Taylor & Francis
EXPERIMENTAL Taylor & Francis Group

% % Experimental Mathematics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uexm20

A Correspondence between Rigid Modules Over
Path Algebras and Simple Curves on Riemann
Surfaces

Kyu-Hwan Lee & Kyungyong Lee

To cite this article: Kyu-Hwan Lee & Kyungyong Lee (2021) A Correspondence between Rigid
Modules Over Path Algebras and Simple Curves on Riemann Surfaces, Experimental Mathematics,
30:3, 315-331, DOI: 10.1080/10586458.2018.1538910

To link to this article: https://doi.org/10.1080/10586458.2018.1538910

@ Published online: 05 Feb 2019.

N
CJ/ Submit your article to this journal &

||I| Article views: 40

A
& View related articles &'

N

@ View Crossmark data &'

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uexm20


https://www.tandfonline.com/action/journalInformation?journalCode=uexm20
https://www.tandfonline.com/loi/uexm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10586458.2018.1538910
https://doi.org/10.1080/10586458.2018.1538910
https://www.tandfonline.com/action/authorSubmission?journalCode=uexm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uexm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10586458.2018.1538910
https://www.tandfonline.com/doi/mlt/10.1080/10586458.2018.1538910
http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2018.1538910&domain=pdf&date_stamp=2019-02-05
http://crossmark.crossref.org/dialog/?doi=10.1080/10586458.2018.1538910&domain=pdf&date_stamp=2019-02-05

EXPERIMENTAL MATHEMATICS
2021, VOL. 30, NO. 3, 315-331
https://doi.org/10.1080/10586458.2018.1538910

Taylor & Francis
Taylor &Francis Group

‘ W) Check for updates‘

A Correspondence between Rigid Modules Over Path Algebras and Simple

Curves on Riemann Surfaces

Kyu-Hwan Lee® and Kyungyong Lee®<

?Department of Mathematics, University of Connecticut, Storrs, CT, USA; bDepartment of Mathematics, University of Nebraska-Lincoln,
Lincoln, NE, USA; “Korea Institute for Advanced Study, Seoul, Republic of Korea

ABSTRACT

We propose a conjectural correspondence between the set of rigid indecomposable mod-
ules over the path algebras of acyclic quivers and the set of certain non-self-intersecting
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Schur root, Riemann surface

curves on Riemann surfaces, and prove the correspondence for the two-complete rank

3 quivers.

1. Introduction

In the study of the category of modules over a ring,
geometric objects have often been used to describe the
structures. In particular, the following problem has
been considered fundamental. (For a small fraction of
references, see [Apruzzese and Igusa; Fomin and
Zelevinsky 02; Avramov, Buchweitz 00; Briistle and
Zhang 11; Canakci and Schroll 17; Musiker et al. 11;
Zhang et al. 13].)

Problem 1. Let R be a ring. Find a function f from a
(sub)set of R-modules to a set of geometric objects so
that the size of the (asymptotic) ext group between two
modules M and N can be measured by the intersections
of f(M) and f(N).

The homological mirror symmetry (HMS), pro-
posed by [Kontsevich 95], is one of the phenomena
which answer this problem. The existence of such
symmetry implies that there is a symplectic manifold
S such that the number of intersections between two
Lagrangians on S is closely related to the dimension
of the ext group between the corresponding modules.

Pursuing this direction, in this article, we restrict
ourselves to the following problem.

Problem 2. Let R be an hereditary algebra. Find a
function f from the set of indecomposable R-modules to
a set of geometric objects so that the non-vanishing of
the self-extension group of an indecomposable module
M is precisely detected by the existence of the self-inter-
section of f(M).

Every finite-dimensional hereditary algebra over an
algebraically closed field is Morita equivalent to the
path algebra of an acyclic quiver, i.e., a quiver without
oriented cycles (See, e.g., [Assem et al. 06]). The num-
ber of vertices of a quiver is referred to as the rank of
the quiver. The dimension vectors of indecomposable
modules over a path algebra are called (positive)
roots. A root o is real if the Euler inner product (o, o)
is equal to 1, and imaginary if (o, o) < 0.

We first consider the case that R is the path algebra
of a two-complete quiver (ie.,, an acyclic quiver with
at least two arrows between every pair of vertices),
and define a bijective function

f : {indecomposable modules corresponding to

positive real roots} — {admissible curves},
where admissible curves are certain paths on a
Riemann surface (see Definition 2.1). Then we formu-
late the following conjecture:

Conjecture 1.1. For an indecomposable R-module M,
we have Ext'(M,M) =0 if and only if f(M) has no
self-intersections.

