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1. Introduction and statement of results

Let N be a positive integer. For an odd integer k, we denote by M !+···+
k/2 (N) the space 

of weakly holomorphic modular forms of weight k/2 on Γ0(4N) whose n-th Fourier 
coefficient vanishes unless (−1)(k−1)/2 n is a square modulo 4N . For the moment, we 
assume that N is contained in the set

S = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.

Then the group Γ∗
0(N), which is the group generated by Γ0(N) and all Atkin–Lehner 

involutions We for e ‖ N , has genus 0. From the correspondence between Jacobi forms 
and half-integral weight forms (cf. [10, Theorem 5.6]), we see that for any D ∈ Z>0 with 
D ≡ � (mod 4N), there is a unique modular form gD,N ∈ M !+···+

3/2 (N) having a Fourier 
expansion of the form

gD,N (τ) = q−D +
∑
d≥0

B(N)(D, d) qd (q = e2πiτ , τ ∈ H).

Here, H denotes the complex upper half plane.
Let � be a prime with � � 4N . Then the Hecke operator Tk/2,4N (�2), originally defined 

on the space of weakly holomorphic modular forms of weight k/2 on Γ0(4N), acts on 
M !+···+

k/2 (N). We define Tk/2,4N (�2n) for n ≥ 2 recursively by

Tk/2,4N (�2n) := Tk/2,4N (�2n−2)Tk/2,4N (�2) − �k−2Tk/2,N (�2n−4).

For any positive integer m with gcd (m, 4N) = 1, define Tk/2,4N (m2) multiplicatively 
and set

g
(m)
D,N := gD,N | T3/2,4N (m2).

We denote by B(N)
m (D, d) the d-th Fourier coefficient of g(m)

D,N (τ):

g
(m)
D,N (τ) = (principal part) +

∑
d≥0

B(N)
m (D, d) qd.

By the works of Zagier [29] and Kim [14], the coefficients B(N)
m (D, d) can be interpreted 

as traces of CM values of certain modular functions (or traces of singular moduli). 
Remarkably, the coefficients B(N)

m (D, d) show many congruence properties, and many 
authors studied them. In 2005, Ahlgren and Ono [2] showed that if p � m is an odd prime 

and 
(

−d
p

)
= 1, then

B(1)
m (1, p2d) ≡ 0 (mod p).
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Edixhoven [9] used the p-adic geometry of modular curves to show that, for any m and 

any d with 
(

−d
p

)
= 1, we have

B(1)
m (1, p2nd) ≡ 0 (mod pn).

When p is an odd prime, Jenkins [12] obtained a recursive formula for B(1)
1 (D, p2nd) in 

terms of B(1)
1 (D, p2kd) with k < n. As a corollary he proved that if 

(
−d
p

)
=

(
D
p

)
�= 0, 

then we have

B
(1)
1 (D, p2nd) = pnB

(1)
1 (p2nD, d).

Guerzhoy [11] showed that if D and −d are fundamental discriminants with 
(

−d
p

)
=(

D
p

)
, then, for any m, we have

B(1)
m (D, p2nd) = pnB(1)

m (p2nD, d).

In 2012, Ahlgren [1] proved a general theorem which implies the above results as special 
cases. On the other hand, Osburn [21] proved that if d is a positive integer such that 
−d is congruent to a square modulo 4N and if p �= N is an odd prime which splits in 
Q(

√
−d), then

B
(N)
1 (1, p2d) ≡ 0 (mod p).

Jenkins [13] and Koo and Shin [18] obtained the following generalization of Osburn’s 
result: for a positive integer d such that −d ≡ � (mod 4N) and an odd prime p �= N

which splits in Q(
√
−d),

B
(N)
1 (1, p2nd) ≡ 0 (mod pn)

for all n ≥ 1.
The purpose of this paper is to generalize all these congruences to more general 

modular forms. To be precise, from now on, we assume that N ≥ 1 is odd and square-free. 
For an even Dirichlet character χ modulo 4N , we denote by M !

k/2(4N, χ) the space of 
weakly holomorphic modular forms of weight k/2 on Γ0(4N) with Nebentypus χ. The 
subspace of holomorphic forms and that of cuspforms are denoted by Mk/2(4N, χ) and 
Sk/2(4N, χ) respectively.

Let D be a discriminant form of level 4N satisfying some additional conditions which 
will be given in Section 2.2. (For the basics on discriminant forms, see Section 2.1 below.) 
Then D determines an even Dirichlet character χ modulo 4N and a sign vector ε = (εp)p
over p = 2 or p | N with χp �= 1, where the character χ is decomposed into p-components: 
χ =

∏
p χp. Set χ′ = χ 

( 4N )
.
·
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We define the associated modular form space M !ε
k/2(N, χ′) to be the subspace 

of M !
k/2(4N, χ′) consisting of the forms f ∈ M !

k/2(4N, χ′) satisfying the so-called 
ε-condition, which will be defined in Section 2.2. We let

M ε
k/2(N,χ′) = M !ε

k/2(N,χ′) ∩Mk/2(4N,χ′) and

Sε
k/2(N,χ′) = M !ε

k/2(N,χ′) ∩ Sk/2(4N,χ′).

Let us give an example. Consider the following even lattice

L =
{(

a b/N

c −a

)
: a, b, c ∈ Z

}
, (1.1)

with Q(α) = −N det(α) and (α, β) = Ntr(αβ). We denote by L′ the dual lattice of L. 
Then the space M !ε

k/2(N, χ′) associated with the discriminant form L′/L is exactly the 

same as the space M !+···+
k/2 (N). Hence the ε-condition can be considered as a generaliza-

tion of the Kohnen plus condition.
Now we further assume that χp �= 1 for each p | N , so χ′ = 1. In [31], Zhang defined a 

family of forms in M !ε
k/2(N, 1), called reduced forms. (For the definition, see Section 2.2.) 

If a reduced form fm exists for some m ∈ Z, it must be unique and χp(m) �= −εp for 
each p | N . The set of reduced modular forms forms a basis for M !ε

k/2(N, 1). When k = 3
and N ∈ S, the reduced form f−D exists for each D > 0 which is a square modulo 4N
(cf. Proposition 2.15 below). In fact, s(−D)f−D = gD,N for every D where s(−D) is a 
scaling constant. Thus the reduced forms are natural generalizations of the forms gD,N .

In order to generalize the congruences mentioned above to reduced forms, we first 
need to check integrality of the Fourier coefficients of reduced forms. We establish the 
following proposition which allows us to check whether a fixed reduced form has integer 
Fourier coefficients.

Proposition 1.2. Let k be an odd integer. Assume that f =
∑

n a(n)qn ∈ M !ε
k/2(N, χ′) ∩

Q( (q) ) with bounded denominator, and that a(n) �= 0 for some n < 0. Furthermore, let 
k′ be the smallest positive integer which satisfies k′ ≥ |ord∞(f)|/4N and k + 12k′ > 0. 
If a(n) ∈ Z for n ≤ ord∞(f) + k+12k′

12 [SL2(Z) : Γ0(4N)], then a(n) ∈ Z for all n.

Let D∗ be the dual discriminant form of D. It is known that the corresponding data 
to D∗ is (4N, χ′, ε∗) with ε∗p = χp(−1)εp. Denote by M ε∗

k/2(N, χ′) the space of modular 
forms associated to D∗. We denote by a(m, n) the n-th Fourier coefficient of the reduced 
form fm. We prove the following theorem which turns the integrality problem for reduced 
forms into checking finitely many of them.

Theorem 1.3. Let mε = max{m : f∗
m ∈ M ε∗

2−k/2(N, χ′) exists}. Assume that for all n ∈ Z

and m ≥ −4N −mε, we have s(m)a(m, n) ∈ Z. Then s(m)a(m, n) ∈ Z for all m, n ∈ Z.
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Therefore, to check the integrality of reduced forms, it suffices to show the integrality 
of a finite number of Fourier coefficients satisfying the conditions of both Proposition 1.2
and Theorem 1.3. We give an example to illustrate this.

Example 1.4. We consider the space M !+···+
1/2 (7, 1). Then we have mε = −1. Define

Ek(τ) = 1 − 2k
Bk

∞∑
n=1

σk−1(n)qn (2 < k ∈ 2Z)

to be the normalized Eisenstein series, and denote by [·, ·]n (n ≥ 1) the n-th Rankin–
Cohen bracket (cf. [6, pp. 53–58]). Set

RC1 = [θ,E10(28τ)]1
Δ(28τ) , RC2 = [θ,E8(28τ)]2

Δ(28τ) , RC3 = [θ,E6(28τ)]3
Δ(28τ) , RC4 = [θ,E4(28τ)]4

Δ(28τ) ,

RC5 = [RC1,E10(28τ)]1
Δ(28τ) , RC6 = [RC1,E8(28τ)]2

Δ(28τ) , RC7 = [RC1,E6(28τ)]3
Δ(28τ) , RC8 = [RC1,E4(28τ)]4

Δ(28τ) ,

RC9 = [RC2,E10(28τ)]1
Δ(28τ) , RC10 = [RC2,E8(28τ)]2

Δ(28τ) , RC11 = [RC2,E6(28τ)]3
Δ(28τ) , RC12 = [RC2,E4(28τ)]4

Δ(28τ) ,

RC13 = [RC1,E10(28τ)]1
Δ(28τ) , RC14 = [RC3,E8(28τ)]2

Δ(28τ) , RC15 = [RC3,E6(28τ)]3
Δ(28τ) , RC16 = [RC3,E4(28τ)]4

Δ(28τ) .

In addition, we set

f = 1
5600RC1 + 7

103680RC2 + 1
80640RC3 + 1

705600RC4 − 41687
1800 θ,

and define

RC17 = [f,E4(28τ)]4
Δ(28τ) .

By taking linear combinations of these Rankin-Cohen brackets, we find

s(0)f0 = 1 + 2q + 2q4 + 2q9 + 2q16 + · · · ,
s(−3)f−3 = q−3 − 3q − 2q4 + 6q8 + 5q9 − 10q16 + · · · ,
s(−7)f−7 = q−7 − 10q + 4q4 + 28q8 − 24q9 + 60q16 + · · · ,

s(−12)f−12 = q−12 − 10q − 25q4 − 6q8 + 46q9 + 152q16 + · · · ,
s(−19)f−19 = q−19 − q − 50q4 − 50q8 − 153q9 + 798q16 + · · · ,
s(−20)f−20 = q−20 − 22q + 26q4 − 180q8 − 78q9 − 338q16 + · · · ,
s(−24)f−24 = q−24 − 2q − 28q4 + 225q8 − 450q9 − 2976q16 + · · · ,
s(−27)f−27 = q−27 + 12q + 52q4 − 468q8 + 156q9 − 1300q16 + · · · .

For example, we obtain

f−3 = − 92368453
1197504000 RC1 − 1105849

739031040 RC2 − 7775323
804722688000 RC3 + 31109

68584320000 RC4

− 1 RC7 + 1 RC8 − 1 RC12
49268736000 862202880000 86910050304000
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+ 1
216309458534400 RC15 + 83841213721

1026432000 θ

= q−3 − 3q − 2q4 + 6q8 + 5q9 − 10q16 + · · · .

By Proposition 1.2, the forms s(0)f0, . . . , s(−27)f−27 have integer Fourier coefficients. It 
follows from Theorem 1.3 that every reduced form in M !+···+

1/2 (7, 1) has integer Fourier 
coefficients.

Now we assume that, for any reduced form

fm =
∑
n

a(m,n) qn ∈ M !ε
k/2(N, 1),

the form s(m)fm has integer Fourier coefficients. Furthermore, let k ≥ 3 be an odd 
integer and set λ = (k − 1)/2. Then the reduced form fm ∈ M !ε

k/2(N, 1) exists for every 
m ∈ Z<0 with χp(m) �= −εp for all p | N . We write

Fm(τ) = s(m)fm(τ) = qm +
∑
d≥0

χp(d) �=−εp for all p|N

B(N)(m, d) qd.

Note that the Hecke operator Tk/2,4N (�2) acts on the space M !ε
k/2(N, 1) for each prime �

with gcd (�, 4N) = 1. For any positive integer t with gcd (t, 4N) = 1, define

F (t)
m := Fm | Tk/2,4N (t2).

Then we obtain the coefficients B(N)
t (m, d) from the equation

F (t)
m (τ) = (principal part) +

∑
d≥0,

χp(d) �=−εp for all p|N

B
(N)
t (m, d) qd.

We state our main theorem which describes various relations among the coefficients 
B

(N)
t (m, d).

Theorem 1.5. We have the following:

(i) B
(N)
t (m, �2n+2d) − �λ−1

(
(−1)λm

�

)
B

(N)
t (m, �2nd) = �(k−2)n

{
B

(N)
t (�2nm, �2d) −

B
(N)
t (�2n−2m, d)

}
.

(ii) If � � d, then

�(k−2)nB
(N)
t (�2nm, d) = B

(N)
t (m, �2nd)

+
[(

(−1)λd
�

)
−
(

(−1)λm
�

)]
·

n∑
k=1

�(λ−1)k
(

(−1)λd
�

)k−1

B
(N)
t (m, �2n−2kd).
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(iii) If � ‖ d, then

�(k−2)nB
(N)
t (�2nm, d) = B

(N)
t (m, �2nd) − �λ−1

(
(−1)λm

�

)
·B(N)

t (m, �2n−2d).

As a corollary, we obtain the following congruences:

Corollary 1.6. Assume that Sε
k/2(N, 1) = 0.

(1) If 
(−d

�

)
=

(−m
�

)
�= 0, or if � ‖ d and � ‖ m, then for any positive integer t with 

(t, 4N) = 1 and n, we have

B
(N)
t (m, �2nd) = �(k−2)n B

(N)
t (�2nm, d) ≡ 0 (mod �(k−2)n).

(2) If χp(�d) �= −εp for all p | N , then for any positive integer t with (t, 4N) = 1 and 
any n ≥ 1, we get

B
(N)
t (m, �2n+1d) ≡ �λ−1

(
(−1)λm

�

)
B

(N)
t (m, �2n−1d) (mod �(k−2)n).

As for the condition in the above corollary, we remark that if

N ∈ {n | n is an odd square-free integer with 1 ≤ n < 37}

∪ {39, 41, 47, 51, 55, 59, 69, 71, 87, 95, 105, 119},

then S+···+
3/2 (N, 1) = 0. (See [5, Table 4].)

We organize this paper as follows. In Section 2, we present preliminaries on discrimi-
nant forms and modular forms of half-integral weight. Also, we recall the definitions of 
ε-condition and reduced forms. In Section 3, we prove Proposition 1.2 and Theorem 1.3, 
and in Section 4 we prove Theorem 1.5 and Corollary 1.6.
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2. Preliminaries

In this section, we review the basics on quadratic spaces, lattices and discriminant 
forms. Standard references for the theory of quadratic forms and lattices are [7], [8] and 
[16]. For the theory of discriminant forms, see [19], [20] and [26]. Moreover, for transitive 
discriminant forms, ε-conditions and reduced forms, we refer to [31].
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2.1. Discriminant forms

Definition 2.1. Let D be a finite abelian group. A quadratic form Q on D is a map 
Q : D → Q/Z such that

(1) Q(nx) = n2Q(x) for all n ∈ Z and x ∈ D,
(2) the map 〈·, ·〉 : D×D → Q/Z, (x, y) �→ 〈x, y〉 := Q(x + y) −Q(x) −Q(y) is bilinear.

The quadratic form Q on D is called nondegenerate if

〈x, y〉 = 0 for all y ∈ D implies x = 0.

In this case, we call the pair (D, Q) is a finite quadratic module or a discriminant form.

Let (D, Q) be a discriminant form. The level of (D, Q) is the smallest positive integer 
M such that MQ(x) = 0 for all x ∈ D. Let (D′, Q′) be another discriminant form. A 
Z-module homomorphism σ : D → D′ is called isometry if σ is injective and Q = Q′ ◦ σ. 
If there is a bijective isometry between (D, Q) and (D′, Q′), then we say that (D, Q) and 
(D′, Q′) are isometric and we write (D, Q) � (D′, Q′). The set of all bijective isometries 
of D onto itself forms a group under composition; we denote it by Aut(D).

Many concepts and results in the theory of discriminant forms are closely related to 
lattices. So we recall some basic facts about lattices.

Definition 2.2. Let K be a field and let V be a finite-dimensional vector space over K. 
By a quadratic form on V , we mean a map Q : V → K such that

(1) Q(cv) = c2Q(v) for all c ∈ K and v ∈ V ,
(2) the map 〈·, ·〉 : V ×V → K, (v, w) �→ 〈v, w〉 := Q(v+w) −Q(v) −Q(w) is a symmetric 

bilinear form on V .

The pair (V, Q) is called a quadratic space over K.

Let (V, Q) be a quadratic space of dimension n and let B = {v1, . . . , vn} be a basis 
for V . The matrix G = GB := (〈vi, vj〉) is called the Gram matrix of V with respect 
to the basis B. If det(GB) �= 0, then the quadratic space (V, Q) is called nondegenerate. 
This definition is independent of the choice of basis. If (V, Q) is nondegenerate, then 
V ⊥ = {0}, and vice versa.

Let (V ′, Q′) be another quadratic space over K. We say that (V, Q) and (V ′, Q′) are 
isometric if there exists a linear isomorphism ψ : V → V ′ such that Q(v) = Q′(ψ(v))
for all v ∈ V . By Sylvester’s law of inertia, if (V, Q) is an n-dimensional nondegenerate 
quadratic space over R, then there exists a unique pair (r, s) of nonnegative integers such 
that (V, Q) is isometric to Rr,s := (Rr+s, x2

1 + · · · + x2
r − x2

r+1 − · · · − x2
r+s). The value 

sign(V ) := r − s is called the signature of (V, Q).
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Now let R = Z or Zp and let K be the field of fractions of R.

Definition 2.3. By an R-lattice of rank n, we mean a free R-module L of rank n with 
a K-valued symmetric R-bilinear map 〈·, ·〉 : L × L → K. An R-lattice L is called 
nondegenerate if 〈x, y〉 = 0 for all y ∈ L implies x = 0.

Let L be an R-lattice. Then the lattice L is nondegenerate if and only if (L ⊗RK, QK)
is nondegenerate. Let F be an extension field of K. Then the bilinear map 〈·, ·〉 can be 
extended to a symmetric F -bilinear form 〈·, ·〉 on L ⊗R F . If QF : L ⊗R F → F is 
the map defined by QF (x) = 1

2 〈x, x〉, then the pair (L ⊗R F, QF ) is a quadratic space 
over F .

If B = {x1, . . . , xn} is a basis for L, then the Gram matrix with respect to B is the 
matrix G = GB := (〈xi, xj〉). Its determinant is determined up to multiplication by an 
element of (R∗)2; it is called the discriminant of L and denoted by disc(L). If 〈x, y〉 ∈ R

for all x, y ∈ L, then L is called integral. If 〈x, x〉 ∈ 2R for every x ∈ L, then L is called 
even. From the polarization identity,

〈x, y〉 = 1
2(〈x + y, x + y〉 − 〈x, x〉 − 〈y, y〉),

we see that even lattices are integral.

Definition 2.4. Let L be an R-lattice. We define the dual lattice L′ of L by the set

L′ := {x ∈ L⊗R K : (x, y) ∈ R for all y ∈ L}.

If L is nondegenerate, then L′ is also a lattice. Moreover, L is integral if and only if 
L ⊂ L′.

Definition 2.5. Let L be a nondegenerate Z-lattice.

(1) The level of L is the smallest positive integer M such that M · QQ(x) ∈ 2Z for all 
x ∈ L′.

(2) The signature of L is defined as the signature of the real quadratic space (L ⊗ZR, QR).

Since (Z∗)2 = {1}, the discriminant disc(L) is an integer uniquely determined by L. If 
L is integral, then L′/L is a finite abelian group of order |disc(L)|. Assume further that L
is even. Then the map QL′/L : L′/L → Q/Z, x + L �→ QQ(x) (mod Z) is a well-defined 
quadratic form on L′/L. In other words, the pair (L′/L, QL′/L) is a discriminant form; 
we call it the discriminant form of L.

Proposition 2.6 ([19], Theorem 1.3.2). Let (D, Q) be a discriminant form. Then there 
exists a nondegenerate even Z-lattice L such that (D, Q) � (L′/L, QL′/L).
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Now we introduce the Jordan decomposition of discriminant forms. Let (D, Q) and 
(D′, Q′) be two discriminant forms. Then the map Q ⊕ Q′ : D ⊕ D′ → Q/Z, (x, y) �→
Q(x) +Q′(y) is a nondegenerate quadratic form on D⊕D′, hence the pair (D⊕D′, Q ⊕Q′)
is a discriminant form, called the (orthogonal) direct sum of (D, Q) and (D′, Q′). The 
level of D⊕D′ is the least common multiple of the levels of D and D′. For a discriminant 
form (D, Q), denote by Dn the orthogonal direct sum of n copies of D. A discriminant 
form (D, Q) is called indecomposable if (D, Q) is not isometric to any orthogonal direct 
sum of two nonzero discriminant forms; otherwise, (D, Q) is called decomposable.

The nontrivial indecomposable discriminant forms are as follows:

(1) Let q be a power of an odd prime p and let ε ∈ {±1}. We denote by qε the discrim-
inant form (

Z/qZ, x + qZ �→ a

q
x2 + Z

)
,

where a is any integer satisfying 
(

2a
p

)
= ε.

(2) Let q be a power of the prime 2. We define q+2
II and q−2

II to be

q+2
II :=

(
Z/qZ⊕ Z/qZ, (x1 + qZ, x2 + qZ) �→ 1

q
x1x2 + Z

)
,

q−2
II :=

(
Z/qZ⊕ Z/qZ, (x1 + qZ, x2 + qZ) �→ 1

q
(x2

1 + x1x2 + x2
2) + Z

)
,

respectively. For ε ∈ {±1} and t ∈ Z satisfying (−1)(t2−1)/8 = ε, define qεt by

qεt :=
(
Z/qZ, x + qZ �→ t

2q x
2 + Z

)
.

Proposition 2.7 ([19]). Every discriminant form is isometric to an orthogonal direct sum 
of indecomposable discriminant forms.

Now we define several invariants of discriminant forms.

Definition 2.8.

(1) Let p be an odd prime and let I be an indecomposable discriminant form. The 
p-excess of In is an element of Z/8Z defined by

p-excess(In) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n(q − 1) (mod 8) if I = q+1 and q is a power of p,
n(q − 1) (mod 8) if I = q−1 and q = p2k for some k ∈ Z>0,

n(q − 1) + 4 (mod 8) if I = q−1 and q = p2k−1 for some k ∈ Z>0,

0 (mod 8) if I is not of the form (pk)ε.
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Let D be an arbitrary discriminant form. If D = In1
1 ⊕ · · · ⊕ Ink

k is a decomposition 
into indecomposables, then we define the p-excess of D by

p-excess(D) :=
k∑

j=1
p-excess(Inj

j ).

(2) Let I be an indecomposable discriminant form. The oddity of In is defined by

oddity(In) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (mod 8) if I = q+2
II and q is a power of 2,

0 (mod 8) if I = q−2
II and q = 22k for some k ∈ Z>0,

4 (mod 8) if I = q−2
II and q = 22k−1 for some k ∈ Z>0,

t (mod 8) if I = q+1
t and q is a power of 2,

t (mod 8) if I = q−1
t and q = 22k for some k ∈ Z>0,

t + 4 (mod 8) if I = q−1
t and q = 22k−1 for some k ∈ Z>0,

0 (mod 8) if I = (pk)ε for some odd prime p.

If D is an arbitrary discriminant form and D = In1
1 ⊕ · · · ⊕ Ink

k is a decomposition
into indecomposables, then we define the oddity of D as

oddity(D) :=
k∑

j=1
oddity(Inj

j ).

(3) Let D be a discriminant form. Choose a nondegenerate even lattice L such that 
D � L′/L. Define the signature of D by

signature(D) := signature(L) (mod 8).

This value is in fact independent of the choice of L (cf. Theorem 1.1.1 and Theo-
rem 1.3.1 of [19]).

The p-excess, oddity and signature satisfy the following relation.

Proposition 2.9 (oddity formula). Let D be a discriminant form. Then

signature(D) +
∑
p≥3

p-excess(D) = oddity(D).

2.2. ε-Conditions and reduced forms

The following definition is crucial for the rest of this section.
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Definition 2.10. A discriminant form D is called transitive if for any n ∈ Q/Z the group 
Aut(D) acts transitively on the set {x ∈ D : Q(x) = n}.

Let (D, Q) be a discriminant form and denote the associated bilinear form by 〈·, ·〉 as 
above. As an abelian group, D = ⊕pDp, where Dp = {x ∈ D : pmx = 0 for some m ∈
Z>0}. In fact the decomposition is orthogonal. Indeed, if p, q are two distinct primes, 
x ∈ Dp and y ∈ Dq, then pmx = 0, qny = 0 for some m, n ∈ Z>0. Choose a, b ∈ Z so that 
apm + bqn = 1. Then 〈x, y〉 = (apm + bqn)〈x, y〉 = 〈(apm)x, y〉 + 〈x, (bqn)y〉 = 0. If we let 
Mp the level of Dp, then Mp is a power of p. Indeed, the order of Dp is a power of p. If p is 
an odd prime, then Jordan components of Dp are of the form (pk)ε. Since, as mentioned 
above, the level of an orthogonal direct sum of a finite number of discriminant forms is 
the least common multiple of the levels of summands, Mp is a power of p. Similarly, M2
is a power of 2. Since the Mp are pairwise relatively prime, M =

∏
p Mp.

The following results give us the classification of transitive discriminant forms.

Proposition 2.11 ([31], Proposition 2.1). A discriminant form D is transitive if and only 
if D = ⊕pDp, where

(1) if p ≡ 1 (mod 4), then Dp is trivial or equal to p±1 or (p+1)2,
(2) if p ≡ −1 (mod 4), then Dp is trivial or equal to p±1 or (p−1)2,
(3) D2 is trivial or equal to one of the following:

(2+1
±3)3, (2+1

±2)2, 2+1
±1, 2−2

II , 4±1
t , 4±1

t ⊕ 2+1
+1.

Let D be a transitive discriminant form of odd signature. Assume that D2 = 2+1
±1. 

Then we associate the following data to D:

(1) The level M of D. By Proposition 2.11, M = 4N for some odd squarefree integer N .
(2) An even Dirichlet character χ modulo N . By the Chinese remainder theorem, it 

suffices to define its p-component χp for each prime p. If p ≡ 1 (mod 4) (resp. p ≡ 3
(mod 4)), then we set

χp(d) :=

⎧⎨
⎩

1 if Dp is trivial or (p+1)2 (resp. (p−1)2),(
d
p

)
if Dp = p±1.

On the other hand, χ2 is defined by

χ2 :=

⎧⎨
⎩

1 if
(

−1
|D|

)
= 1,(−4

d

)
if

(
−1
|D|

)
= −1.

Also, let χ′ = χ 
(
M
)
.
·
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(3) The sign vector ε = (εp)p. Here p ranges over 2 and prime factors of N such that χp

is non-trivial. For such a prime, let

εp :=

⎧⎨
⎩χp(2N/p)δp if p is odd and Dp = pδp ,

t
(−1
M

)
if p = 2 and D2 = 2+1

t .

Conversely, given such a triple (4N, χ, ε), we can recover D. Indeed, if p is an odd prime 
with χp �= 1, then Dp = pδp , where δp = εpχp(2N/p). If p = 2, then D2 = 2+1

t , 
where t = ε2

(−1
M

)
. For other prime factor p of N , we have Dp = p±2 where the sign is 

determined uniquely by the transitivity.
Let k be an odd integer. Consider an element (A, φ) ∈ Mp+

2 (R) of the metaplectic 
cover of GL+

2 (R), and let f : H → C be a function. The weight k/2 slash operator is 
defined by

(f |k/2(A, φ))(τ) = φ−k(τ)f(Aτ), A =
(
a b

c d

)
.

We define the operators τM , W (m), U(m), Y (p) as follows.

(1) Let

τM :=
((

0 −1
M 0

)
,M

1
4 (−iτ) 1

2

)
∈ Mp+

2 (R).

If f ∈ M !
k/2(M, χ′), then f |k/2τM ∈ M !

k/2(M, χ) and f |k/2τ2
M = f (cf. [25], Proposi-

tion 1.4).
(2) Let m be an odd divisor of M and choose u, v ∈ Z so that vm + uM/m = 1. Let

W (m) :=
((

m −1
uM vm

)
,

(
−4
m

)− 1
2

m− 1
4 (uMz + mv) 1

2

)
∈ Mp+

2 (R).

If f ∈ M !
k/2(M, χ′), then f |k/2W (m) ∈ M !

k/2(M, χ′ (m
·
)
) (cf. [17], Proposition 2 or 

[28], (1.17)).
(3) For any divisor m of M and f ∈ M !

k/2(M, χ′), define U(m) by

f |k/2U(m) := 1
m

m∑
j=1

f

(
τ + j

m

)
.

It is known that f |k/2U(m) ∈ M !
k/2(M, χ′ (m

·
)
) (cf. [25], Proposition 1.5).

(4) For each odd prime divisor p of M , we define Y (p) by

f |k/2Y (p) := p1− k
4 f |k/2U(p)W (p).
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On the other hand, Y (4) is defined by

f |k/2Y (4) := 41− k
4 f |k/4U(4)W (N)τM .

Then f |k/2Y (p), f |k/2Y (4) ∈ M !
k/2(M, χ′).

Definition 2.12. Let D be the discriminant form corresponding to (4N, χ′, ε), and k be 
an odd integer such that k ≡ signature(D) (mod 4). Then we define M !ε

k/2(N, χ′) by 
the subspace of M !

k/2(4N, χ′) consisting of the functions f =
∑

n a(n)qn satisfying the 
following two conditions:

(1) a(n) = 0 if n ≡ 2, −ε2 (mod 4) or 
(

n
p

)
= −εp for some p | N with χp �= 1,

(2) f |k/2Y (p) = −f for every p | N with χp = 1.

The ε-condition can be considered as a generalization of the Kohnen plus condition. 
Recall the even lattice L introduced in (1.1). Then its discriminant form D = L′/L ∼=
Z/2NZ is transitive with the 2-component D2 = 2−1(−1

N

) and the p-components Dp =

p

(
2N/p

p

)
for any odd prime p dividing N . We have εp = +1 for all p | N and χ′ =

χ 
(4N

·
)

= 1. From the definition, we have f =
∑

n a(n)qn ∈ M !ε
k/2(N, 1) if and only if 

a(n) = 0 unless (−1) k−1
2 n is a square modulo 4N . Thus the space M !ε

k/2(N, 1) is exactly 

the same as the space M !+...+
k/2 (N). Eichler and Zagier denote the space M ε

k/2(N, 1) =
M !ε

k/2(N, 1) ∩Mk/2(4N, 1) by M+...+
k/2 (N) in [10, p. 69].

Remark 2.13. It is known that the space M !
k/2(4N, χ′) decomposes into the direct sum 

of simultaneous eigenspace for the operators Y (p), p | N and Y (4). The subspace 
M !ε

k/2(N, χ′) is one of these simultaneous eigenspaces (cf. [31], p. 14).

Now we shall assume that χp �= 1 for each p | N , so χ′ = 1.

Definition 2.14. A form f ∈ M !ε
k/2(N, χ′) is called reduced if f = 1

s(m)q
m+

∑
�≥m+1 a(�)q�

for some integer m and if for each n > m with a(n) �= 0, there does not exist g ∈
M !ε

k/2(N, χ′) such that g = qn + O(qn+1). Here, s(m) =
∏

p|gcd (N,m)

(
1 + p

|Dp|

)
.

If a reduced form exists for some m, it is unique and χp(m) �= −εp for each p | N ; we 
denote it by fm. The set of reduced modular forms is a basis for M !ε

k/2(N, χ′).
The following proposition determines m < 0 for which fm exists. To state it, we 

need some notation. Let D∗ be the dual discriminant form of D given by the same 
abelian group with the quadratic form −Q. It is known that D∗ is also transitive and 
the corresponding data is (4N, χ′, ε∗) with ε∗p = χp(−1)εp.
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Proposition 2.15 ([31], Proposition 6.1). Let B∗ = {m : f∗
m ∈ M ε∗

2−k/2(N, χ′) exists}. 
Then for any m < 0 with χp(m) �= −εp for all p | N , the reduced form fm ∈ M !ε

k/2(N, χ′)
exists if and only if −m /∈ B∗.

3. Proofs of Proposition 1.2 and Theorem 1.3

In this section, we prove the rationality of Fourier coefficients of reduced forms 
following the lines in [4] and [30]. For f =

∑
n a(n)qn and σ ∈ Aut(C), define 

fσ =
∑

n σ(a(n))qn.

Lemma 3.1. Let χ be a Dirichlet character modulo N with values in Q. If f ∈
M !

k/2(4N, χ), so is fσ.

Proof. It is known that Aut(C) acts on the space Mk/2(Γ1(4N), χ), the space of holomor-
phic modular forms of weight k/2 on Γ1(4N) with Nebentypus χ, and σ(Mk/2(4N, χ)) =
Mk/2(4N, χσ). (See [23].) Since χ has values in Q, Aut(C) acts on Mk/2(4N, χ).

Note that fΔk′ ∈ Mk/2+12k′(4N, χ) for a sufficiently large positive integer k′. Here 
Δ is the unique normalized cusp form of weight 12 for SL2(Z). The above observation 
shows that (fΔk′)σ ∈ Mk/2+12k′(4N, χ). But Δ has integral Fourier coefficients, hence 
fσΔk′ = (fΔk′)σ ∈ Mk/2+12k′(4N, χ) and fσ ∈ M !

k/2(4N, χ). �
Proposition 3.2. Let k < 0 and let f =

∑
n a(n)qn ∈ M !ε

k/2(N, χ′). Suppose that a(n) ∈ Q

for n < 0. Then all the coefficients a(n) are rational with bounded denominators.

Proof. Let σ ∈ Aut(C). By Lemma 3.1, fσ ∈ M !
k/2(4N, χ′). It is easy to check that the 

action of Aut(C) preserves the ε-condition. Since a(n) ∈ Q for n < 0, h := f − fσ is 
holomorphic at ∞. By [31, Corollary 5.5], h ∈ M ε

k/2(N, χ′). But k < 0, so h = 0. It 
follows that f has rational coefficients.

We know that θfΔk′ ∈ S(k+1)/2+12k′(4N, χ′) ⊂ S(k+1)/2+12k′(Γ1(4N)) for a suffi-
ciently large positive integer k′. Shimura proved that S(k+1)/2+12k′(Γ1(4N)) has a basis 
B consisting of forms whose Fourier coefficients at ∞ are rational integers. (See [24, 
Theorem 3.52].) Let SQ

(k+1)/2+12k′(Γ1(4N)) be the Q-vector space of cusp forms in 
S(k+1)/2+12k′(Γ1(4N)) whose Fourier coefficients at ∞ are rational numbers. Then B
is a Q-basis of SQ

(k+1)/2+12k′(Γ1(4N)) and fθΔk′ ∈ SQ
(k+1)/2+12k′(Γ1(4N)). This implies 

that fθΔk′ has coefficients with bounded denominators, and we conclude that the a(n)
are rational with bounded denominators. �

We are interested in integrality of Fourier coefficients. So we generalize Sturm’s the-
orem to M !ε

k/2(N, χ′). We begin with introducing the original Sturm’s theorem.

Theorem 3.3 ([27]). Let OF be the ring of integers of a number field F , p any prime ideal, 
N ′ a positive integer and k′ a positive integer. Assume f =

∑
n a(n)qn ∈ Mk′(N ′, χ) ∩

OF �q�. If a(n) ∈ p for n ≤ k′
[SL2(Z) : Γ0(N ′)], then a(n) ∈ p for all n.
12
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Using Theorem 3.3, Kim, Lee and Zhang proved the following:

Corollary 3.4 ([15], Corollary 3.2). Let k′ be a positive integer. Assume f =
∑

n a(n)qn ∈
Mk′(4N, χ) ∩Q�q� with bounded denominator. If a(n) ∈ Z for n ≤ k′

12 [SL2(Z) : Γ0(4N)], 
then a(n) ∈ Z for all n.

We extend this result to half-integral weight case. Let

θ(τ) =
∑
n∈Z

qn
2

= 1 + 2q + 2q4 + 2q9 + · · · , (q = e2πiτ , τ ∈ H).

Corollary 3.5. Let k > 0 be an odd integer and assume that f =
∑

n a(n)qn ∈
Mk/2(4N, χ) ∩Q�q� with bounded denominator. If a(n) ∈ Z for n ≤ k

12 [SL2(Z) : Γ0(4N)], 
then a(n) ∈ Z for all n.

Proof. By multiplying θk, we have fθk ∈ Mk(4N, χ). It suffices to show that all the 
coefficients of fθk are integers. Since a(n) ∈ Z for n ≤ k

12 [SL2(Z) : Γ0(4N)], the same 
property holds for the coefficients of fθk. By Corollary 3.4, every coefficient of fθk is an 
integer. �

Now we are ready to prove Proposition 1.2 and Theorem 1.3.

Proof of Proposition 1.2. Since k′ ≥ |ord∞(f)|/4N , we see that f(τ)Δ(4Nτ)k′ ∈
M ε

k/2+12k′(N, χ) and that every coefficient of f(τ)Δ(4Nτ)k′ less than or equal to 
k+12k′

12 [SL2(Z) : Γ0(4N)] is an integer. By Corollary 3.5, f(τ)Δ(4Nτ)k′ has integer 
Fourier coefficients, hence so does f . �
Proof of Theorem 1.3. Consider any reduced form fm′ with m′ < −4N−mε. There exist 
integers −4N −mε ≤ m′

0 < −mε and l ≥ 1 such that m′ = −4Nl + m′
0. By maximality 

of mε, fm′
0

exists. Consider now

g = j(4Nτ)lfm′
0

=
∑
n

b(n)qn ∈ M !ε
k/2(N,χ′),

where j(τ) denotes the classical j-function. It is known that j has integral Fourier coef-
ficients. By the assumption on fm′

0
, we see that b(n)s(m′

0) ∈ Z for each n.
Now s(m′

0)g and s(m′)fm′ share the same lowest power term, and we must have that

s(m′)fm′ = s(m′
0)g −

∑
m>m′

s(m′
0)b(m)s(m)fm.

Hence s(m′)am′(n) = s(m′
0)b(n) − s(m)b(m)s(m′

0)am(n) ∈ Z by the assumption and 
induction on m. �
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4. Proofs of Theorem 1.5 and Corollary 1.6

From now on, we shall assume that, for any reduced form

fm =
∑
n

a(m,n)qn ∈ M !ε
k/2(N,χ),

the modular form s(m)fm has integral Fourier coefficients. We remark that such inte-
grality for each fixed reduced form can be verified by Proposition 1.2. Also, as we showed 
in Example 1.4, every reduced form in the space M !+···+

1/2 (7, 1) satisfies the assumption.
We begin with a lemma.

Lemma 4.1. Let N ≥ 1 be a square-free integer. Then we have M+···+
3/2 (N, 1) =

S+···+
3/2 (N, 1).

Proof. Let f =
∑

n≥0 a(n)qn ∈ M+···+
3/2 (N, 1). By Borcherds’ obstruction theorem (The-

orem 3.1 of [3]), we get

s(0)a(0)b(0) = 0

for each g =
∑

n b(n)qn ∈ M ε∗

1/2(N, 1). Since N is square-free,

M ε∗

1/2(N, 1) = Cθ

by [23, Theorem A]. Setting g = θ, we obtain

s(0)a(0) = 0.

Since s(0) �= 0, the form f vanishes at ∞. By [31, Proposition 5.3], the vector-valued form 
ψ(f) is a cusp form. Here ψ is the map constructed in Chapter 5 of [31]. We conclude 
from [31, Corollary 5.5] that f = ψ−1(ψ(f)) ∈ S+···+

3/2 (N, 1). �
Remark 4.2. If k ≥ 3 is an odd integer and (k, ε) �= (3, +), then

M ε∗

2−k/2(N, 1) = 0.

Let N ≥ 1 be an odd square-free integer. Suppose that � is a prime with � � 4N . 
Consider a modular form

f(τ) =
∑
n

a(n)qn ∈ M !ε
k/2(N, 1),

where the sum is over n such that χp(n) �= −εp for all p | N . Then the action of the 
Hecke operator Tk/2,4N (�2) on f is given by
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f(τ) | Tk/2,4N (�2) =
∑
n

(
a(�2n) + �λ−1

(
(−1)λn

�

)
a(n) + �2λ−1a(n/�2)

)
qn, (4.3)

where λ = (k − 1)/2 and the sum is over n such that χp(n) �= −εp for all p | N . Here 
we set a(n/�2) = 0 if �2 � n. Note that f(τ) | Tk/2,4N (�2) ∈ M !ε

k/2(N, 1). We define 
Tk/2,4N (�2n) for n ≥ 2 recursively by

Tk/2,4N (�2n) := Tk/2,4N (�2n−2)Tk/2,4N (�2) − �k−2Tk/2,4N (�2n−4).

Remark 4.4. For n ≥ 2, our Tk/2,4N (�2n) is different from the �2n-th Hecke operator 
given in [25]. See [22, p. 241] for details.

By Proposition 2.15, the reduced form fm ∈ M !ε
k/2(N, 1) exists for every m < 0 with 

χp(m) �= −εp for all p | N . We write

Fm(τ) = s(m)fm(τ) = qm +
∑
d≥0

χp(d) �=−εp for all p|N

B(m, d)qd.

For any positive integer t with gcd (t, 4N) = 1, define

F (t)
m := Fm | T (t2).

Then we obtain the coefficients Bt(m, d) from the equation

F (t)
m (τ) = (principal part) +

∑
d≥0,

χp(d) �=−εp for all p|N

Bt(m, d)qd.

For the rest of this section, let k ≥ 3 be an odd integer and set λ = (k − 1)/2, and 
assume

(1) m ∈ Z<0 such that χp(m) �= −εp for all p | N ,
(2) � is a prime with � � 4N and �2 � m.

Proposition 4.5. Assume that Sε
k/2(N, 1) = 0. Then, for any positive integer t with 

(t, 4N) = 1 and any positive integer n, we have

F (t)
m |Tk/2,4N (�2n) − �λ−1

(
(−1)λm

�

)
F (t)
m |Tk/2,4N (�2n−2) = �(k−2)nF

(t)
�2nm.

Proof. For convenience, define G(t)
0 := F

(t)
m , and, for each n ≥ 1,

G(t)
n := F (t)

m | Tk/2,4N (�2n) − �λ−1
(

(−1)λm
)
F (t)
m | Tk/2,4N (�2n−2). (4.6)
�
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We need to show G(t)
n = �(k−2)nF

(t)
�2nm. Since the Hecke operators commute, it suffices to 

prove the proposition in the case t = 1, which we now assume.
We claim that

G(1)
n = G

(1)
n−1 | Tk/2,4N (�2) − �k−2 ·G(1)

n−2 for n ≥ 2. (4.7)

Indeed, if n = 2, then

G
(1)
2 −G

(1)
1 | Tk/2,4N (�2) + �k−2 ·G(1)

0

=
(
F (1)
m | Tk/2,4N (�4) − �λ−1

(
(−1)λm

�

)
F (1)
m | Tk/2,4N (�2)

)

−
((

F (1)
m | Tk/2,4N (�2)

)
| Tk/2,4N (�2) − �λ−1

(
(−1)λm

�

)
F (1)
m | Tk/2,4N (�2)

)

+ �k−2 · F (1)
m

= F (1)
m | Tk/2,4N (�4) −

(
F (1)
m | Tk/2,4N (�2)

)
| Tk/2,4N (�2) + �k−2 · F (1)

m = 0.

For n ≥ 3,

G
(1)
n−1 |Tk/2,4N (�2) − �k−2 ·G(1)

n−2

=
(
F (1)
m | Tk/2,4N (�2n−2)

)
| Tk/2,4N (�2) − �λ−1

(
(−1)λm

�

)

·
(
F (1)
m | Tk/2,4N (�2n−4)

)
| Tk/2,4N (�2)

− �k−2 ·
(
F (1)
m | Tk/2,4N (�2n−4) − �λ−1

(
(−1)λm

�

)
F (1)
m | Tk/2,4N (�2n−6)

)

=
(
F (1)
m | Tk/2,4N (�2n−2)T (�2) − �k−2 · F (1)

m | Tk/2,4N (�2n−4)
)

− �λ−1
(

(−1)λm
�

)

·
(
F (1)
m | Tk/2,4N (�2n−4)T (�2) − �k−2 · F (1)

m | Tk/2,4N (�2n−6)
)

= F (1)
m | Tk/2,4N (�2n) − �λ−1

(
(−1)λm

�

)
· F (t)

m | Tk/2,4N (�2n−2) = G(1)
n .

Since G(1)
0 = F

(1)
m = Fm, the principal part of G(1)

0 is qm. By (4.3), the principal 
part of G(1)

1 is �k−2qm�2 . Moreover, we see from (4.7) that, for all n ≥ 0, the principal 
part of G(1)

n is equal to �(k−2)nqm�2n . Since F (1)
m�2n = Fm�2n has principal part qm�2n , 

G
(1)
n −�(k−2)nF�2nm is holomorphic at the cusp ∞. Arguing as in the proof of Lemma 4.1, 

we have

G(1)
n − �(k−2)nF�2nm ∈ M ε

k/2(N, 1).
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If (k, ε) = (3, +), then it follows from Lemma 4.1 that

G(1)
n − �(k−2)nF�2nm ∈ Sε

k/2(N, 1).

Since Sε
k/2(N, 1) = {0} by assumption, we have G(1)

n = �(k−2)nF�2nm.
If (k, ε) �= (3, +), then M ε∗

2−k/2(N, 1) = 0 (Remark 4.2). By Borcherds’ obstruction 
theorem, there exists a reduced form g such that g = 1 +O(q). We see from the definition 
of reduced forms that B(m, 0) = B(�2nm, 0) = 0. Hence the constant term of G(1)

n −
�(k−2)nF�2nm is zero, and thus

G(1)
n − �(k−2)nF�2nm ∈ Sε

k/2(N, 1) = {0}.

Therefore we have G(1)
n = �(k−2)nF�2nm in this case too. �

Write

G(t)
n = (principal part) +

∑
d≥0,

χp(d) �=−εp for all p|N

Cn(d)qd.

Proposition 4.5 implies that, for all n and d,

Cn(d) = �(k−2)nBt(�2nm, d). (4.8)

Lemma 4.9. The following are true:

(i) For any d ≥ 0 with χp(d) �= −εp for all p | N , we have

Cn(�2d) − �k−2 · Cn−1(d) = C0(�2n+2d) − �λ−1
(

(−1)λm
�

)
C0(�2nd).

(ii) If χp �= −εp for all p | N and � ‖ d, then

Cn(d) = C0(�2nd) − �λ−1
(

(−1)λm
�

)
C0(�2n−2d).

(iii) If χp �= −εp for all p | N and � � d, then

Cn(d) = C0(�2nd) +
[(

(−1)λd
�

)
−
(

(−1)λm
�

)]

·
n∑

k=1

�(λ−1)k
(

(−1)λd
�

)k−1

C0(�2n−2kd).
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Proof. We first prove (i). Note that

�2d-th coefficient of G(m)
1 = C1(�2d),

�2d-th coefficient of F (t)
m | Tk/2,4N (�2) − �λ−1

(
(−1)λm

�

)
F (t)
m

= Bt(m, �4d) + �λ−1
(

(−1)λ�2d
�

)
Bt(m, �2d) + �k−2 ·Bt(m, d)

− �λ−1
(

(−1)λm
�

)
Bt(m, �2d)

= Bt(m, �4d) + �k−2 ·Bt(m, d) − �λ−1
(

(−1)λm
�

)
Bt(m, �2d)

= C0(�4d) + �k−2 · C0(d) − �λ−1
(

(−1)λm
�

)
C0(�2d).

By (4.6), we have

C1(�2d) = C0(�4d) + �k−2 · C0(d) − �λ−1
(

(−1)λm
�

)
C0(�2d).

Hence,

C1(�2d) − �k−2 · C0(d) = C0(�4d) − �λ−1
(

(−1)λm
�

)
C0(�2d).

When n ≥ 2, we use (4.7) to find that

Cn(�2d) − �k−2 · Cn−1(d) = Cn−1(�4d) − �k−2 · Cn−2(�2d) = · · ·

= C1(�2nd) − �k−2 · C0(�2n−2d).

From (4.6), we see that

C1(�2nd) = C0(�2n+2d) + �k−2 · C0(�2n−2d) − �λ−1
(

(−1)λm
�

)
C0(�2nd).

Thus we obtain

Cn(�2d) − �k−2 · Cn−1(d) = C0(�2n+2d) − �λ−1
(

(−1)λm
�

)
C0(�2nd).

We now prove (ii) and (iii). Observe that

d-th coefficient of G(t)
1 = C1(d),
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d-th coefficient of F (t)
m | Tk/2,4N (�2) − �λ−1

(
(−1)λm

�

)
F (t)
m

= Bt(m, �2d) + �λ−1
(

(−1)λd
�

)
Bt(m, d) + �k−2 ·Bt(m, d/�2)

− �λ−1
(

(−1)λm
�

)
Bt(m, d)

=

⎧⎨
⎩
Bt(m, �2d) − �λ−1

(
(−1)λm

�

)
Bt(m, d) if � ‖ d,

Bt(m, �2d) + �λ−1
[(

(−1)λd
�

)
−

(
(−1)λm

�

)]
Bt(m, d) if � � d,

=

⎧⎨
⎩
C0(�2d) − �λ−1

(
(−1)λm

�

)
C0(d) if � ‖ d,

C0(�2d) + �λ−1
[(

(−1)λd
�

)
−
(

(−1)λm
�

)]
C0(d) if � � d.

By (4.6), we have

C1(d) =

⎧⎨
⎩
C0(�2d) − �λ−1

(
(−1)λm

�

)
C0(d) if � ‖ d,

C0(�2d) + �λ−1
[(

(−1)λd
�

)
−

(
(−1)λm

�

)]
C0(d) if � � d.

On the other hand, it follows from (4.7) that

Cn(d) = Cn−1(�2d) − �k−2 Cn−2(d) + �λ−1
(

(−1)λd
�

)
Cn−1(d)

for n ≥ 2. Applying part (i) to Cn−1(�2d) − �k−2 Cn−2(d), we obtain

Cn(d) = C0(�2nd) − �λ−1
(

(−1)λm
�

)
C0(�2n−2d) + �λ−1

(
(−1)λd

�

)
Cn−1(d).

If � ‖ d, then we immediately obtain part (ii). Now assume that � � d. Then by induction 
we have

Cn(d) = C0(�2nd) − �λ−1
(

(−1)λm
�

)
C0(�2n−2d) + �λ−1

(
(−1)λd

�

)
Cn−1(d)

= C0(�2nd) − �λ−1
(

(−1)λm
�

)
C0(�2n−2d) + �λ−1

(
(−1)λd

�

)
C0(�2n−2d)

+ �λ−1
(

(−1)λd
�

)
·
[(

(−1)λd
�

)
−
(

(−1)λm
�

)]

·
n−1∑
k=1

�(λ−1)k
(

(−1)λd
�

)k−1

C0(�2n−2k−2d)

= C0(�2nd) + �λ−1
[(

(−1)λd
)
−

(
(−1)λm

)]
· C0(�2n−2d)
� �
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+
[(

(−1)λd
�

)
−
(

(−1)λm
�

)]
·

n∑
k=2

�(λ−1)k
(

(−1)λd
�

)k−1

C0(�2n−2kd)

= C0(�2nd) +
[(

(−1)λd
�

)
−
(

(−1)λm
�

)]

·
n∑

k=1

�(λ−1)k
(

(−1)λd
�

)k−1

C0(�2n−2kd).

This proves the identity in part (iii). �
We now prove Theorem 1.5 and Corollary 1.6.

Proof of Theorem 1.5. (i) By (4.8) and Lemma 4.9 (i), we have

Bt(m, �2n+2d) − �λ−1
(

(−1)λm
�

)
Bt(m, �2nd)

=C0(�2n+2d) − �λ−1
(

(−1)λm
�

)
C0(�2nd) = Cn(�2d) − �k−2Cn−1(d)

=�(k−2)nBt(�2nm, �2d) − �k−2 · �(k−2)(n−1)Bt(�2n−2m, d)

=�(k−2)n {
Bt(�2nm, �2d) −Bt(�2n−2m, d)

}
.

(ii) Using (4.8) and Lemma 4.9 (iii), we obtain

�(k−2)nBt(�2nm, d) = Cn(d)

= C0(�2nd) +
[(

(−1)λd
�

)
−

(
(−1)λm

�

)]

·
n∑

k=1

�(λ−1)k
(

(−1)λd
�

)k−1

C0(�2n−2kd)

= Bt(m, �2nd) +
[(

(−1)λd
�

)
−

(
(−1)λm

�

)]

·
n∑

k=1

�(λ−1)k
(

(−1)λd
�

)k−1

Bt(m, �2n−2kd).

(iii) By (4.8) and Lemma 4.9 (ii),

�(k−2)nBt(�2nm, d) = Cn(d) = C0(�2nd) − �λ−1
(

(−1)λm
�

)
C0(�2n−2d)

= Bt(m, �2nd) − �λ−1
(

(−1)λm
�

)
Bt(m, �2n−2d). �
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Proof of Corollary 1.6. (1) First, suppose that 
(−d

�

)
=

(−m
�

)
�= 0. Then � � d. By 

Theorem 1.5 (ii),

�(k−2)nBt(�2nm, d) = Bt(m, �2nd).

Now assume that � ‖ d and � ‖ m. Then by Theorem 1.5 (iii),

�(k−2)nBt(�2nm, d) = Bt(m, �2nd).

(2) If � � d, then � ‖ �d. By Theorem 1.5 (iii),

Bt(m, �2n+1d) − �λ−1
(

(−1)λm
�

)
Bt(m, �2n−1d)

=Bt(m, �2n(�d)) − �λ−1
(

(−1)λm
�

)
Bt(m, �2n−2(�d))

=�(k−2)n Bt(�2nm, �d) ≡ 0 (mod �(k−2)n).

If � | d, then by Theorem 1.5 (i), we obtain

Bt(m, �2n+1d) − �λ−1
(

(−1)λm
�

)
Bt(m, �2n−1d)

= Bt(m, �2n+2(d/�)) − �λ−1
(

(−1)λm
�

)
Bt(m, �2n(d/�))

= �(k−2)n (Bt(�2nm, �d) −Bt(�2n−2m, d/�)) ≡ 0 (mod �(k−2)n). �
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