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Introduction

Rank 2 symmetric Kac–Moody algebras H(a) are the Lie algebras with a Cartan
matrix of the form

( 2 −a
−a 2

)
, a � 1. When a = 1, the Lie algebra H(1) is nothing but

sl3(C); when a = 2, we obtain the affine Lie algebra ŝl2(C) = sl2(C) ⊗ C[t, t−1] ⊕ Cc

which is a central extension of the loop algebra sl2(C) ⊗ C[t, t−1]. These Lie algebras
are fundamental objects and their structures and representations are quite well-known.
Surprisingly enough, when a � 3, we still do not know much about the Lie algebra H(a).
What makes one intrigued is that there seem to be hidden connections of these algebras
H(a) to automorphic forms.

Lepowsky and Moody [20] showed that there are remarkable connections between
root systems of rank 2 (not necessarily symmetric) hyperbolic Kac–Moody algebras and
quasi-regular cusps on Hilbert modular surfaces attached to certain quadratic fields.
A. Feingold studied the algebra H(3) and described the root system of H(3) in terms
of Fibonacci numbers [5]. Kang and Melville extended this result to H(a), a � 3, us-
ing generalized Fibonacci numbers [14]. Furthermore, in the same paper, they studied
root multiplicities of H(a), making use of Kang’s formula for root multiplicities of Kac–
Moody algebras [13]. In 2004, Feingold and Nicolai showed that the algebras H(a) can be
embedded into the rank 3 hyperbolic Kac–Moody algebra F associated with the Cartan
matrix

( 2 −2 0
−2 2 −1
0 −1 2

)
.

The Lie algebra F was shown in Feingold–Frenkel [6] to have connections with the
theory of genus 2 Siegel modular forms. Then Gritsenko–Nikulin [8] showed that F is
contained in a generalized Kac–Moody algebra G whose denominator function is a par-
ticular Siegel modular form, and they called G an automorphic correction of F . The
notion of automorphic correction was originated from Borcherds’ work [1] on Monster
Lie algebras. See Section 3 for the precise definition of automorphic correction due to
Gritsenko and Nikulin [10].

The purpose of this paper is to investigate connections of the hyperbolic Kac–Moody
algebras H(a), a � 3, to Hilbert modular forms from the point of view of automorphic
correction. For each odd prime p, let F = Q(√p ), and to each positive solution of the
Pell equation a2 − ps2 = 4, we associate a family of H(a)’s. In Section 5.1, we show that
there exists a chain of embeddings in each family (Theorem 5.5).

In particular, we consider three infinite families of H(a)’s attached to the quadratic
fields Q(√p ), p ∈ {5, 13, 17}, respectively. These three primes are the only primes for
which there exists the unique weakly holomorphic modular form fm ∈ A+

0 (p, χp) (see
Section 4.1 for the definition of the space A+

0 (p, χp)) with the principal part s(m)−1q−m

for each m � 1, where s(m) =
{

1, if p �m,

2, if p |m.

Consider the first H(a) in each family, namely, H(3), H(11), H(66). In Section 5.2,
we show that there exists a generalized Kac–Moody superalgebra H̃ for each of these
H(a)’s, which contains the H(a) as a subalgebra, and whose denominator function is
a Hilbert modular form Φ1(z) for Q(√p ) (Theorem 5.16). Here the fact that Φ1(z) is
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an infinite product, so-called Borcherds product, is crucial. Borcherds [2] studied certain
lifts of weight 0 weakly holomorphic modular forms to modular forms on orthogonal
groups O(2, 2). Bruinier and Bundschuh [4] made explicit the correspondence between
modular forms on O(2, 2) and Hilbert modular forms for Q(√p ), p ≡ 1 (mod 4). We use
their explicit correspondence in showing that Φ1(z) is indeed the automorphic correction
of the denominator function of H(a). For p = 13, 17, we also use the explicit calculation
of Mayer [21].

Let fm(z) = s(m)−1q−m +
∑∞

n=0 am(n)qn. It is known [4] that am(n) are rational
numbers with bounded denominators. When p = 5, 13, more is true. Indeed we verify that
s(n)am(n) are integers for all n (Lemma 4.2). If p = 17, it is likely that they are integers,
but we were not able to verify it. We assume that they are integers. It is necessary since
they are root multiplicities of the generalized Kac–Moody superalgebra H̃.

In Section 6, we apply the method of Hardy–Ramanujan–Rademacher [19] to calculate
the asymptotics of the Fourier coefficients am(n) (Theorem 6.1). In that way, we obtain
information on the root multiplicities of H̃.

It is expected that our method can be applied to more general rank 2 hyperbolic
Kac–Moody algebras. We will consider these general cases in a subsequent paper [17].

1. Rank 2 symmetric hyperbolic Kac–Moody algebras

In this section we fix our notations for hyperbolic Kac–Moody algebras. A general
theory of Kac–Moody algebras can be found in [12], and the rank 2 hyperbolic case was
studied by Lepowsky and Moody [20], Feingold [5], and Kang and Melville [14].

Let A =
( 2 −a
−a 2

)
be a generalized Cartan matrix with a � 3, and H(a) be the

hyperbolic Kac–Moody algebra associated with the matrix A. In this section, we write
g = H(a) if there is no need to specify a. Let {h1, h2} be the set of simple coroots in the
Cartan subalgebra h = Ch1 +Ch2 ⊂ g. Let {α1, α2} ⊂ h∗ be the set of simple roots, and
Q = Zα1+Zα2 be the root lattice, and define h∗Q = Qα1+Qα2 and h∗R = Rα1+Rα2. The
set of roots of g will be denoted by Δ, and the set of positive (resp. negative) roots by Δ+

(resp. by Δ−), and the set of real (resp. imaginary) roots by Δre (resp. by Δim). We will
use the notation Δ+

re to denote the set of positive real roots. Similarly, we use Δ+
im, Δ−

re
and Δ−

im.
We assume that a2−4 = ps2 for some s ∈ N and an odd prime p, and let F = Q(√p ).

We denote by x̄ the conjugate of x ∈ F and write N and tr for the norm and trace of F .
We denote the ring of integers of F by O. By considering the Pell equation

a2 − ps2 = 4, (1.1)

we obtain infinitely many pairs (a, s) for each p. We set

η = a +
√
a2 − 4 =

a + s
√
p
.
2 2
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Then we have η̄ = η−1 and 1 + η2 = aη. If p ≡ 1 (mod 4), we fix a fundamental
unit ε0 of F so that η = ε2k

0 for some k ∈ N. In this case N(ε0) = −1 and N(η) = 1.
If p ≡ 3 (mod 4), we fix a fundamental unit ε0 of F so that η = εk0 for some k ∈ N.
In this case N(ε0) = 1. For example, if p = 5 then the smallest positive solution of
the Pell equation is (a, s) = (3, 1), if p = 13 then (a, s) = (11, 3), and if p = 17 then
(a, s) = (66, 16), and we choose a fundamental unit ε0 of O as follows:

ε0 = 1 +
√

5
2 for p = 5; ε0 = 3 +

√
13

2 for p = 13; ε0 = 4 +
√

17 for p = 17.

The simple reflection corresponding to αi in the root system of g is denoted by ri
(i = 1, 2), and the Weyl group by W . The eigenvalues of r1r2 as a linear transformation
on h∗ are η2 and η−2. Let γ+ be an eigenvector for η2 and we set γ− = r2γ

+. Then γ−

is an eigenvector for η̄2. Specifically, we choose

γ+ = α1 + η̄α2

s
and γ− = α1 + ηα2

s
.

We define a symmetric bilinear form (·,·) on h∗ to be given by the Cartan matrix A with
respect to {α1, α2}. Then we have (γ+, γ+) = (γ−, γ−) = 0 and (γ+, γ−) = −p.

We will use the column vector notation for the elements in h∗ with respect to the
basis {γ+, γ−}, i.e. we write

(
x
y

)
for xγ+ + yγ−. Then we have

α1 = 1
√
p

(
η

−η̄

)
and α2 = 1

√
p

(
−1
1

)
.

It is now easy to see that h∗Q = {
(
x
x̄

)
| x ∈ F}. A symmetric bilinear form 〈·,·〉 on F is

defined by 〈x, y〉 = −p tr(xȳ). We define a map ψ : h∗Q → F by
(
x
x̄

)
�→ x. Then the map ψ

is an isometry from (h∗Q, (·,·)) to (F, 〈·,·〉). In particular, the root lattice Q = Zα1 + Zα2

is mapped onto a sublattice of O/
√
p. When p ≡ 1 (mod 4), the inverse different d−1

is equal to O/
√
p, and we have sd−1 ⊂ ψ(Q) ⊂ d−1, and the dual lattice (d−1)′ of d−1

is 1
pO.
Let ωi (i = 1, 2) be the fundamental weights of g. Then we have ω1 = 1

4−a2 (2α1+aα2)
and ω2 = 1

4−a2 (aα1 + 2α2). In the column vector notation,

ω1 = −1
sp

(
1
1

)
and ω2 = −1

sp

(
η

η̄

)
.

We define

ρ := −(ω1 + ω2) = 1
(

1 + η
)
.

sp 1 + η̄
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The simple reflections have the matrix representations

r1 =
(

0 η2

η̄2 0

)
and r2 =

(
0 1
1 0

)
.

The Weyl group W also acts on F by

r1x = η2x̄ and r2x = x̄ for x ∈ F,

so that the isometry ψ is W -equivariant. Since W = {(r1r2)i, r2(r1r2)i | i ∈ Z}, we can
calculate the set of positive real roots and obtain

Δ+
re =

{
1
√
p

(
ηj

−η̄j

)
(j > 0), 1

√
p

(
−η̄j

ηj

)
(j � 0)

}
.

The set of imaginary roots is described in [5,14]. We present it using our notations: First,
we define the set

Ωk =
{

(m,n) ∈ Z�0 × Z�0:
√

4k
a2 − 4 � m �

√
k

a− 2 , n =
am−

√
(a2 − 4)m2 − 4k

2

}
for k � 1. Note that we have only to present ψ(Δ+

im). The set is given by

ψ
(
Δ+

im
)

=
{

1
√
p
ηj(mη − n), 1

√
p
ηj(nη −m), 1

√
p
η̄j(n−mη̄), 1

√
p
η̄j(m− nη̄)

}
, (1.2)

where j � 0 and (m,n) ∈ Ωk for k � 1.

2. Modular forms on O(2, 2) as Hilbert modular forms

In this section, we review the result of [3] on the correspondence between Hilbert
modular forms and modular forms on O(2, 2) in a special case after we consider the
general case of modular forms on O(n, 2).

2.1. Modular forms on O(n, 2)

Let (V,Q) be a non-degenerate quadratic space over Q of type (n, 2). Let V (R) =
R ⊗Q V and V (C) = C ⊗Q V , and P (V (C)) = (V (C) − {0})/C∗ be the corresponding
projective space. We denote by OV (R) the orthogonal group of the space V (R). Let K+

be a connected component of

K =
{
[Z] ∈ P

(
V (C)

)
: (Z,Z) = 0, (Z, Z̄) < 0

}
, (2.1)

and let O+
V (R) be the subgroup of elements in OV (R) which preserve the components

of K.
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For Z ∈ V (C), write Z = X + iY with X,Y ∈ V (R). Given an even lattice L ⊂ V , we
denote by OL the orthogonal group of L and let O+

L := OL ∩ O+
V (R). Assume Γ ⊆ O+

L

is a subgroup of finite index. Then Γ acts on K discontinuously. Let

K̃+ =
{
Z ∈ V (C) − {0}: [Z] ∈ K+}.

Let k ∈ 1
2Z, and χ be a multiplier system of Γ . Then a meromorphic function

Φ : K̃+ → C is called a meromorphic modular form of weight k and multiplier system χ

for the group Γ , if

(1) Φ is homogeneous of degree −k, i.e., Φ(cZ) = c−kΦ(Z) for all c ∈ C− {0},
(2) Φ is invariant under Γ , i.e., Φ(γZ) = χ(γ)Φ(Z) for all γ ∈ Γ .

This definition agrees with the one given in [10].

2.2. Hilbert modular forms on quadratic number fields

For a prime p ≡ 1 (mod 4), let F = Q[√p ], and let OF and dF be the ring of integers
and the different of F , respectively. We denote by x̄ the conjugation of x in F . We
set ΓF = SL2(OF ). Assume that Γ ⊆ ΓF is a subgroup of finite index. Let H be the
upper-half plane and χ be a multiplier system of Γ . A meromorphic function f : H2 → C

is called a Hilbert modular form of weight k for Γ if

f(γz) = χ(γ)N(cz + d)kf(z),

for γ =
(
a b
c d

)
∈ Γ , and N(cz + d) = (cz1 + d)(c̄z2 + d̄) for z = (z1, z2) ∈ H2.

Consider the Q-vector space V = Q⊕Q⊕F , and define a quadratic form Q on V by

Q(a, b, ν) = −p(νν̄ + ab)

and a bilinear form B so that B((a, b, ν), (a, b, ν)) = 2Q(a, b, ν). Then (V,Q) is
a quadratic space of type (2, 2). We will consider the lattice L = Z⊕ Z⊕ d

−1
F in V .

Let

Ṽ =
{
X ∈ M2(F ): Xt = X̄

}
=

{(
a ν

ν̄ b

)
: a, b ∈ Q, ν ∈ F

}
.

Then Ṽ is a rational quadratic space with the quadratic form Q̃(X) = p det(X). The
corresponding bilinear form is B̃(X1, X2) = p tr(X1X

∗
2 ), where X∗ =

(
d −b
−c a

)
for X =(

a b
c d

)
. Here SL2(F ) acts on Ṽ by X �→ g.X = gXḡt for X ∈ Ṽ and g ∈ SL2(F ). Then Ṽ

and V are isometric with the isometry given by

Ṽ → V,

(
a ν

)
�→ (−a, b, ν). (2.2)
ν̄ b
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Under the isomorphism, we have

L = Z⊕ Z⊕ d
−1
F �

{(
a ν

ν̄ b

)
∈ Ṽ : a, b ∈ Z, ν ∈ d

−1
F

}
. (2.3)

Note that the dual lattice L′ is given by

L′ = 1
p
Z⊕ 1

p
Z⊕ 1

p
O.

The two real embeddings F → R2, x �→ (x, x̄), induce an embedding Ṽ �→ M2(R).
Thus we have Ṽ (C) = M2(C), and let

K =
{
[Z] ∈ P

(
M2(C)

)
: det(Z) = 0, tr

(
ZZ̄∗) < 0

}
.

We write M(z) =
( z1z2 z1

z2 1
)
∈ M2(C) for z = (z1, z2) ∈ C2. Note that [M(z)] ∈ K if and

only if Im(z1) Im(z2) > 0. Let K+ be a connected component of K. Then H2 → K+,
z = (z1, z2) �→ [M(z)], is a biholomorphic map. For γ =

(
a b
c d

)
∈ SL2(F ), we have

γM(z) = N(cz + d)M(γz).

One can easily see that ΓF ⊂ O+
L . Therefore, modular forms of weight k on O(2, 2) can

be considered as Hilbert modular forms of weight k.

3. Automorphic correction

In this section, we recall the theory of automorphic correction established by Gritsenko
and Nikulin [8–10]. The original idea of automorphic correction can be traced back to
Borcherds’ work [1].

We assume that the following data (1)–(4) are given.

(1) We are given a lattice M with a non-degenerate integral symmetric bilinear form
(·,·) of signature (n, 1) for some n ∈ N.

(2) A nontrivial reflection group W ⊂ OM is given. The group W is generated by
reflections in some roots of the lattice M . A vector α ∈ M is called a root if (α, α) > 0
and (α, α) divides 2(α, β) for all β ∈ M .

(3) Consider the cone

V (M) =
{
β ∈ M ⊗ R

∣∣ (β, β) < 0
}
,

which is a union of two half cones. One of these half cones is denoted by V +(M).
Choose a minimal set Π of roots which determines a fundamental chamber M ⊂
V +(M) of W so that
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M =
{
β ∈ V +(M)

∣∣ (β, α) � 0 for all α ∈ Π
}
.

Moreover, we have a Weyl vector ρ ∈ M ⊗Q satisfying (ρ, α) = −(α, α)/2 for each
α ∈ Π.

(4) Define the complexified cone Ω(V +(M)) = M ⊗ R + iV +(M). For each m ∈ N,
we define a rank 2 lattice P (m) = Ze1 ⊕ Ze2 with the symmetric integral bilinear
form such that (e1, e1) = (e2, e2) = 0 and (e1, e2) = −m. Let L = P (m) ⊕M be an
extended lattice for some m ∈ N. We consider the quadratic space V = L ⊗ Q and
obtain K+ as in (2.1). Define a map Ω(V +(M)) → K by z �→ [ (z,z)2m e1 +e2 +z]. Then
the space K+ is canonically identified with Ω(V +(M)). We are given a holomorphic
automorphic form Φ(z) on Ω(V +(M)) with respect to a subgroup Γ ⊂ O+

L of finite
index. The automorphic form Φ has a Fourier expansion of the form

Φ(z) =
∑
w∈W

det(w)
(
e
(
−
(
w(ρ), z

))
−

∑
a∈M∩M

m(a)e
(
−
(
w(ρ + a), z

)))
,

where e(x) = e2πix and m(a) ∈ Z for all a ∈ M ∩M.

The matrix

A =
(

2(α, α′)
(α, α)

)
α,α′∈Π

defines a Kac–Moody algebra g. Moreover, the data (1)–(4) define a generalized Kac–
Moody superalgebra G as in [10]. In particular, the function Φ(z) determines the set of
imaginary simple roots of G in the following way: First, assume that a ∈ M ∩ M and
(a, a) < 0. If m(a) > 0 then a is an even imaginary simple root with multiplicity m(a),
and if m(a) < 0 then a is an odd imaginary simple root with multiplicity −m(a). Next,
assume that a0 ∈ M ∩M is primitive (i.e. a0 cannot be written as an integral multiple
of another b0 ∈ M ∩M) and (a0, a0) = 0. Then we define μ(na0) ∈ Z, n ∈ N, by

1 −
∞∑
k=1

m(ka0)tk =
∞∏

n=1

(
1 − tn

)μ(na0)
,

where t is a formal variable. If μ(na0) > 0 then na0 is an even imaginary simple root
with multiplicity μ(na0); if μ(na0) < 0 then na0 is an odd imaginary simple root with
multiplicity −μ(na0).

We call G (or Φ(z)) an automorphic correction of g. The automorphic form Φ(z) deter-
mines the set of simple imaginary roots of G, and can be written, using the denominator
identity for the generalized Kac–Moody superalgebra G, as the product

Φ(z) = e
(
−(ρ, z)

) ∏
+

(
1 − e

(
−(α, z)

))mult(G,α)
,

α∈Δ(G)
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where Δ(G)+ is the set of positive roots of G and mult(G, α) is the root multiplicity
of α in G. In Section 5.2, we will construct automorphic corrections of the hyperbolic
Kac–Moody algebras H(3), H(11), H(66) which are associated with the quadratic fields
Q(√p ), p = 5, 13, 17, respectively.

4. Hilbert modular forms as Borcherds products

In this section we summarize the results of [4] (cf. [21]).

4.1. Weakly holomorphic modular forms of weight 0

Let p be an odd prime and A+
k (p, χp) (resp. A−

k (p, χp)) be the space of weakly holo-
morphic modular forms f of weight k for the group Γ0(p) with character χp such that
a(n) = 0 if χp(n) = −1 (resp. χp(n) = 1), where f =

∑
n�n0

a(n)qn for some n0 ∈ Z

and χp(n) = (np ). Such an f is called a cusp form if it vanishes at all cusps: Since ∞, 0
are cusps in our case (see Section 6), a(n) = 0 for n � 0 and f(− 1

z ) =
∑

n�1 b(n)q
n
p .

We denote by S+
k (p, χp) (resp. S−

k (p, χp)) the subspace of cusp forms. For an integer n,
define s(n) =

{
2 if p | n,
1 otherwise.

Theorem 4.1. (See [4, Theorem 6].) There exists a weakly holomorphic modular form
f ∈ A+

0 (p, χp) with prescribed principal part
∑

n<0 a(n)qn if and only if
∑

n<0 s(n)×
a(n)b(−n) = 0 for every cusp form g =

∑
m>0 b(m)qm ∈ Sδ

2(p, χp), where δ = χp(−1).

In the rest of this section, we assume that p ∈ {5, 13, 17}. Then we have S+
2 (p, χp) = 0.

For a given positive integer m with χp(m) �= −1, we let

fm =
∑

n�−m

am(n)qn = s(m)−1q−m +
∞∑

n=0
am(n)qn,

be the unique element of A+
0 (p, χp), whose principal part is s(m)−1q−m.

When p = 5,

f1 = q−1 + 5 + 11q − 54q4 + 55q5 + 44q6 − 395q9 + 340q10 + · · · ,
f4 = q−4 + 15 − 216q + 4959q4 + 22 040q5 − 90 984q6 + · · · ,
f9 = q−9 + 35 − 3555q + 922 374q4 + 7 512 885q5 − 53 113 164q6 + · · · .

When p = 13,

f1 = q−1 + 1 + q + 3q3 − 2q4 − q9 − 4q10 + 10q12 + · · · ,
f4 = q−4 + 3 − 8q + 16q3 + 29q4 − 70q9 − 2q10 − 32q11 + · · · ,
f9 = q−9 + 13 − 9q + 36q3 − 198q4 + · · · .
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When p = 17,

f1 = q−1 + 1
2 − q + q2 + 2q4 − q8 − 2q9 + q13 − q15 + 2q16 + · · · ,

f4 = q−4 + 7
2 + 8q − 2q2 + 11q4 − 5q8 + 16q9 − 56q13 + · · · ,

f9 = q−9 + 7
2 − 18q − 27q2 + 36q4 + 243q8 + 41q9 − 279q13 + · · · .

If p = 5, 13, we can prove that f1 has integer coefficients. This follows from the fact
that

f1(z) = E
(p)
2 (z)
H2(z)

,

where E
(p)
2 is the normalized Eisenstein series of weight 2 for Γ0(p) with the trivial

character and H2 is the Eisenstein series with the character χp corresponding to the
cusp 0 (there is a typo in [21, p. 114]):

E
(p)
2 (z) = 1 + 24

p− 1

∞∑
n=1

(
σ(n) − pσ(n/p)

)
qn,

H2(z) =
∞∑

n=1

(∑
d|n

dχp(n/d)
)
qn = q + O

(
q2).

Here we put the convention that if p �n, σ(n/p) = 0. Note that if p = 5, H2(z) =
H(q)(z) = η(5z)5

η(z) . When p = 13, H2(z) may have a zero in the upper half plane, and yet

it is remarkable that the quotient E
(p)
2 (z)
H2(z) does not have a pole in the upper half plane.

In general, it is known that am(n) are rational numbers and have a bounded de-
nominator. See Proposition 8 in [4]. But we can see that more is true in the case of
p = 5, 13.

Lemma 4.2. Let p = 5, 13. Then s(n)am(n) are integers for all n � 0.

Proof. Let H̃(z) = η(z)k
η(pz)k , where k = 24

gcd(24,p−1) . It belongs to A0(p, 1). In [21, p. 112]
we can see that fm(z), m < p, are generated by H̃(z) and f1(z) over Z. Hence they
have integer coefficients. On the other hand, fp is obtained from 1

2E0 by subtracting
suitable integer multiples of fm, m < p. Hence it is enough to observe that if E0(z) =
q−p +

∑∞
n=−p+1 b(n)qn, b(n) is an even integer for p �n. Recall that

E0(z) = E+
2 (z)E4E6

Δ (pz), E+
2 (z) = 1 + 2

L(−1, χp)

∞∑∑
d
(
χp(d) + χp(n/d)

)
qn.
n=1 d|n
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Here L(−1, χ5) = −2
5 , and L(−1, χ13) = −2, and if p �n, then p � d for any d |n. So the

possible values of χp(d)+χp(n/d) are 0, ±2. Therefore, we can write E+
2 (z) = 1+2X+Y ,

with X =
∑∞

n=1, p � n A(n)qn and Y =
∑∞

n=1 B(n)qpn. On the other hand, E4E6
Δ (pz) =

q−p(1 + Z), with Z =
∑∞

n=1 C(n)qpn, where A(n), B(n), C(n) are integers. Hence our
assertion is clear.

If m > p, fm(z) can be obtained from j(pz)fm−p(z) by subtracting suitable integer
multiples of fm′ , m′ < m. Hence by induction, we can see that for each m, s(n)am(n)
are integers. �

When p = 17, it is likely that s(n)a(n) are integers for f1 = q−1 +
∑

n�0 a(n)qn. But
we were not able to verify it. In Section 5.2, we will assume that s(n)a(n) are integers
for all n � 1.

4.2. Borcherds lifts

Let p ∈ {5, 13, 17} and F = Q[√p ]. Denote the ring of integers of F by O = Z[ 1+
√
p

2 ]
and the different of F by d = (√p ). We keep the fundamental units ε0 = 1+

√
5

2 for
p = 5, ε0 = 3+

√
13

2 for p = 13, ε0 = 4 +
√

17 for p = 17 as in Section 1. Let (z1, z2)
be a standard variable on H2 and write (y1, y2) for its imaginary part. The Hilbert
modular group ΓF = SL2(O) acts on H2 in the usual way. For a positive integer m with
χp(m) �= −1, let

S(m) =
⋃

λ∈d
−1

N(λ)=−m
p

{
(z1, z2) ∈ H2: λy1 + λ̄y2 = 0

}
.

Let f =
∑

n∈Z a(n)qn ∈ A+
0 (p, χp) and assume that s(n)a(n) ∈ Z for all n < 0. Let

W ⊂ H2 be a Weyl chamber attached to f , i.e., a connected component of

H2 −
⋃
n<0

a(n) �=0

S(−n).

For λ ∈ d−1, we write (λ,W) > 0 if λy1 + λ̄y2 > 0 for all (z1, z2) ∈ W. Put N =
min{n: a(n) �= 0}. Then we have:

Theorem 4.3. (See [2,4].) The Borcherds lift of f is given by

Ψ(z1, z2) = e(ρWz1 + ρWz2)
∏

ν∈d
−1

(ν,W)>0

(
1 − e(νz1 + ν̄z2)

)s(pνν̄)a(pνν̄)
.

Here Ψ(z1, z2) is a Hilbert modular form of weight a(0), and the product converges abso-
lutely for all (z1, z2) with y1y2 > |N |

p outside the set of poles. (See below for the definition
of ρW .)
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The Weyl vector ρW and its conjugate ρW are contained in (tr(ε0))−1d−1, where
ε0 > 0 is the fundamental unit of F . More precisely, the vectors ρW and ρW are given
as follows: For a negative integer n with a(n) �= 0, define

R(W, n) =
{
λ ∈ d−1: λ > 0, N(λ) = n

p
, λy1 + λ̄y2 < 0, ε2

0λy1 + ε̄2
0λ̄y2 > 0,

for all (z1, z2) ∈ W
}
.

Then

ρWy1 + ρWy2 =
∑
n<0

s(n)a(n) 1
tr(ε0)

∑
λ∈R(W,n)

(ε0λy1 + ε̄0λ̄y2). (4.4)

Let Ψm be the Borcherds lift of fm = s(m)−1q−m+
∑∞

n=0 a(n)qn. Write m = qk1
1 · · · qkr

r

into the prime factorization with distinct primes qi. First, assume that ( qip ) = −1 with
an odd ki for some i. Then m cannot be the norm of an ideal in O, and S(m) is empty,
and H2 is the only Weyl chamber for fm. In this case, ρW = 0 and Theorem 4.3 yields

Ψm(z1, z2) =
∏

ν∈d
−1

ν	0

(
1 − e(νz1 + ν̄z2)

)s(pνν̄)a(pνν̄)
. (4.5)

Now we assume that ( qip ) �= 1 for all i and consider Ψm2 for m ∈ N. For example, if
p = 17, we consider Ψ1 and Ψ9; however we do not consider Ψ4 or Ψ16 since ( 2

17 ) = 1.
Then S(m2) is not empty. More importantly, since no qi splits in F , the condition
N(ν) = −m2/p implies that ν = ± m√

pε
2j
0 for some j ∈ Z. Let W be the Weyl chamber

attached to fm2 that contains the point (
√
−1, 2

√
−1 ). Then R(W,−m2) = { m√

p} and
no other elements are included due to the condition on m. Hence, we obtain from (4.4)

ρW = mε0

tr(ε0)
√
p

for m ∈ N.

By [21, p. 82] (ν,W) > 0 is equivalent to (ν, τ) > 0 for a point τ ∈ W. So in our case,
it is equivalent to ν + 2ν̄ > 0. If ν � 0 (and ν + 2ν̄ > 0) for ν ∈ d−1 then N(ν) > 0. If
ν �� 0 and ν + 2ν̄ > 0, then N(ν) < 0 and a(pνν̄) �= 0 only for ν with N(ν) = −m2/p,
in which case s(pνν̄)a(pνν̄) = 1. Therefore,

Ψm2(z1, z2) = e

(
mε0z1

tr(ε0)
√
p
− mε̄0z2

tr(ε0)
√
p

) ∏
ν∈d

−1

ν+2ν̄>0

(
1 − e(νz1 + ν̄z2)

)s(pνν̄)a(pνν̄)

= e

(
mε0z1

tr(ε0)
√
p
− mε̄0z2

tr(ε0)
√
p

) ∏
ν∈d

−1

ν	0

(
1 − e(νz1 + ν̄z2)

)s(pνν̄)a(pνν̄)

×
∏

ν∈d
−1, ν+2ν̄>0

2

(
1 − e(νz1 + ν̄z2)

)
. (4.6)
N(ν)=−m /p
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5. Embedding of hyperbolic Kac–Moody algebras

In this section we associate a family of H(a)’s to each odd prime p and prove that there
exists a chain of embeddings among the algebras in each family. When p = 5, 13 or 17, we
construct an automorphic correction of the first H(a) in each family, i.e. H(3), H(11),
H(66) for p = 5, 3, 17, respectively. The automorphic correction will be given by the
Hilbert modular form Ψ1 considered in the previous section. We also consider other Ψm

(m �= 1) and see where the obstructions are for this to be an automorphic correction.

5.1. Embedding of H(a)

We fix an odd prime p. We consider the Pell equation (1.1) again. Recall that we fixed
a fundamental unit ε0 of F . We enumerate the solutions (ak, sk) (k = 1, 2, . . .) of the
equation so that if p ≡ 1 (mod 4),

ηk =
ak + sk

√
p

2 = ε2k
0 , k = 1, 2, . . . ,

and if p ≡ 3 (mod 4),

ηk =
ak + sk

√
p

2 = εk0 , k = 1, 2, . . . .

Note that we have

ηjk = ηkj for k, j ∈ N.

In Section 1, we established an isometry of h∗Q to F for each H(ak) and obtained the
set of positive real roots of H(ak). Since the isometry depends on k, we denote it by ψk.
Then we have

ψk

(
Δ+

re
)

=
{

1
√
p
ηjk (j > 0), − 1

√
p
η̄jk (j � 0)

}
. (5.1)

We call an element of ψk(Δ+
re) a positive real root by abusing the terminology. The set

ψk(Δ+
im) is given in (1.2). We will apply the following proposition to establish embeddings

of H(ak).

Proposition 5.2. (See [7].) Let Δ be the set of roots of a Kac–Moody algebra g, with Cartan
subalgebra h, and let Δ+

re be the set of positive real roots of g. Let β1, . . . , βn ∈ Δ+
re be

chosen such that for all 1 � i �= j � n, we have βi−βj /∈ Δ. For 1 � i � n, let Ei and Fi

be nonzero root vectors in the root spaces corresponding to βi and −βi, respectively, and
let Hi = [Ei, Fi] ∈ h. Then the Lie subalgebra of g generated by {Ei, Fi, Hi | 1 � i � n}
is a Kac–Moody algebra with Cartan matrix

( 2(βi,βj)) .
(βj ,βj) 1�i,j�n
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We fix k for the time being. Consider two positive real roots of H(ak):

β1 = 1
√
p
ηjk and β2 = − 1

√
p
η̄jk for j > 0. (5.3)

Since β1 − β2 = 1√
p (ηjk + η̄jk) = 1√

p (ηkj + η̄kj) = 1√
pakj , it is clear that β1 − β2 is not

a root. We also see that 〈βi, βi〉 = 2 (i = 1, 2) and

〈β1, β2〉 = −p

(
1
√
p
ηjk

1
√
p
ηjk + 1

√
p
η̄jk

1
√
p
η̄jk

)
= −

(
η2j
k + η̄2j

k

)
= −a2kj .

Similarly, if we take

β1 = 1
√
p
ηjk and β2 = − 1

√
p
η̄j−1
k for j > 0, (5.4)

then β1 − β2 = 1√
p (ηjk + η̄j−1

k ) = 1√
p η̄

j−1
k (1 + η2j−1

k ). Comparing it with elements in
ψk(Δ+

re) and ψk(Δ+
im), we see that β1 − β2 is not a root. We also have that 〈βi, βi〉 = 2

(i = 1, 2) and

〈β1, β2〉 = −p

(
1
√
p
ηj−1
k

1
√
p
ηjk + 1

√
p
η̄j−1
k

1
√
p
η̄jk

)
= −

(
η2j−1
k + η̄2j−1

k

)
= −ak(2j−1).

Hence we obtain the following theorem.

Theorem 5.5. Let k and l be positive integers, and assume that k | l. Then there exists
an embedding of H(al) into H(ak) as a Lie subalgebra. Moreover, the root space of β in
H(al) is embedded into the root space of α in H(ak) so that ψl(β) = ηkjψk(α) if l = 2kj
for some j ∈ N and ψl(β) = ηk(j−1)ψk(α) if l = k(2j − 1) for some j ∈ N.

Proof. Applying Proposition 5.2 to the above computations, we obtain the first assertion.
For the second assertion, we have only to investigate the simple roots. We notice that
the simple roots of H(al) are 1√

pηl and − 1√
p . Assume that l = 2kj. If we multiply the

simple roots of H(al) by η̄kj , we obtain 1√
pηkj and − 1√

p η̄kj , which are the roots in (5.3)
and generate a copy of H(al) inside H(ak). Now assume that l = k(2j − 1). Multiplying
the simple roots of H(al) by η̄k(j−1), we get 1√

pηkj and − 1√
p η̄k(j−1), which are the roots

in (5.4). This proves the theorem. �
We write mult(ak, α) for the multiplicity of α in H(ak) for k ∈ N.

Corollary 5.6. Assume that we have either ψl(β) = ηkjψk(α) and l = 2kj for some j ∈ N,
or ψl(β) = ηk(j−1)ψk(α) and l = k(2j−1) for some j ∈ N. Then we have the inequalities:

mult(al, β) � mult(ak, α).
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Remark 5.7. An upper bound for mult(ak, α) is given by the homogeneous dimension of
the corresponding free Lie algebra (see [14]). Since the depth (or height) of β is much
smaller than that of α, the number mult(al, β) can be considered inductively as a lower
bound for mult(ak, α).

5.2. Automorphic correction of H(a)

In the rest of this section, we will construct automorphic correction of H(a) for a =
3, 11, 66. Hence, a = a1 for each prime p ∈ {5, 13, 17} and we will write ψ = ψ1 for
convenience. Recall that we need to establish data (1)–(4) (Section 3). We already have
data (1)–(3). More precisely, we put

M = ψ−1(d−1) ⊂ h∗Q for each Q(√p ), p = 5, 13, 17,

and use the same bilinear form on h∗Q. Then M is of signature (1, 1). We take the same
Weyl group W for the reflection group of M , and choose the cone

V +(M) =
{
xγ+ + yγ− ∈ h∗R

∣∣ x > 0, y > 0
}
. (5.8)

We set Π = {α1, α2} and obtain the Weyl chamber

M =
{
β ∈ V +(M)

∣∣ (β, αi) � 0, i = 1, 2
}

= R�0ω1 + R�0ω2.

The Weyl vector is given by ρ = −(ω1 +ω2). The Cartan matrix is the same A for H(a).
Now we consider the data (4). We have the complexified cone

Ω
(
V +(M)

)
= M ⊗ R + iV +(M) =

{(
z1

z2

)
: Im(z1) > 0, Im(z2) > 0

}
⊂ h∗

with respect to the basis {γ+, γ−} and from our choice of V +(M) in (5.8). Then
Ω(V +(M)) is naturally identified with H2. We choose the extended lattice L = P (p)⊕M ,
which is essentially identical to L in (2.3). Then the space K+ is given by

K+ =
{[

(z, z)
2p e1 + e2 + z

]
∈ P

(
L(C)

)
: z =

(
z1

z2

)
∈ Ω

(
V +(M)

)}
=

{[
−z1z2e1 + e2 +

(
z1

z2

)]
∈ P

(
L(C)

)
: (z1, z2) ∈ H2

}
∼=

{[(
z1z2 z1
z2 1

)]
∈ P

(
M2(C)

)
: (z1, z2) ∈ H2

}
.

The last identification follows from (2.2). The action of SL2(O) on H2 ∼= Ω(V +(M)) is
compatible with its action on M2(C), and we have SL2(O) = ΓF ⊂ O+

L . As we observed
in Section 2.2, an automorphic form on Ω(V +(M)) is a Hilbert modular form. Hence
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an automorphic correction of H(a) is a Hilbert modular form which can be written as
a product. We obtain natural examples from Section 4 where we considered the works
of Bruinier and others on Hilbert modular forms as Borcherds products [2,4].

Actually, our automorphic correction will be a Hilbert modular form with respect to
the congruence subgroup Γ0(p) defined by

Γ0(p) =
{(

a b

c d

)
∈ SL2(O): a, b, d ∈ O, c ∈ (p)

}
⊂ O+

L ,

where (p) ⊂ O is the principal ideal generated by p. The notation Γ0(p) is the same
as the congruence subgroup Γ0(p) of SL2(Z). However, it will be clear from the context
which group we mean.

We fix p ∈ {5, 13, 17} and consider H(a1). Recall that a1 = 3 for p = 5, a1 = 11 for
p = 13 and a1 = 66 for p = 17. We identify H2 with Ω(V +(M)) ⊂ h∗ as above. Then
the Weyl group W acts on H2; in particular, we have

r1(z1, z2) =
(
η2
1z2, η̄

2
1z1

)
and r2(z1, z2) = (z2, z1).

Recall that the Weyl group W also acts on F by

r1ν = η2
1 ν̄ and r2ν = ν̄ for ν ∈ F.

For m ∈ N, we define a map ψ(m) : h∗Q → F by
(
ν
ν̄

)
�→ mν, i.e. ψ(m) = mψ. Then we

obtain

ψ(m)(ρ) = m

sp
(1 + η1) = mε0

tr(ε0)
√
p
. (5.9)

Lemma 5.10. Assume that m = qk1
1 · · · qkr

r is the prime factorization of m with distinct
primes qi and suppose that ( qip ) �= 1 for all i. Then we have ν ∈ ψ(m)(Δ+

re) if and only if
ν ∈ d−1, ν + 2ν̄ > 0 and N(ν) = −m2/p.

Proof. The “only if” part can be verified through straightforward computations. Con-
sider the “if” part. Since no qi splits in F , we obtain ν = ± m√

pε
2j
0 for some j ∈ Z from

the conditions N(ν) = −m2/p and ν ∈ d−1. Recall that ε2
0 = η1. We obtain from the

description of the positive real roots (5.1) that the additional condition ν+2ν̄ > 0 makes
ν ∈ ψ(m)(Δ+

re). �
Remark 5.11. It is important to notice that the same conditions as in the above lemma
appear in the Borcherds lift Ψm2 in (4.6). In particular, we can write for such an m∏

ν∈d
−1, ν+2ν̄>0

N(ν)=−m2/p

(
1 − e(νz1 + ν̄z2)

)
=

∏
ν∈ψ(m)(Δ+

re)

(
1 − e(νz1 + ν̄z2)

)
.
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Proposition 5.12. Let Ψm be the Borcherds lifts for m ∈ N. Define Ψm(z1, z2) = Ψm(z2, z1)
and write m = qk1

1 · · · qkr
r into the prime factorization with distinct primes qi.

(1) Assume that ( qip ) = −1 with an odd ki for some i. Then we have

Ψm(wz) = Ψm(z) for w ∈ W.

(2) Assume that ( qip ) �= 1 for all i. Then we have

Ψm2(wz) = det(w)Ψm2(z) for w ∈ W.

Proof. We have only to consider the simple reflections r1 and r2. First, consider the
part (1). In this case, the Borcherds product Ψm is of the form (4.5). It is easy to see
that

ν � 0 ⇐⇒ ν̄ � 0 ⇐⇒ ν̄η2
1 � 0.

Then we obtain Ψm(r1z) = Ψm(r2z) = Ψm(z).
Now we consider the part (2). From (4.6) and Remark 5.11, we have

Ψm2(z1, z2) = Ψm2(z2, z1)

= e

(
mε0z2

tr(ε0)
√
p
− mε̄0z1

tr(ε0)
√
p

) ∏
ν∈d

−1

ν	0

(
1 − e(νz2 + ν̄z1)

)s(pνν̄)a(pνν̄)

×
∏

ν∈ψ(m)(Δ+
re)

(
1 − e(νz2 + ν̄z1)

)
.

The product over ν � 0 is invariant under r1 and r2 as in the part (1). Write νi =
ψ(m)(αi), i = 1, 2. Each ri sends νi to −νi and keeps the set ψ(m)(Δ+

re \ {αi}) invariant.
For w = r1, we have

Ψm2
(
r1(z1, z2)

)
= Ψm2

(
η2
1z2, η̄

2
1z1

)
= Ψm2

(
η̄2
1z1, η

2
1z2

)
= A1

∏
ν∈d

−1

ν	0

(
1 − e(νz1 + ν̄z2)

)s(pνν̄)a(pνν̄) ∏
ν∈ψ(m)(Δ+

re)

(
1 − e

(
νη̄2

1z1 + ν̄η2
1z2

))
= A1

∏
ν∈d

−1

ν	0

(
1 − e(νz2 + ν̄z1)

)s(pνν̄)a(pνν̄) ∏
ν∈ψ(m)(Δ+

re)

(
1 − e(r1νz2 + r1νz1)

)

= A1
1 − e(−ν1z2 − ν̄1z1)
1 − e(ν1z2 + ν̄1z1)

∏
ν∈d

−1

(
1 − e(νz2 + ν̄z1)

)s(pνν̄)a(pνν̄)
ν	0
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×
∏

ν∈ψ(m)(Δ+
re)

(
1 − e(νz2 + ν̄z1)

)
= −A1e(−ν1z2 − ν̄1z1)

∏
ν∈d

−1

ν	0

(
1 − e(νz2 + ν̄z1)

)s(pνν̄)a(pνν̄)

×
∏

ν∈ψ(m)(Δ+
re)

(
1 − e(νz2 + ν̄z1)

)
,

where we put

A1 = e

(
mε0η̄

2
1z1

tr(ε0)
√
p
− mε̄0η

2z2

tr(ε0)
√
p

)
.

We obtain from (5.9) that

− mε̄0η
2

tr(ε0)
√
p
− ν1 = ψ(m)(r1ρ) − ψ(m)(α1) = ψ(m)(ρ) = mε0

tr(ε0)
√
p
.

Combining these computations, we see that Ψm2(r1(z1, z2)) = −Ψm2(z1, z2). Similarly,
we can show that Ψm2(r2(z1, z2)) = −Ψm2(z1, z2). �

We define Φm(z) = Ψm(pz). Then the function Φm(z) is a Hilbert modular form with
respect to Γ0(p) thanks to the following lemma.

Lemma 5.13. Let g(z) be a Hilbert modular form for Q(√p ) with respect to SL2(O).
Define f(z) = g(pz), where g(z1, z2) = g(z2, z1). Then the function f(z) is a Hilbert
modular form with respect to the congruence subgroup Γ0(p).

Proof. By Theorem 4.2.2 in [21], the function g(z) is a Hilbert modular form with respect
to SL2(O). Assume that μ is the multiplier system for g. Then we define μ̃ on Γ0(p) by

μ̃

(
a b

pc d

)
= μ

(
a bp

c d

)
,

(
a b

pc d

)
∈ Γ0(p).

For γ ∈
(

a b
pc d

)
∈ Γ0(p), we have

f(γz) = g(pγz) = g

(
apz + bp

cpz + d

)
= μ

(
a bp

c d

)
N(cpz + d)kg(pz) = μ̃

(
a b

pc d

)
N(pcz + d)kf(z).

Thus f(z) is a Hilbert modular form with respect to Γ0(p) with the multiplier sys-
tem μ̃. �
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Since F ∼= h∗Q ⊂ h∗, ν �→
(
ν
ν̄

)
, and H2 ∼= Ω(V +(M)) ⊂ h∗, (z1, z2) �→

(
z1
z2

)
, the

symmetric bilinear form on h∗ induces a pairing on F ×H2 given by

(ν, z) = −p(νz2 + ν̄z1) for ν ∈ F and z = (z1, z2) ∈ H2.

Write m = qk1
1 · · · qkr

r as before. If ( qip ) = −1 with an odd ki for some i, then we can
rewrite (4.5) and obtain

Φm(z) =
∏

ν∈d
−1

ν	0

(
1 − e

(
p(νz2 + ν̄z1)

))s(pνν̄)a(pνν̄)

=
∏

ν∈d
−1

ν	0

(
1 − e

(
−(ν, z)

))s(pνν̄)a(pνν̄)
. (5.14)

We write ρm = ψ(m)(ρ). If ( qip ) �= 1 for all i, then we obtain from (4.6), (5.9) and
Remark 5.11,

Φm2(z) = e
(
p(ρmz2 + ρ̄mz1)

) ∏
ν∈d

−1

ν	0

(
1 − e

(
p(νz2 + ν̄z1)

))s(pνν̄)a(pνν̄)

×
∏

ν∈ψ(m)(Δ+
re)

(
1 − e

(
p(νz2 + ν̄z1)

))
= e

(
−(ρm, z)

) ∏
ν∈d

−1

ν	0

(
1 − e

(
−(ν, z)

))s(pνν̄)a(pνν̄)

×
∏

ν∈ψ(m)(Δ+
re)

(
1 − e

(
−(ν, z)

))
. (5.15)

We write f1 = q−1+
∑

n�0 a(n)qn. When p = 17, we assume that s(n)a(n) are integers
for all n � 1. This is necessary since s(n)a(n) will be considered as root multiplicities
in what follows. See the remark at the end of Section 4.1. It is known [21] that Ψ1 is
a cusp form of weight 5, 1, 1

2 for p = 5, 13, 17, resp. and skew-symmetric, i.e., Ψ1(z2, z1) =
−Ψ1(z1, z2).

Now we state the main theorem of this paper.

Theorem 5.16. Let p ∈ {5, 13, 17}. Then the Hilbert modular form Φ1 provides an au-
tomorphic correction for the hyperbolic Kac–Moody algebra H(a1), where a1 = 3 for
p = 5, a1 = 11 for p = 13 and a1 = 66 for p = 17. In particular, there exists a gen-
eralized Kac–Moody superalgebra H̃ whose denominator function is the Hilbert modular
form Φ1.
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Proof. From (5.15), we have

Φ1(z) = e
(
−(ρ, z)

) ∏
ν∈d

−1

ν	0

(
1 − e

(
−(ν, z)

))s(pνν̄)a(pνν̄) ∏
ν∈ψ(Δ+

re)

(
1 − e

(
−(ν, z)

))
.

We will drop ψ from the notation. We write Φ1(z) =
∑

μ bμe(−(μ, z)). By Proposi-
tion 5.12, we obtain Φ1(wz) = det(w)Φ1(z) for w ∈ W . Since

Φ1(wz) =
∑
μ

bwμe
(
−(μ, z)

)
,

we get

bwμ = det(w)bμ. (5.17)

One can easily see that ρ + ν ∈ V +(M) for ν ∈ d−1, ν � 0 and for ν ∈ Δ+
re. Hence the

sum is over μ ∈ V +(M) such that μ−ρ ∈ M . Then we can write, using the fundamental
chamber M ⊂ V +(M),

Φ1(z) =
∑
w∈W

det(w)
(
−

∑
ρ+ν∈M
ν∈M

m(ν)e
(
−
(
w(ρ + ν), z

)))
.

Assume that ρ+ν ∈ M. If (ρ+ν, αi) = 0 for i = 1, 2, then ρ+ν is invariant under ri,
and m(ν) = 0 from (5.17). Thus we may assume (ρ+ν, αi) < 0. Then we have (ν, αi) � 0
for i = 1, 2 and ν ∈ M if ν �= 0. Since m(0) = −1, we have

Φ1(z) =
∑
w∈W

det(w)
(
e
(
−
(
w(ρ), z

))
−

∑
ν∈M∩M

m(ν)e
(
−
(
w(ρ + ν), z

)))
.

This is exactly of the form required by the item (4) for an automorphic correction in
Section 3. The data (1)–(3) have already been established at the beginning of Section 5.2.
The existence of the corresponding generalized Kac–Moody superalgebra H̃ is a conse-
quence of the theory of an automorphic correction as explained in Section 3. �
Remark 5.18. The automorphic correction Φ1 is reflective in the definition of Gritsenko
and Nikulin [10]. This means that the divisor of Φ1 is a union of rational quadratic
divisors which are orthogonal to some roots of the lattice L = Z ⊕ Z ⊕ d−1. More
precisely, the divisor of Φ1 is⋃

(a,b,ν)∈L
ab−N(ν)=1/p

{
(z1, z2) ∈ H2: az1z2 + νz1 + ν̄z2 + b = 0

}
.

See [4,21] for more details.
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Remark 5.19. There are some obstructions when we try to interpret Φm (m �= 1) as an
automorphic correction. When we have Φm of the form (5.14), we do not have the product
corresponding to the real roots. When the function Φm2 is of the form (5.15), we have
both parts corresponding to the real roots and to the imaginary roots. However, the map
ψ(m) is not an isometry. If we make ψ(m) an isometry by adjusting the bilinear form on F ,
the natural lattice would be md−1. Then Φm2 is not an automorphic correction of H(a1).

6. Asymptotics for root multiplicities

In this section, we obtain asymptotics of Fourier coefficients of the modular forms fm
defined in Section 4.1. Note that the Fourier coefficients of f1 are root multiplicities of
the generalized Kac–Moody superalgebra H̃ with some modification. For the rank 3 hy-
perbolic Kac–Moody algebra F mentioned in the introduction, asymptotic upper bounds
for root multiplicities were obtained in [15]. Other related works can be found in [16,17].

We apply the result of J. Lehner [19] on Fourier coefficients of modular forms using
the method of Hardy–Ramanujan–Rademacher to our special case. We refer to [19] for
unexplained notations: Γ0(p) has two cusps: p0 = ∞, p1 = 0 [18, p. 108].

For fm ∈ A+
0 (p, χp) for χp(m) �= −1, let

fm = s(m)−1q−m +
∞∑

n=0
am(n)qn.

Then as in [19, p. 314] we need to compute

A(p, n,m) =
∑
d∈Dp

v−1(M)e
(
nd−ma

p

)
=

p−1∑
d=1

χp(d)e
(
nd−ma

p

)
,

where ad ≡ 1 (mod p). This is the Salié sum T (n,−m; p) [11, p. 323]:
If p �m, then

A(p, n,m) = T (n,−m; p) = √
p

(
−m

p

) ∑
v2≡−mn (mod p)

e

(
2v
p

)
.

Since χp(m) = 1, we have A(p, n,m) = √
p
∑

v2≡−mn (mod p) e(
2v
p ). Note that if p |n,

then we obtain A(p, n,m) = √
p.

If p |m,

A(p, n,m) =
∑
d∈Dp

χp(d)e
(
nd

p

)
=

{
χp(n)√p, if p �n;
0, if p |n.

Next we need the Fourier expansion of fm at 0: By [4, p. 54]

fm

(
− 1
pz

)
= fm |Wp(z) = 1

√
p
f |Up(z) = √

p
∑

am(pn)qn.

n∈Z



102 H.H. Kim, K.-H. Lee / Journal of Algebra 407 (2014) 81–104
Hence

fm

(
−1
z

)
= √

p
∑
n∈Z

am(pn)q
n
p =

{√
p
∑∞

n=0 am(pn)q
n
p , if p �m,

√
p

s(m)q
− m

p2 + √
p
∑∞

n=0 am(pn)q
n
p , if p |m.

So by [19, p. 314] we have, if p �m,

am(n) = 2π
∑
p|c

A(c, n,m)
c

(
m

n

) 1
2

I1

(
4π

√
nm

c

)

= 2πT (n,−m; p)
p

(
m

n

) 1
2

I1

(
4π

√
nm

p

)
+ error term.

If p |m,

am(n) = π
∑
p|c

A(c, n,m)
c

(
m

n

) 1
2

I1

(
4π

√
nm

c

)

+ π
√
p

∞∑
c=1

A(c, n, m
p2 )

c

(
m

n

) 1
2

I1

(
4π

√
nm

pc

)

= π
√
p

(
m

n

) 1
2

I1

(
4π

√
nm

p

)(
χp(n) + 1

)
+ error term.

Note that by definition, if χp(n) = −1, am(n) = 0.
Now we show that the error term is smaller than the main term. In the case of p |m,

the second term is similar to the first term. So it is enough to handle the case p �m. By
Weil’s bound,

∣∣A(c, n,m)
∣∣ � (c, n,m) 1

2 c
1
2 τ(c) � (n,m) 1

2 c
1
2 τ(c) � (mn) 1

2 c
1
2 τ(c),

where τ(c) is the number of positive divisors of c. We divide the error term into two
regions: p < c � 4π

√
mn and c > 4π

√
mn. Here

2π
∑

p<c�4π
√
mn

A(c, n,m)
c

(
m

n

) 1
2

I1

(
4π

√
nm

c

)
� 2πmI1

(
2π

√
nm

p

) ∑
p<c�4π

√
mn

τ(c)√
c

� 8π 3
2m

5
4n

1
4 (log 4π

√
mn ) I1

(
2π

√
nm

p

)
.

Here we used the fact that
∑

c�x
τ(c)√ � 2

√
x log x.
c
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On the other hand, since I1(z) � z for 0 < z < 1,

2π
∑

c>4π
√
mn

A(c, n,m)
c

(
m

n

) 1
2

I1

(
4π

√
nm

c

)
� 8π2m

3
2n

1
2

∑
c>4π

√
mn

τ(c)
c

3
2

� 48π 3
2m

5
4n

1
4 (log 4π

√
mn ).

Here we used the fact that
∑

c>x
τ(c)
c

3
2

� 12x− 1
2 log x.

Combining the above computations, we have proved the following theorem:

Theorem 6.1. For a positive integer m with χp(m) �= −1, let fm = s(m)−1q−m +∑∞
n=0 am(n)qn ∈ A+

0 (p, χp). Then for any m, am(n) > 0 for all n, p |n.
If p |m, we have am(n) � 0 for all n, and

am(n) = π
√
p

(
m

n

) 1
2

I1

(
4π

√
mn

p

)(
χp(n) + 1

)
+ O

(
m

5
4n

1
4 log 4π

√
mnI1

(
2π

√
nm

p

))
.

If p �m, we obtain

am(n) = 2π
√
p

(
m

n

) 1
2

I1

(
4π

√
mn

p

)( ∑
v2≡−mn (mod p)

e

(
2v
p

))

+ O

(
m

5
4n

1
4 (log 4π

√
mn )I1

(
2π

√
nm

p

))
.

For example, let p = 5, m = 6, n = 9. In this case,
∑

v2≡−mn (mod p) e(
2v
5 ) = 2 cos 4π

5 .
So a6(9) ∼ 2π√

5(6/9) 1
2 I1(4π

√
54

5 )2 cos 4π
5 = −35 409 600. The exact value is −35 408 776.

Let p = 5, m = 10, n = 9. In this case, a10(9) ∼ 2π√
5(10/9)1/2I1(4π

√
90

5 ) = 5 391 530 000.
The exact value is 5 391 558 200.
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