In this article, we prove this conjecture for two-
complete rank 3 quivers. When Ext!(M, M) = 0, the
module M is called rigid, and the dimension vector of
a rigid indecomposable module is called a real Schur
root. To explain our result, we let

Z:={(a,b,c) € Z*: ged(|b],|c|]) =1}.
For each z = (a,b,¢) € Z, define a curve 7, on the
universal cover of a triangulated torus, consisting of
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two symmetric spirals and a line segment, so that a
determines the number of times the spirals revolve
and (b, c¢) determines the slope of the line segment.
See Examples 2.2 (2). The curves #,, z € Z, have no
self-intersections. Now our result (Theorem 4.2) is
the following.

Theorem 1.2. Let R be the path algebra of a two-com-
plete rank 3 quiver. Then there is a natural bijection
between the set of rigid indecomposable modules and
the sef of curves n,, z € Z.

This shows that real Schur roots are very special
ones among all real roots in general. Our proof is
achieved by expressing each real Schur root in terms
of a sequence of simple reflections that corresponds to
a non-self-intersecting path.' See Example 4.13.

For the general case, let R be the path algebra of
any acyclic quiver. We still define an onto function

g : {admissible curves} — {indecomposable modules

corresponding to positive real roots},
and propose the following (See Conjecture 2.4):

Conjecture 1.3. For an indecomposable R-module M,
we have Ext'(M,M) =0 if and only if g~'(M) con-
tains a non-self-crossing curve.

As tests for known cases, we prove this conjecture
for equioriented quivers of types A and D, and for
Agl) and all rank 2 quivers. We also consider the
highest root of a quiver of type Eg and provide such a
path. If this conjecture holds true, then it gives an
elementary geometric (and less recursive) criterion to
distinguish real Schur roots among all positive
real roots.

There have been a number of known criteria to tell
whether a given real root is a real Schur root, some of
which are in terms of sub-representations (due to
Schofield [Schofield 92]), braid group actions (due to
Crawley [Crawley-Boevey 92]), cluster variables (due
to Caldero [Caldero and Keller 06]), or c-vectors (due
to Chavez [Chavez 15]). Building on a result of
Igusa-Schiffler [Igusa and Schiffler 10] and
Baumeister-Dyer-Stump-Wegener [Baumeister et al.
14], Hubery and Krause [Hubery and Krause 16]
characterized real Schur roots in terms of non-cross-
ing partitions. There are also combinatorial descrip-
tions for c-vectors in the same seed due to

TAfter the first version of this paper was posted on the arXiv, Felikson
and Tumarkin [Felikson and Tumarkin 17] proved Conjecture 1.1 for all 2-
complete quivers. Moreover they characterized c-vectors in the same
seed, using a collection of pairwise non-crossing admissible curves
satisfying a certain word property.

Speyer-Thomas [Speyer and Thomas 13] and Seven
[Seven 15]. However none of these is of geometric
nature, and most of them rely on heavy recursive pro-
cedures which are hard to apply in practice.

Also, a better description for real Schur roots is still
needed to help understand a base step of the non-com-
mutative HMS for path algebras. Note that the recent
work of Shende-Treumann-Williams-Zaslow [Shende
15; Shende et al. 16; Treumann 18] suggests HMS for
certain (not-necessarily acyclic) quivers including the
ones coming from bicolored graphs on surfaces.

Our conjecture suggests the existence of the HMS
phenomenon for the path algebra over an arbitrary
acyclic quiver. In a subsequent project, we plan to
investigate the HMS for path algebras over vari-
ous quivers.

2. A conjectural correspondence
2.1. The statement of conjecture

Let Q be an acyclic (connected) quiver with N vertices
labeled by I:={1,...,N}. Denote by Sy the permuta-
tion group on I. Let Pg C Sy be the set of all permuta-
tions ¢ such that there is no arrow from a(j) to a(i)
for any j>i on Q. Note that if there exists an ori-
ented path passing through all N vertices on Q, in
particular, if there is at least one arrow between
every pair of vertices, then Py consists of a unique
permutation.

For each o € Py, we define a labeled Riemann sur-
face X,> as follows. Let G, and G, be two identical
copies of a regular N-gon. Label the edges of each of
the two N-gons by T4(1), Ty(2); s To(n) counter-clock-
wise. On G, let L; be the line segment from the center
of G; to the common endpoint of T,(y) and Tg(y). Fix
the orientation of every edge of G, (resp. G,) to be
counter-clockwise (resp. clockwise) as in the following
picture.

a(1)

’The punctured discs appeared in Bessis'’ work [Bessis 06]. For better
visualization, here we prefer to use an alternative description using
compact Riemann surfaces with one or two marked points.



Let X, be the (compact) Riemann surface of genus
|%51] obtained by gluing together the two N-gons
with all the edges of the same label identified accord-
ing to their orientations. The edges of the N-gons
become N different curves in X,. If N is odd, all the
vertices of the two N-gons are identified to become
one point in X; and the curves obtained from the
edges are loops. If N is even, two distinct vertices are
shared by all curves. Let 7 be the set of all curves,
ie, T =T,U---UTy CZ, and V be the set of the
vertex (or vertices) on 7.

Consider the Cartan matrix corresponding to Q and
the root system of the associated Kac—Moody algebra.
The simple root corresponding to i € I will be denoted
by ;. The simple reflections of the Weyl group W will
be denoted by s;, i € I. More precisely, for each ¢ € Py,

W = (s1,...,8n : sf =...= si, =e¢ and (sisj)’"’J = e for i<j),

where e is the identity element and

if there is no arrow from (i) to a(j) on Q;
if there is a single arrow from (i) to a(j) on Q;
otherwise.

Let W be the set of words w = i;iy - - - i, from the
alphabet I such that no two consecutive letters i, and
ip41 are the same. For each element w € W, let R,, C
W be the set of words ijip---ix such that
W =s;S;, - -S;. Recall that the set of positive real
roots and the set of reflections in W are in one-to-one
correspondence. Also note that if Q is two-complete,
ie, W=/{(s,..,sy:s7 =---=s =e), then there is
a unique expression for every element w € W as a
product of simple reflections (with no two consecutive
simple reflections being the same), hence R,, contains
a unique element. Define

R := U

w: reflection

R,, C 1.
wew
Definition 2.1. Let ¢ € Pg. A g-admissible curve is a
continuous function 7 : [0, 1] — Z, such that

1. n(x) € Vif and only if x € {0, 1};

2. there exists €>0 such that
and n([1—¢, 1]) C Ly;

3. if n(x) €T\ V then n([x—e,x+¢€]) meets T
transversally for sufficiently small e>0;

4. and v(y) € R, where v(n) :=i; - - - i is given by

{x€(0,1):n(x)eT} ={x< - <xi}

’7([07 6]) CL

and  n(x;) € T;, for £ € {1,...,k}.

If o is clear from the context, a o-admissible curve
will be just called an admissible curve.
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Note that for every w € R, there is a o-admissible
curve 1 with v() = w. In particular, every positive
real root can be represented by some admis-
sible curve(s).

Example 2.2. Let N=3, and Q be the rank 3 acyclic
quiver with double arrows between every pair of verti-
ces as follows.

2

Let 0 €S; be the trivial permutation id. We
have Pg = {id}.

(1) First we consider a positive real root oy + 60, +
203 = 5301 and  its  corresponding  reflection
W = 5,8351535,. Then R,, = {23132} C R, and the fol-
lowing red curve becomes a g-admissible curve # on
Y, with v(n) = 23132. The picture on the right shows
several copies of # on the universal cover of X;, where
each horizontal line segment represents T), vertical
T3, and diagonal T,. Clearly 5 has a self-intersection.

(2) Next we consider another positive real root

166249001 + 43526630, + 1139521203

= (s35251) " 525352815283002, (2-1)

and its corresponding reflection w = (535251)452535251
525352535251525352(slszs3)4. Below we draw a copy of a
g-admissible curve # with o(y) = (321)*2321232
321232(123)* on the universal cover of X,. Here 1
has no self-intersection.

Conjecture 2.4. Let I', be the set of (isotopy classes
of) o-admissible curves u such that n has no self-
intersections, i.e., n(x;) =n(xy) implies x; = x, or
{x1,%} ={0,1}. For each n € I';, let we W be the
reflection such that v(n) € R, and let [(n) be the
positive real root corresponding to w. Then {f(n):
N € Ugep I's} is precisely the set of real Schur roots
for Q.
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Remark 2.5. The correspondence n—f(n) is not one-
to-one in general. If there are at least two arrows
between every pair of vertices on Q, then the conjecture
predicts that it would be a bijection.

2.2 Type A quivers

In this subsection we prove Conjecture 2.4 for equior-
iented quivers of type A. Let Q be the following
quiver:

1—-2—.---—mn

Since all positive real roots are Schur, it is
enough to show that every positive real root can be
realized as f(n) for some n € I';;. Each positive real
root is equal to ss;---si;  for  some
i<je{l,..,n}, and the corresponding reflection is
W =s;---5i_15Sj-1---Si. There exists an admissible
curve n with no self-intersections and v(y) =
i---(j—1)j(j—1)---i € R, as depicted in the follow-
ing picture, so we are done.

2.3. Type D quivers

In this subsection, we prove Conjecture 2.4 for the
following quiver:

n—1

7
.

n

l1—2— - —n-2

For the corresponding root system of type D,, all
positive real roots are Schur. Each positive real root is
equal to one of the following:

Sisiv1 oS-, 1<i<j<n-—1, (2-2)
SiSiy1cSp—2n, 1< i<n—l, (2-3)

(SiSj+1 " Sn—2) (SnSn—18n—2 - -~ Siv1) 0, 1 < i<j < n—1.
(2-4)

The roots in (2-2) are of the same form as in type
A. For each of the corresponding reflections to the
roots in (2-3), there exists an admissible curve 1 with
no self-intersections on X,;, where o is either the

permutation interchanging only n - 1 and #n (see the
picture below) or the trivial permutation id.

9

i+ 1

i+ 2

n 7

For each of the corresponding reflections to the
roots in (2-4), there exists an admissible curve 1 with
no self-intersections on X;;. Such curve is given below,
where we omit drawing the edges 1,...,i—1 with
which # does not intersect.

2.4. A quiver of type Eg

In this subsection, we consider the following quiver:
6 —7
8

Again every positive real root is Schur. The highest
positive real root

601 + 50 + 4oz + 304 + 205 + 4otg + 2007 + 30

5¢—4+—3+—2+—1

. 5
can be given by (sgs7---s251)7(sgs7- - $2)oy, and one
of non-reduced expressions for the corresponding
reflection is

(s8S7 - '5251)5(5857 e+ 82)81(S2 v - S788) (S182 - - '5758)5;

which gives rise to the following non-self-intersecting
curve on X;,.




On the actual Riemann surface X;; this is just a
spiral around one vertex followed by another spiral
around the other vertex.

Remark 2.9. It is not easy to give a unified proof of
Conjecture 2.4 for all quivers of type ADE with arbi-
trary orietations.

2.5. Rank 2 quivers

In this subsection, we prove Conjecture 2.4 for rank 2
quivers. Again in this case, all positive real roots are
Schur. The reflection corresponding to each positive
real root is of the form s;sjs;---s;s;5  with
{i,j} = {1,2}. Clearly, there exists a spiral # (as an
admissible curve) on the sphere X, such that # has no
self-intersections and v(n) = iji- - - iji, where o is either
id or the transposition (12).

2.6. Rank 3 tame quiver

Let Q be the rank 3 acyclic quiver of type Agl) as fol-

lows:
/2\
1] —— 3

We have Pg = {id}. The positive real Schur roots
are, for n > 0,

RS (s U M

(2-5)

(n4 Doy + (n 4 D)oy + noz = (51525382)"s10,  (2-6)
noy + (n+ 1)y + (n+ 1)o

(s2535251)§52cx3 if n is even, (2-7)

- { (szs3szs1)”Tflszs3szoc1 if »n is odd, 7
noy + nop + (4 1)ag = (52535251)"52830%2, (2-8)
o and oy + o3 = s103. (2-9)

One can see that admissible curves corresponding
to (2-5)-(2-8) are essentially determined by line seg-
ments with slopes ;2,22 25 EL respectively, on
the universal cover of the torus with triangulation as
in Example 2.2. Curves corresponding to (2-7) and
(2-8) are (isotopic to) line segments. When n > 1,
curves corresponding to (2-5) and (2-6) revolve 180°
around a vertex at the beginning, follow a line seg-
ment, and again revolve 180° around a vertex at the
end. Clearly, such curves do not have self-intersec-
tions. The Schur roots o, and oy + o5 trivially corres-
pond to non-self-intersecting curves.
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Conversely, an admissible curve with no self-inter-
sections on a torus becomes a curve on the universal
cover isotopic to a union of two spirals around verti-
ces, which are symmetric to each other, and a line
segment in the middle of the two spirals. It can be
checked that each of such curves gives rise to one of
the real Schur roots listed in (2-5)-(2-9). Thus
Conjecture 2.4 is verified in this case.

3. Preliminaries
3.1. Cluster variables

In this subsection, we review some notions from the
theory of cluster algebras introduced by Fomin and
Zelevinsky in [Fomin and Zelevinsky 02]. Our defin-
ition follows the exposition in [Fomin and Zelevinsky
07]. For our purpose, it is enough to define the coeffi-
cient-free cluster algebras of rank 3.

We consider a field F isomorphic to the field of
rational functions in three independent variables.

Definition 3.1. A labeled seed in F is a pair
(x, B), where

e X = (x1,%2,%3) is a triple from F forming a free
generating set over QQ, and

e B = (by)is a 3 x 3 integer skew-symmetric matrix.
That is, x;,x,, x5 are algebraically independent over

Q, and F = Q(x1,x2,%3). We refer to x as the

(labeled) cluster of a labeled seed (x,B), and to the

matrix B as the exchange matrix.

We use the notation[x], = max(x,0) and

sgn(x) = {g/ 1

Definition 3.2. Let (x,B) be a labeled seed in F, and
let k € {1,2,3}. The seed mutation p in direction k
transforms (x,B) into the labeled seed u(x,B) =
(x/, B') defined as follows:

if x#£0;
if x=0.

e The entries of B' = (b};) are given by
b —bjj iti=korj=k
i~ bij + sgn(bi) [bikbkjh otherwise.
(3-1)

e The cluster X' = (x,x;,x;) is given by x = x; for
j#k, whereas x € F is determined by the
exchange relation

H x[bfkh + H x[*bik]+

Xk

X} (3-2)
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Let B = (bj) be a 3 x 3 skew-symmetric matrix, and
Q be the rank 3 acyclic quiver corresponding to B,
with the set I ={1,2,3} of vertices, such that the
quiver Q has b; arrows from i to j for b; > 0. We

will write ; bis j to represent the b
Assume that |b;| > 2 for i # j. Without loss of gener-
ality, we further assume that the vertex 1 of Q is a

source, the vertex 2 a node, and the vertex 3 a sink:
V \

The matrix resulting from the mutation of B at the
vertex i € I, will be denoted by B(i), and the matrix
resulting from the mutation of B(i) at the vertex j € I
by B(ij). Then the matrix B(iyi---ix),ip €1 is the
result of k mutations. We will write B(w) = (b;;(w))
for w=i;---ix € W. When p, is a sequence
(i, -+, ;) of mutations performed from left to right,
we write Z(w) = u,(E) = p;,° - - -° ;, (E) for a labeled
seed E.

The cluster variables are the elements of clusters
obtained by sequences of seed mutations from the ini-
tial seed ((x1,x2,%3),B). The remarkable Laurent phe-
nomenon [Fomin and Zelevinsky 02] and Positivity
theorem [Davison 18; Davison et al. 15; Gross et al.

18; Lee and Schiffler 13; Lee and Schiffler 15] imply
the following:

arrows.

b13

Theorem 3.5. Each cluster variable is a Laurent poly-
nomial over Zso in the initial cluster
bles x1, x5, x3.

varia-

Thanks to the Laurent Phenomenon, the denomin-
ator of every cluster variable is well defined when
expressed in reduced form.

0 2 2
Example 3.6. LetE = | (x1,x2,%3), [ =2 0 2
-2 =2 0

be the initial seed. The mutation in direction three yields

0o 2 =2

x2x%+1
E(3) = (xl,xz,g, -2 0 -2
2 2 0

Applying the mutation in direction 2 to Z(3), we
obtain

- (1 +x1xz) +x3 x5 +1
=(32) =
( ) ((xh x2x§ ) X3 )

0o -2 =2
(2 0 o ))
2 =2 0

More mutations produce

=((321)") = i e
- x4895x12816x33552 ’x1870x4895x12816 )
1 2 3 1 2 3

0 2 2

S B 2 0 2
x714,1870,4895 | - )

1 %2 3 2 2 0

where the corresponding quiver is acyclic. We apply
the mutation in direction 2 to obtain

- 4 Py Py
=((321)%2) =
1895 12816, 33552 * ;792020737 , 54288 *
1% Xy Xy X

0O -2 6

b 2 0 -2
x714,1870,4895 | - )

1 %2 3 6 2 0

where the corresponding quiver is cyclic. We calculate
three more mutations:

2((321)"23)
Pl P4
= xi‘895x%28163€§3552 ’xi920x%0737x§4283 )
0 10 -6
Ps
22563675026, 196417 | —10 O 2 ,
6 -2 0
2((321)*231)

Pg P,
X IGTOTT 5750 TTHA550 7920 30757 34285

0 -—10 6
Ps
X25656 75026 196417 | 100 -58]]),
—6 58 0

=((321)*2312)

X X3 X1 X X3

0 10 —-574
Ps
x%8656 xgsozs xé96417 | —10 0 58 :
574 —58 0

Here all P; are polynomials in xj,x;,x; with no
monomial factors. Compare (2-1) with the new cluster
variable P; /x}662490x1352663 (11395212 iy =((321)*2312).

Ps P;
= XJOTORT TS50 TTHAS50 *  TG6790, 4352663 11395212 °

3.2. Positive real roots

Let A = (a;) be the symmetric Cartan matrix corre-
sponding to B and g be the associated Kac-Moody
algebra. The simple roots of g will be denoted by «;



i€l Let Qp = Die1Z>; be the positive root lattice.
We have the canonical bilinear form (-,-) on Qi
defined by (o, ;) = ay; for i,j € I. The simple reflec-
tions will be denoted by s;, i € I and the Weyl group
by W. As before, let T be the set of words w =
iyiy - - - ix in the alphabet I such that no two consecu-
tive letters i, and i,;; are the same. Since
W = (s1,52,83 : 57 = 53 = 52 = e), we regard W as the
set of reduced expressions of the elements of W.
Assume that 2 also has the empty word 0.
For w =i - - - iy € W, define

Sw =S -8, € WL

A root f € Q4 is called real if f = wa; for some
we W and o i € I. For a positive real root f3, the
corresponding reflection will be denoted by rg € W.

4, Real Schur roots of rank 3 quivers

In this section we prove Conjecture 2.4 for rank 3
quivers with multiple arrows between every pair of
vertices. We describe the set of real roots by the isot-
opy classes of certain curves on the universal cover of
a triangulated torus and characterize the curves corre-
sponding to real Schur roots.

4.1. Curves representing real roots

For easier visualization, we restate the set-up from
Section 2.1 in terms of the universal cover. Consider
the following set of lines on R?:

T=T,UT,UT;,

where
Ti={(xy):y€L},Ty={(x,y):x+y€Z}, and
T3 = {(x,y) : x € Z}. Together with 7, the space R’
can be viewed as the universal cover of a triangu-
lated torus.

We also define

ﬁl—{(x,y) : x—y €L, x—LxJ<%}

1
and LZ:{(x,y) : x—y €L, x—LxJ>§}.

Definition 4.1. An admissible curve is a continuous
function 7 : [0, 1] — R? such that

1. n(x) € Z* if and only if x € {0,1};
there exists >0 such that
and n([1—e, 1)) C Ly;

3. if n(x) € T\ Z* then n([x—e,x+¢]) meets T
transversally for sufficiently small €>0;

n([0,€]) C Ly
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4. and v(n) € R, where v(1) := iy - - - ik is given by
{x€(0,1):n(x) €T} = {r1< - <xx}
and  n(x;) € T, for £ € {1,...,k}.

4.2. Curves representing real Schur roots
Let
Z:={(a,b,c) € Z*: ged(|b,|c|) = 1},

where gcd(0,0) = oo and ged(x,0) = x for nonzero x.
Fix z = (a,b,¢) € Z and let

if max([b], |c]) = L

_ 12
€= { 1/2Vb? + ¢, otherwise.

Let C;, C R? be the spiral that (i) crosses the
positive x-axis |a| times; (ii) starts with the line seg-
ment from (0, 0) to (¢/2,¢/2), goes around (0, 0),
and ends at (eb,ec); and (iii) revolves clockwise if
a>0 (resp. counterclockwise if a<0). Let C,, be
the line segment from (eb,ec) to (b—eb,c—ec), and
C.3 be the spiral obtained by rotating C,; by 180°
around (b/2,¢/2). Let n, be the union of C,;,C,,,
and C,3. We are ready to state our main theorem
as follows.

Let I' be the set of (isotopy classes of) admissible
curves 7 such that n has no self-intersections on the
torus, i.e., n(x1) = n(xz)(mod 7 x7) implies x; = x,
or {x;,x}={0,1}. It is not hard to see that ' =
{n, : z € Z} by using Dehn twists. Recall that fi(1) is
defined in Conjecture 2.4 for n € I'.

Theorem 4.2. The set {f(n,)
the set of real Schur roots for Q.

Clearly, the above theorem implies that Conjecture
2.4 holds for rank 3 quivers with multiple arrows
between every pair of vertices. We will prove this the-
orem after we state Theorem 4.17 below in
Section 4.4.

. z € Z} is precisely

4.3. Mutations of vectors and the definition

of y(w)
We define the triple V(w) of vectors on R? for
w e W\ {0} as follows. First, we define

V(l) = (<*17 2>7 <71a 1>a <O7 1>)7
V(Z) = (<0’ 1>7 <1a 1>a <1 >)7
V(3) = (<17 0>7 <17 _1>7 <2> _1>)'
Then, we inductively define V(i;---i;) for g> 1.
Suppose  that  V(ij---ig_y) = (V1,v3,3).
V(iy---iy) is defined by
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(_é V3,V2,V3>, if iq: 1,

V(i i) == (M7 +7%,%), i ig=2; (4-1)
(17 V_' V] +V2), if iq:3.

Write V(w) = (vi(w),v3(w),v3(w)). Let pe€

{1,2,3} and suppose that v, (w) = (b, c). Let £ be (the
isotopic class of) the line segment from (0, 0) to (b, ¢).
One can see that gcd(|b], |c|) = 1and so & € T'. We write

B(vp(w)) = B(C) and v(vp(w)) =v(&) €R. (4-2)
For each w e W\ {()}, we define a positive real
root ¢(w) by
$(w) := B(vp(w)),
where p is the last letter of w € W\ {0}.
Lemma 4.5. For {i,j k} = {1,2,3}, we have

D((i)") = (sis)" 'siy and  P((if)"i) = (sis)"%;
(4-3)

¢ (i(ji)"k) = si(sjs,-)z”ka and ¢ (i(ji)"jk) = 5,(s]s)z"+lock
(4-4)

o (i(ji)"ki) = si(sjs,-)znsk(s,-sj)"oc,», (4-5)
o (i(ji)"kj) = si(sjsi)z”sk(sisj)”siocj, (4-6)

b (i(ji)"jki) = si(sjsi) " se(sis) " ki, (4-7)
(f)(l(]l)n]k]) = 5,‘(5j5,‘)2n+15k(5,'5]‘)n5i0(j. (4—8)

Proof. It is straightforward to check these identities
directly, so we omit the proof. Instead we illustrate
the calculation for w = 121212.

By (4-1), we get

V(U = (<_ 72>’<_1?1>7<071>)a
V(lZ) = (<_ >2>><_173>7<071>)7
V(12i212) = ((—1,6>,<—.1,7>,(0,1>).

Let ¢ be the line segment from (0, 0) to (—1,7).
Then v(¢) = (12)°1, hence the corresponding real
root is

$(121212) = B(&)

Let Cy = {1,12,123,1231,12312,123123,...} and
Cs = {3,32,321,3213,32132,321321,...} C W.  Note
that the quiver corresponding to B(w) is acyclic if and

= ﬁ(<_17 7>) = $152815251%3.

only if we C;UC;U{0}. For w=1i;---i; € W, let
¢(w) = k and
_ 0
'D(m) B max{p : il"'ip€C1UC3},

The following definition is important for the rest of
the article.

Definition 4.12. Let ® € W\ {0}, and write ® =
wo € W with the word w being the longest word such
that B(w) is acyclic. Assume that w = ij...i¢. Then, we
have k = p(1). Define a positive real root () by

if o =10;

otherwise.

Sig_y Qi

i) = {30

Example 4.13. Let Q be the following rank 3 acyclic
quiver and B be the corresponding skew-symmetric
matrix:

7\ . B:<°2§

1 ——=3

Consider = (321)*2132 € W. Then w = (321)*
and v = 2132. One easily obtains

V() = V(2132) = ((2,1), (5,3), (3,2)).

Thus v3(v) = (5,3). By recording the intersections
of the line segment ¢ from (0, 0) to (5, 3) with 7, we
have v(&) = 2321232321232 and

D(0) = B(&) = 5283528152830
Combining these, we obtain
Y() = Swh(v) = (535251)4525352515253oc2
= 16624900, + 43526630 + 113952124.
This real root was considered in Example 2.2 (2).

The word w corresponds to the spirals and v to the
line segment .

4.4. Denominators of cluster variables

Consider the cluster variables associated to the initial
seed B = ((xl,xz,x3),B). The denominator of a noni-
nitial cluster variable will be identified with an elem-
ent of the positive root lattice Q1 through

icl
(4-9)

m my M
X% Ky e my o+ maty + msoz, My € Lisg,

The denominators of the initial cluster variables
X1,%2, X3 correspond to —oy, —a,, —o3, respectively.

if w is the empty word 0, or i, = 2;
otherwise.




Theorem 4.15 [Caldero and Keller 06]. The corres-
pondence (4-9) is a bijection between the set of denom-
inators of cluster variables, other than x; i € I, and the
set of positive real Schur roots of Q.

For any w € W\ {0}, let Z(w) be the labeled seed
obtained from the initial seed Z by the sequence u,,
of mutations. We denote by (f,(w), ,(w), f5(w)) the
triple of real Schur roots (or negative simple roots)
obtained from the denominators of the cluster varia-
bles in the cluster of Z(w).

Example 4.16. In Example 3.6, we obtain the triple of
real Schur roots from Z((321)*2312):
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of two coordinates of each v;(u), i=1, 2, 3, for each
u e W and use the Farey tree (or the Stern-Brocot
tree) to find v (cf. [Aigner 13, pp. 52-53]). Then we
set W = wv. This establishes the inverse of the
map w € W\ {0}~z € Z.

5. Proof of Theorem 4.17

This section is devoted to a proof of Theorem 4.17.

Recall that £(®) =k and p(®) = max{p : ij--- ip €
CiUCs} for W =i i€ W, Note  that
p() = max{p : B(ii...i,) is acyclic}. It is easy to

B1((321)*2312) = 167041 o, + 437340 o, + 1144950 a3,

B,((321)*2312) = 1662490 oy + 4352663 o + 11395212 013,

(cf: Example 4:13)

B5((321)*2312) = 28656 a; + 75026 o + 196417 3.

Now, we state a description of the real Schur roots
associated with the denominators of cluster variables,
using sequences of simple reflections.

Theorem 4.17. Let w € W\ {0}. If p is the last letter
of W, then we have

B,(w) = y(w). (4-10)
This theorem will be proved in Section 5.
Assuming this theorem, we now prove Theorem 4.2.

Proof of Theorem 4.2 . By Theorems 4.15 and 4.17,
we have only to prove that there exists a one-to-one
correspondence ® = wo € W\ {P}—z = (a,b,c) € 2
such that lp(ﬁo) = ﬁ(nz), where the word w is the lon-
gest word such that B(w) is acyclic. By definition, we
have w € C; UC;3, and it determines the spiral C; (and
C;) and the number a. Next consider the vector
vp(0) = (b',/) and determine the sign for (b,c) =
+(b, ) so that the line segment C, € " from (eb, ec)
to (b—eb, c—ec) is connected to the spiral C; (and Cj)
for sufficiently small e>0. Then, we set z = (a,b,¢c) €
Z and define 7, to be the union of C;, C, and Cs.
Conversely, given z = (a,b,c) € Z, we have the
unique curve 7, consisting of C,;,C,,, and C.3 by
definition. The spiral C,; determines w € W by sim-
ply recording the consecutive intersections of C,;
with 7,, p=1, 2, 3. Since ged(|b],|c|) =1, the line
segment C,, or the vector (b,c) determines a unique
o € W such that v,(v) = =(b,c) where p is the last
letter of v. Namely, one can associate a Farey triple
with V(u) = (vi(u), v (1), v3(1)) by taking the ratio

check (4-10) if /() =1, so we assume that

¢(w) > 2. Let
S(w) == max{p:q+1<p< /(D)

and igigy; ---ip consists of two letters},

where g = max(1, p(ib)—1). Wealso let w =i, - - - ()

We have £() > () > p(w) by definition. We
plan to prove Theorem 4.17 by considering the fol-
lowing cases:

(),
(W) + 1,
(w) +2,

Case 1: /(
Case 2: /¢
Case 3: /
Case 4: /
Case 5: /
Case 6: /¢
Case 7: L() > o

0
p
P
1,
2,
3,
4.

+ 4+ + + IV

In what follows, we always set {i,j,k} = {1,2,3}.
Consider the natural partial order on Q., that is,
myoy + mayoy + mao3 > mioy + mhoy +myos  if  and
only if m; > m] for all i € I. We set ¢;; = |bj;| for i # j
and ¢;j(v) = |b;j(v)| for i # j and v € W.

5.1. Case 1: £(0)=0(w)=p(b)

If ((w)=06W)=p®) then H=weCUC,
equivalently B() is acyclic. Write w = ujk for u € W
and j,k € L.

Lemma 5.1. We have

Bi(wik) = susj(ox) = W (ujk). (5-1)
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Proof. We have Bu(u) = o, and
B,(uv) = oy + cuyty = su(2%,). Now, by induction, we
have

Bi(wj) = su(%),

Bi(wj) = Bi(n) = B;(Wi) = sy (o) = swsisi(04) = susi(e),
(W) = i (W'kif) = i(u"k) = sur (o)

= SwSkSiSiSk(0k) = SuSiSk(%k) s

where we write 1 = 1'i = u”ki.
Then, we have

Br(wjk) = =B (i) + caeB; (W) + cixB; (1)
= —SuSisk (%) + CikSusi(%) + CjkSu(%)
= Su[si(ok) —Cik% + Cjxotj] = Su[0k + Cik0i—Cik% + Cjk0]
= Sul0k + Cik04] = Susj(O%)-

Since Y (ujk) = susj(x), we obtain

fi(w) = ¢ (w). (5-2)

5.2. Case 2: £(0)=6(w)=p(w) + 1

Suppose that w =ukij Then /()= d(d)=
p) +1 implies that W = wi.

Lemma 5.4. Suppose that w = ukij and B(w) is acyc-
lic. Then, we have

ciij(w) > cixfi(w).

Proof. We use induction on the length of w. Base
cases can be checked easily. We have

Bi(uki) = —B;(uk) 4 ci B (uk) + c;ifp; (uk)
and
Bi(w) = —B;(wki) + ci B (ki) + ¢, (ki)

= —pB;(uki) + cjef (ki)

+e; [—Bi(uk) + e B (k) + cijﬁj(uk)]

= (ck + CijCik)ﬁk(uk>_CijBi(uk> + (cz-—l)ﬁj(uk).

By induction, assume that cjkﬁk(uk) > c,-jﬁ,-(uk). Then,
we have
ciij(w) = ¢i(cjk + cicin) B (wk) =7 B; (k)
+cj (c 1)[3 uk)
> