simply-laced type, there exist a simply-laced g containing g as a non-trivial Lie
subalgebra (e.g. see [35, Proposition 7.9] with (2.4)) and a surjective homomorphism

Ki.e.a(®@ — Ki.c.a(@ ~ K@), (1.3)

which is induced from the folding of generators of El)t,d(g) ~ K (%go).
The main results of this paper can be summarized into two statements:

(A) we construct bases F, E,, and L, of &, (g), which play similar roles of F;, E;, and
L,

(B) we establish skew-symmetrizable quantum cluster algebra structures on subrings of
R4 (g) (including itself) using the bases in (A).

Here we emphasize that our results can not be obtained from the folding in (1.3), as we
do not have a surjective homomorphism A, (n) —» A, (n) from the canonical surjection
C[N] — C[N], where C[N] denotes the unipotent coordinate ring of N of g.

1.5.1. Construction of bases and KL-paradigm for R4(g) Let C(¢) be the (g, 1)-Cartan
matrix specialized at ¢ = 1, which is called ¢-quantized Cartan matrix. To construct the
basis F, of &, (g), we apply a g-deformed version of FM-algorithm with respect to C(z).
However, there is no guarantee that the algorithm terminates in finite steps. To avoid
this problem, we prove that the monomials (not including coefficients) of F,(X; ;)
(i, p) € Zg) in F, are obtained from those of the g-character of L(Y, ,) of type g
via (1.3) for (z, p) € Zg. Furthermore, we prove that a similar phenomenon occurs for
a KR-polynomial F,(m[p, s]) (Proposition 5.20). This result implies that the outputs
of the algorithm are indeed contained in &, (g) and form a basis F,. The basis F, nicely
characterizes an element in £, (g) since each element in F, has a unique dominant
monomial (Theorem 5.27). Here we emphasize once more that general elements in F,
are not susceptible of similar manipulations based on (1.3) even in the specialization at
g = 1 (Example 3.11), and determining the Z[qil/z]-coefﬁcients of Fy, (m(i)[p, s]) is
a completely different problem even for a KR-polynomial £ mD[p, s]).

We investigate properties of the KR-polynomials in F; in detail, since they will be
used as the quantum cluster variables of &, (g) (Propositions 5.23 and 5.29). By applying
the framework in [25], we construct the standard basis E; = {E, (m)} and the canonical
basis L, = {L,(m)} fitting into the paradigm of Kazhdan—Lusztig theory:

E;(m) = Ly(m) + Z Py (q) Lg (m’) where Py (q) € qZ]q].

m'eM,; m' < m
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1.5.2. Quantum cluster algebra structure of skew-symmetrizable type on £,(g) Based
on the construction of bases for £,(g), we show quantum cluster algebra structures on
subrings of &, (g) as the first task in the second part of this paper.

In [47], Kashiwara and Oh constructed a compatible pair (A, B ) arising from the iso-
morphism between the subtorus X, o (g) of X, (g) and the torus containing Az, +1/2)(n),

in which the exchange matrix B is skew-symmetrizable. Here Q = (A, &) is a Dynkin
quiver of type g. Interpreting entries in A as pairing of KR-monomials (Theorem 8.1),
we form an initial quantum cluster consisting of certain KR-polynomials F; (m) for each
Dynkin quiver Q = (A, &) and its corresponding subring £, £ (g).

As a quantum cluster should consist of mutually g-commutative elements, we prove
that the family of F,(m) in the initial cluster are mutually g-commutative, using the
truncation homomorphism (Proposition 6.3) and the properties of KR-polynomials. By
investigating g-commuting conditions (Lemmas 6.6, 6.7, and 6.8) and multiplicative
structure among KR-polynomials F, (m), we obtain the quantum folded T-systems among
KR-polynomials F, (i) (Theorem 6.9):

Fy(m@Lp, $))* Fy(m®(p. s1) =q* P Fy(m D (p, )« Fy (mP[p, 51)

+ g7 T Fy(m (p, )™,
jid.p=1

Then we prove that & ¢ (g) has aquantum cluster algebra structure of skew-symmetrizable
type (Theorem 8.9) by using the quantum folded T-systems as mutation relations and
applying special sequences of mutations. In the proof, we adopt the setup of [5,30] and
use the valued quivers (Sect.2.4) (equivalent to exchange matrices) for the sequences
of mutations. As applications, we obtain a quantum cluster algorithm to compute KR-
polynomials Fy (m) (Proposition 8.6) and a sufficient condition for g-commutativity of
certain pairs of KR-polynomials F (m) (Theorem 8.10).

As the second task, we extend the result on £, ¢(g) to the whole ring &, (g). For
this purpose, we construct a new quantum seed, whose valued quiver is a “sink-source"
quiver reflecting features of g and whose initial quantum cluster consists of certain KR-
polynomials Fy, (m). Here the g-commutativity of the initial quantum cluster follows
from Theorem 8.10. Finally, we prove that £, (g) has a quantum cluster algebra structure
of skew-symmetrizable type by establishing (a) a mutation equivalence between the
valued quiver of £, ¢(g) and that of &, (g), and finding out (b) special sequences of
mutations that yield every KR-polynomial F, (m) as a cluster variable.

Since every KR-polynomial Fy (/m) appears as a cluster variable and every quantum
cluster monomial is expected to be a canonical basis element and real, we have the
following conjecture:

Conjecture L. (a) Every quantum cluster monomial of 8,(g) is contained in L.

(b) For every KR-polynomial F,(m), we have F,(m) = Ly(m) and Fy(m) has non-
negative coefficients.

(c) If Ly(m) is real, that is, for any k € Z, there exists t € Z such that L, (m)k =
q'Lq (m"), then it has non-negative coefficients.

Also, we have two more conjectures on the g-commutativity of KR-polynomials F, (im)
in Conjectures 4 and 5, which can be understood as natural generalizations of the results
in [62] and [19,45], respectively.
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1.6. Future work. In a forthcoming paper [33], we study the heart subring £, o(g)
of R (g) in terms of a generalization Q of the Dynkin quiver to non-simply-laced
type, where the AR-quiver I'g and the repetition quiver A are defined for g of any
finite type including BCFG. Since it is shown in this paper that £, (g) has a quantum
cluster algebra structure (of skew-symmetrizable type), as it is with C¢ (%”g ) in [18,29],
it will be shown that each heart subring £, o(g) is isomorphic to Azg+1/21(0) via a
certain isomorphism 1o and that the normalized dual-canonical/upper-global basis of
Agzg+1/2(n) corresponds to the subset L, ¢ := Ly N Ry o(g) under VP o. This justifies
the name of L, the canonical basis. Here we would like to make an emphasis on the
difference between the known result and our new result when g is non-simply-laced: in
the previous K¢ (%gQ)-case, the corresponding A, (n) is of simply-laced type g, while
in the new £, o(g)-case, the type of A;(n) is the same as that of g. Based on some
investigation of the heart subrings, we will also clarify the presentation of

Kq (@) 1= Q(q'%) ®z4+12) £g (@),

which says that K, (g) can be understood as a boson-extension of A, (n), as K¢ (‘Kgo) is
for A, (n) of simply-laced type g. Then we will show that the automorphisms of £, (g),
arising from the reflections on Dynkin quivers Q and the isomorphisms 1 g, preserve
the canonical basis L, of &, (g) and induce the braid group action on £, (g).

Convention. Throughout this paper, we use the following convention.

e For a statement P, we set §(P) to be 1 or O depending on whether P is true or not.
As a special case, we use the notation §; j := §(i = j) (Kronecker’s delta).

e Fork,l € Z ands € Z>1, we write k =, [ if s divides k — [ and k #, [, otherwise.

e For a monoidal abelian category C, we denote its Grothendieck ring by K (C). The
class of an object X € C is denoted by [X] € K (C).

e A monomial in a Laurent polynomial ring Z[xj.El | j € J]is said to be dominant
(resp. anti-dominant) if it is a product of non-negative (resp. non-positive) powers of
Xi ’S.

o For elements {r;};cs in a ring (R, x), parameterized by a totally ordered set J =
{-- < j_1<jo<j1<---}, we write

—
* Fji=---kFj  kIj *kFj k-
jed J J-1 Jo J1

e For integers a, b € Z, we set

l[a,bl:={x€Z |a<x<b} (a,b] . ={xe€Z|a<x<b}
l[a,b) ={xeZ|a<x<b} (a,b):={xe€Z|a<x <b}

‘We refer to subsets of these forms as intervals.

o Let X = {x; | j € J} be a parameterized by an index set J. Then for j € J and a
subset J C J, we set

(X)j:=x; and (X)y:={x;]jeT}
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2. Preliminaries

2.1. Cartan datum. Let g be a Kac—-Moody algebra of a symmetrizable type. We denote
its Cartan matrix by C = (C; ;);, jes, Dynkin diagram? by A, weight lattice by P, set of
simple roots by IT = {«; | i € I} and set of simple coroots by [TV = {h; | i € I}.

Let D = diag(d; € Z> | i € I) denote a diagonal matrix such that

R = DC and R = CD™! become symmetric.
We take D and the scalar product (-, -) on P such that
(aj, @j) =diC;j =djcj; € Z and («a;, ;) € 2Z>1 foralli € I. 2.1)

We also denote by @4 the set of positive (resp. negative) roots of g. Foreachi € I, we
choose @; € P such that (h;, w;) = &; j (j € I). The free abelian group Q := P Z«;
iel
is called the root lattice.
Throughout this paper, we use the following convention of finite Dynkin diagrams:

"I TP e eTP GG 9 ore

D, i , E¢
O—®@ @ @ @ —Q 9 @ @ @
£y : a0 0GP
Q—Q—0—@ @ 9 @

Here @ means that («y, ox) = t. Fori, j € I, we denote by d(i, j) the smallest number
of edges (i.e. the distance) between i and j in A. For example, in the finite Bj,-case,
din,n—1)=dmn—1,n) =landd(n,n —2) = d(n — 2,n) = 2, and in the finite
Dy-case,din,n —1)=dn —1,n) =2andd(n,n —2) =dn —2,n) = 1.

We denote by A the set of vertices and A the set of edges of A, respectively.
Throughout this paper, we consider only connected Dynkin diagrams. We sometimes
use A for non-simply-laced types to distinguish them from those of simply-laced types,
and use A for finite types and, when an emphasis is needed, Afor finite non-simply-laced
types. For each A, our convention amounts to taking

D :=diag((«;, @i)/2 | i € Ap) such that min((«;, «;)/2) = 1.
The Weyl group W of g is generated by the reflections s; (i € I) acting on P by
siA) =r— (A h)a;  (LeP,iel).
A Coxeter element of W is a product of the form s;, - - Sijy| such that {i | 1 < k <
[I|} = I. All Coxeter elements are conjugate in W when A is a tree [9,32], and their

common order in W is finite when W is finite [65], in which case the order is called the
Coxeter number and denoted by h.

2 Qur convention is a variation of the Coxeter-Dynkin diagram in the sense that we connect vertices with
single edges only. See the examples for the finite types. We will call them Dynkin diagrams for simplicity.
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A bijection o from Ay to itself is said to be a Dynkin diagram automorphism if
(hi, aj) = (ho@), @) for all i, j € Ag. Throughout this paper, we assume that
Dynkin diagram automorphisms o satisfy the following condition:

thereisnoi € Ao such thatd(i,o(i)) = 1. 2.2)

The condition in (2.2) is referred to as an admissibility (see [55, §12.1.1]).

For each Dynkin diagram A of finite type A,—1, Dy, or Eg, there exists a unique
non-identity Dynkin diagram automorphism V of order 2 (except D4-type, in which
case, there are three automorphism of order 2 and two non-identity automorphisms ¥
and 92 of order 3) satisfying the condition in (2.2).

— ~

~ - ~ ~

Aon_1 q¢444§;14443 “o——0 , D, N N
2n—2 2n—1

i v 0= v
E6 2 ) D4 /V 3 V\ )
V\ \\\ ///5 /7 \ 2 //
(2.3)

For a Lie algebra g of simply-laced finite type associated to A and a Dynkin diagram
automorphism o (7% id) on A, we denote by g the Lie subalgebra of g such that it is
non-simply-laced type [35, Proposition 7.9] and obtained via o'

Q1(g,0)): (Cu| (A2n-1,V)), (Bu | (Dus1, V), (Fy | (Eg, V), (G2 | (Ds, V).
(2.4)

rO)

<

Note that there exists a natural surjective map from I8 to /9 sending I8 51 +— 7 € I9,
where 7 is an index in /9 which can be also understood as the orbit of i under o.

2.2. Dynkin quiver. A Dynkin quiver Q = (A, &) of A is an oriented graph, whose
underlying graph is A, together with a function & : Ag — Z, called a height function
of Q, which satisfies the following condition:

g§=&+1 ifdi, j)=1landi — jin Q. 2.5)

Remark 2.1. We emphasize here that not every Dynkin diagram A has a Dynkin quiver.

For instance, if A is of affine type Agn), there is no Dynkin quiver associated with A.
Thus, when we mention a Dynkin quiver Q = (A, &), it implies that A has one (see also
[55, §14.1]).

Note that, since A is connected,
height functions of Q differ by integers. (2.6)

Conversely, to a Dynkin diagram A and a function § : A — Z satisfying |§; — &;| =1
for i, j € I with d(i, j) = 1, we can define an orientation on A to obtain a Dynkin
quiver in an obvious way. Thus it is enough to specify a pair (A, &) of a Dynkin diagram
and a height function to present a Dynkin quiver.

For a Dynkin quiver Q = (A, &), we calli € Ag a source (resp. sink) of Q (or §) if
& > &j (resp. & < &j)forall j € Agwithd(i, j) = 1. For a Dynkin quiver Q = (A, §)
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and its source i, we denote by s; Q the Dynkin quiver (A, s;&), where ;£ is the height
function defined as follows:

(5i§)j =& —2 x4 . 2.7

We call the operation from Q to s; Q the reflection of Q at a source i of Q. Note that for
Dynkin quivers Q = (A, &) and Q' = (A, £') with & = &/ for all i € Ay, there exists
asequence iy, ..., I, and an eveninteger # € 2Z such that iy is a source of s;,_, ...s;; Q
(I <k<r)ands;, ...s;,0 — Q = u in the sense that (s;, ---5;,§); = Ej’. + u for all
Jj € Ap.

For a reduced expression w = s;, ---s;, of w € W or a sequence W = (i1, ...,
iiy....iien, Of indices, we say that w (or W) is adapted to Q = (A, §) if

ir is a source of s;, ;i ,---s;;Qforalll <k <L

For a Dynkin quiver 0 = (A, §), let s;, -+, 2ol be a Q-adapted reduced expression
of a Coxeter element. Then the height function £’ of the Dynkin quiver Sijngl " Sii Qis
given by

g =& —2 foranyi € Ay. (2.8)

Note that, for g of finite type, we can obtain a Dynkin quiver Q = (A, &) of the
same type by assigning orientations to edges in A. For each Dynkin quiver Q of a finite
type, there exists a unique Coxeter element Tg € W whose reduced expressions are all
adapted to Q. Note that, in finite type, there exists a unique element wg in W whose
length is the largest. Also the element wq induces an involution * : I — [ given by
wola;) = —ax*.

Convention 1. Throughout this paper, we take a height function & on a finite Dynkin
quiver A such that &1 =; 0.

Let Q = (A, &) be a Dynkin quiver and o be a non-trivial Dynkin diagram automor-
phism of A satisfying (2.2). We call a Dynkin quiver Q o-fixed if § = §;x; foralli € 1
and 0 < k < |o|. For a o-fixed Dynkin quiver Q = (A#, &) of finite simply-laced type
g and the pair (g, g) obtained via o in (2.4), we obtain a Dynkin quiver Q = (A9, &) of
non-simply-laced type g by defining &; = £, for all: € 5.

2.3. t-quantized Cartan matrix. For an indeterminate x and integers k > [ > 0, we set

k

i, k
X =x . k . (K1, ! _
Kl i=———, [K!:=]]lulc and M T k=1L

u=1
For an indeterminate ¢ and i € I, we set g; = qd" where D = diag(d; € Z>1 |i € I)
satisfies (2.1). For a given Cartan matrix C, we set T = (Z; ;);, je1 the adjacent matrix
of C byIi’j = -850 # j)Ci,j-
In [16], the (g, t)-deformation C(q, t) = (C;, j(q, 1))i, jer of finite Cartan matrix C
is introduced, where

1

Ci (g, 1) :=(qit” +61flf)5i,j —Zil4.
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Then we have two kinds of specializations of C(g, t). One is C(g) :=C(qg, 1), called the
quantum Cartan matrix, and the other is C(¢) := C(l, 1), called the r-quantized Cartan
matrix.

Throughout this paper, we mainly consider the following symmetric matrix

R():=C®D™ . (2.9)

Note that R(r)|;=1 = R € GL;|(Q). We regard R(z) as an element of GL;;|(Q(z)) and
denote its inverse by R(7) = (R; ;(¢));,jes provided it exists. Let

i,

R ;=) T " (2.10)
uez
be the Laurent expansion of Ei,j (t) att = 0. Note that Ei’j 1) = Ej,i (t)foralli, j € 1.
The closed formulae of R(¢) and Bi’ j () for all finite types can be found in [47,48] (see
also references therein)?.

Lemma 2.2 ([20,29,47]). Let E(t) be associated with C of finite type. Then, for any
i,jelandu € Z, we have

()T j) =0ifu <d(, j) ord(, j) =2 u,
()T, j(d(, j)+ 1) = max(d;, d;).

For a Dynkin quiver Q, we choose a subset Ao of Ag x Z as follows:
Ro:={l.p) eI xZ|p—& €2L}.

By Convention 1, Zo does not depend on the choice of Q. For i, j € EO, we define an
even function 7; j : Z — 7Z as follows:

ﬁi,j(u) ZE’j(M) +E,j(—u) foru € Z. (2.11)

Lemma 2.3 ([5,47]). We have

Tj =D+ ju+ D+ > (e, a))Tix(w) = 8,181 x 2d;.
k; d(k,j)=1

2.4. Valued quiver. Let K be a (possibly infinite) countable index set with a decomposi-
tion K = Kex LI K. We call Kgx the set of exchangeable indices and Ky the set of frozen
indices. N

We call an integer-valued K x Kex matrix B = (b; j);cK, jeK., an exchange matrix if
it satisfies the following properties:

(a) For each j € Ke, there exist finitely many i € K such that b; ; # 0.
(b) Its principal part B := (b;, j);, jeK,, 1S Skew-symmetrizable; i.e., there exists
asequence S = (t; | i € Kex, t; € Z>1) suchthat t;b; ; = —t;b;; forall i, j € Kex.
(2.12)

3 n [47,48], E and b are used instead of E and T, respectively.
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For an exchange matrix B, we associate a valued quiver Q5 whose set of vertices is
K and arrows between vertices are assigned by the following rules:

Ta,by

ok’—>lo ifl,k € Kex, ! #k,byy =a >0and by =b <0,

-

a,0. 0,b .
o—p (resp. ok<—lo) if ] € Kex, k € Ky and by = a > 0 (resp. by = b < 0).
(2.13)

Here we do not draw an arrow between k and [ if by; = 0 (and b;y = O whenl, k € Kgy).
Note that o denotes a vertex in K¢, and We call "a, b_ the value of an arrow.

Convention 2. For some special values" a, b_, we will use the following scheme to draw
a valued quiver for convenience: Forl, k € Kex | # k,

(D) ifbyy = 1and by = —b < 0, use ok—<b»lo,
Q) ifbry =2 and bjy = —b < 0, use ok:<b$;,
Q) ifbryy =3 and by = —b < 0, use okE<b$IO,

(4) we usually skip <1 in an arrow when ("a, —11and 1 < a < 3) for notational
simplicity,
and forl € Kex and k € Ky,

S) if by = 1 (resp. byy = —1), use Ok_)l. (resp. oﬁ.)’
(6) if by = 2 (resp. by = —2), use Ok:>l. (resp. ok<:lo),
(7) if bry = 3 (resp. by = —3), use % s (resp. % p ).

Throughout this paper, we always apply Convention 2.

Definition 2.4. Let A be a Dynkin diagram. We set ZO X Zo—matrix EZO whose entries
b, p.(j.s) are defined as follows:

(=1)%6>Pg; ;i [p—s| = landi # j,
b p).(jus) = § (=1)°6>P) if|p—s|=2andi = j, (2.14)
0 otherwise.

Note that Bx o satisfies (2 12) with a sequence S :=(s;,p | $i,p = d;) and without frozen
vertices. We denote by A the valued quiver associated to Bx Ko

We call the arrows (i, p) < (i, p+2) in A the horizontal arrows and the arrows
between (i, p) and (j, p + 1) for d(i, j) = 1 the vertical* arrows.

Convention 3. We use dashed arrows < for horizontal arrows in A to distinguish
them with vertical arrows in A.

Example 2.5. Under Conventions 2 and 3, when A s of finite type B3, the valued quiver
A is depicted as

i\p -8 -7 —6 -5 —4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

1

R NN NN \/\. NN N S
, /*A/ A/K/*A/ A/*a./m/ i/m/m_
(2.15)

4 Visually, they are slant.
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Remark 2.6. The valued quivers for simply-laced finite types coincide with the infinite
quivers in [30, Section 2.1.3] where the infinite quivers are denoted by I'.

Definition 2.7 (cf. [18, Definition 5.5]).

(1) We denote by A the quiver obtained from A by removing all horizontal arrows. We
call A the valued repetition quiver of A. 3

(2) A subset R C Ao = A\ is said to be convex if it satisfies the following condition:
For any oriented path (x; — xp — --- — x7) consisting of (vertical) arrows in A,
we have {x, x2, ..., x;} C Rif and only if {x1, x;} C K.

(3) We say thata convex subset R C Ag has a upper bound if there exists max(p | (i, p) €
R) foreachi € Ay.

(4) For a convex subset R C Ao, we set Rfr ={@G,p) | p=mink € Z | (i, )
R)} and Rex := R\Rs. We denote by RA the valued quiver associated to Rp
(B(i.p).(j.5)) (. p)ER(j.5) ERex - N _

(5) For a height function & on A, let §B = (b(i,P)s(j,S))(i,p),(j,s)eflo and denote by EA

the valued quiver associated to 5B , where
SRg:=1{G,p) e Do | p <&}

Note that & AO is a convex subset of A for any height function £ on A.

3. tCharacters of Quantum Loop Algebra and Virtual Grothendieck Rings

In this section, we first review the important properties of #-characters of finite-dimensional
representations over quantum loop algebra briefly (see [15,17,25,27,59] for more de-
tails). Then we recall the virtual Grothendieck ring K(g) for any finite type g (see [14,47]
for non-simply-laced types).

3.1. Quantum loop algebras. Let t be an indeterminate. We denote by k := Q(¢) the
algebraic closure of the field Q(¢) inside Umez> o Q@¢"™)). Letgbe a complex finite-
dimensional simple Lie algebra of simply-laced type. Note that, in this case, we can
identify C(g) with C(¢) by exchanging g with z.

Convention 4. Throughout this paper, we often use bold symbols to emphasize that those
symbols are of simply-laced finite types. We also use 1, j for indices in I8 for the same
purpose.

We denote by U; (Lg) the quantum loop algebra associated to g, which is the k-algebra
given by the set of infinite generators, called the Drinfeld generators, subject to certain
relations [1,10]. The quantum loop algebra U;(Lg) is a quotient of the corresponding
(untwisted) quantum affine algebra U/ (g) and hence has a Hopf algebra structure.

5 When we replace valued arrows with usual arrows, it is the usual repetition quiver A (see [47] for non-
simply-laced types).
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3.2. Finite dimensional modules and their t-characters. We denote by 6 the category
of finite-dimensional U;(£g)-modules of type 1. The category %y is a k-linear rigid
non-braided monoidal category. We say that V and W commute if VQ W ~ W Q V
as U; (L£g)-modules. We denote by K (¥) the Grothendieck ring of 6. Note that the set
of simple objects in K (%) are parameterized by the set (1 + zk[z])! fof I g-tuples of
monic polynomials, which is called Drinfeld polynomials.

In this paper, we usually consider the skelefon subcategory %go of 6. The subcate-
gory ‘fgo contains every prime simple module in 6 up to parameter shifts. To explain
%}? we need to consider the Laurent polynomial ) generated by the set of variables
{Yil}(l pyek,- Let us denote by M (resp. M, and M_) the set of all monomials
(resp. dommant monomials and anti-dominant monomials) of ). For a monomial m in
Y, we write

1_[ Y,’f',;”(m) and m_ = 1_[ Y,,_;””(m) (3.1)
(l,p)EEO (l,P)EIEO

with u, ,(m) € Z. For each m € M,, we denote by L(m) the simple module in &
whose Drinfeld polynomial is ( I1 e q? )”l~1’(““))lE ;- Then the subcategory ‘fgo can
be characterized by the Serre subcategory of 6 generated by {L(m) | m € M, }. Note
that %go is a monoidal rigid subcategory of €. In [17], Frenkel-Reshetikhin proved that
there exists an injective ring homomorphism

X K& =,

called the t-character homomorphism.® Note that each monomial of X, (L(m)) is of-

ten called a £-weight of L(m), since each monomial in Y, *l encodes the generalized

eigenvalues of the commuting family consisting of certain Drinfeld generators as en-
domorphisms of L(m) (see [17] for more detail). The existence of ¥, tells us that the
Grothendieck ring K (%) is commutative, even though @ is not braided.

For an interval [a,b] C Z,1 € I8 k € Zx and (1, p) € ﬁo, we set dominant
monomials

m(’)[a,b] = l_[ Y, and m(l) : l_[ Y, pe2s 3.2)
(t,5)€R; sela,b]

and m(’)(a, b], m(l)[a, b), and m® (a, b) are defined similarly.

The simple module L(m®[p, s]) (p < ) is called a Kirillov—Reshetikhin (KR)
module. When p = s and (1, p) € A, we call L(Y, ) a fundamental module. Note that
the Grothendieck ring K (%) is a polynomial ring in the isomorphism classes of the
fundamental modules L(Y, ) [17].

For (1, p) € I8 x Z with 1, p £ 1) € E%, we set

_ ¢,
Az,p = Yl,p—lyl,p+1 l_[ YJ’; = z,p—lYl,p+1 l—[ Yj,/b . (3.3)
J:d@, =1 J#

6 Ttis usually called the g-character homomorphism in the literature.
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Note that there is a partial ordering < on the set of monomials M, called the
Nakajima order, defined as follows:

m < m’ if and only if m™ 'm’ is a product of elements in {A,; p+1 | (2, p) € AB o}
(3 4)

Theorem 3.1 ([15,16]). For each dominant monomial m € M., the monomials ap-
pearing in x,(L(m)) — m are strictly less that m with respect to <.

The z-characters of KR-modules satisfies a system of functional equations called
T-systems:

Theorem 3.2 ([599, Theorem 1.1]). (See also [27, Theorem 3.4].) For each (1, p), (1, s) €
AO with p < s, we have

X (Lm"[p,5)))x (L (p, s)) = x,(Lm“[p, sD)x,(Lm" (p, 5))
+ ] xem@@.s). (3-5)

J:d@ =1

Let & be a height function on A8. We denote by & M, the set of all dominant mono-
mials in the variables Y, ,,’s for (1, p) € AO

Definition 3.3. We define the subcategory Cfgs as the Serre subcategory of % such that
Iir 65 = {L(m) | m € M,}.

Since ¢ EO is a convex subset of EO, we have the following proposition:

Proposition 3.4. The category %gg is a monoidal subcategory of Cy.

Proof. This assertion follows from the same argument of the proof of [30, Proposition
3.10]. |

3.3. Truncation. We denote by ) the Laurent polynomial ring generated by ¥, p’s for
(1, p) € ¥A,. We define a linear map (g Y — V% by sending the monomials which
contain some Y, ,, with (1, p) ¢ §A to zero and by keeping all the other terms.

Proposition 3.5. For a height function &, the Z-linear map (-)gg : K (‘Kgs ) — V& given
by

V1 S, (V) = (< 0 x)(V)

gives an injective ring homomorphism K (‘fgé ) — )&,

Proof. We can prove the assertion in the same way as in the proof of [28, Proposition
6.1]. ]



Quantum Virtual Grothendieck Rings Page 17 0f 83 173

3.4. (Virtual) Grothendieck rings. Recall that when g is of simply-laced finite type, the
t-character homomorphism y, is an injection from K (%go ) into V8. Thus we can identify

K (6y) with
A(@) = x (K(%y).
We call £(g) the Grothendieck ring of type g as well.
Proposition 3.6 ([15, Corollary 5.7]). When g is of simply-laced type, we have
&) = () (ZV 1.0 e B ) £ QZIY 1+ AT, | 6D € B]) € V-
1€l8

Now we move on to non-simply-laced finite types. For g associated with (g, o)
in (2.4), we consider the Laurent polynomial ring defined as follows: We first set

V9= ZIX;, | (. p) € A7)
Then there exists a surjective ring homomorphism
7:Y8 — Y9  sending  Y,iq, —> Xip (3.6)

for any (1, p) € 5% and 0 < k < |o]|. Finally, we set

R(9) =0 (R(®)

and call it the virtual Grothendieck ring of type g. We call ¢ (L (m)) the folded t-character
of L(m).

Now we would like to unify the expression for £(g) for any finite type g by replacing
variables Y; ,’s with X; ,’s. Let X8 be the Laurent polynomial ring Z[X | @i, p) e

AO]. For(i,p+1) e &\0, we set

Cji
Bi p = Xip-1Xi p+1 1_[ X, 3.7)
jod@, j)=1

Definition 3.7 [14, §3.4]. We define the commutative ring

8@ = () (21X 1 G0 € B, j £ @ ZIXun(1+ BL) | (D) € A1) € &,
iel®

(3.8)

Remark 3.8. Even though, we unify the expression for R(g) by using X; ,, A and B; p,
we sometimes use Y, ,, V and A, , to emphasize that they are associated with g of
simply-laced finite type.

Theorem 3.9 ([14, Proposition 3.3, Theorem 4.3]).

(1) Every element of R(g) is characterized by the multiplicities of the dominant mono-
mials contained in it.

(2) For each m € My, there is a unique element F(m) of R(g) such that m is the
unique dominant monomial of F (m) with its coefficient 1. Therefore we have a basis
(F(m) | m € M3} of R(g) parameterized by dominant monomials m.
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(3) For each pair (g, 9) obtained via o, the map & induces a surjective ring homomor-
phism from R(g) to K(Q).

An X-monomial m is said to be right-negative if the factors X ; ; appearing in m, for
which / is maximal, have negative powers.

Corollary 3.10. For each pair (g, Q) obtained via o and m € M$, assume that
every monomial in F(m) — m is right-negative. 3.9)

Then & (F (m)) = F(o(m)) € K(Q).

Proof. By Theorem 3.9 (3) and (3.9), o (F(m)) is an element in K(Q) containing the
unique dominant monomial & (m). Thus our assertion follows. O

Example 3.11. Fortype X,, with X = A or C, we write the polynomial F (i) in Theorem
3.9 (2) by F¥, (m) to emphasize the type.
One can check (see the formulas of Fa (Y4, —2) and Fa,(Y2,0) below)

(1) Fas(Ys,—2Y2,0) is equal to Fag(Ys —2) Fas(Y2,0), since Fag(Ya,—2)Fas(Y2,0) has a
unique dominant monomial Y4 _»Y> g,

(2) Fas(Yq, 2)FA5(Y2 0) contains a monomial Y3 _1Ys _1Y> 0Y4 0>

(3) Fas(Y2,—2Y20) is different from Fa (Y4, —2) Fa5(Y2,0), since Fas(Ya, —2)Fas(Y2,0)
contains Y4, _»Y> o.

In particular, (2) tells us that that o (Fa(Ys,—2) Fa(Y2,0)) contains a monomial
5 (Y3, _1Ys_1Y20Y, ) = X3 1 X1_1,

which is dominant but not equal to X, _»X5 o. Hence o (Fa(Y4,-2Y2,0)) can not be
FC3 (XZ’_2X2’0). Note that FAS (Y4,_2Y2,0) does not satisfy (3.9), while FAS (Y21_2 Yz,o)
satisfies that property. Therefore, o (Fa5(Y2,-2Y2,0)) = Fc;(X2,—2X2,0) by Corollary
3.10.

Here we present Fas(Y4,—2) and F4, (Y2 o) explicitly for reader’s convenience:

Fas(Ya—2) =Ya 2+ Y3,—1Y[& Ys 1 |+ Y2,0Y3711 Ys 1+ Y3,—1Y;]1 + Y1.1Y{21 Ys 1

+Y20Y5 Yao¥s | + Y[ 3Ys 1+ 7], 1Y22Y40Y o +Y20Y42 + Y[ 3 Y4 0Ys
+ V1Y Va1 Y, + YY1V, + Y10 Y55 + Y4 Ya0Y55 + Y5 ),
Fas(Y2,0) =+ Y1,1Y2TZIY3,1 +Y1_,31Y3,1 +71, 1Y33Y42+Y1 3Y22Y3_3Y42+Y1 1Y4_iY5‘3
+ Y5 Yaa+ Y[ 3Y20Y Y53+ Y11Ysg Y, Y3aY,, Ys3+ Y] 3Y20Y5 4
+ Y qYsa+ Yy VYol + Y YaaYs i + Y ¢,
where the product of boxed monomials yields the non-right-native monomial
Y3,71Y5,71Y2‘0Y[,(}-

Note that if m, m" € M® with m < m’, then we have

a(m) < (m) e M9, (3.10)
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Itis proved in [15,27] that, form® [ p, 5] € ./\/ngr, F(m®[p, s]) satisfies the condition
in (3.9) and
Fm®[p,s)) = x,(Lm[p, s])).
Thus we have
o (Fm®W[p,s])) = F(mP[p, s]) (3.11)

and (3.5) is changed into the following form: For any finite type g and (i, p), (i, s) € &0
with p <'s, we have

F(mD1p,))F(mD(p.s1) = FmPp.s))F(m©(p.s))+ [] F(mP(p.5) 7"
Jid@, =1
(3.12)
We call (3.12) the folded T -systems.
Definition 3.12. (1) For a height function & on A® of simply-laced finite type, we set
SR(g) :="x, (K (€%)).
(2) For a height function & on A9 of non-simply-laced finite type, we set
‘R(g) =7 (/@)

where § is the o-fixed height function on A# such that
gdk(l)zéf forany0<k<|o|andl60_1(1').

We call Eﬁ(g) the truncated virtual Grothendieck ring and 57, (m) the folded truncated
t-character of L(m) with respect to &, defined as below:

X
/_'/-_\\
fR(g) —— RO

K (€58

,Xl

Remark 3.13. Let G be a simply-connected complex Lie group associated with g of non-
simply-laced type. In [14], the authors formulate (conjectural) folded integrable models
of g corresponding to folded Bethe Ansatz equations. Then £(g), denoted by K, (Q)
in [14],” plays the role of describing the spectra of the transfer-matrix v (z, u) with a
finite-dimensional U;(L£g)-module V in the folded integrable model, as in the role of
RE ~ K (%go) in the integrable models for simply-laced types (cf. [13,14] for more
details). We remark that our main interest is to study the structure of the quantization of
£(9) introduced independently in [47] with other motivations related to canonical basis
and quantum cluster algebra structure. In contrast, the authors of [14] mainly focus on
a study of the folded integrable models associated with g. It would be interesting to find
connections between our results and those in [14].

7 In our introduction, we use El,t,d(g) instead.
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4. Quantization

In this section, we quantize the Laurent polynomial ring X with the resulting ring denoted
by X, via the inverse matrix R(r) of (2.9) associated with C(r) following [47] (see also
[14]), and define its subalgebra £, (g) that is regarded as a quantization of £(g).

4.1. Quantum torus. Let g be an indeterminate. Let us recall that T;, j) (u € Z) in
(2.10) and the even function 7; ; : Z — Z defined in (2.11).

Definition 4.1 ([25,47,60,67]). Let (X, *) be the Z[qi%]-algebra with the generators
{X;E; | (i, p) € Ay} with the defining relations

)?i,p * le = 3(171 * Y,',p =1 and ii,p * ij,s = qﬂ(i,p;j,s)ij’S * )?i,p,

where (i, p), (j, s) € EO and
NG, p;j,s)=Tjlp—s—D—=Tjs—p—1)—=Tj(p—s+1)+TF j(s — p+1).

4.1)
We call X, the quantum torus associated with C(t) (see Definition 7.1 below).

Remark 4.2. For simply-laced finite types, the quantum torus X, was already defined
in [25,60,67], whereas for non-simply-laced finite types, it is introduced in [47] very
recently.

Note that since E(t) is symmetric,
NG, p; j.s) = NG, pii,s) = =NG,s5 j, p) = =N, s34, p),
and it follows from Lemma 2.2 that
NG p:j.s)=Tij(p—s—D =T j(p—s+1) ifp>s. (4.2)
Moreover, for p € Z and i, j € A, such that (i, p), (j, p) € EO, Lemma 2.2 tells that
Xip*Xjp=Xjp*Xip. (4.3)

By specializing ¢ at 1, the quantum torus A; recovers the commutative Laurent
polynomial ring X', while & is non-commutative; i.e., there exists a Z-algebra homo-
. . 1 ~
morphism evy—; : X; — X givenby g2 — l and X; , — X; p. 5
We say that m € X is a X;-monomial if it is a product of the generators Xl.i; and
1 L~ ~ ~
g*?2. For a X,-monomial /i € X,, we set u; , () := u; p(evy=1 ()) (see (3.1)). An
X,-monomial 7 is said to be right-negative if ev,— (i) is right-negative. Note that a
product of right negative X’-monomials (resp. X;-monomials) is right negative. A &;-

monomial 77 is called dominant if ev,—i (71) is dominant. Moreover, for &, -monomials
m,m’ in X, we define

m <, m' ifand only if ev,— (M) < evg=1 ().

Fori € A, we call X-monomial m (resp. X;-monomial 71) i-dominant if u; ,(m) >
0 (resp. ui,p(n?) > 0) for all p such that (i, p) € Ay. For J C A, we call X-monomial
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m (resp. Xy-monomial 1) J-dominant if m (resp. m) is j-dominant for all j € J. For
monomials 72, m’ in Xy, we define

NG ay= > uip@@us@GING, p: j.s). (4.4)

(i.p),(j.s)eDg

There exists the Z-algebra anti-involution 6 on X ([25,47]) given by

~

are gt R, aiXip. 4.5)

Thus, for any X,-monomial m € A}, there exists a unique r € %Z such that ¢" 7 is

(-)-invariant. A monomial of this form is called bar-invariant and denoted by i. For an
example,

G o
Xi,p =g 7 X; p is bar-invariant.

More generally, for a family (ui, p | @i, p)e 10 ) of integers with finitely many non-zero
components, the expression

CI% Y= Wit s NGossiop) Xi-p (4.6)
@.peky P '

does not depend on the choice of an ordering on lo and is bar-invariant.

Remark 4.3. Note that the relations in Definition 4.1 do not change when we replace X ip
with X; p, and /1 depends only on ev,—{ (7). Therefore, for every monomial m in X', we
denote by m the bar-invariant monomial in X, corresponding to m. Also the notation
Y; p of (Y, %) in [29, Section 3] corresponds to X; ,, the bar-invariant monomial, in this
paper.
For (i, p) € lo, we set
Bi,p = Bi p € Xq. (47)

Definition 4.4. LetB_ be the Z [¢*!/?]-subalgebra of X, generated by El_ Ij sfor (i, p) €
- 3l
*

IxZ.Fork € Z 1, wedenote by B, * the Z[g*!/?]-span of the monomials o B .-
sk

For bar-invariant X;-monomials m and mj, we set m| - my := mmy, and for m;

(k € Z>1), we set
Hﬂ::ﬂmk. 4.8)
k k

Definition 4.5. (cf. [18, Definition 5.5]) For a subset S C 10, we denote by SXq the
quantum subtorus of &, generated by X li; for (i, p) € S C Ay. In particular, for a

height function £ on A, we denote by SXq the quantum subtorus generated by X li; for
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Proposition 4.6. ([47, Proposition 5.7]) Fori, j € I and p, s, t,u € Zwith (i, p), (j, s+
1)5 (lvt+ 1)7 (J, u+ 1) € AO, W@have

X; BTl — ,BGpijs) BTl L Y. Bl pTl — jaGnjupg-1, p-1
Xip*Bji=gq B; o * Xip and B;, *B;, =q B, *B; .

Here,
B, p; j,s) = 8ij(=8p—s,1 +8p—s—D)(ai, ), 4.9)
(o, o) if @ 1) =(j,u=x2),
a(i,t; j,u) = {£2(a;, aj) ifd(, j)=1andt =u=*1, (4.10)
0 otherwise.

4.2. Quantization R, (g) of R(g). We briefly recall the construction of & (g), defined in
[25,47,60,67], by mainly following the argument in [24,25]. For each i € I, we define
the free A;-left module

L ,= @ X5, 4.11)

r: (i,r)eﬂo

whose basis elements are denoted by 5; .. We also regard LX,',q as a X;-bimodule by
defining right X;-module action - as follows:

S = q; PR, (4.12)
where #1 is an X,-monomial (see Remark 4.11, cf. [25, Lemma 4.6]). Let &; , be the
quotient of Lz’\,’,-,q by the A} -submodule generated by the elements

Bi i1 Siy — qiSirea for (i,r) € Ag. (4.13)

By following arguments in [25, Proposotion 4.8] and [5, Lemma 4.3.1], we have the
following lemma:

Lemma 4.7. For each [ with (i, 1) € EO: the Xy -left module X; 4 is free over any {5; r,},
where (i, rg) € A.

For all i € I, we define

/\
—Lx, Xig s (4.14)
Siq

Si,q . Xq

where each map is defined as follows (recall (4.11) for definition of L)(i,q):
(a) The map §,-,q is defined by

—21 Z TE"»” mi

i r:(i,r)eﬂo

Siq () =

for an X;-monomial m, where LXi,q is regarded as the X;-bimodule. Here T U
denotes the commutator.

(b) The map from L)(I-,q to X; 4, denoted by an double-headed arrow, is the surjective
map sending an element of LX,',q to its image in X} 4 (recall (4.13)).
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By direct computation, we have the following:

Proposition 4.8. The map S; 4 is a Z[qi%]-linear map and derivation with respect to
*, that is,

Siq(my s ma) = my-S; 4(M2) + S; g (M1)-m2, (4.15)
where the - indicates the X -bimodule actions of X; 4 induced from LX,-,q.

Definition 4.9. For i € A, we denote by ; ;(g) the Z[qi%]-subalgebra of X, gener-
ated by

Xiox(1+q7'B})) and )?jil for j € Ag\ {i} and (i, 1), (j,s) € A,.
By using the same arguments as in [15,24,25], we have
Riq(9) = Ker(S; 4). (4.16)

Therefore, we call S; 4 the i-th q-screening operator with respect to £; 4 (g).

Definition 4.10. [47] We set

Ra(@) =) Riqg(@

iel
and call it the quantum virtual Grothendieck ring associated to C(t).

Remark 4.11. Using the fact that S; ; is a Z[qi%]-linear derivation (or by its definition
with (4.12)), one can check that Then it follows from the definition of S; 4, (4.12) and
(4.13) that

S, —15-1_ 5% S—1vs R -
Siq(X;y +q; Xy *Big—1) = (=X, )sig+(q; X;; *Bij—1)si1—2=0.

In fact, ; 4 (g) isrealized as the Z gt > ]-subalgebra of X}, generated by X i ll +q171 X 1y ll *
Bij—1and X7 for j € Ag\{i}and (i, 1), (j, s) € A (cf. (4.16)).
Remark 4.12. Since the following diagram commutes (cf. [25])
Siq
Xy ———— &y
evq=1¢ ¢6Vq=1 4.17)

X4

where S; is the i-th screening operator with respect to C(r), we have evy—; (ﬁq (g)) C

f(g). However, the opposite inclusion ev,— (ﬁq (g)) D R(g) is not trivial (for non-
simply-laced types). We resolve this issue in the next section.
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5. Bases of R, (g) and Kazhdan-Lusztig Analogues

Let (g, g) be a pair in (2.4). It is known in [57,58] (see also [25]) that the basis F, of
R, (g) with properties (5.1) below can be constructed algorithmically by using a deformed
Frenkel-Mukhin (FM for short) algorithm (cf. [15]) with respect to C(g) (so-called ¢-
algorithm [25]). This basis enables us to construct other important bases of &, (g) (see
(5.5), Theorem 5.9). In the second part of this section, we will construct a basis F, of
£4(9) by a deformed FM-algorithm with respect to C(¢), and verify that it has similar
properties to (5.1) by following the framework in [25]. Moreover, we construct other
bases E, and L, of &, (g) from the basis F in the spirit of [25,58], where analogues of
Kazhdan-Lusztig polynomials [49] were studied (see Theorem 5.31, Remarks 5.10 and
5.32).

5.1. Bases of ;(g). Note that C(g) coincides with C(¢) for simply-laced finite types,
when we replace g with ¢. Thus,

throughout this subsection, we switch the roles of q and t.

This makes our notations more compatible with the literature where only simply-laced
types are considered, and we presents previously known results in this subsection.

Remark 5.1. When g is of simply-laced type, the variable A, , in (3.3) coincides with
B, in (3.7) by replacing ¥ with X. Since this subsection presents previously known
results for g, we do not introduce a new notation for Bq_ in this case, and just denote it
by B, following the above convention. Namely, B, is the Z[t*!/?]-subalgebra of ),
generated by Z:l],’s for (1, p) € I8 x Z. In a similar way, we write B;k instead of B;k
for g (see Definition 4.4).

Remark 5.2. Inevitably, we have used several notations for monomials. We recall those
notations for convenience of the reader. We say that m € X is an X-monomial (or just
monomial if there is no confusion) if m is a product of X li[l ’s for (i, p) € I x Z, while

m € X, is said to be an X, -monomial if m is a product of )?ii’;’s and ¢*'/? so that
evg=1 (m) becomes an X'-monomial. With regard to the Z-algebra anti-involution (4.5),
we frequently consider the bar-invariant monomial ni (4.6) corresponding to an X-
monomial m such that ev,—; () = m and m = n, which is denoted by m for simplicity
(see Remark 4.3). Under Convention 4, we denote by m € ) and m, m € ); those
. . . +1 P+l c oyl Pl ;

monomials for simply-lace types, replacing X 0 X ped with Y=, Y=, 1, respectively.

In [25] (cf. [58,60]), the algorithm for constructing basis F; := {F;(m) | m € M%}
was proposed, so called t-algorithm. The structure and properties of the algorithm can
be summarized as follows:
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(a) For each dominant ),-monomial m, we construct an element F; (m) by adding
monomials m’ € mB;” ¥ in an inductive way as k increases from 0. In the process,
the coefficient for each monomial is also determined in an inductive way.

(b) If there appears a unique m’ with the smallest k € Z> satisfying

(i) i’ is anti-dominant and i’ € MB; ¥ is generated in the performing step,
(ii) any monomial generated in the previous step is contained in mB;™
(0 < s < k), not anti-dominant, and strictly larger than m’ with respect to <\

then, the coefficient of m’ is contained in t%Z. Furthermore, the sum of all monomials
with coefficients obtained from the steps so far, denoted by F;(m), is contained

in the kernel of S, ; for all . Hence F;(m) is an element of &;(g) and the

t-algorithm terminates. 5.1)

Furthermore, each F;(m) satisfies the following properties:

(1) F,(m) € & (g) NmB, .
(2) F,(m) is bar-invariant if m is bar-invariant.
(3) Every monomial of F;(m) — m is strictly less than m with respect to <.

Remark 5.3. Another characterization of &, ;(g) in Remark 4.11 allows us to consider the
lowest £-weight version of the 7-algorithm, that is, a #-deformation of reversed Frenkel—
Mukhin algorithm which is an algorithm starting from the lowest £-weight monomial.
For instance, the formulas in [25, Lemma 4.13] can be reformulated in terms of anti-
dominant monomial with A, ;’s. The reversed algorithm seems to be already known to
experts in the theory of g-characters (e.g. see [15], [56]).

Let m_ be an anti-dominant (bar-invariant) );-monomial. We denote by F;(m_)
the unique element of R;(g) generated by the reversed t-algorithm (referred above)
with respect to m_. Then one can verify that F;(m_) satisfies similar properties to
(5.1) after modifying notations and terminologies associated with m_. For example, the
property (3) in (5.1) associated with m_ is restated as every monomial appearing in
Fy(m_) —m_ is strictly greater than m_ with respect to <. Throughout this section,
we often refer to these properties.

Theorem 5.4. [59, Theorem 3.1] [27, Theorem 4.1, Lemma 4.4] For (1, p), (1, s) € go
with p < s, the element F;(m®[p, s]) € R;(g) is of the form

FmW[p,s) =m[p, s+ (1+A L *x),

1,5+

where m(’)[p, s] = m(’)[p,s] and x is a (non-commutative) Z[ti%]-polynomial in

-1
A],k+l

(J,k) € 50. In particular, we have
Fm®[p,s]) = Fl(m(_’*)[p +h,s+h),

where m(i*)[p +h,s+hl:=@m"[p+h,s+h])_ and

(1) F;m®[p, s1) has the unique dominant (resp. anti-dominant) monomial m®|[p, s
(resp. m(_l )[p +h, s +h]),
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(2) all Y;-monomials of Ft(m@)[n s]) — m(’)[p, 5] — m(_z*)[p + h, s + h] are products
of inul with p < u < s + h and right-negative.

@) for (1, p), (J, p) € Ay, J # 1), Fm®P[p, s1) and F,mV[p, s]) commute; i.e.,
FmY[p,s]) * F;,(mY[p,s]) = F,m"Y[p, s]) * F,mV[p, s).

It is well known that, for r € 2Z and 1 € A,
T.(Fm"[p, s])) = F;mY[p+r,s+r)), (5.2)

where T, is the Z[ti%]-algebra automorphism of ), sending 17, p 1o 17, D
Theorem 5.5. [25, Theorem 5.11]

(a) For every dominant (resp. anti-dominant) monomial m € Yy, F;(m) is the unique
element in R;(g) such that M is the unique dominant (resp. anti-dominant) monomial
of F,(m).

(b) Every monomial appearing in F; () — m is strictly less (resp. strictly greater) than
m with respect to <.

(c) The set F; .= {F;(m) | m € M%}forms a bar-invariant Z[Ii%]-basis of R (g).

Remark 5.6. We remark that an element in £, (g) is characterized by the multiplicities
of its dominant (resp. anti-dominant) monomials by Theorem 5.5. Then it yields that
evi=1 (F;(m)) = F(ev,= (m)).

Example 5.7. We present Ft()?z&) of type Dy (cf. [58, Example 5.3.2]) by organizing
the monomials appearing in F; (Y3 ) as a directed graph I'(Y2,¢) such that F; (Y3 ) is
the sum of the monomials on the vertices of the directed graph, see (5.4). Note that in
this example, we write the );-monomials according to the order given by

t,p)<((,s) << (p<s)or(p=sandi < ). (5.3)

We use the convention of [17,58] for the directed oriented graph F(l?z,o): For mono-
mials m; and my, we use an colored directed edge f (1) m LY g(t) myifev,—;(my) =
evi—1 (ﬁllg:,:), where f (1), g(t) € Z[ti%]. Then the directed colored graphs F(I?zyo)
of Ft(?Z,O) is given as below:
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For a dominant monomial m € M2, we set

E/(m) =" * xR ™)), (5.5)
PEL \1€l8;(1,p)eh,
where a is an element in %Z such that m appears in E;(m) with the coefficient 1. Here
* F,(Yl,p)"'-l’(m) is well-defined by Theorem 5.4 (3). Note that E;(m) contains m as its
1

maximal monomial with respect to <_. In particular, by Theorem 5.5, we have

E/m)=F,m)+ Y  CppFi(m) (5.6)
m’<Nm
with Cpm € Z[ti%]. Note that the set E; := {E,(m) | m € M%)} also forms a Z[ti%]-
basis since

g{m’ € M, |m’ <, m} < oo foreachm e M,. (5.7)

We call E; the standard basis of £R:(g).

Remark 5.8. We should point out that the ¢-algorithm (explained in the beginning of
Sect.5.1) might progress infinitely many times. In fact, F;(m) was constructed in a
completion of £,(g) at first. Interestingly, the property (1) in (5.1) is guaranteed once
we prove _

Fi (Y, p) € R (8). (5.8)



173 Page 28 of 83 I.-S. Jang, K.-H. Lee, S. Oh

More precisely, (5.8) implies E; C £;(g). Then it is known (e.g. see the proof of [25,
Proposition 6.3] for more detail) that E; has the unit-triangular property with F;, that is,
F;(m) can be written as a linear combination of elements in E;, C £;(g), so the proof
for (1) in (5.1) is reduced to prove (5.8). Then (5.8) is deduced from [58,60].

Note that Y, , is a minimal element in M, with respect to the partial order <\ Thus
(5.6) tells that

Et(&) = Ft(&)

Using the bases F; and E;, the third basis L; :={L;(m)} of &, (g) has been constructed
in an inductive way using < such that

Ei(Yip) = Fi(Yip) = Li(Y,,p) (5.9)

and L;(m) for general m € M, is characterized as in the following theorem.

Theorem 5.9. [60] (see also [25]) For a dominant monomial m € MJgr, there exists a
unique element L;(m) in R;(g) such that L;(m) = L,(m) and

E;(m) = L,(m) + Z P (1)L (m')  with Py (1) € t7Z][1]. (5.10)
m/<Nm

We call L; the canonical basis of &;(g).

Remark 5.10. In a highly influential paper [49], Kazhdan and Lusztig conjectured a re-
alization of the composition multiplicities of Verma modules for g in terms of a certain
class of polynomials defined by Iwahori-Hecke algebras, so-called Kazhdan—Lusztig
polynomials (KL polynomials, for short). The Kazhdan—Lusztig conjecture states that
the specialization of the KL polynomials at 1 coincides with the composition multiplic-
ities of Verma modules. This is proved independently by Beilinson—Bernstein [2,3] and
Brylinski—Kashiwara [6]. Moreover, it is shown in [50] that the KL polynomials can be
interpreted as the Poincaré polynomials for local intersection cohomology of Schubert
varieties. This geometric interpretation gives the positivity of the KL polynomials.

A similar story has been developed in the representation theory of quantum loop
algebras. In [57,58,60], it is proved by Nakajima that the specialization of Py, v (?) at
t = 1 gives the composition multiplicity of L(m’) in the standard module E(m). Fur-
thermore, Py gy () coincides with the Poincaré polynomial of intersection cohomology
of graded quiver varieties, which implies the positivity of Py g (). Consequently, the
polynomials Py ny () may be viewed as analogs of KL polynomials. We also remark
that there have been recent developments ([18,19]) associated with Py ny(¢) for the
quantum loop algebras beyond ADE-types.

Theorem 5.11. [60]

(a) For a dominant monomial m € M®, every monomial in L;(m) has a quantum
positive coefficient; that means, each coefficient of a monomial in L,(m) contained
in Z>0[ti%]. In particular, we have ev;—1(L,(m)) = x4 (L(m)).

(b) For each monomial m(’)[p, s], we have Ft(m(’)[p, s = L,(m(’)[p, sD.
(c) The coefficient Py ny (t) in (5.10) is actually contained in tZxq[t].
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Remark 5.12. Let recapitulate the main points in this subsection. From the 7-algorithm,
we obtain abasis { F;(m) | m € M%} of R, (g). One crucial step is to prove that F; (Y, ) is
contained in K, (g). Thenitis proved in [25,60] that there are frameworks for constructing
two other bases {E;(m) | m € M2} and {L,(m) | m € M%} of &;(g). In particular, the
basis {L;(m) | m € MJgr} is constructed using the two other bases through the induction
on M, via < and there are uni-triangular transition maps (5.6) and (5.10) between
the three bases.

As L;(m) can be understood as a t-quantization of L(m) by Theorem 5.11 (a), the
T -system among KR modules is also #-quantized as follows:

Theorem 5.13. [29, Proposition 5.6] (see also [59, Section 4]) For (1, p), (1,5) € AO
with p < s, there exists an equation in £;(g):

Lt(m(l)[p’ S)) * Lt (m(l)(P» S]) = thl‘ (m(l)[[?» S]) * Ll‘ (m(l)(p’ S))
+ ] Li(mY(p.s)). (5.11)
J:d@, =1

where Lt(m(/)(p, s)) and L[(m(/) (p,s)) (J, j € I) are pairwise commute and

T Qe —p+ DT —p) - 1) B
y = > and x=y-—1.

5.2. Bases of R;(9). Assume that g is of non-simply-laced finite type. Since C(g) can
not be identified with C(z) anymore,

we come back to the convention of the previous sections (not the previous
subsection).

Let ﬁ?f; (9) is the completion of &; () satisfying ﬁ?f; @ NA, =R 4(9) = Ker(S;4)
(see Lemma 5.36). Then we define

2@ =8> .
iel
which can be viewed as a completion of £,(g) as in [25, Section 5.2]. By following
the construction of {F;(m) | m € ./\/ngr} in [24,25], we can establish an analog of the
t-algorithm in [25, Definition 5.19] on ﬁ;’o(g), called g-algorithm in the setting of
Sect.4.2.
Roughly speaking, the algorithm is given inductively by computing all possible quan-

tized i-expansions while determining “correct” coefficients in Z[g* > ] of resulting mono-
mials, so that the resulting element is contained in ﬁ;’o (9) (consequently, R,(g)) (cf.
[15, Section 5.5], [25, Definition 5.19]).

Let us summarize the g-algorithm. For X'-monomials m| and m,, we use an colored

. i,p . _ .
directed edge my —> my if my = m B, ;. For X'-monomials m and m’, we say that m’

is generated from m if there exists a finite sequence {(i1, p1), (i2, p2), -+, (i¢, pe)} C
I x Z such that

i1, p1 i2, p2 ie—1, pe—1 ,
nm = my mi s my =m,
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where my is an X-monomial of E j(mj_1) defined in (5.34) for 1 < k < £ for some
JClI.

Let m be a dominant X;-monomial. Then we collect all possible X'-monomials
generated from 772, and then enumerate them by

<My < ---<mg =M, (5.12)

where < is a total order compatible with < at g = 1. Let m, be an X, -monomial
determined inductively from assuming the existence of

FrqGiig) € () £7%(9)
ieJ

for some u < v and J C I, where Fj,(m,) contains 7, as a unique J-dominant

monomial. Note that 772, is uniquely determined up to a coefficient in q%Z. For this
reason, we fix an order defined as in (5.3) on spectral parameters to write them uniquely.
For J C I, we denote by (s(mv)(q))vez>O and (Sl(mv)(CI))uez>0 the sequences in

Z[qi%]Z%’ defined inductively as follows:

s1m) (@) =Y (s(mu)(g) — s7(mu)) c1(q)(my),

. . . (5.13)
s(my)(q) = sy (my)(g) if my is not J-dominant,
v\q) = 0 if m, is dominant,

where s(mg)(q) = 1, s7(mo)(g) = 0 and c;y(g)(my) is a Z[qi%]—coefﬁcient of n, in
Fj 4(m,). Here we assume that F; ,(1,) = 0 if m, is not J-dominant, so ¢;(¢q)(m,) =
0 in this case. Note that the sequences (s (mv)(q))vez>0 and (sy (mv)(‘I))veZ>0 are well-

defined, and s(m,)(g) does not depend on the choice of J C /. This can be proved as
in [25, Lemma 5.20]. Finally, we define

Fy (i) =) s (i) (q) ity (5.14)
v>0
Remark 5.14. We need to make some remarks on the g-algorithm:
(1) One can prove the validity of the g-algorithm in our setting using the arguments in

[25]. More precisely, define

R():=bC() = (R

ijeld’

Then we consider the C-algebra .7 generated by b;[m] fori € I,m € Z \ {0} and
central elements ¢, for r > 0, with defining relations

Thilml, bjlrlh = 8 —r(t™ — t ™R (™)),

where i, j € I and m,r € Z\{0}. Putx;[m] := Y_;; C;; (t")bilm] € A for j € I
and m € Z. Note that

Txi[m], x;[rlU = 8, R;; (") — 17" )Cm).
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With these definitions, one can check that the formulations in [26] recover precisely
the quantum torus &} (Definition 4.1), the g-deformed screening operators S; ; (in
the sense of Remark 4.12), the quantum virtual Grothendieck ring &, (@) (Definition
4.10), and so on. Now the g-algorithm (in ﬁ;o (9)) follows verbatim from [25] without
any complications. - -

(2) In the computational view point, the elements X; , and g; B;,, in the g-algorithm play
the roles of 17, p and tgi, p in the z-algorithm. However, for a dominant A7 -monomial
m such that ev,— (1) = & (ev;—1 (M)), it does not mean that F, () is obtained from
F;(m) by the above replacement for non-simply-laced types (see also Remark 5.17).

(3) We emphasize that the set of monomials in (5.12) might be infinitely countable, but
that the number of nonzero Z[qi%]—coefﬁcients in (5.14) should be finite. Thus the
formula on the right-hand side of (5.14) makes sense, and it is actually a finite sum.
The proof is non-trivial. See Proposition 5.20 and (5.25) below (cf. [26]).

We say that

(a) the g-algorithm is well-defined for step r if there exist sy(my)(g) and s(my)(q)
defined in (5.13) for 0 < v < r, and
(b) the g-algorithm never fails if it is well-defined for all steps.

When the g-algorithm never fails, it yields, for each dominant monomial 71 in X,
Fy(m) € £°(9) (5.15)

containing 7 as a unique dominant monomial. The g-algorithm is well-defined and never
fails by following the framework of [25, Section 5.3]. Since the proof is quite parallel
to [25] as indicated in Remark 5.14 (1), we do not provide a proof here. Instead, we
will detail the algorithm and its consequences in Example 5.16. Before presenting the
example, we record the following consequence.

Proposition 5.15. Let ﬁf’f (9) be the Z[q* 7 1-submodule of 8°(Q) generated by ele-
ments in R;o (9) with finitely many dominant monomials. Then the set

{ F,(m) | m is a dominant monomial in X, }

isa Z[qi%]-basis ofﬁgo’f(g). Indeed, R;O’f(g) isa Z[qi%]-subalgebra of.ﬁ;’o(g)

Example 5.16. We illustrate the g-algorithm by computing Fq(izys) for type G». For
n € 7\ {0}, we use X7 , to denote X ; ’; for simplicity. We compute all X;;-monomials
with non-zero Z[qi%]—coefﬁcients starting from X 2,5 as follows:

Step 1. For J = {2}, since Ej(X25) = Fj(X25) = Xa5(1 + Bz_é) = X25+
XfﬁXg}, we will deteimine the Z[qié]—coefﬁcient of XfﬁX;}. For this, we compute
F> 4(X3,5). Note that X5 5 % (1 + q_3BZé) € ker(82,4) (see (4.16) and Remark 4.11).
We compute

By = X2,5X2,7X[2 = 6I3X1_,2 * X277 % Xo5.

It follows from Proposition 5.35 and Lemma 5.36 that £, ()?2,5) = fz,s *(1+g -3 EZ%).
Then we have

s1(X3 6X50)(q) = q°.
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Since X]3 GXE; is not 2-dominant, we see that s(XiﬁXz*%)(q) = q3. Hence, we obtain
the new term q3)~(3 1.6 % )Nf_% in this step
Step 2. Let us consider X 1.6 % X ;- In this step, set J = {1}. Since

3
Es (X 6X30) = Fr(X10° X0 = (Xio(l+ BID) X34 = (Xi6+ X1 X207 X5,

we will determine the Z[qi%] coefficients ole 6X1_é, X1 6X1_§X2 7 and Xl_ng ;. Let
us only do the Z[¢g* ] coefficient of X? 16%1, 8 explicitly because the computation for
the other monomials is almost identical. By Step 1, we know that

51 (X7 6Xa (@) =0, s(X]6X33)(0) =4q°. (5.16)

On the other hand, since S; , is a Z[qi%]—derivation (see Proposition 4.8 and Remark
4.11) and (4.16) holds, we have

()N(Lﬁ +q’])ﬁ(’1,6 * 13;%)3 * X;% € ker(S81,4).

Here Eu = )~(2_% * )?1,8 * }?1,6. Thus, it follows from Proposition 5.35 and Lemma
5.36 that ’

3 o1 = -1% 5133 . ¥-1
Fl,q(X1’6*X2’7)=(X1,6+q Xl,ﬁ*Blj) *X2)7.
The expansion of (X1, +q_1X1,6 * Bl_%)3 is

~36+(q_2+1 +q2)§26*§27*§?fé (5.17)
+(P+¢°+q )xlﬁ*xﬂ*xlgwﬁxﬂ*xlg,

~ ~

where X2 6*§27 X é X5 ;zq_3§%,6*§f,f}3 due to Definition 4.1. By (5.16) and
(5.17), We have

SJ(X%,6X;,§)(Q) = 613(6]_5 +q_3 +q_1) = q_2 +1 +q2.

Since X%’6X1fé is not 1-dominant, we set s(X%6X[é)(q) = sJ(X%’éXié)(q). Hence,
~ ~ 1
we have a new term (¢ =2 + 1 + qz)X% 6 * Xfé Similarly, one can compute the Z[g¥2]-
coefficients of X ¢X f%ij and X l_gX % ;- As aresult, we have the following terms in
this step:
@2 +1+gHXT o+ X4 (1+q*+qHX16xXo7x X5, ¢°X3,+ X[ 3.

Step 3. Let us consider the monomials X1,6X2,7X1_’§ and X§’7Xl_§. In this step, set
J = {2}. Then we observe

EJ(X1,6X2,7X1_§) = X1,6F; (X2, 7)X_§ = X1,6X2, 7X1_§ + X1,6X1, st_é,
_ 25
Ej(X57X73) = (Fr(X2) X1 3 = X37X, 3 +2X27X, 9+ X 4 X33
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As in Step 1 and Step 2, we compute new terms obtained from them, respectively:

2,8 ~ ~ ~
(1+q%+q )X16*X27*X13—>(6] g v )X 16 % X1 g x X5,

q X2,7*X1_,8—>(q_ +q%)X27 *X£9—>€/ °Xis* X35

Step 4. Set J = ({1}. Let us consider the monomial X1,6X1,3X2_é which is 1-
dominant. As in Step 2, one can check
Fl,q()?l.6 * 351,8 * )?2_;) = §|,6 * }?1,8 * (1 +q7]§E9l +q73§E; * El_;) * )Nfz_é (E kcr(SLq))
= 21,6 *5(‘1,8 * X;é +q715(‘1’6 *21710 +q3(J2’7 * X?é * 5(‘17]10
On the other hand, we have seen

s(X1.6X18X50)(q) =q > +q "' +q and 5;(X1,6X158X50)(q) =0.

-4, -2

Hence, we obtain new terms (g
o1
X1 10°

Step 5. In the case of X3 1.8%2.9 2 which is 1-dominant, the computation in this step is
similar to Step 2 (up to shift of spectral parameter). As a result, we have

+q 72+ DX 6% X| gand (g 2+ 1+¢2) Xo 7+ X 4 *

-2 -3

~ o~ 19 - ~ -~ 1,9
q6X% g * Xz_g—>(q +1 +q2)X%8 * X{é * XI}O—>(q +q*1 +1)

1.9
Xlg*X2 1O—>q X29>1<X1 10

Step 6. We consider X29X 1_?0 which is 2-dominant. One can check that we have

new term g~ 3Xs 2. 11 from X5 o X 10 by similar computations as in Step 1.
Now the sum of all X -monomials obtained from the steps so far, denoted by

F, (X2,5),canberead1n (5.19) below. Then it follows from Step 1-Step 6 that F, (X2,5) €
ker(S; 4) fori = 1, 2. For example, F,;(X> 5) is written as

Fy(X2,5) = F1,4(X25) + @ FLq(X] g+ XD+ (@ +q 7 + @) F1 g (K16 % X1 8% X5 9)

+(@ 7+ Ko7 % Xy 9) +a°F1 (X g Xy 5 + a7 F1 (X 1)
(5.18)

which is clearly in ker(S; 4) (recall Proposition 5.35). The case of i = 2 is similar.

The X;-monomial q_3)?£ }1 satisfies the obvious counterpart of (b) in (5.1) with
respect to qu()? 2.5), that is, the g-algorithm terminates at this step and the Laurent poly-
nomial F, (X2 5) is in &,(Q). Indeed, for a dominant X, -monomial 772, the g-algorithm
allows us to write F;, (77) as a linear combination of F; ,(-)’s over Z[qi%] as in (5.18).
This is a general fact that plays a key role in proving Proposition 5.20 (see Sect.5.3 for
more details). - -

The directed colored graphs I'(X2 5) and I' (X2 5) of F'(X25) € A(Q) and F,; (X3 5) €
£4(9), respectively, are given as follows:
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Xa5 Xa5
| |
26 26
‘L ~. ~
Xi6X3) X6+ X35
| |
17 )
4 4
PR _ e Lo
3XT6X1s @2 +1+g)X] % Xy
| |
17 L
‘L ~ ~ ~
3X16X27X 2 A +q?+qHX 6% Xo7# X3
‘7/ \2* \7/ \zw
3 \ 1
P _ P 3, S~
X32X13 3X16X18X59 ‘19X§.7*X|,§ (@3 +q ‘+q)X|_(,*X1.g*Xz_é
| | | |
28 Lo 2 1o
+ L ~ v ~
262755 3X16Xi 1o @+ gH¥g = X5} @ g+ DX X,
| | | |
25 17 25 17
+ 4 4 4
XX} XXy R il @R Fileki, (5:19)
~N e _—
" 2 2
> 1 /| 1 1
2 y-ly— - 2%2 Xl e ¥
3X75X20X 1 10 @+ 1+ )X g Ko+ X1
\‘o v‘u
4 4
2 3, S =
3X1.8X1 10 (g3 +q "+ DX1s % X1 7,
| |
o Lo
‘L ~ ~
X20X o P*Xa0x X1
| |
210 20
+ 4
-1 351
Xon 97X

Here F (X3 5) is obtained from evt=1(T5(F,(I72,o))) (see Example 5.7 for Ft(f/’z,o)) by
folding the J-monomials (recall Remark 5.6).

Remark 5.17. Let us recall that F'(X7, ) is obtained from F (Y, ;) by folding the mono-
mials of F (Y, ) via (3.6) (see Corollary 3.10). However, we would like to emphasize
that we do not know yet whether F;; (X7, ,) could be obtained directly from F;(Y; ,) by

folding );-monomials with some modification of coefficients in Z[qi%].

Definition 5.18. For f € &, we set

M(f) :={m|me M(f)},
M (f) :={evy=1(m) | m is a dominant monomial in f}, M, (f):={m|m e M ()}

M(f) :={evg=1(m) | m is a monomial in f},

For P € £,(9), a monomial m in P is called maximal monomial (resp. minimal
monomial) if its £-weight is not lower (resp. not higher) than any other monomial in P
with respect to <.

Lemma 5.19. (cf. [15, Lemma 5.6]) For P € £,(Q), any maximal (resp. minimal)
monomial in P is dominant (resp. anti-dominant).

Proof. Let us first consider a maximal monomial in P, denoted by 7. Take i € I. By
Definition 4.9 and Proposition 4.6, we have

Pef (9) =25 X .~ L @Z[eENK +a K kBT
€ Riq(@) =Zlg™2][ j’l](]’[)eﬁo’]#l® [g™2][X;, q; il * i’l+1](l‘1)eAO'
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Hence, the element P can be written in the following form:
P = i * P,

~ 1~ . ~ =
where ni(jy € Z[Qif][xj,l](j,l)elo,j;éi are monomials and, pp) € Z[qi%][X,-J +
qi_lXi,l * Bi,_ll-l](i,l)egg are of the form

= > (X “1X. « B=L ynid
P®) =nc(q) * il 4g; il * il+1)
(i,l)eh,, ’
finite
1 ~ .

forsome n;; € Z>1,n € Zandc(q) € qu. In particular, the maximal monomial m is
amonomial in 77i (1) * P(2). Since Xi’lBiLl <\ Xi, the monomial m should be obtained
from 711y and X;;’s,. Otherwise, it contradicts the assumption that m is a maximal
monomial. Since i € [ is arbitrary and P € £,(g), the maximal monomial . should be
dominant. In the case of minimal monomials, the proof is almost identical because of
another characterization of £; ;(g) in Remark (4.11). m|

The following proposition plays a crucial role in proving fundamental results estab-
lished on £, (g).

Proposition 5.20. For p < s, letm® [ p, s]be given suchthatac(m®[p, s]) = m©D[p, s]

(i.e.7=1).

(1) For each m' € M(F, mD[p, s1), there exists m' € M(F,(m"[p, s1)) such that
om’)=m'.

(2) We have Fy(mP[p, s1) € R¢(Q).

Proof. We will give a proof of Proposition 5.20 in Sect.5.3. O

Definition 5.21. We call an element of the form F, (mW[p, s1) a KR-polynomial. In
particular, we call F,;(X; ;) a fundamental polynomial. We also call a monomial of the

form m(’)[p, s] a KR-monomial.

Corollary 5.22. For p < s, let m(i)[p,s] be such that E(m(’)[p,s]) = m(i)[p,s]
(i.e. 1 =1). Then we have

& (MEmO1p, 1)) = MF,m[p, s]).

Proof. The inclusion D follows from Proposition 5.20 (1). Let us prove the opposite
inclusion C. Letm € o (M(Ft m®[p, s]))) be an X'-monomial, where we write m =

o (m) for some Y-monomial m € M (F; (m(l)[p, s])). We have seen
eviet (F@®[p,sD)) = Fm®[p, s]) (5.20)

(see Remark 5.6), and then the quantum positivity for F;(m®[p, s]) in Theorem 5.11
with (5.20) implies that all the coefficients of F(m®[p, s]) should be positive. In par-
ticular, the coefficient of min F (m(’) [p, s]) is positive. Since it follows from Corollary
3.10 and Theorem 5.4 that
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& (Fa®p,sD) = Fen®p, s)), (5:21)
the X’-monomial m appears in F (m¥[p, s]) with a positive coefficient. But, we have
Vo=t (Fy@®1p.sD) = Fnlp. s (5.22)

(see Corollary 5.28), which implies that there exists a term f(g)m in F,(m®[p, s])
such that evy—1 (f(q)m) = f(1)m is atermin F (m[p, s]) with £(1) > 0. O

Proposition 5.23. For each (i, p) € Ko we have

(a) Fy(Xi,p) = Fy (X_ p+h) contains only one anti-dominant monomial Xl b
(b) All X;-monomials of Fy(X; p) — Xi p Xi*,p+h are products of X;tli with p < u
<p+h

(©) Fy(Xi.p) and Fy(X ;) (G, p). (j, p) € Bo. j # i) commute.

Proof. Since F;(X; ;) is an element in &, (g), it contains an anti-dominant monomial by
Lemma 5.19. Then Theorem 5.4 and Proposition 5.20 tell that F, (X; ,) has the unique
antidominant monomial Xl*lp +h- Thus (a) follows. By (3.10), (b) follows from (a) and
Proposition 5.20. Finally, (c) follows from the same argument as in [25, Lemma 5.12

(iv)]. O

Example 5.24. As in Example 5.16 for type G, one may compute the formula of
F,(X1,10) to obtain

X110 +6]2?~(2,11351_,%2 +612)~(%,125?2_,%3 +(q7" +4)§1.12§f%4 +q3)?2,13)~(;%4 +§1,14§£}5 +q_1)~([%6.

Then F, (Xl 10) = (X1 10 * X1 10)F (X1 10) = q2F (X1 10) € £4(Q) is bar-invariant.
Note that X1 10 * X2 10 X2 10 * X1 10, and there is no dominant X;-monomial in
M (Fy, (X] 10) * Fy (X2 10)) except for X] 10 * X2 10 (cf. Example 5. 16) Hence we
have Fy(X1,10) % Fy(X2,10) = Fy(X2,10) * Fy(X1,10).

Example 5.25. By the g-algorithm starting from X i,p as in Example 5.16, one can com-
pute the explicit formulas of £, (X; ,) for 1 <i < 3 of the finite type B3 as follows:
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- | -
Xi.p 2p+1 X3.p
+
- = o
‘ ‘1}X1.n+l*xi.p+1 * X5 pi2
Lp+l - A p+l
l Lpe2 Soe2
i > |
- S = A -~ - o~ - .
Xopst % Xy pp X3 par * X pa3 (g X1 pr1 % X3, pe1 % X3 pi3 X2 ps1 % X3 00
342 ape2”
Lps2
2042 - v . . 2042
- - s L= o - -
X1t x Ko pra X370 [(EXL)EHRED CHRED eI eyt l
= = 7 Saes ape2 2 2 ~
‘7X3.,.+2*X2.,,+3 l{l,uz 2p z.pm\) G X1, pa2 % X3, ps2 % X 3
| SR e Kol e i 3%, s B e # X (G 4 Foger 4 sy By
Xy pr2 * Xy pa3 * X3 503 G X1 pr1 * X1 ps3 * Xy oy q DX pe1 % X3 pa3 * Xg oy
3pe3 | | | Lpi3 243
l 2.p43 Lpd s
+ + +
“2,1n% g1 2, a% -1 7 71 -2 % 7! % 7! % 7-!
@+ DXsp0 % X5 0 (@ +q)Xoprax Xy oy Xipri * X s @+ DX3per % Xy s Xaprx X( 0 qX1ps2 % X3 0
| | |
3pe3 + 4 4 3.pe3 Lp+3
5o 4 5 - o T e S e
l AR WIS ED CPNCED CYv) Xop2# X| pua * X s G+ X2 pr2* X5 3% X5 05 \ /
- PO N T ~ % -1 =1
4X2pi3% X3 RN 2P~ s 2p43 42,3 % X g * X5 g
\ SIS T o U ST S SR \
943 p+3 2, p+4 Lp+5 q7)X1,p+3 343 2,p+4 345
2ped R e / 2ps
Lped
l {)« M l
. 0 - =~ L 2 S e - -~
Xipsa# Xy s qX1ps3* X305 (@77 + DX5pa3 % X 5% X305 X3 prax X5 s
~
Lpes S+
Lp+s ~ P 3p+s
% P
G X2 prax Xy s % X305
q 1.p+6 2t q 3,p+6

1172)?27,;,«;
For a dominant monomial m € /\/l?,, we set

E,(m) :=q" ( *

F. (K )4i.pm) R , 2
pe’ (ie[;(i,*p)eAO aXi.p) )) € %9 (523)

where b is an element in %Z such that m appears in E;(m) with the coefficient 1. By
Proposition 5.20, we have

Eq(m) € Ry(9) (5.24)
and there are finitely many dominant monomials in E, (m). As we regard E,(m) as an
element of ﬁ;o’f (@) (recall Proposition 5.15), we obtain a uni-triangular transition map
as in (5.6) between {E,(m)} and {F,;(m)} in R;O’f(g) by Proposition 5.15:

Ey(m) = Fy(m) + Z Cm,m’Fq(m/) in R‘(;O)f(g)’ (5.25)

/
m <Nm

where Cy, v € Z[qi%]. Note that the summation in (5.25) is finite since E,(m) has
finitely many dominant monomials. Hence, (5.25) implies that F, (;n) can be written as
a linear combination of E, (m’) for m" < m, so F,(m) € &,(g) by (5.23) and (5.24).
Until now, we have proved the following.

Proposition 5.26. The sets
E,:={E,(m) |me M3} and F,:={F,(m)|me M3}

are Z[qi%]—bases of 84(9), respectively.

In particular, we call E, the standard basis of £;(g). Now let us further investigate
the basis F, of £,(Q), which is characterized as follows:
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Theorem 5.27. Let m € Xy be a dominant (resp. anti-dominant) monomial.

(a) The Laurent (non-commutative) polynomial F, (i) is the unique element in £,(Q)
such that m is the unique dominant (resp. anti-dominant) monomial occurring in
Fy(m).

(b) Every monomial in Fy (m) — m is strictly less (resp. greater) than m with respect to
<\

(c) The set F, forms a bar-invariant Z[qi%]-basis of R4(9).

Proof. We prove only the dominant case because the proof for the anti-dominant case
is almost identical.

Let us first prove (a). Thanks to (5.25), F, (m) can be written as a linear combination
of E,(m") for m" < m, where the sum is finite due to Proposition 5.20(2). Hence,
F,(m) € R,(g). Note that F,(m) has the unique dominant X,-monomial 7 by its
construction through the g-algorithm (see (5.13)).

Let G,(m) be another element in K, (Q) such that 7 is the unique dominant X, -
monomial occurring in G, (7). Suppose that F, (in) — G4 (m) # 0.Then F, (m)—G,(im)
contains a maximal A7 -monomial /7" different from /. Since F, (m) — G, (m) € R,(Q),
it follows from Lemma 5.19 that the X;-monomial 77 is dominant. This implies that
G, (m) has a dominant X,-monomial not equal to 72, which contradicts the assumption
on G, (m).

Second, (b) is a direct consequence of the g-algorithm. Finally, let us prove (c).
The linear independence follows from the uniqueness of the dominant X;-monomial of
F,(m). Take an element x € R,(g). We enumerate M (x) by mg, my, ..., mp.Letus

write A, € Z[qi%] be the coefficients of m, in x fork =0, 1, ..., L. Then, the element

X — Z,fzo Ak Fy(my) € R, (9) has no dominant &7 -monomial. If it is non-zero, then it
has at least one dominant &;-monomials by Lemma 5.19, which yields a contradiction.

Hence, we conclude that the set {F,(m) | m € ./\/lg} generates £, (Q). O
Corollary 5.28. Let m € X be a dominant monomial. Then we have
evg—1(Fy(m)) = F(evy=1(m)).

Proof. Tt follows from (4.17) that evy—1 (Fy (m)) € A(Q), where evg=1(Fy (m)) has the
unique dominant monomial ev,—;(m) € X by Theorem 5.27 (a). Thus our assertion is
proved from Theorem 3.9(2). O

For an interval [a, b],i € I, (i, t) € Zo and k € Z>1, we define

k=1
mDa, b] := l_[ Xi,p and mi’,i==1_[Xiyr+2s~ (5.26)
(i.p)eR, s=0
pe€la,b]

We define m® (a, b], m®[a, b), and m? (a, b) in a similar way. As in the simply-laced
cases (5.2), we have

Tr(Fq(m(i)[p, s)) =F, (m(i)[p +r,s+r]) foranyr €27, (5.27)

where r € 27 and T, is the Z[qi% ]-algebra automorphism of X, sending X i,pto X i, ptr-
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Proposition 5.29. For (i, p), (i, s) € Ko with p < s, the element F, mD[p,s)) is of
the form _ . B
Fym®p.s) =mD[p,s)+ 1+ BL * 0 (5.28)

1 ~ ~
where x is a (non-commutative) Z[qif]-polynomial in Bj_,li+l’ (j, k) € Ag. In partic-
ular, we have

F,mP[p,s) = F,(m“ [p+h,s+h]) (5.29)

and

() Fy @(i)[p, s]) contains the unique dominant monomial m(i) [p,s],
(2) Fy, (mD[p, s1) contains the unique anti-dominant monomial m(_’*)[p +h,s +h],
(3) all X;-monomials of Fy mD[p,s)) —mD[p,s]— m(i*)[p +h, s + h] are product of

£l . . .
Xj,u with p < u < s + h and right-negative.

Proof. (1) follows from Theorem 5.27 (a). (2) and (5.29) follow from the reversed
version of the g-algorithm (see Remark 5.3) and (1). Finally, (5.28) and (3) are the
direct consequences of Theorem 5.4 and Proposition 5.20. O

Conjecture 1. For (i, p), (i,s) € Tio with p < s, every monomial in F, mD[p, s
has a quantum positive coefficient; that means, each coefficient of a monomial in
Fy, (m(i)[p, s]) is contained in Z>0[qi%].

Remark 5.30. In the proof of Corollary 5.22, we have seen that the coefficients of mono-
mials in F(m®[p, s]) are positive. In Sect. 8, we will provide a quantum cluster algebra
theoretic algorithm for computing F, (m @1[p, s1), which starts from an initial quantum
cluster variable m®[p, s] (see Proposition 8.6 below). This may be viewed as an evi-

dence of Conjecture 1, which is compatible with the quantum positivity conjecture of
quantum cluster algebras ([4]).

By the following theorem, we have the third basis, denoted by
Ly = {Ly(m) | m € M3},

and called the canonical basis of R,(g). We remark that the reason why we call it the
canonical basis is further explained in [33].

Theorem 5.31. For m € M9, there exists a unique element Ly (m) in 8 (9) such that

(@) Ly(m) = Ly(m),
(b) Eg(m) = Ly(m)+ Y Puw (@) Ly () with Py (q) € qZIq].

/
m <Nm

Proof. Form € M3, we will construct L, (m) inductively using some dominant X;-
monomials below, which are all less than m with respect to the Nakajima order <.
Step 1. Let us first collect all dominant X;-monomials obtained from 2 in an inductive

way. Let M := M, (E,(m)) = {m, ;. m, . ..., m; ,, = m}. Then we define

M, = U M+(Eq(mn71,k))’
1<kl
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where M, _| = {mn—l,l’ My g9y ooy My g } for n > 2. Note that

M (Eqm)) =M; C My C My C---

The above chain has finite length, that is, there exists N such that M, = M, for
n > N because we can apply the same argument as in the proof of [25, Lemma 3.13
and Lemma 3.14]. For simplicity, let us relabel the dominant X;;-monomials in My as
follows:

m <m, <---<my =m. (5.30)

where < is also a total order compatible with <. In particular, E,;(m,) has no dominant
X, -monomial other than m; by construction.
Step 2. We construct L, (m) by inductive argument on (5.30) as follows. Since E,(m;)
has the unique dominant A, -monomial m, by construction, we have E,(m,) = F,(m).
If we set L, (m;) = E,(m,), then the initial step is done because E,(m;) = F,(m;) =
Fq(ml) = Eq(m1)~

Suppose that L, (m, ) is well-defined and uniquely determined for 1 < &k < M — 1.
By the property (b), one can write

Ly(my) = Eqmp)+ Y Om,.m, (q)Eq(m)).
m; < m;
By (5.25), Ly, (m;) can be written as a linear combination of F,;(m;) for 1 </ < k. In

particular, the coefficient of F,;(m,) is 1 due to the property (a). Hence, the finiteness
described in (5.30) implies that

F,(m,) can be written as a linear combination of L, (m,) for 1 </ <k. (5.31)

By replacing F,; (m’) in (5.25) with (5.31), we have

Eqm) = Fym)+ Y ai(g)Ly(m)). (5.32)
1<I<M—1

Let us take B;(¢) € Z[g*'] such that B;(g) is symmetric in ¢ and ¢!, and o (¢) —

Bi(q) € qZ[g]forall 1 <! < L —1.Thisis possible by the following way. Let us write
a(q) by af(q) +alo(q) +a; (q), where ali(q) € qﬂZ[qi]] and a?(q) € Z. Then we

define B;(q) = B} (q) + B (q) + B, (q) by setting B (¢) = a; (g~ ). B, (q) = o} (q)
and ,3,0 (q9) = a,o(q). Now, we define

Lym) = Fym)+ Y Bi(q)Ly(my) € Ky(Q).
1<ISKM—1

Then, L, (m) satisfies the properties (a) and (b) due to the our choice of g;(g), which is
the desired element of £, (). Note that it follows from Proposition 5.26 and (b) that L,

isa Z[qi%]-basis of £,(9).
Step 3. Let us prove the uniqueness of L, (m). Assume that L; (m) € Ry(Q) satisfies (a)
and (b). By (5.30) and (b), we have

L, (m)) = Eq(m)) = Ly(m,).



Quantum Virtual Grothendieck Rings Page 41 0of 83 173

By induction on (5.30), we suppose that L,(m;) = L;(mk) forl <k < M—1.By(b)
and induction hypothesis, E, (m) is written as

Eqm)=Lym)+ Y Pum(@Lgm) =Lym)+ > Pp o (@)Lg(my),

1<k<M—1 1<hk<M—1
where Py m, (), Py.m, (@) € 9Z[q]. Hence we have
Lym) =Lym)+ Y (Pm (@ = Pum, (@) Lg(my). (5.33)

1<ksM—1

By taking the bar involution on both sides of (5.33), it follows from (a) that for 1 < k <
M —1,

Prm (@) — Pumi (@) = P (@) — Ppyo, (@) € qZ1g1 N g™ ' Z[g™ "] = (0}
This implies that L; (m) = L, (m) by (5.33). O

Remark 5.32. In the viewpoint of Kazhdan—Lusztig theory (explained briefly in Remark
5.10), we regard the polynomials P, ,,'(g)’s as new KL-type polynomials, which gener-
alize Nakajima’s KL-type polynomials, since the 7-quantized Cartan matrices for types
ADE are equal to the quantum Cartan matrices and the basis in Theorem 5.3 1 essentially
coincides with Nakajima’s as explained in [25,26]. It would be very interesting to find
a geometric or representation theoretic interpretation behind P, ,,/(g) in the spirit of
Kazhdan-Lusztig theory.

Remark 5.33. We emphasize that the basis L, = {L,(m) | m € Mg} of R,(Q) is
quite different from the L, of & (g) ~ K¢ (%go ), thatis, L, (m) cannot be obtained from
L;(m) by folding };-monomials with some modification of coefficients in Z [ti% ], where
m = & (m). We give an example to illustrate this phenomenon. Let us consider L, (¥1,1)
and L;(Yy, ») of the finite type As. One may observe that L;(Y1,1) g-commutes with

,(Y4 —2), which implies that L, (Y71 * Y4 _2) coincides With Li(Y1,1) * L;(Y4,—2) up
to q [29, Corollary 5.5]. On the other hand, for type C3, L (X 1.1) does not g-commute
with L (X2 _2). ThlslmphesthatL (Xl 1*X2 _p)is notequaltoL (X1 1*Lg (Xz _2)
up to qZ In fact, L (X1 1 * Xz —2) has two dominant &7 -monomials, while L,(Y1 1%
Y4,_2) has only one domlnant Y;-monomial.

Conjecture 2. For (i, p), (i, s) € Ko with p < s, we have
LymP1p,s1) = Fy(m©[p, 5,
where m®[p, s1:=m®[p, s] denotes the bar-invariant Xy -monomial corresponding
to m®[p, s](5.26) as in Remark 4.3.
Example 5.34. Let us illustrate Theorem 5.31 in the case of L, (X2 5X1,10) for type G».
Step 1. By (5.23), we have
3
Ey(X25X1,10) = q2 F4(Xa,5) * Fy(Xq,10).

Let us recall the formulas of F, (X3 5) and F; (X{,10) in Examples 5.16 and 5.24, respec-
tively. Then we observe that there exist two bar-invariant dominant &, -monomials with

Z[qi%]—coefﬁcients in E;(X25X1,10), namely, X5 5X1 10 and (q’1 +q+ q3) Xi6-
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Step 2. By Step 1, we have
E;(X25X1,10) = Fy(X2,5X1,10) + (6]_1 +q +6]3> Fy(X1,6),

which corresponds to (5.32) in this case, that is, M =2 and a1 (q) = ¢~ + g + ¢>. Set
B1(q) = g + g~ by construction in the proof of Theorem 5.31. Then we have

Ly(X25X1,10) = Fy(X2,5X1,10) + (q_l + Q) Fy(X16)s

which is bar-invariant. Note that L, (X2 5X1,10) has two dominant X, -monomials X 5 X

and X ¢. Moreover, we verify
E (X2,5X1,10) = Lg(X2,5X1,10) + Px,5x1.10.%1.6(@) Lq(X1,6)s

where Px, sx; 10.x16(q) = q3 € gZ>olq], thatis, Ly (X2 5X1,10) is the unique element
in R, () satisfying the properties (a) and (b) in Theorem 5.31.

5.3. Proof of Proposition 5.20. To prove Proposition 5.20, we utilize some analogues
of the results in [25], where we will skip some proof of them when they can be obtained
from the corresponding arguments in [25]. o

For J& C I8, weset J&8 = (7|1 € J8} C I9. Let J C I be given such that J = J&
for some J& C I2. Let us define K;(g) C X as follows:

8@ = (| (ZIXE] 1 (D) € BY. j # ke NOLIX;u(1+ Byl | (.1 € B1).
jeJ

Note that £;(g) = A(Q). We also define R, ,(9) C &, as above by replacing the letters

X and B with X and B, respectively.

Proposition 5.35. Let J C I with |J| < 2. For a J-dominant monomial m, there exists
a unique Fj,(m) € Ry 4(Q) such that m is the unique J-dominant X;-monomial of
Fj 4(m). Moreover,

{Fy,q@m)|mis J-dominant} is a Z[qi%]—basis of R7,4(9).

Proof. If |J| = 1, then our assertion is a folded version of [25, Proposition 4.12],
where its proof is parallel with the replacement in Remark 5.14 (2). If |J| = 2, one
may construct Fy ,(X; ,) € R1,4(Q) fori € J by explicit computation in rank 2. Note
that the computation in this case is done by [25, Appendix] for types A; x Aj and Ay,
Examples 5.16, 5.24 for type G, Example A.1 for type C», and Example A.2 for type
B;. Hence our assertion is proved by a similar argument to the proof of Proposition 5.26
with the g-deformation of (5.34) defined similarly as in (5.23). |

Form € /\/lf, we define
Exmy= [  FrX;p"r™ e 8(9). (5.34)
jel;(j,p)edy

where F; (X ) := evy=1(Fy 4(X; ;)) is a unique element in K, (Q) such that X; , is
the unique dominant monomial of F;(X; ;) (cf. Remark 4.12 and Remark 5.6). Let
ﬁﬁ‘;’] (9) be the completion of £; ,(g) given by the method in [25, Section 5.2.2]. Put

R, @ = MNjes R,
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Lemma 5.36.(1) A non-zero element of ﬁch has at least one J -dominant X -monomial.
(2) We have

R1,4(@ = 8T, (@ NAy.

Proof. Part (1) follows from an analog of the proof of Lemma 5.19 (cf. [15, Lemma
5.6]), and part (2) follows from the same argument as in the proof of [25, Lemma 5.7]
by using Proposition 5.35. O

Fori € I9, take 1 € I8 such that7 = i and put

Dlgn(l)[p g = (m(k))k>o: the countable set as in [25, Section 5.2.3] associated with
m®[p, 5], .
° Dm(fJ[p g = (m(k))k>0: the analogue of the above one for m(’)[p, s] in terms of
(5.34).
Remark 5.37. The set D% may be an infinitely countable set. If we enumerate the

m®[p,s]
monomials in the countable set as follows:

c<m® <m < m©@ = m(l)[p, s].
Then the t-algorithm determines Z[ti%]-coefﬁcients of the monomials m®’s. Let
(cEm" ))),>o be the sequence of Z[ti%]-coefﬁcients for m)’s determined by the ¢-

algorithm starting from m(’) [p, s]. It was known in [26] that the sequence (C&(my))x>0

should have finitely many non-zero coefficients, that is, Fy m®[p, s]) € R (g). Note
that M(F;(m®[p,s])) C {m® | k >0).

Let us enumerate the finite set M (F,(m®[p, s1)) as follows:
my <---<mp <m; <mg=m"[p,s],
where < is a total order compatible with <\ In particular, my is an anti-dominant -

monomial, i.e. my = m(_’*) [p+h, s+h] by Theorem 5.4. It follows from Corollary 3.10
and Theorem 5.4 that

M:={Gm) |1 <k<N}CDpy o
Then we enumerate the X'-monomials in M by

mPp+hs+hl=my < - < my <’ mg=mP[p,s], (5.35)
where <’ is a total order compatible with <\
Definition 5.38. Set€9(mV[p, s1) = 1and €% (mP[p, s]) = 0.ForJ C I with |J| < 2
and m € M such that m = m®[p, 5], we define

Sm =Y (Sm) - m)) [Fr @],

meM
m<'m
9(m) = C€;(m) if mis not J-dominant,
o if m is dominant,

where [F;,(m)] isa Z[qi%]—coefﬁcient of min F; 4(m’). Here Fy ,(m’) is assumed

to be 0 when m’ is not J-dominant.
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Lemma 5.39. The sequences (Eg} (M) )mem and (C9(M) Imem are well-defined, and
(C9(M) Ymewm is not depend on the choice of J with |J| < 2.

Proof. We prove our assertion by induction on (5.35). Suppose that our assertion holds
for the X-monomials m; with 0 < k < N’. The well-definedness of Eg(m]H_I) follows
from its definition.

For Jy, Jo» C I such that J; # J and max {|J1|, |J2|} < 2, if Mgy is not both
J1-dominant and J-dominant, then we should verify

531 (Myy1) = Egz(mm).
For J C I with |J| < 2, we set
xb =Y (Bm) —Emo) Frg(m).
1<k
For simplicity, put
xF=xk and E?(m) ::E:(‘}(m)

when J = {i} for i € I. Note that X’j‘ is well-defined by induction hypothesis. In

particular, xlj‘ € 8y,4(9) by Proposition 5.35.
Let us take j; € J; and jo» € J> such that Mg, is not both jj-dominant and jp-
dominant. Set J = { ji, j» }. Since Mg, is not J-dominant, we have

1
Xy — x5 € Y ZIgTNFj 4(my) and T (Mpsr) =T (Mey)
I>k+1

by similar computations in the proof of [25, Lemma 5.21] under the current setting.
Similarly, we also have

S (Mys1) = T2 (Me), 9 (Myy1) = 531 (Mes1), 9 (Miyr) = 2 (M),
Hence, we conclude that 5%1 (Mgy1) = Egz (Mi+1). This completes the proof. O
By Proposition 5.35 and Lemma 5.39, we set

xi=) CImmedx, and xi:= )y wi(MF 4 m) € K49,

meM meM
where p; (M) = ¢9(m) — 6?(“")-

Remark 5.40. 1t follows from Corollary 3.10 and Theorem 5.4 that
F(FmY[p,s]) = FmV[p, s]) € &(@). (5.36)

On the other hand, it follows from Corollary 5.28 and Proposition 5.35 that F (m Or p.s]
should be written as a finite linear combination of evy—1(Fy 4(m)) for J C I with
|J| < 2. Combining this fact with (5.36), we conclude that each m (m € M) appears
in both x and y; for all i € I, so it makes sense to compare their coefficients (e.g. see
Example 5.7 and Examples 5.16).

Now, we are ready to prove Proposition 5.20.
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Proof of Proposition 5.20. Let us compute the coefficient of m’ in x — x; form’ € M.
Case 1. m’ is not i-dominant. By definition of €9(m’), we have

(coefficient of m’ in x — x;) = ¢¥(m’) — Z wi(m) [1’7,~,q(m)]ﬂ

meM
/ ’
m <'m

= @©(m") — & m") [Fio(m)],, =0,

where F; ,(m’) = 0 since M’ is not i-dominant.

Case 2. m’ is i-dominant. By uniqueness of i-dominant Xy-monomial for F; ,(m)
with m" <’ m, we have Ef?(m’) = 0, and the coefficient of m’ in y; is u;(M’) =
c9(m’) — E?(m/) = C9(m’). This implies that the coefficient of m’ in y — x; is 0 in this
case.

By Case I and Case 2, we have x = x; € £ 4(9) and then x € K,(g). Note that

x has unique dominant X,-monomial mD[p, s] by Definition 5.38 (or our choice of
M). Since F, (m(i)[p, s)—x € ﬁ;o(g) has no dominant & -monomial, we conclude
F,mV[p,s]) = x € R,(9) by Lemma 5.36. O

6. Subrings of K, (g) nd the Quantum Folded T'-Systems

In this section, we prove the quantum folded T -systems, which play a crucial role in this
paper. To do this, we consider a subring £, ¢ (g) of &, (g) for a height function &. We
mainly employ the framework in [29,30] (see also [5]).

6.1. Subring. Let S be a convex set of ﬁo (recall Definition 2.7 (2)). We denote by Sy
(resp. SXq) the subring of X (resp. &, ) generated by Xli[i (resp. }N(li;) for (i, p) € S.
Let S/\/l+ be the set all dominant monomials in the variables X; ,’s for (i, p) € S. We
define the Z[qi%]-module Ry,s(g) as the Z[qi%]-submodule of R, (g) given by

Res@ = @ Zg*21F,m). ©.1)
meSM,

Lemma 6.1. (cf. [18, Lemma 5.6]) The set S/\/l+ is an ideal of the partially ordered set
My, <) e, itis closed under taking smaller elements in M, with respect to <

Proof. Letm € SM, and mM € M, where M € Bq_k for some k € Z>1. For a factor
B;}: of M, the monomial m should have factors X; ,—1 and X; p41 due to (3.7). Thus
we have an oriented path from (i, p + 1) to a vertex in S and another oriented path from
a vertex in S to (i, p — 1) (these paths are possibly of length zero) in A,. Hence we
have an oriented path whose end points are in S factoring through both (i, p — 1) and
(i, p+1). By convexity of S and the definition of B; , (3.7), M € SxandmM e S/\/l+
as we desired. O

Proposition 6.2. For a convex subset S in go, the 7. [qi% ]-module £, 5(g) isa Z [qjE > 1-
subalgebra of R4(g). Moreover, we have

fos@= @ ZIgTE,m = @ ZlgT1IL,m). 6.2)

meSM, meSM.,
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Proof. Letm, my € SM+. By Theorem 5.27 and Proposition 5.29, F, (m,) * F, (in,) €
R, (g) is written as shown below.

Fymp) * Fymy) = Y cnFy(m), (6.3)
meM,

m<Nm1m2

where ¢, € Z[qi%] \ {0}. Then it follows from Lemma 6.1 that m € SM, for a

monomial m < mimz above. Hence, we conclude that &, s(g) isaZ [qi%]-subalgebra
of &, (g) by definition (6.1) of K, s(g).

Since R, s(g) is given by (6.1), (6.2) follows from £, (g)-analogue of (5.6) and (b)
in Theorem 5.31. a

6.2. Truncation. Let & be a height function of A and set & X =80 A&, for simplicity. For

a (non-commutative) Laurent polynomial x € X, we denote by x<; the element of £ X,

obtained from x by discarding all the monomials containing X li; with (i, p) € EO \SEO.
The map

(ge 1 &y — EXq givenby x — xgg

is a Z[qi%]—linear map, which is not Z[qi%]—algebra homomorphism. For m € M.,
we denote by F, (m) ¢ the image of F; () under the map (-)e.
Let us recall Definition 2.7 and (6.1). We set

Ryt (@) =R, ez, (@) (6.4)

Proposition 6.3. For a height function & on A, the map ()¢ restricts to the injective
Zlg +3 1-algebra homomorphism

(<t - Ree@) = *X,.

Proof. The injectivity follows from Theorem 5.27. Let us take m, my € EM, =
(M) <e. We consider a linear expansion of F,(m;) * Fy(m,) as in (6.3). Then we
claim that

Fym)<e * Fymy))<e = ) enFym)<e (cm # 0).
meEM, (6.5)

m -‘<N mimy
Take a A;-monomial /i’ (resp. m") appearing in Fy(m,;)<e (resp. Fy(m,)<e). If
evg—1(m'm") € My, thenevy—(m'm’) € § M, by Lemma 6.1. Furthermore, by Theo-
rem 5.27 and definition of ¢ Xy, Fy(my) e x Fy(m,) ¢ is written as a linear combination
of {F;(m)<¢ | m € M.)}. Thus, F,(m'm")<¢ appears in the right-hand side of (6.5)

up to Z[qi%]. This proves the above claim.
Finally, we have

(<e(Fy(my) * Fy(my)) = Z cmFg(m)<e = Fy(my)<e * Fy(my)<e.
mE$M+

mﬁlemz

by Proposition 6.2 and (6.5), which completes the proof. O
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Definition 6.4. For m € M., we say L, (m) (resp. F,;(m)) real if, forany k € Z>1, we
have (L, (m))* = q' Ly (m*) (resp. (F;(m))* = q' F,(m")) for some 1 € Z.

Corollary 6.5. For each KR-monomial m(i)[p, s], Fy (m(i)[p, s]) is real.

Proof. Let & be a height function with & = s. Then we have

(Fy(mP1p,sD)<e =mV[p, 51,

by (5.28) in Proposition 5.29. Since

evg=1 ((Fym®@p. sD™) ) = Op, s)" = evgmn ((Fy @ lp.s7™) o, )

our assertion follows from Proposition 6.3. O

In accordance with Theorem 5.11 for simply-laced type g, one can also expect that
L, (m) has quantum positivity. Moreover, it is proved in [19,45] that every cluster mono-
mial in R, (g) corresponds to a real element in L;. Based on some computational evi-
dence, we suggest the following conjecture:

Conjecture 3. For m € M,, if L,(m) is real, then Ly(m) has a quantum positive
coefficient.

6.3. Quantum folded T-system. For f, g € X,;, we say that f and g g-commute or are
g-commutative if fg = gq*gf for some k € %Z. In this subsection, we shall prove

the functional equations among KR-polynomials F, (mD[p, s1)’s, called the quantum
folded T -system. For simply-laced finite type, the quantum folded T -system is nothing
but the quantum 7 '-system, investigated in [29] (see also [18,31]).

Lemma 6.6. For (i, p), (i,s) € Ao with p < s, let j,j € Ay such that d(i, j) =
d(i, j"y = 1. Then we have

Fy(mD(p, 9)) % Fy(mY" (p, )) = Fy(mY(p, $)) % Fy (m(p, 5)).

Proof. Note that one can take a height function & of A satisfying (a) §; = max{&; |i €
I} =sand(b)§; =& =5 — 1. Then, by (5.28), we have

Fy(mV(p,9) e =mP (p,s) and  Fy(m"(p,9)) . =m" (p,s).

By Proposition 6.3, we have
Fy(mYP(p, ) % Fy(mY" (p, $)) = ¢P Fy (mY" (p, 5)) % Fy(m (p, 5))
for some B € %Z.
Now, let us prove that 8 = 0 by induction on k = (p — 5)/2. When k = 1, we have

mD(p,s) = X p+1. Inthis case, B = 0 by (4.3). Suppose that k > 1. By the induction
hypothesis, we have

m P (p.s =2 xm(p,s =) =m(p.s = 2) xmV(p,s —2).
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Then we have

mD(p.s) %m0 (p, 5) = gL Eis 1 @IND 09Ky D), 5) 5 m T (p, 5).

— N
Since
B ) (r—9)/2-1
NXjso.mDposn="Y NGs—1j.p+1+20)
i=0
(p—s)/2—-1
= > Ty-p-20-3)-Tps—p-20—1),
i=0
‘ B B A (p=5)/2-1
NmD(p,9), Xjrs ) ==N&js,mP(p,s)=— Y NG, s—1;j, p+1+20)
i=0
(p=5)/2-1
= > - p-20-3)+Tps—p-2i—1),
i=0

our assertion follows from the fact thatF; ) = r i j(u) forall u € Z (cf. [47, Section
4). 0

Lemma 6.7. For (i, p), (i, s) € go with p < s, we have

Fy(m@1p, s1) * Fy(m© (p,5)) = Fy(mP(p, $)) * Fy(m"[p, s1).

Proof. Leti € I8 such that 7 = i. By Theorem 3.9 and (3.11), we have
7 (Fm©1p, sHF@m®(p, ) = Fon®lp, sDFn(p,s).  (6.6)

Put M = m®[p, sim(p, 5). It follows from [27, Lemma 5.6 (2)] and (6.6) that the set
of dominant X-monomials in F(m®[p, s])F(m? (p, 5)) is given by
M, MB~' . mB~! B! MB_ B!

i,s—1° is—17i,s=3> """ i,s—17i,s=3" - B;

o3 6.7)

with multiplicity 1. By (5.22) (see also Remark 4.12), we have the set of dominant X;-
monomials in F,(m[p, s1) * F,(m® (p, s)) and the set of those in F, (m?(p, 5)) *
F,(m®[p, s1)); namely, their specialization at ¢ = 1 is (6.7).

Now, it follows from Theorem 5.27 that it is enough to compare the dominant X;-
monomials of F,(mV[p, s]) * F,(m® (p, s)) with those of F,(m?(p,s)) * F,(m®
[p, s]) to prove our assertion. At this point, we can apply the sl,-reduction argument as
in [31, Remark 9.10] based on Proposition 4.6 (see also the proof of [18, Proposition
6.10]). Consequently, we conclude that

FymP[p, s]) * Fy(m® (p. $)) = q“ Fym™ (p. ) % Fy(mP[p, s]) forsomea € Z/2.
(6.8)

Finally, to complete our assertion, it suffices to show that a in (6.8) vanishes, that is,

mDp, s1xmD(p,s) =mD(p,s) *mP[p, s].
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By an induction on (p — s)/2, we have
NOlp, sl m(p.s) = NXis.mD(p.s = 2D + N Vlp.s —2), Xis-2)
£ N, mP(p, sh) + NmVlp, 5), Xis-2)
L NEisom(p. s+ NP (p, 51, Xi ) =0,
where = follows from M()N(,-J, )N(,-,,) — 0 and = follows from /L/()N(,-,,, )?i,t/)
= N(Xi+2, X r+2). m
For (i,'p), (i,s) € Ao with p <s,wesetm(i; p,s):= ]_[j; dG, j)=1 m (p, s)~Cii,
where m)(p, s) is given as in (5.26).
Lemma 6.8. For (i, p), (i, s) € Zo with p < s, we have
FymGip.s) =[] F@P @),
ji d@, =1
where the order of the product does not matter.

Proof. By Lemma6.6,[];. 4 =1 Fq (mY(p, s))~C is well-defined. Let & be a height
function on A such that§; = s and§; = s — 1 for j € Ay with d(i, j) = 1. Then we
have

[T F@YVp.sn™ ] =mips),
Ji d@, j)=1 <&

which implies the assertion. O

Now, we are in a position to state and prove the quantum folded 7 -system (cf. The-
orem 5.13).

Theorem 6.9 (Quantum folded T-system). For (i, p), (i,s) € EO with p < s and
k= (s—p)/2 €Zx, we have

Fy(mPLp, $)) * Fg(m (p. s1) = q*“P Fy(mD (p, $)) * Fy(mV[p. s1)
+ q}/(i,k) H Fq (m(j)(P’ s))_c./,i’
Ji d@, j)=1
1 ~
where y (i, k) = 3 (Fi,i(Zk —D+1; 2k + l)) and o(i, k) = y (i, k) — d;.
Proof. First, we claim that

Fy(mP1p,5)) x Fy(m@ (p,s1) = q*Fy(m@(p, s1) - Fy(m D (p, $)) +q7 Fy(m(; p, s))

1
for some o, y € EZ' By using the g-algorithm and the argument in [27, Lemma 5.6]

(or [31, Theorem 9.6, Lemma 9.9]), the product of F,(m[p, 5)) and F, (m" (p, s1)
has exactly distinct kK dominant monomials

Ml? M25 R Mkv



173 Page 50 of 83 I.-S. Jang, K.-H. Lee, S. Oh

where ev,—1 (M) = m(i)[p, s)m(i)(p, s]. Moreover, M1, ..., M;_1 exhaust the domi-
nant monomials occurring in F, (mV[p, s1)F,(m” (p, s)) and

evg=1(My) = (m(i)[P’ S)Bijsllei,_slfs o B;;+1> mD(p, s1=m(; p,s).
Hence, our claim follows from Theorem 5.27 and Lemma 6.8.

Second, we compute « = «(i, k) and y = y(i, k) explicitly. By Theorem 5.27,
Lemma 6.6 implies that

FolmGs p.9)) =[] FomPp,9)™".
Ji d(, j)=1

Also, by Lemma 6.7, we also have
Fy(m@1p, 1) % Fy (m(p, 5)) = Fy(m® (p, )) % Fy (m[p, 51).
Thus it suffices to compute «, y such that
mOp, ) xmD(p,s1=q*mV1p,s1xm® (p.s) = ¢*m (p,s) xmV[p,s]
and
(mP1p.s)- By Bl B ) #m (o, s] = q7 ms pos).

The coefficient o can be computed as follows:

k—1
1
@ = ;Mi, piis p+2a)+ S NG, pii, p+2k)
k—1
~ 1 ~
=Y ([fiQa+1)=TiiQa—1)+ 3 ik +1) =T ;(2k — 1))
a=1

1 - 1. -
=T+ 3 iRk + 1) +T;;2k — 1)) = —d; + 3 (7, Qk + 1) + 7, 2k — 1))

Note that m = (m(i)[p, s) - FBV;YI_I . E;g1_3 ...B7!

l,p+1) is contained in F,(mV[p, s))

with coefficient 1, and m - m@ (p, s] = 1_[ mY (p, s)"%. Thus we have
Ji d@,j)=1

mamD(p,s1=[(@Pp.s)™ - [T w9 % | xmD(p,s]
i dti.)=1

=q" [] =Y@.9%,
i dGij)=1

(j,p+2a—1;i, p+2b)

Il
N =
5
M-
M»
=,
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k k
1 ~ ~
=5 Z —Cji Yy Y (Fia—b) —2) =T i(2(a — b)) =T 2(b — a))
Jj;d@,j)=1 a=1 b=1
+17:2(b — a) +2))
k
1 ~ ~
=5 2 =iy i@ =k =2 =Fi@a- 1) =T 21 -a)
jrdGj=1  a=1
+1ji 2k —a) +2))
k
1 - - 1 ~
=3 > —cii Y (T — 1) +T, 2k —a)+2)) = 5 > —cjii(2k)

Jid, =1 a=l1 Ji d(,j)=1

~ 1 ~
=5 2 G =5 Y —eiil; k).

Jid(, =1 Jid(, =1

Then our proof is completed by Lemma 2.3.

[m}

[T}

Example 6.10. Let us recall the formula of F (X2 5) in (5.19). Also, F, (X2, 5) = g>
Fy (X2 5) € £4(9) and it is bar- mvarlant w1th respect to (4.5). Note that F, (X2 7) =

T2(Fq(X2,5)) and F;(Xp7) = qz Fq(X277). Clearly, these computations implies that
F,(Xa,5) % F;(X2,7) has two dominant X7 -monomials, namely, X 5X> 7 and X%,G' By
Theorem 5.27, we should have

3 9
Fy(Xa,5) % Fy(Xa,7) = q7 Fy(X2,5X2.7) + 42 Fy(X1.6)°- (6.9)
On the other hand, we obtain
1 ~ 9 3
=3, y2,1)= 7 h2(1) +1H2(3) = X a2, )=y2,1)—dr= 2
—Ci2=3,

where ?2,2(1) =3and ?2,2(3) = 6 from (2.10). Hence (6.9) illustrates Theorem 6.9.

7. Quantum Cluster Algebra

In this section we recall the definition of skew-symmetrizable quantum cluster algebras
of infinite rank, following [4], [22, §8], [30] and [45].

7.1. Quantum seed. Let K be an index set described in Sect.2.4. Let L = (A;,;); jek be
a skew symmetric integer-valued K x K-matrix. Let ¢ be an indeterminate.

Definition 7.1. We define (£?(L), %) as the Z[qi%]—algebra, called the quantum torus
associated to L, generated by a family of elements {Z;};ck with the defining relations

ZixZj=q"Z;xZ; (i, jeK).

We denote by F(L) the skew field of fractions of &(L).
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For a = (a;);ck € Z®X, we define the element Z? of .7 (L) as

78 = g2 Timj 4P Y 70 (7.1)
ieK

(cf. (4.6)). Here we take a total order < on the set K. Note that Z? does not depend on
the choice of a total order on K. We have

1
73 % 7P = q? D jeK aibjhij Zath

Let (A, %) be a Z[qi%]-algebra. We say that a family {z;};ck of elements of A is
L-commuting if it satisﬁes Zi*x7j = gt Jzj*z; for any i, j € K. In that case we can
define z? for any a € Z 0 as in (7.1). We say that an L-commuting family {z;};ck is
algebraically zndependent if the algebra map & (L) — A givenby Z; > z; is injective.

Let B = (Di,j)ieK, jeK., b€ an ~integer-valued K x Kex-exchange matrix satisfying
(2.12). We say that the pair (L, B) is compatible with a diagonal matrix diag(d; €
Z>1 i € K), if we have

Zbk,’)xkj = Si,jdi, equivalently, (Lg)ji = —(Si,jdi, (7.2)
keK

for any i € Kex and j € K. We also call the pair (L, B)a compatible pair for short.
Let (L, B) be a compatible pair and A a Z[qil/ 2]-algebra. We say that .77 =
({zi}iek, L, B) is a quantum seed in A if {z;};ek is an algebraically independent L-
commuting family of elements of A. The set {z;};ck is called the quantum cluster of
< and its elements the quantum cluster variables. The quantum cluster variables z;
(i € Kg) are called the frozen variables. The elements z2 (a € Ze;g) are called the

quantum cluster monomials.

7.2. Mutation. Fork € Kex, we define a K x K-matrix E = (¢;,j); jek and a Kex x Kex-
matrix F = (fi j)i jeK., as follows:

% it #k 5ij if i # k,
eij=1-1 ifi =j=k, fij=1-1 ifi=j=k,
maX(O, _bi’k) if i 75 ] = k’ max(O, bk,j) ifi =k 75 ]

The mutation i (L, E) = (ug (L), uk(E))ofa compatible pair (L, E) in direction k is
given by

wr(L):=(E"YLE, u(B):=EBF.

We define

a; = a’ = ’ (7.3)

R | ifi =k, . ifi =k
max (0, b; i) ifi # Kk, E T | max(0, —big) ifi # k.

and seta’ := (a)) and a” := (a]') € Z®K.
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Let A be a Z[g*!/?]-algebra contained in a skew field K. Let . = ({z;}iek, L, B)
be a quantum seed in A. Define the elements w (z); of K by

A+ ifi = k,
j = 7.4
i (2)i N ifi 4 k. (7.4)

Then {11« (z);} is an algebraically independent 114 (L)-commuting family in K. We call
() = (1 @idieks mr (L), ()

the mutation of . in direction k. It becomes a new quantum seed in K ; that means,

(1) (ux(L), uk(E)) is compatible with the diagonal matrix of (L, B),
(2) {mk(2)i}liek is i (L)-commuting.
Definition 7.2. Let . = ({zi}iek, L, B) and &' = ({z/}iexr, L', B’) be quantum seeds
in a Z[g*'/?]-algebra A.
(i) We say that .7’ is mutated from . if the following condition is satisfied: For any
finite subset J of K’, there exist
(a) a finite sequence (k1, ko, ..., k) in Key,
(b) an injective map o: J — K, depending on the choice of J, such that
(1) 0(Jex) C Kex, where Jex :=J N (K)ey,
2) z’j = W(2)o(j forall j € J,
(3) (B')(i.jy = W(B)o(i).o() forany (i, j) € I x I,
where W= g, 00 Uy .
(i) We say that the quantum seeds . and .’ are mutation equivalent if .’ is mutated
from .¥ and . is also mutated from .#”. In this case, we write .%¥ >~ ..

7.3. Mutation of valued quiver. Recall that we can associate the valued quiver Qg to
an exchange matrix B. Here we describe the algorithm transforming a valued quiver Q
into a new valued quiver u(Q) (k € Kex), which corresponds to wuy (B).

Algorithm 7.3. For k € K¢y, the valued quiver mutation uy transforms Q into a new
valued quiver ug(Q) via the following rules, where we assume (i) ac > 0 or bd > 0,
and (ii) we do not perform (N'C) and (C) below, if i and j are frozen at the same time:

(NVC) For each full-subquiver i = B j in Q, we change the value of the

Ta,b. Te,da
arrow from i to j into "e +ac, f —bd . :

J-

Te+ac, f—bd 4

(C) For each full-subquiver i S —— j with (e, f) # (0,0) in Q, we

Ta,ba Te,da

change the valued arrow between i and j as follows:

j iff+ac<0<e—bd,

[ ~——— 0
Te—bd, f+ac.
i if f+ac>02>e—bd.
T f+ac,e—bd J f -7 =
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(R) Reverse the direction of each arrow incident to the vertex k and change the value
Ta, b of each arrow into " —b, —a_.

Here if there is no arrow between i and j in (N'C) and (C), then put e = f = 0 and
follow the same rule.

Example 7.4. Consider the following 9 x 6 integer-valued matrix:

1 01 0 O

0 —
1 0-1-1 1 0
02 0 0-2 1
~ -1 1 0 0-1 0
B = 0-1 1 1 0-1 (7.5)
0 0-1 0 2 0
00 0-1 1 0
00 0 0-1 1
00 0 0 0-1

By taking Kex = {1, 2, 3,4, 5, 6} and Ky = {7, 8, 9}, one can see that its principal part
is skew-symmetrizable with S = diag(2, 2, 1,2, 2, 1). N
Using Convention 2, the valued quiver Q associated to B in (7.5) can be drawn as

@ ®
® @)
\
NS S
® ®
Here [i] denotes k € K. Then uy(Q) and us(Q) are depicted as follows:

@ @
NN

u2(Q) =

\@/ i

®

us(Q) =

£

7.4. Quantum cluster algebra. Let ¥ = ({z;}iek, L, §) be a quantum seed in a Z
[¢t!/?]-algebra A. The quantum cluster algebra Ay12() associated to the quantum

seed.” isthe Z[q™ 2 ]-subalgebra of the skew field K generated by all the quantum cluster
variables in the quantum seeds obtained from . by any finite sequence of mutations.
Here we call .’ the initial quantum seed of the quantum cluster algebra 7,12 (%).
Lemma 7.5. Let . and . be quantum seeds in A. If .’ is mutated from ., then
%1/2 (") is isomorphic to Z[qi%]-subalgebm Of,%l/z (). Furthermore, if . and
" are mutation equivalent to each other, then we have

%1/2@7/) ~ %1/2@7).
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Proof. This assertion follows from Definition 7.2. O

Definition 7.6. A quantum cluster algebra structure associated with a quantum seed .
in a Z[g*'/?]-algebra A, contained in a skew field K, is a family .% of quantum seeds
in A satisfying the following conditions:

(a) For any quantum seed .7 in .%, the quantum cluster algebra Jz%ql 12(&) is isomorphic

to A as a Z[g*!/?]-algebra.
(b) Any mutation of a quantum seed in .# is in %.
(¢) For any pair ., .’ of quantum seeds in .%, we have .’ >~ ..

8. Quantum Cluster Algebra Structure on K ;(g)

In this section, we will prove that the ring & ¢ (g) has a quantum cluster algebra structure
based on the recent work [47] by Kashiwara—Oh. As applications, we obtain

e aquantum cluster algebra algorithm to compute the KR-polynomials F;, (m Dla, b])
for KR-monomials mV[a, b],

e a g-commutativity for KR-polynomials F (m, )) and F, (ml( ) satisfying certain

conditions on the pair of their KR-monomials (m k. r, ml(Jt))

Note that, in this section, we shall employ the framework in [5,30] for our goal.

8.1. Compatible pair. Let S be a convex subset of &0 with an upper bound (recall
Definition 2.7). For each j € A, we set

&j:=max(s | (j,s) € S).

Recall the exchange matrices ]ENBZ , and §B in Definition 2.4 and Definition 2.7.

Theorem 8.1. [47, Theorem 7.1] (see also [19]) Define
Ap)Gsy = NmPp, §1L.mP[s, 1) @G, p). (j.s) €S.

Then the pair (A, p),(j.5)) G, p),(j.5)eS> SEN?) is compatible with diag(2d; , :=2d; | (i, p)
€ S).

Recall that the subset $A A is convex without frozen indices. Thus the pair éL, 5B B)
is compatible with diag(2d; , :==2d; | (i, p) € SAO) where

L= (A(i,p),(j,s))(,-,p),(j,s)esgo and  Agp). o) = N(mDp. &1.mP[s, &1).
(8.1)
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8.2. Sequence of mutations. Let us consider the valued quiver & A associated to the
height function & of Q. Note that, for a source i of Q,

(1) the vertex (i, &;) is located at the boundary of §A determined by &, and
vertically sink and horizontally source,
(ii) s; & is a height function defined as in (2.7). (8.2)

For a source i of Q, we set an infinite sequence of mutations
éu =0 (i g —4) O M(i,5—2) O H(ig) (8.3)
and call it the forward shift at i (see [30] for K¢ (‘Kgo)-cases).
Proposition 8.2. For a Dynkin quiver Q = (A, &) and a source i, we have
gu(SZ) ~SiER,

Proof. We shall prove our assertion by an inductive argument on the sequence S w. For
this, we observe first two steps M. &) and (L g—2) © (i g)-

Step 1. Let us consider fi; g (g A). In this case, the vertex (i, &) in 5A (marked with *
below) is vertically sink and horizontally source in A by (2.14) and (8.2) (i) as follows:

(.5 -4 (.6 -2 (U, §)
~ 7 ~ 7 ~
T—Cji» (QJ r—/c,v,-.c,;,q r—c,;,-,(gJ r—/c,-,,v,c,-_u r—cj_,,z:,\JJ
& —4) (& -)=—— (. &)
7 7 N
T —Cjr;,Cjjra r—c jCyrid T=CiCyra T=Cyr.Cyia T —Cp Cyjra
AN - N -
(" & =4 U &y -2 =——"G"

Here j and j’ are indices in Ag such that d(i, j) = d(i, j’) = 1. Note that, in order
to observe the behavior with respect to (i g,), it suffices to consider the full-subquiver
described as above. -

Applying Algorithm 7.3, 1 g (¢ A) can be depicted as follows:

(& =94 (G.§—)=—""0.8)
~ 7 ~ ~
r—Cj,i,CgJ r—/CLj,C,,',;J r—C,,',;,C\,;\,,,'_A r—C;,MQJ
(& —HY<~——@0& - — (0, &)
7 N 7 -
—/c],, Cipa TG, c\{\,,J —/cj/, Gijr ;c,ﬂ i

(& —H<=—""0" 5 - D=0

in which the vertex (i, §; — 2) (marked with * above) becomes vertically sink and
horizontally source.

Step 2. Letus consider (4 ¢—2)0/4(.6)) (¢ A). Applying Algorithm 7.3 again, (@i g-2)0
,u(l,gl.))(f A) becomes

G&-H—"0 D=0

N X% c X
—Cj,i»Ci,j 2 —Ci,j.Cj.iJ —Cj,i»Ci,jJ —Ci,j>Cj,iJ
~N ~ N
(&4 —— (& -"2)=— = (0, &)
r—c; cﬁ T—c c/ T—C ;.G C c/
iy ) —C s rJ il it — 1,Corid
S oG ji2Cij %” i

J&y—H=——"—0" & - ="
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which is isomorphic to

~—(.§ -9 (. & —-2)=——0.5)
7 ~ 7 ~ 7
"—/c,A/-.c,,,-J r—c,,;,c;\,,J F—/c[,/-,cj,,q "—cj,,-.c{_f "—/c,»_j,cj_u
(& -6 ~—— (@& -4 — (6§ -)<——(,8)
N - 7 N - AN
—Cijr,C\{iiJ /CJKCUJ —CiII,C{\riJ /C],C”J Cll CJ\,
(& =4 (& =) ~———(" &)
(8.4)

Here the vertex (i, & — 4) (marked with % in (8.4)) becomes also vertically sink and
horizontally source.

By Step 1 and Step 2, we observe that the full-subquiver c0n31st1ng of the rlghtmost
6-vertices in (8.4) are isomorphic to the rightmost 6-vertices of si€ A. Furthermore, since
the local circumstance of (i, § —4) in (w5 —2) © Mg, gl))(éE A) is the same as the one of
(i,& —2)in ug, E,-)(E Z), we can apply an induction on k for the valued quiver

(K6 -2k © 1.5 —4) © (.52 © M.g))CA)  forallk € Zy.
Finally, our assertion comes from the definition of siEA. O

The following proposition is a direct consequence of Proposition 8.2 and the definition
of §A.

Proposition 8.3. Let i, j be sources of Q = (A, &). Then we have
Cero kWD) = (notmCA).
Thus, for any Q-adapted reduced expression s;, - - - s;, of the Coxeter element T,
Q= ’S’Zn TR ’Sfl gHo 2' w is well-defined. (8.5)

Theorem 8.4. For Dynkin quivers Q = (A, &) and Q = (A, §'), there exists a sequence
of mutations W such that

u(g Z) ~&RX  asvalued quivers.
In particular, we have
Qu(SZ) ~§A  asvalued quivers.
Proof. This assertion follows from (2.6), (2.8) and Proposition 8.2. |

8.3. Quantum cluster algebra structure on R, ¢(g). For each s € Z, we denote by 6)g
the height function such that ®)¢; € {s,s — 1} foralli € Agand ®Q = (4, ®&). Note
that )¢ is uniquely determined by Convention 1.

Example 8.5. For g of type As and s = 3, the height function @£ of ®)Q is given as
follows:

g =g =085 =2 and Vg = Vg =3,

Here we choose V& = 2 by Convention 1.
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For a height function &, we set

= @ ZIg*21(Fym)<s C £ Xy
me M+

Note that £ £, (g) = ()<g (Rg.(9)) = £g.6(0)-
For simplicity of notations, we set

~ (g~ (s),
(@) YA :="0A X =0, (D)< = (Do
(b) SL:="%L,*B:="%B,
), (s)
(© *wi= "2 Ry (g) == "€ Ry (g) and Ry 5 (g) = R, 00 (@)

From now on, we fix s € Z and A. Let us denote by *A, the quantum cluster algebra
whose initial seed is

5S = ({Ui’p = m(i)[p, s]}(i,p)e‘/go’ SL, SB)- (86)

Forn > 0, let vi(’n; be the quantum cluster variable obtained at vertex (i, p) after
applying the sequence of mutations *u n-times. Then we give a quantum cluster alge-
bra algorithm to compute F, (m¥[a, b]) for KR-monomials m©[a, b]. The following
proposition establishes an analogue of [30, Theorem 3.1] and [5, Proposition 6.3.1].

Proposition 8.6. For each (i, p) € Ay and n > 0,
v = FymD[p —2n.5 — 2n]) := (Fy(mP[p — 2n.s — 2nD))<s.  (8.7)
In particular, if 2n > h, we have
vl.(f’[j = F,(m"[p —2n,s — 2n)).

Proof. Let us apply induction on n for this assertion. For n = 0, it follows from (5.28)
in Proposition 5.29. Let n > 0 and (i, p) € *A. Suppose we have applied *u n-times
on *S, and (n + 1)-times on all vertices preceding (i, p) in the sequence *u, and that all
those previous vertices satisfy (8.7).

Thanks to Theorem 8.4, the corresponding valued quivers coincide up to a shift of
spectral parameters in labeling of vertices. Then, the argument in the proof of Proposi-
tion 8.2 tells us that the vertex (i, p) is vertically sink or horizontally source, that is, one
of the following configurations:

U, p+ %)
r*C\,’.ivCL/J
\ . . .
r e (P —=2) @, p) ,p+2) (G,p—-2) @, p) @i,p+2)
r—cj/,é,u
' p+ )

(8.8)

where g, ; = (—1)5((x)5k<(‘q)Si) for k € Ay with d(i, k) = 1. In this proof, we only
consider the first case in (8.8) since the computation below is almost identical for the
other cases.
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By the definition of )¢, we have ©)%;; = ®&; ; forall j, j' € Ay with d(j, i) =
d(j',i) = 1. Now let us assume that i is a source of *)£ since the proof for the cases
when i is a sink of )% is similar. Then the quantum exchange relation has the form

(n+1) (n) (n+1)  (n) (m) \—Cji
v; N l p Otvl p+2 vl p—2 +qﬁ l_[ ( l p— l) ! (89)
Jji d(j.i=1
for some «, B € %Z, where
(n+1) (n) (my—1 () Cj.i
(vl p+2 Y ,P— 2) * (vi,p) and qﬁ l—[ ( i,p— 1) !
Jy d(j,i=1
* (vi(”;)_1 are bar-invariant. (8.10)

Here the dot product - is given in (4.8).

The rest of this proof is devoted to show that the above quantum exchange relation
coincides with the truncated image of the quantum folded T-system in Theorem 6.9.
For this, it suffices to assume that s = 0 and hence p € Z . For each (i, p) € OAO, we
set k :=max(u | p +2u < 0). By the induction hypothesis, we have

( +1) L0 @) _ 0 @) 0 @)
lnp * Fq(mkl,p—Zn) =q° ( Fq(ﬂkl—l,p—zn)’ F(I(mkl+1,p—2n—2))

0 () —Cji
+q)/ 1_[ Fq(mk,p—l—Zn) "
Js d(j,h=1

On the other hand, the corresponding truncated image of the quantum folded T '-
system in Theorem 6.9 is

0 (@) 0 (i) 0 (i) 0 (@)
Fq(mk,p72n72)* Fq(mk,p72n) =q"° (F (my, 1p72n) F (mk+1p n— 2))
rq" ] Ry )%
Ji d(j,i=1
(8.11)
where

1 ~
y = 3 ik — 1) +Tii2k+1)) and o =y +d;.

By using the dominant monomials in (8.11) and bar-invariance in (8.10),

71 i
q (—I(cl)l p—2n '_l(c’+)1p 2n— 2)*(_18)1; 2,) and g” 1_[ (—l(cJ; 1—2n) %
Ji d(j,i=1
-1
* (—l(cl)p Zn)

are bar-invariant. Thus we have

k—2 k
== Z (Z i (2@ —b)+1) = 7ii(2@—b) — D)+ Y (7;i(2(a —b)+3)
0

25\ b=
—7,i(2(@ — b) + 1))



173 Page 60 of 83 I.-S. Jang, K.-H. Lee, S. Oh

k—1
1 ~ ~ ~ ~
=3 E (Ti.iRa+1) = 1;,i(2a — 2k +3) +7;,i2a +3) — ;i (2a — 2k + 1))
a=0

1 - ~ ~
=3 (i Qk+ 1)+ 73,2k — 1) + 7 (1) = o

and

k—1 [k—1
1 ~ ~
v=5 2 S (X_(j) (Z Wi (2(a — b) +2) — ;i (2(a — b))))

Jid(j)=1 b=0

k-1

1 ~ ~ 1 ~

=3 > ¢ (Z (i (2a +2) = 7, (2a — 2k + 2))) =5 Y —Cii(2k)
Jid(.j)=1 a=0 Jid (i, j)=1

= S ik + D+ k= 1) = .

Here — holds by Lemma 2.3.
Since °F, (m}” _,,
torus OXq, we conclude that

) is invertible in the skew-field of fractions 08’4 of the quantum

(n+l) _ 0 (@)
Vip = Falmy o, o)
as desired. The second assertion follows from Proposition 5.29. O

Let (S)’Tq be the quantum torus associated with * L generated by v; ,, for (i, p) € Slo.

Then, )7, is isomorphic to * X,. Thus, *.A, can be understood as a Z [qi%]-subalgebra
in ¥7,
g
By following the argument in the proof of [5, Lemma 6.4.1], we have the following
lemma:

Lemma 8.7. The assignment
Qv p > FymPlp, s])

extends to a well-defined injective Z[qi%]-algebra homomorphism
Q: 97— X,

Moreover, the restriction of ) to the quantum cluster algebra * A, has its image in

the quantum torus X, and the Z[qi% l-algebra homomorphisms Q) and (-) s satisfy the
following commutative diagram:

SA(/ = Xq
k\ o< (8.12)
X‘Xq

where *() is the map induced from the assignment v; , — mD[p, s].
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Let *R, be the image of the quantum cluster algebra A, under the map Q:
R,s :=QCAy.
We prove an analogue of [30, Theorem 5.1] and [5, Proposition 6.4.2] below.
Proposition 8.8. We have
Rys = Rq.6(0).

Proof. Let us recall v; , := m(i)[p, s] and (S)Sl- € {s — 1, s}. By Proposition 8.6 and
Lemma 8.7, we have

Q (vfﬁz)si) = Fy (X; 0 _2,) fori € Agandn € Zxo.

Since R, s(g) is generated by Fj (Xi,p) for all (i, p) € SA as a Z[qi%]—algebra by
Theorem 5.27 (see also (5.23) below), we have the following inclusion:

ﬁq,s (g) C Rq,s~

. . . . 1
Next, let us prove the reverse inclusion. As we see in Sect.4.2, there exist Z[qiz]—
derivations S; , : X; — &j 4 such that

ﬂ Ker(S; 4) = £4(g). (8.13)
ieﬂo

Let us prove by induction that all cluster variables Z in *A, satisty (Z) € &y s(g).
Let Z be a quantum cluster variable in *A,. If Z belongs to the initial cluster variables,
it is done by definition of Q. Let us assume that Z does not belong to the initial cluster
variables. Then Z is obtained from a finite sequence of mutations. Then we have

ZZ) =q“M +q° M,

where Z1, M and M> are quantum cluster monomials of *A4,. By the induction hypoth-
esis,

Q(Z1), Q(M1), QM) € Ry,5(9). (8.14)
Note that Q(Z;) # 0. By Lemma 8.7, we have

Q(Z) * QZ1) = ¢* QM) + ¢P Q(M>).

Since S; 4 (i € Ag)isa Z[qi%]-linear derivation (Proposition 4.8),

Si.q(QUZ) % Q(Z1)) = Q(Z)-Si, 4 (QZ1)) + S, 4 (QUZ))-Q(Z1)
=q°S; 4 (QM1) +qP S; o (Q(M>)).

By the induction hypothesis and (8.13), we have
Si,q(QUZ1)) = Si,q(QA(M1)) = Siq(Q(M2)) = 0.

Then Lemma 4.7 tells us that §; ,(Q(Z)) = 0, that is, Q(Z) € K 4(g) forall i € A.
Hence, Q(Z) € R, ;(g) due to (8.13) and (8.14), as we desired. |
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Now, we present the main result in this section.

Theorem 8.9. For each height function & on A, the ring £ ¢ (g) has a quantum cluster
algebra structure whose initial quantum seed is

S = (1FmP1p. &)Y pyesz, °L. °B). (8.15)

Proof. Our assertion for )¢ already holds by Proposition 8.8. Let j € Sﬁo be a source
of ®¢. Then we have

. . (), (g N
w1 (Fog) = ((FmO1p =265, Vi = 26 D) sy LB ) = 7, o
(8.16)

by Proposition 8.2 and Proposition 8.6. Let Q (resp. *)Q) be the Dynkin quiver of A
corresponding to & (resp. ¢)£). Since any Dynkin quivers of A are connected by a finite
sequence of reflections (up to constant on their height functions), so are Q and Q.
Then the quantum seed () is mutation equivalent to .-#; by (8.16) and T, (r € 2Z)
(see (5.27) for the definition of T, ). Hence, it follows from Lemma 7.5 and Proposition 8.8
that £, s(g) =~ %1/2 (Y(s)é) ~ %1/2 (F%) >~ Ry,£(9), s0 Ry £ (9) has a quantum cluster
algebra structure. O

As an application of Theorem 8.9, we obtain g-commutativities of F, @,(f)r) and

Fy, (ml(j,)) satisfying certain conditions as follows.

Theorem 8.10. For a pair (m,((i)r, ml(.jt)), (Fq (m,(j)r), F, (ml(jt))) is a g-commuting pair if

@r—di,j)<t<t+20—1) <r+2(k—1)+dG, j) or
byt —d, ) <r<r+2k—1) <t+20—1)+d(, j).

In particular, F, (m,((iy)r) q-commutes with Fy (X p) if
r—d@,j) < p<r+2k—=1)+d(, j).
Proof. Under the conditions (a) and (b), there exists a height function £ on A such that
§ =r+2(k—1)and&; =t +2( — 1). Then we have
Fym{) = Fym®[& — 2(k — 1), &) and Fy(m}’)) = Fy(m©(g; — 20 = 1),&])

which can be viewed as initial quantum cluster variables in .#;. Thus our assertion
follows from Theorem 8.9. m|

The conjecture below is proved in [62] when g is of finite A D-type.

Conjecture 4. For a pair (m,(:)r, m;jt)), Fy (m,({i) ) and F, (ml(j[)) q-commute unless there

e

exist 1 <u < hand0 <s < min(k, ) — 1 satisfying

k+r—1—t|=u+lk—1+2s and T j(u—1)#0. (8.17)

9. Extension to K, (g)

In this section, we will extend Theorem 8.9 to £,(g), that is, the quantum virtual
Grothendieckring £, (g) has also aquantum cluster algebra structure (of skew-symmetrizable
type) isomorphic to its subalgebra £, ¢ (g) for each height function & on A.
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9.1. Sink-source quiver. For an integer s € Z, recall the height function )& on A. Now

< ~
let us consider a new valued quiver *Z7 whose set of vertices is * A and the exchange
matrix **B is given as follows:

—C;,j ifeither(a)t—p=1,i# jandp=4§ =5—1,
or(b)p—t=1,i#jandp # § =y,

Cij ifeither(@)p—t=1, i #jand p =4 & =s,
or(Yt—p=1,i#jand p £4 & =5 — 1,

bip).Gon =11 ifeither (A) |[p —¢| =2, i =jand p =4 § =5, 9.1)
or(B)|p—1]=2, i=jandp#sk=s5—1,

-1 ifeither (A') |p—t| =2, i=jand p £4 & =5,
orB)|p—t|=2,i=jand p=4& =s5—1,

0 otherwise.

Note that *B satisfies (2.12) with the sequence S = (s; p | si,, = d;) and without frozen
vertices.

Example 9.1. Here are a couple of examples of $77 for non-simply-laced types:

(1) Let us assume that s = 0 and g is of type B3. By Convention 1, we have

§1=6=0, &=-1

Recall that SAq = {(i, p) € I9 X Z | p — & € 2Z and p < &}. Let us compute
bi.p).(i,n in (9.1) for (i, p) = (2, —=1). If (j, 1) = (1,0) or (3, 0), then this is the
case (a), so we have b p) (j,n = —Cij. If (j,t) = (1,-2) or (3, —2), then the
pair of (i, p) and (j, ) does not satisfies (b) and (a’). Thus, b(; ), (j,» = 0 in this
case. Finally, if (j, 1) = (2, —3), then this is the case (B), so bip).gn = —1

Consequently, the valued quiver 077 can be depicted as follows:

(1,-4) (1,-2) (1,0)
= (2,-5) 2,-3) 2,-1) (9'2)
\Fz \V")
N RN
3,4 3.-2) 3.0)
L
(2) For s = 0 and g of type G2, %7 can be depicted as follows:
1,-4) (1,-2) (1,0)
’ﬂ/ 31/
e e
) @,-3) @ -1
. . (_ . .
Remark 9.2. Note that every vertex (i, p) in °/7 is either
(i) vertically sink and horizontally source, or
(ii) vertically source and horizontally sink. (9.3)

More precisely, when

(1) & =sand p=4s,0r& = (s—1)and p #£4 s — 1, (i, p) satisfies (i),
(i) & =sand p #4 s,0r& = (s — 1) and p =4 5 — 1, (i, p) satisfies (ii).
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Thus, comparing with the quiver (2.15) of type B3 in Example 2.5, every vertex in (9.2)
satisfies (9.3), while none in (2.15) does.

For each (i, p) € ‘YEO = ‘YEO, we assign *u; , € &,(g) at (i, p), which is defined by
Wi, = F, (m<f>[so,~,,,, Soip+2 Sz,-,,,]) , 9.4)

where

T 308 =3) | o)
~ o)

Sipi= ((3)5,- — p) J2€Zso and ‘o0; =& —2x L

Example 9.3. By replacing vertices (i, p)’s in A'Eo with u; , in Example 9.1, we can
obtain the following pictures:

(1) For s = 0 and g of type B3, we have

Fo(mW[-2,2]) ——— F,(mWY[-2,0]) =<—— F,(mV[0,0])

= Fy(m®[=3,1)) =——— F,(m@[~1,1]) —— F,(m?[~1, —1))
~,

) )

S
Fy(m®[=2,2]) ——— F,(m®[-2,0]) =< F,(m™[0, 0])

(2) For s = 0 and g of type G2, we have

Fg(mM[=2,2]) ——— F,(mM[-2,0]) =<——— F,(mV[0, 0])

A
N
/3

37/
A

s Fym®[=3,1]) Fym®[=1,1]) ——= Fy(m@[=1,-1])

Let us define a matrix *A = (A, p),(j.n) i, p),(j.0e &, Such that
A,y = M(m(i)[soi,ps Soip+ 25 p1, M0 4,50 s + 2515 ,).
Theorem 9.4. The pair °A\, *B) is compatible with diag(2d;, , :==2d; | (i, p) € S;()).

<
Proof. Let (i, p), (j, t) € *Z7¢. In this proof, we only consider the case of £; = s and
t =4 &;, since the other cases are similar. Set a1 = ‘0; p, ap = a1 +2°l; ;,, by =0}
and by = b1 +2%; ;. By (9.1), we have

—CABYp), () =8 #E) Niped +* A=+ Y ki Aapki—n
k; d(j,k)=1
=8t # &) Nm Va1, az), mP[by, by — 2])
+ NmWlar, a2, mP[by -2, ba])

+ Y i NmPlar,al,m®Pby — 1,6y — 11)
k; d(j.k)=1

= NmWlay, axl, Bjpy—1Bjpi+3- - Bjpr—1)
where = holds by (3.7) and (4.4). Then it follows from (4.9) in Proposition 4.6 that

—CAB) )iy = NmDlay, a2l, Bjp,—1Bjp+3 -~ Bjby—1)
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ay—aj by—bj

2 2
= > D 8ij(=8a +2x — by —2y = -2)
x=0 y=0
+8(a; +2x — by — 2y =0))2d;
@
=5 Z (=8(a1 +2x — by = —=2) +8(a; +2x — by = 0))2d;.
x=0

If i = j, we have the following:

(1) [ay, a>2] and [by, by] are inclusive, that is, either [a, az] C [by, ba] or [by, by] C
la1, a2];
(2) ifay = by, then b —a; = 2 or O for {k, [} = {1, 2}.

Thus we can conclude that

—CNAB) . p). . =8, p) = (J, 1))2d;,
as we desired. O
Lemma 9.5. The set {Sui,p}exgo forms a qg-commuting family in R, (g).
Proof. From Theorem 8.10, our assertion easily follows. O

Theorem 9.6. The family of quantum seeds
&, = ({su,-,,,}(,-’p)esgo, SA,B) fors € Z, (9.6)

gives a quantum cluster algebra structure on R4(g).

The rest of this paper will be devoted to proving Theorem 9.6. Let .27, (g) be the
quantum cluster algebra generated by the quantum seed S;. To prove Theorem 9.6, we
need to show that

*dy(9) = Rq(9). 9.7

Then the proof of (9.7) is separated into two steps as follows:
Step 1. For the inclusion *7, (g) C £,(g), we will prove the following proposition
in Sect.9.2.

Proposition 9.7. For any finite sequence . of mutations, a cluster variable in /L(GS) is
contained in £4(g).

The key observation for proving Proposition 9.7 is that the mutated variables from &,
are understood as the ones from .7 for some s” € Z, which implies *.<7, (g) C £, (9).

Step 2. The opposite inclusion will be proved as the following proposition is shown
in Sect.9.3.

Proposition 9.8. For (i, p) € AO, there exists a finite sequence | of mutations such that
,u(GS) contains Fy(X; p) as its cluster variable.

Since £ (g) is generated by F,(X; ) for (i, p) € EO by Theorem 5.27 (see also (5.23)
above ), the opposite inclusion for proving (9.7) follows from Proposition 9.8.
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9.2. Proof of Theorem 9.6: Step 1: proof of Proposition 9.7. For k < s, we set
(kY :={(i, k) € Ao} and (k,s):={G, p) € Ay |k < p <s).
We understand (k, s) = @ for k > s.
Lemma 9.9. For the valued quiver S& we have
Hit,s) © Hiizs) © 0 Kir) CB) = Ujis) © () © - © () (),

where {(i;, )Y i<i<r = {Ur, Hh<i<r = (s). Thus, W (s) is well-defined on SA, that is,
(s (Sﬁ) is uniquely determined.
Proof. Note that (a) each (ix, s) € (s) is vertically sink and horizontally source, (b) all

the length 2 paths passing through (iy, s) start from (i’, s — 1) and end at (i, s — 2)
where d(i’, i;) = 1, and (c) there is no arrow between (ix, s) and (iy/, s) for iy # ip.

e (g, s —4)~————— (ik, s — 2) (ik, )
~
Yg ricf‘”i/’cfgk—‘ T=Cit iy iy i7 2 r*‘7;,{.;”Cigk4 T—Cyy iy Ciyi7
o P— ~ ~
@', s —3) @'s—1)
- ~ - ~
rf&ui’vci’jk/J ’_’Ci’jk/'c[g/—‘ ri&ui’vci’,ik/J F*Cﬂ,ikwc[gu
< (g, s —4) (x, s —2) (s 8)

Thus the mutation 4, ) of * A at (ix, ) does not affect the local circumstance of (iy/, s)
and the arrows between (ix, s — 2) and (i, s — 1) for d(ix, i’) = 1 are canceled out by
the mutation i, s).

(i, s —4) (ix, s —2) (i, 5)
. r\ 7 -
He(ig.5) _C'k-""cfgﬁ r‘ﬁi’»rk‘clk»l” —/gk_i/,c,r_,kJ
(' s—3) (@' s—1
7 S~ e S~
T=Ci,i:Citi, 4 T=Cirj G, ira T=Cp, i Ciry,a T=Ciy .Gt
et CACEEU S b

(i, s —4) (ixr, s —2) (ix', 5)

(ik, s —4) (ig, s —2) —————— (i, 5)
H(iyr ) r_crk.i"cing r_ﬁf’Jk‘C';T” r—/i,»k_,./,c,r.,»kJ
(i s—3) (@ s—1
7 S~ =
T=C;,i1:Citi, 4 T=Cir G, i1 T=Ci i Cir iy, 2
et LN e

(i, 5 — 4) (g, 8 = 2) —————————— (iyr, §)
(9.8)
Hence the assertions follow. m]

Lemma 9.10. For the valued quiver *A and k < s, the valued quiver

SNY SR+ . .

Pe(k,s)y CA) == [ (ky © Rty © + -+ 0 psy CA) is uniquely determined. (9.9)

Thus .y is well-defined on 41 s) (A) and hence Hik,s) is well-defined on SA.

Proof. The assertion for k = s holds by the previous lemma. As we can observe in (9.8),
(a)each (i’, s — 1) € {s — 1) is vertically sink and horizontally source, (b) all the length
2 paths passing through (i’, s — 1) start from (i, s) andend at (i’, s —3) where d(i’, i) = 1
and (c) there is no path between (i’, s — 1) and (i”, s — 1). Thus g 51y 0 (7 s—1) =
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M@” s—1) © M(i’,s—1) ON u@)(‘ﬁ). Thus the assertion holds for k = s — 1, and H(s—1)
yields arrows from (i, s) to (i’, s —3), and hence Hs—1.5) (‘ﬁ) can be depicted as follows:

< (ks —4) (ix, s —2) (ik, 5)
e A _
it i Cig i’ 70,](';/,6;/';‘_1 76[’,I;"Ci/<,[u 7kav[,'cﬂv[k—‘ C;r ik C’k’ 4
) - N ~ ] ~ (9.10)
@i',s —3) @i’ s —3) @i, s—1)
\
r>ﬂ g Gt TG ,,;’scﬂJ ’—}[’,[A,’Ciku[’J T Ciy i Cit iy 4 r}[, g Cig i’
NS N
(i, s —4) (v, s —2) (U))

By the same reasons for () and ¢ _1y, the sequence of mutations sy is well-
defined. Furthermore, by the mutation rules, the arrows between (ix, (s — 2) £ 2) and
(i’, s — 3) for d(ix, i") = 1 are canceled out by the mutation /4 (;_y. Thus f(s_ oy (°A)
can be depicted as follows:

co=—— (i, s — 6) (i, s —4) (i, s —2) (ik s)
R ST - e
P AN S P Tk 9.11)
i’ s—=17) (l 5s—5) @i’y s —3) @i',s—1)
g \ r . \ \ r \
Cir sipt CA/" J -G r}"cv/.ler 7Cl/ﬁ’\r'cvkr.l/J CA 75Cy —Cir CA/.! <
< oA « L
~—(ix,5 —6) (v, s —4) (i, s —2) (lk’» )

As in the previous cases, i (;_3) is well-defined, u;_3y yields arrows from (i, s — 2)
to (i’,s —3+2)as M(s—1y did, and hence pu (53 ) (*A) can be depicted as follows:

co=——(ik, s — 6) (i, s —4) (i, s —2) (i, §)

—C; i1t gy 1 r—cy; ol T—C, .Gyt r—cyr; .cﬁiu r\c, .Cir i 3 r—cyr; .C{J

k! \i - 'k k 3 - kT k \k - Tk (9' 12)
) (s —3) (s —1)
r - [ r B / oS
—C‘ ,C,/‘A,J —C"_,k/.C,kH'J _CIA/.!/' l/.l’\/J _Clyﬁk/'clkr it C C sy _C:/ L"Ck S
L — K / «

(ix, s — 6) (i, s —4) (ixr,s —2) iy, s)

Then one can see that
() the full-subquiverof p ¢, 5, 5) (*/A) obtained by excluding vertices in (s) is isomorphic
to the valued quiver H(s) (°*A) in £9.8),
(i) the full-subquiver of ¢, 3 ;) (A) obtaineii by excluding vertices in (s — 1, s) is
isomorphic to the valued quiver Hs—1.5) (*A) in (9.10).
Thus the induction works. |
Remark 9.11. In the previous lemmas, we observe the following:

(1) Each p,p) in wgg ¢y happens when (i, p) is vertically sink and horizontally source,
and the arrows adjacent to (i, p) are given as follows: for any j withd(i, j) = 1,

(i,p—=2) (i, p) @i, p+2)
;c,c/, if p=ps,

(i,p=2) @ p) @i,p+2)
\ .
if p #2 5.
- P#

Usp+1)

(2) Each 1, p) in K(k.s) does not affect on the local circumstance of the vertex (j, s) for
|s — p| > 2 in the valued quiver obtained by applying the preceding mutations on
N
A.
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Example 9.12. By applying 1,4y on the valued quiver ;L(S_M)(‘ﬁ) in (9.12), we
observe that the local circumstance of vertices in (s — 1, s) are preserved as explained
in Remark 9.11 (2):

oo =— (ig, 5 — 6)

(ik, $)

(s =4 <— (ks —2)

s r7c,r,k,clk_,u F;c/lk_,r.c,r/_,ﬂ r—c,/_,k.c{u D\clk_,/,c,/,ﬂ r*C,rlk.C,‘_,u
M<s74,s)( A) = L, = . L, S 7
i',s =17 @i',s —5) @i',s—3) @i',s—1)
K N <A/ X
voe<— (i, s —6) (g, s =4 <~——— (.5 =) =— (i, 9)
(9.13)

For notational simplicity, let us keep the following notations:

o T((k,s)) = pgey CB) (0 0.9), Ty :="K, ©,:="7, Q:='7,
o for a valued quiver T, a quiver T denotes the full-subquiver of ' whose vertices
arein X C I,

— <« <«
where /7 is the quiver obtained from */7 by reversing the orientation of arrows in */7.
By Remark 9.11 (2), we have

<_Oo’k_3>Ts(<k, S>) ~ <—°O’k_3>’rs’ 9.14)

for any k < s. The lemma below concerns (k=3.s) Y ((k,s)).
Lemma 9.13. For r € Zx>y, as a finite quiver,

(a) <s—2r+1,s)'rs(<s —2r+1, S)) ~ {s=2r+l,s) Y.

(b) <s—2r+1,s>Ts(<s —2r, S>) ~ {s=2r+1,s) Y, and

G399 ifr =0,

(s72r73,min(s72r+2,s)>TS(<S — 2 S>) ~ (55 Y)@ b .
. > s olnerwise.

Proof. (a)Recall (s —2r + 1, s) = @ if r = 0, so this case trivially holds. The cases of
r = 1 and r = 2 are already verified in (9.10) and (9.12), respectively. One observes
that in the general case (i.e. r > 3), the mutation patterns in the intermediate steps are
identical with (9.8) and (9.11) up to the shift of the second parameters. This completes
the proof of (a).

(b) Let us consider the cases of 0 < r < 2 precisely as follows:

Case 1.1 = 0. By (9.8), $=39) 7, ((s)) and &+1-92 7, ((s)) are

(ix, s —2) (ik, 5)
r—c,,_,k,é;,u r—c; v,/.C{,kJ d 1
o and @, (9.15)
(i',s =3)<=———(',5s—1)
T=Ci iy Ciyy it r*‘;k\,.,’»c.uk,J
N\ AN

(i, s =2) —————(ix,5)

Case2.r = 1. By (9.11), 657, ((s — 2, 5)) and =19 Y, ({(s — 2, 5)) are

(ks =4 ———> (i, s —2) =<— (i, 8) (ik, $)
7
TGyt g G F—Cip -Gt i TGyt g Cip it TGyt o it
e and ~
i',s—-5<~———(@{,s=3)—=(,s—1 i',s—=1)
RS
r_cl‘/.lk/'cl‘k/.l/J r—Cik,.,/-‘:i/.ik,J r—Ci/.ik,-‘3;1{,.1“ r—Ci/.ik,-‘3;1{,.1“
N AN N

(g, s —4) ———— (ip, s —2) <— (ip', 5) (igr, 8)
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Case 3.1 = 2. By (9.13), $=75-2 7 ((s — 4, 5)) and $=39) Y, ({(s — 4, 5)) are

(i, s =2) =<—— (i, $)
(if. s = 6) ———— (if. s —4) = (if.5 —2)

"=y by "oy 8 "=y by e L e A
/ s and e N e
(z.r—lwi(l‘sf‘i)*ﬂusfi) i’ s—3)=————(i',s—1)
=Gt Cipy it T =Cipy i1 Ciriy, - T =Cirly iy it - N - A - NS
Y N N Cit iy Cipit 4 Ci it Ciriy 2 =Gy Gy it
(75 = 6) ——— (i, s —4) = (g5~ 2) & P £

(i, s =2) =<—— (ix, 9)

(9.16)

One may further observe from Case I-Case 3 that

° (s—2r+1,s)*rs(<s —2r,s)) ~ (s—2r+1,S>TS for r > 1 (by a similar argument as in
(@),

o (s72r=3.5-2r42) Yy ({(s — 2r, s)) forr > 1 is isomorphic to <5_5"Y>®s as finite quiv-
ers, where ¢339 ((s)) = 0390 Q.

Hence we complete the proof of (b). O

Forr € Z>1, we define

o JH(s) O M (s—4,5) Ot O Ms—2r1d5) © H{s—2rs) if r = 0,

H(s—2rs) = ifr = 1
H(s—2,5) © H(s—6,s) © " O H(s—2r+d4,s) O M(s—2rs)y U7 =2 1.
By Lemma 9.13 (b), =2 +19) 7 ((s — 2r, s)) ~ $~2+Ls)y By Lemma 9.10 and
Remark 9.11(2), 14 (_,44,5) is well-defined on (s=2r+L5) ' ((s — 2r, s)). Thus it makes
sense to define
Ys({s = 2r, ) i= W (s—2r,5) (D).

Then we have a generalization of Lemma 9.13.

Proposition 9.14. For r € Z >, we have

23900 ifr =0,
(s—2r 3,S)Ts((s —2r,s)) ~ <S_2r_3’s>®z ;Zr Ez L
Proof. We first consider the case 0 < r < 2, and then the general case r > 3.
Case 1. 0 < r < 2. The assertion for r = 0 and r = 1 is shown by (9.8) and
(9.11), respectively. Let us consider the case r = 2. By (9.13), we may consider
=757 ((s — 4, s)) by separating it into two parts (s=75=2) ({s —4,s))and (s=2.5)
Y5 ((s — 4, s)), where each one is shown in (9.16). Then (s=7.5) Y5 ({s — 4, s)) is under-
stood as a concatenation of $~75=2 Y ((s — 4, 5)) and 1, ((S_“) Ys({s —4,s)))due
to Remark 9.11 (2), where the common vertices are overlapped. Since fi(g)
(<S_2’S>TS(<S —4, s))) is isomorphic to the valued quiver in (9.15), the assertion for
r = 2 is proved.
Case 2. r > 3. The proof idea in this case is identical with Case I, that is, by using the
same argument as in Case I, we observe that the finite valued quiver

= (s=2r=3,5-2r+6) (:u'(s—2r+4,s> O K (s—2r,s) (Yg))
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is a concatenation of

(g, s —2r —=2) —— (ig, s — 2r) =— (i, s — 2r +2) (ik, s —2r+2) — (i, s — 2r +4) =—— (ix, s — 2r + 6)
P S R 4wl e el
an
(i',s=2r=3)=—(i',s —=2r — 1) ——= (", s = 2r + 1) (', s —=2r+1)=——(i',5s =2r +3) ——=(i',s —2r +5)
(g s —2r =2) — (ip, s = 2r) =— (i, s — 2r +2) (igrys —2r +2) — (i, s —2r +4) =—— (ip, s — 2r +6)

where we regard the common vertices to be overlapped in the concatenation. Since
(s=2r+5.s) (/-’L(s—2r+4,s) o M(x—zr,s)(sz)> ~ <3’2r+5"">Ts by Lemma 9.13 (b),
and f ;.48 ) does not contribute to I'1, we complete the proof by applying the same
argument to (s=2r+5.5) Y as in Case 1. O
Let us write i in Proposition 9.7 as
M= G, p) © KG—1,pi-1) © "7 O K(ir,pr)- .17

Take t € Z such that t < min(pr | 1 < k <) and s — ¢t =4 2. By our choice of #, it
follows from Proposition 9.14 that

(1_3’S>Ts((t, sH) > (=35)@, as a valued quiver,
where
s—t=4u+2 for some u € Z>y. (9.18)
Recall the quantum seeds

Sy = (Coip = FmPlp, V&) e, 'L *B) associated to & in (8.15),

S, = ([fui,p = Fy(m0; p, %0i p +2 Sll-,,,])] VA, S%) in (9.6). (9.19)

(i.p)es R

Proposition 9.15. Every mutation [, p) in i(; sy on the cluster {*v; p} corresponds to
the quantum folded T-system in Theorem 6.9, and furthermore,

the mutation K, p) sends Fg (m(i)[a, b)) to T_z(Fq (m(i)[a, b)) = Fy (m(i)[a —2,b-2)),

when F, (mD[a, b)) is the quantum cluster variable sitting at (i, p) and obtained from
the subsequence of mutations previous to the i, p) in [ sy.

Proof. First, let us consider a mutation ((;, p) in Kt s) - When (i, p) = (i, s) (i.e. one of

the vertices located in the right-most of slo), the local circumstance of (i, s) described
in Remark 9.11 (1) tells us that the quantum exchange relation is given by

1) (Fg Xis)) * FyXig) = ¢*CVFymDs = 2,5 + 7D [ FpXjem) ™%,
Ji dij=1

where ¢*%D and ¢g”@D are determined to be bar-invariant as in the sense of (8.9).
Consequently, it corresponds to the quantum folded T-system in Theorem 6.9 and hence
Wi,s)(Fg(Xi5)) = F4(Xi s—2) as we desired. Note that another mutation at (i’, s) does
not affect the mutation at (i, s) as shown in Lemma 9.9.



Quantum Virtual Grothendieck Rings Page 71 0f 83 173

Second, let us consider a mutation at (j, s — 1), which appears later than any (i, s) in
M (s,s)- Let us keep in mind that the cluster variable located at (i’, s) is already mutated

by former mutations, which is F;, (X;s s_»). Then the quantum exchange relation is given
as follows (recall Remark 9.11 (1)):

11Gs—1) (Fg Xjs—1)) % Fy(Xj 1) = ¢*Y D FymD[s — 3,5 — 11)

+ qy(j’l) 1_[ Fy (Xi,sf2)_ci’j )
i;dji=1
which coincides with the quantum folded T-system in Theorem 6.9. Hence
wijs—1)(Fg(Xjs-1)) = F4 (X s—3), as we desired.
Finally, by using this argument and the local circumstance of (k, p) in the order for
applying w, py, described in Remark 9.11 (1), one can conclude that each mutation
I,p) In i 5y corresponds to shifting the second parameters of cluster variables by

—2. The assertion for mutations in /(;,4,) (r = 1) follows from Lemma 9.13 (b),
Remark 9.11 (2) and the argument for mutations in f(; ). O

Recall u € Z 3 in (9.18) depending on (¢, s). For (j, a) € Slo witht < a < s, we
remark that

(A) there exists 0 < e < u such that s —4e —2 < a < min(s + 1, s — 4e + 2), equivalently
acf{s—4e—2,s—4e—1,5s —4de,s —4de + 1},
(B) Vg; =sifa =5 —4e —2o0rs —4de, and V&; =5 — 1, otherwise. (9.20)

Proposition 9.16. For (j, a) € ‘ﬁo witht <a <y,
(M(I,s» ({b Uk,p}))(j’a) = Fq (m(J) [S/Oj,a’, S/Oj’a/ + 2S/lj’a/]),
where s’ =5 — 2w+ 1) anda’ = a —2(u+1) foru € Z>o in (9.18).

Proof. Since u(j q) appears (u + 1 — e)-times in He(r.s) and *v;, = F, (m(j)[a, s —
8(WE; # s)]), it tells that Proposition 9.15 that

(1.5 E 0k pD) 0y = Fg (V[ + 2, 5" +2e — 8(a #2 5))),

(.a)

On the other hand, we have

(s’—2(e+1),2e+1) ifs —a=4e+2,
(5/0‘ . ) = (s" — 2e,2e) ifs —a = 4e,
b (s" — 2e, 2e) if (s — 1) — a = 4e,

(s —2(e—1,2e—1) if(s—1)—a=4e—2,

where the integers on the left-hand side are defined in (9.5). Then one can easily check
that

!/ ! !’
‘ojo=a"+2 and 0y +2°1jy=5"+2e—8(a # ),
which implies our assertion. O

Now, we are ready to prove Proposition 9.7.
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Proof of Proposition 9.7. Write u in Proposition 9.7 as in (9.17). Let us set

Z = (e, p )i p)-

By Proposition 9.14 and Proposition 9.16, we have
0w p Dy = EepD oy

where ' =t +2(u+1),s’ =s+2u +1) and (k', p’) denotes an element in s'Ao. That
is, Z can be understood as a mutated variable from {* /nkr, '} as follows:

Z = (o oy (Cow D) e

where p) = p; +2(u+1) foru € Zg in (9.18).
Since

Sy = (1Fg@1p, &) pevy: L B)

is an initial quantum seed of the quantum cluster algebra &, ;(g) C £,(g), the element
Z is contained in £, (g), which completes the proof. O

In the above proof, we show that any finite sequence p of mutations acting on S
can be understood as a sequence ' of mutations acting on . for some s’ € Z. Since
we proved the corresponding statement for .% in Sect. 8 (Proposition 8.8 and Theorem
8.9), the assertion for S, follows. This kind of idea is also presented in [45, Definition
8.3 (1)], which can be understood as a local isomorphism of infinite quivers.

9.3. Proof of Theorem 9.6: Step 2: proof of Proposition 9.8. For k < s, we set
(k)" :=={G,k) € SEO | (i, k) is vertically sink and horizontally source in SEO 1,
(k)" :=1{(, k) € SEO | (i, k) is vertically source and horizontally sink in ‘YEO 1.

For k € Z s U {—00},

(k,s)™ = |_| (t)” and (k,s)":= |_| ()"

k<t<s k<t<s

Ifk > s, then we understand those sets as empty set. Note that there is no arrows between
vertices within (k, s)* for any k € Ly L {—0o0}.

Lemma 9.17. For {(ir, poYi<i<r = (Ui ad)hi<e<r = (k. 8)T, as a valued quiver,

<~ <~
(it p1) © Bia,p2) © ** © Iir pr) () 2 H(jign) © (jnga) © ** © K(jr.gr) (),

that is, | (k.s)* (S;) is uniquely determined.
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Proof. In this proof, we only consider the case of (k, s)" since the proof of (k, s)™ is
similar. Let us take (i, p), (j, s) € {(k, s)" such that (i, p) # (j, s) and d(i, j) = 1. The

neighborhood of (i, p) on the valued quiver 7 is depicted as follows:

U, p=3) G,p=1 G.p+1) (. p+3)<—-
7
SE — r’/cl/-c/ﬂ r;/c/;-cu r—/c,/,c/,J r—cjici;
(i p—4) (i.p=2) @, p) (i.p+2)
). i, TR S
G r=3) G.p=1D Gp+) ———= (' p+3) =~
By Algorithm 7.3, we have
G,p=3) Gp=1 Gp+1) Urp+3)=—--
waipCo) = < e P
(i, p—4) (i,p—2) @, p) G, p+2)
T—=C; j1.Cj i rjc\er—c,_ﬂ,c//_,J rjc\“r,c,_Ju T=C; j1.Cjrjd T—=Cjr ;.G 1
N —I X 7
(' p=3) G p=1 (' p+D (' p+3)=—--

Here one can observe that

° [L(i,p)(”v;) has arrows between (i, p = 2) and (j, p + 1) for d(i, j) = 1, where

G, px2),(,p+1)elks),
o the arrows adjacent to (j, p — 1) and (j, p + 3) are not changed by w(;, p).

-
Hence, for (x, y) € {(j, p— 1), (j, p+3) | d(i, j) = 1}, the mutation pi(x ) (i, p) (7))
yields arrows between (x, y£2) and (k, y+1) for d(x, k) = 1, one of which disappears

P
due to an arrow from ;) (°27). For instance,

Usp=3) Gop=1 Gp+ D (Gop+3)=—---
( (A(_)) 70, 8in T=0jis€ijiT=Cij.C; vﬁm ) “t}u-%\w rlpv-ﬁ/u
oy i Voj =
I'L(j =1 /'L(l,p) (i, p—4) = Gi,p=2) i, p) i, p+2)
N 7\ )
=Gy jrCira T=Cp 6 jra T=Cp i TGl Gy T=Cy o T=Cr Gy
~ e ~ N Ve N
G'p=3 G'p=1 (' p+1) (p+3) ==

Here the arrow from (i, p — 2) to (j/, p + 1) on u(,-,,,)(A'E) disappeared by the new
arrow from (j', p +1) to (i, p — 2) generated when we apply the mutation ji(; ,—1) to

-
(@i, p) (°27)). In fact, one may observe that

Y(_

Hi.p) © K(j',p=1) = K(j’,p=1) © K(i.p) O "L/,

-
and the arrows among (i, p), (i, p—2), (j', p+1) and (j', p—1)in p(jr, p—1yo i, py (°7)
are reversed.

Furthermore, one may generalize the above as follows:

-
K(ip) © K(js) = H(jus) © G,p) ON iy, pe) © *** © Uiy, py) (L7) 9.21)

for (i, p), (j.s) € (k,s)"\{(ik, p), Gi+1, Pk+1), - - - (ir, pr)}. This proves that the
order of mutations is not important and completes the proof. O
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We remark that an analog of Lemma 9.17 by replacing 577 with *27 also holds.
Fors € Z and k € Z ¢, U {—00}, put

+ s + s
®S(<kv S> )= M(k’s>i(g)v Qs((k S> )= 'u(k,s>i( 7).
Lemma 9.18. We have
Q,((—o0, s)i) ~0O; and O4({(—o0, s)i) ~ Q, as valued quivers.

Proof. We only prove the second isomorphism for (k, s)* since the proof of the other
cases is almost identical. In the proof of Lemma 9.17, we have seen that a mutation
W, py for (i, p) € (k,s)* generates arrows between vertices in (k, s)~ and then they
disappear in the course of the mutations p(; ,)’s for (j, p') € (k,s)" located near
(i, p). Moreover, the arrows adjacent to (i, p) are reversed during the mutations. Hence
we have O;({—o00, s)") ~ Q. O
Proposition 9.19. Every mutation i, py in p (—oc,s)* O the cluster {*u; ,} corresponds

to the quantum folded T-system in Theorem 6.9. Furthermore, each mutation [i(; py on
Su; p in I (oo )t corresponds to T1).

Proof. For (i, p) # (j, 1) € (—o0, s)i, recall that the mutation ;) does not affect
the arrows adjacent to (j, s). Thus it suffices to consider (i, p) and vertices connected
to (i, p) by arrows. Assume first that (i, p) € (—oo, s)*. Then by replacing vertices in

Pl
17 with *ug ,’s, we have the following:

Fym®la+1,b+1])
" —Ci k\Cr.iJ
Fq(m")[ﬂ,h+2l)4)F.,(m‘”la,b])<;Fq(m(”la+2, b)) for J> k with d(l, j), d(l, k) § 1

=G j,CjiJ

FomWa+1,b+1])

where *u; , = F,(m"V[a, b]). Note that *uy 4 for (k, g) € (—00, s)” never mutate by
H(—os,s)*- Hence the mutation rule for cluster variables can be expressed as

Fym®la, b) * pii.py (Fgma. b)) = g2 FynVla +2, b)) - Fy(mVla, b +2])
+ ql/(i,(b+2*tl)/2) H F, (m(j)[a +1,b+1]) "%,
Jid(,j)=1
Here q@(-(b+2=0)/2) and v (0+2=a)/2) are computed by bar-invariance. Hence, as in

Proposition 8.6, and the above equation coincides with the formula in Theorem 6.9.
Thus we have

1. py (FymVla, b])) = Fy(mVa +2, b +2]).

Thus the assertion for (—oo, s)* follows.
Similarly, the arrows adjacent to (i, p) for (i, p) € (—oo,s)” can be depicted as
follows:
Fym®la—1,b-1])

Fq(ﬂm[ll —2.b)) Fq(m(')[a,b])4>Fq(m(”[a.b72]) fOr j, k Wlth d(l, ]), d(l, k) g l

"—CjiiGijd

Fy(mWa—1,b—1])
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Then as in (—00, s)*, we can conclude that
1. p) (Fg(mPla, b)) = Fy(m[a — 2, b —2]),
which proves our assertion. O

Example 9.20. By replacing vertices (i, p) in Moo 0)i(OE) with Moo O>i(0ui, p) Ob-
tained from Example 9.3 (1) for type B3 and s = 0, we have the following by Lemma9.18
and Proposition 9.19:

Case 1. ,u,<_oo!0>+(02).

—_— Fym[-2,2) = Fym ™[0, 2]) ——— F,(mV[0,0)) = Fym[-2,2)) = Fym™[0,2]) —— F,(mV[0,0])

= Fym®[-1,3]) Fym®@[=1, 1) =—— Fy(n@[1, 1)) ~ Fym®[=1,3])) —— Fy(m@[~1, 1)) =—— F,m@[1, 1))
N ~N, g

= Fym®[=2,2)) ——— F; [0, 2]) —— F,(m™[0,0]) = Fyn®[=2,2)) ——— F, [0, 2)) —— F, [0, 0])

where the parameters of quantum cluster variables located at vertices that are vertically
sink and horizontally source are shifted by 2, and the orientation of all arrows is reversed.

Case 2. M (—00,0y" (OE).

s Fy(m"M[~4,0])) =—— F,(mV[-2,0]) —— F,(mV[-2, -2]) - = Fy(mM[=4,0]) =—— Fy(m"V[-2,0])) —— F,(mV[-2, -2])
e ~ N "
< Fy(m@[-3,1]) = Fy(m@[=3, ~1]) —— Fy(mP[~1,-1]) ~ ~— FymP[-3,1]) ——= Fy(m[-3, —1]) =—— F(m®[~1, ~1])
~ -
\ 2y \ / e /
— Fy(mP[-4,0]) = Fy(m®[=2,0) —— F,(m™[-2, -2]) = Fy(m¥[—4,0]) = Fy(m®[-2,0) = Fy(m[-2, -2])

where the parameters of quantum cluster variables located at vertices that are vertically
sink and horizontally source are shifted by —2, and the orientation of all arrows is
reversed.

Thus we can conclude that

M(—oo,0>+(60) ~ G and H’(—oo,O)*(GO) ~6_;.
Following Example 9.20, it is straightforward to check the following proposition.

Proposition 9.21. For s € 7Z, we have
M<_oo,s)i(6s) ~ Gsx1-

For s € Z, put
= Hu<_oo,s)i({xui,p})~

Proposition 9.22. Every mutation i p) in I (—o0,5)E O1 the cluster i corresponds to

the quantum folded T-system in Theorem 6.9. Furthermore, each mutation ji, ) on the
quantum cluster variable at (i, p) in | (—o00,5)* corresponds to Tx>.

Proof. Set

Car = iy D) and 37} =gy (i ).
In this proof, we only consider the case of {*3' p} since the proof of {S;,i_p} is parallel.
>:|:

Let (i, p) € (—o0, s
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Case 1. (i, p) € (—o0, s)*. By replacing vertices in SE with S;,,t’q’s, we have the follow-
ing:

Fym®la+1,b+1])
" —Cp,i-Ci k-

X . . .. .
Fy(mD[a, b+2]) <—— Fy(m@[a+2,b+2]) — F,(m©[a +2,b]) for j, k withd(i, j),d(@, k) <1

r?,,.c,”,J

FymW0a+1,b+1])

where 37 = Fy(m @[a + 2, b + 2]). Hence the mutation rule for quantum cluster
variables can be expressed as

1, (FgmPa +2,b+21) % Fy(mPla +2,b +2]) = ¢*CO2= 2 F (m©la +2, b))
- Fy(mVa, b +2])
+qrG+2-0)/2) l—[ FymYWa+1,b+1]) %,
J:d(,j)=1
Thus we have

1. py (Fy(mPla +2,b +21)) = F,(mV[a, b]).

Case 2. (i, p) € (—o0, )~ . The arrows adjacent to (i, p) for (i, p) € (—o0,s)™ are
depicted as follows:

Fym®a+1,b+1])

r e
—Cik:Chii -

for j, k with d(i, j), d(i, k) < 1

Fem®la, b +2])) ——— Fy(mPla, b)) <———— Fy(mPa +2, b))
=G j.Cji

FymWla+1,b+1])
where %57 = F, (mY[a, b]). Then as in Case I, we have

1. py (Fy (mOla, b)) = Fy(mVa +2,b+2]).

Now, we are ready to prove Proposition 9.8.

Proof of Proposition 9.8. Let us define
Bt i= g g1y~ © M (—oo.s)* and p_ = I (0.5 —1)* © M (oo 5y~
It follows from Propositions 9.19, 9.21 and 9.22 that
pi(S) ~Gsp  and p_(&5) = S5.

By applying p, repeatedly, we obtain F, (X; ) for (i, p) € 50 with p > s as a cluster
variable of *.7, (g). Similarly, we obtain every F,(X; ,) for (i, p) € ﬁo with p < sasa
cluster variable of *7, (g) by using the repetition of y_. Thus the cluster algebra *.<7, (g)
contains every Fy (X; ,) associated to lo as its cluster variables. ]
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Conjecture 5. Let s be an arbitrary integer. If F,(m Dla, b)) € Ry (Q) g-commutes with
Wi, p for all *v; , € &y, then there exists (j, 1) € Ay such that

Sujs = Fy(mY[a, b).

When we replace g in Conjecture 5 with g of type ADE, the conjecture can be
interpreted as the problem on the maximal commuting families of Kirillov—Reshetikhin
modules over the quantum affine algebras U (; (g). It is proved in [45] for type ADE by
using the monoidal categorification (see [38,53] for the notion of maximal commuting
family). As a non-symmetric analog, we propose the above conjecture.
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Appendix A. Examples for (Quantum) Positivity

A.l. Quantum positivity and speciality of KR-polynomials. In this subsection, we pro-
vide examples for Conjecture 1 and Conjecture 2. Recall that

Fq(Xi,p) = Eq(Xi,p) = Lq(Xi,p)9

and the quantum positivity of F,(X; ;) for types B3 and G are already verified (up to
shift of spectral parameters) in Example 5.16, Example 5.24 (for type G»), and Example
5.25 (for type B3). In what follows, we provide the formulas for fundamental polynomials
for type C3. Those elements may be obtained from the g-algorithm (cf. Example 5.16)
or the quantum cluster algebra algorithm in Proposition 8.6, so we skip the details.
The explicit formulas of F,;(X; 0)’s for type C3 are given as follows (under the same
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convention in the previous examples):

Lo
q2X1,0
qi].o
|
q7X20 3,1
1,1 ‘ l
2,1 Z)?g,l*xw
1% 1 3 % x5!
g2 X1 %X\, qzX11 % X300 % X5 2,2
12/ \32 (1+¢%) Xoa x Xip X35
T Ry ¢ Ko n K SN
2's qrX31% X3 UEPSRED.CRLD CX) 2,2 L3
3"2 112/ 27‘3 G, Fae Ky (7' +q) %o = X571
: Lo 4 ‘ T 22
R~ Sl s Sl o iy 7 ¥ ’ ’
42 X32% X553 @ X3, x X3 X5 UEDREDCEED oy L3 /\
2.3 l.‘4 (‘7+‘7)X|2*X‘Z*X% )N(fi @*X}, X3}
o . | T~ |
W (47 +a?) K2 n %3} IS RE S o 1,3 3,3\ 13
‘ ‘ 2X30x X7 XiaxXosx X ix X
2,3 1,2 32% R4 AR SEED CRED LD V1
Lo T | e
inZ?*Xs_i q Xlx*Xﬂ*Xzi q XZZ*XL.IK*XL; 3,3 1,3 2,4
‘ \3,4 2,3/ %73 — , L o
1,4 /\ CXy*Xigx Xy (47" +q) X% X33
Ry %, PV 1> S \ /
X x Kb x X7 a2 X3 X5 2.4 1.3
2,4 \ / \ /
3.4 1,4 (a7 +q) Ko x X i % X35
I o o o o
a2 X14% X5 % FEOCPED SR ED on) 2,4
‘ 2X34% X
25 34 % X,
sy 3‘5
c e
1.5 \L
X5
Y
97 X6

(A.1)

Since F,(X;, p) =T,(F, (X i.0)), we verify the quantum positivity of all fundamental
polynomials for type C3. We /e further remark that the quantum positivity of F (X, ,,) for

type Fy also holds (with the help of computer program).
For type G2, one may compute

Ly(Xig) = Eq(X 0 = F (X3 Xie) Lg(X25X57) = Fq(X2,5X27),

(A.2)
Ey(X25X2.7) = Lg(X25X22) + Py, .y, x3 (@Lg(Xig),

where Py, 5X27,Xf6(q) =gq° e qZolq]. Then the quantum positivity of L, (X13,6)
follows from Example 5.24 and the definition of E, (X f ). Moreover, it follows from

(A.2), Example 5.16, and Example 5.24 that the quantum positivity of L, (X2 5X2 7)
also holds.
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In general, form @[ p, s]with | p—s| < 2, the computation of L, (m[p, s]) is similar
with the one for (A.2), since E, (m' @[p, s]) has only two dominant monomials thanks
to Theorem 6.9. It follows from Proposition 5.23 that this implies that L, (m Dp,s]) =
F,(m"[p, s]). For example, when g is of type B3,

Eq(X1,0X1,2) = qF4(X1,0) % Fy(X1,2) = Lg(X1,0X12) +¢*Lqg(X2,1),
E;(X20X22) = ¢ ' Fy(X2.0) * Fy(X22) = Ly(X2,0X2,2) +q2Lq(X1,1X§,1),

E;(X3,0X32) = Fy(X3,0) * Fy(X32) = Lg(X3,0X32) +qLg(X21).

(A.3)
HereLq(lelX%,l) = Eq(Xl,ngyl) = Fq(Xl,lXil).Furthermore, one may check that
the quantum positivity of L, (X; 0X; 2) holds from Example 5.25 and (A.3). Similarly,
one may have an analog of (A.3) for type C3 with (A.1), which implies the quantum
positivity of L, (X; 0X; ) in this case. However, we cannot use the same argument in
general because it does not seem to be easily determined by direct computation how
many dominant monomials E, (m D[ p, s1) have for higher levels.

A.2. Quantum positivity of non KR-polynomials. In this subsection, we observe some
examples in which L, (m) has the quantum positivity for a dominant monomial m dif-
ferent from the KR-monomials.

Example A.1. Let us consider the case of type C». Then the fundamental polynomials
F,y(X1,2) and F; (X3 5) are given as follows:

1~ 3o ~_ 1 ~_ _lel
Fy(X12) =q2X12+92X23 *X1,1;+612X1,4 *Xzé +q 2X1,é7
Fy(X2,5) = qXo5+@°Xi g% X5 7+ (@7 +0)X16X g +0° X0+ X 5 +97 ' X3 .
(A4)

It follows from (A.4) that

E,(X12X25) = qF;(X12) % Fy(X25) = Ly(X12X25) +q°Ly(X1.4),  (A5)

where L,(X12X2,5) = F;(X12X25) and Px,,x,5 x,4(@) = ¢* € qZ[q]. Then the
quantum positivity of L, (X1,2X2 5) follows from the formula (that may be computed
with (A.4) and (A.5)) as shown below:

ol

q~)~(1,2 552.5+q~?~fz,3 *5(4[}1??2,5 +q%§1,2 *ff%,s*iz_}*'q%izz *il_,dl,*)?%,ﬁ *552_.;
)?1,4*)?5;*)?%_6*?2”;

+(q2 +q%)X1_2*§1,6*§fé+q%iLz *§2,7*)?i§+(q% +q%))~(213 *gii*flﬁ*f([é

+q%)~(2,3 *)N([Al‘*fz.7 *)N(fé

ICLEVE (RS el OS5 (NED ey FVES (NED el IS CRRD o PR e RULD ey BB R RS oy

|~ ~_
+(17X112*X2é

=
>
L
(o
2
oL

3 So1 . 5— 1 SO o _
+q2 X3 Xy x X39+q2 X1 4% X35« X570 +q
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Example A.2. Let us consider the case of type B,. Then the fundamental polynomials
F4(X1,2) and F,; (X2 5) are given as follows (cf. (A.4)):
F (X _ .Y 22 v—1 -1 v v—1 2y v—2 —-1y-1

¢(X12) =qX12+¢q X2,3 * X1,4 +(@  +q)X23% X2’5 +q X1 4% X2’5 +q X1,6’

1~ 3~ ~_ 1~ ~_ 1~
Fq(X2’5) =q2X25+q2X1,6%* Xz’% +q2X27 % Xl,é +q ZXZ,é'
(A.6)

It follows from (A.6) that

E,(X12X25) = qFy(X12) % Fy(X25) = Ly(X12X25) +¢*Ly(X23), (A7)

where Ly (X12X25) = Fy(X12X25) + Fy(X23) and Px, ,x, 5, x25(q) = ¢° € qZ[q].
As in Example A.1, it follows from (A.6) and (A.7) that the quantum positivity of
L, (X1,2X>,5) holds. Note that L, (X1,2X> 5) has two dominant monomials.

Let us also consider Eq(Xl,zX% 5). By (A.6), Eq(Xl,zX%’s) has three dominant

monomials, namely,
X1,2X§,5 = q4§1,2*)~(§’5, (@*+qMX23%X2 s = (q+qH) X23X25. ¢ X1a=q X1 4.
Then we have

Eq(X12X35) = Lg(X12X35) + (q + 4" ) Lg(X23X25) +4* Lg(X14).  (A8)

where Ly (X12X3 5) = Fg(X12X3 5), Lg(X2.3Xa5) = Fy(X23X2.5), and

3 4
PX142X%_5,X2,3X2,5(q) =q+tq, PXI.ZX%,5>X1,4(q) =q" € qZlq]l.

We provide the formula of L, (X2 3X25) = F;(X23X55) as follows:

q)?2,3 * §2,5 +q2)~(213 * i]vﬁ * )?;; +q3§|,4 * )N(EL * )?1.6 * %;; +q§2,3 * )~(2,7 * iié
+q2§|,4*)~(£;*)?2_7*)71__é
+qXo sk X g Xo7x X1 g+ Xo3 4 X35 +qX1ax Xy s w X5 5+ Xos# X g% Xy 5+q7 ' X5 % X34
(A9)
Then one may compute the formula of L, (X 1,2X§,5) by using (A.8) with (A.6) and
(A.9) (or the g-algorithm directly), and then the quantum positivity of L, (X 1,2X%’5)
also follows.

A.3. Positivity of Kazhdan—Lusztig polynomials. This subsection presents examples for
the positivity of the KL-type polynomials P, ,,/(q) € qZ[q] with at least 2 terms.

Example A.3. In Example A.2 (for type B;), we have seen the positivity of KL-type
polynomial given by

Py 2x2, Xa3%25 (@) = 4 +q° € qZIq],

which is an example for the positivity of KL-type polynomials with 2-terms. Let us
consider the case of type G, to investigate more complicated examples.
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Form = Xz,oX% 5, WE have

Eq(m) = Lg(m) + (¢* +q" Ly (X1,1X1,5) +¢°Ly (X1 3),

where Ly (m) = Fy(m) + Ly(X1,1X1,5) and Ly (X1,1X15) = Fy(X1,1X1,5) +Lg(X13)
and the KL-type polynomials are

2 4 6
PXZ.OX%j)Xl,lXI,S (@) =q"+q", PXz,oX%,SvXI,a (@) =q" € qZIq].

Form = X% 0X1,1X1,3, we have

Eqm) = Ly(m) +qLy(X3,0X22) + (20 +4°+ 4" +4'°) Ly (X20X7 ),

where Ly (m) = F,;(m) + (g 2+1+ q2)Fq (XQ,OX%J) and the KL-type polynomials are

4 6 8 10
PX%,0X1.1X1,3,X%YOXz,z(q) =49 PX§_0X1,1X1,3,Xz,OXf_l(q) =29"+q’+q +q " € qZlq].
Form = X§Y0X2,4, we have the expansion of E, (m) — L, (m) in terms of L, as follows:

(@* +q°+ Ly (X20X11X13) + (@ +¢%) Ly (X2,0X22) + (2¢% + 6¢* + 6¢° + 4¢® +2¢'0 + ¢'%)
Lg(X7 ).

where Lq(X2,0X1,1X13) = Fy(X2,0X22) + (¢7% + 1+ ¢?)Ly(X] ) and the KL-type
polynomials (in gZ[q]) are

_ 4 6 8 _ 3 6
PX%VOXM,X2,0X1.1X1,3(q)_q tq9 +q, PX§_0X2,47X2,0X2,2(q) =4q9+*q,

Py xp0 33, (@) =247 +6¢% +64° +49° +2¢"" + ¢ 2.
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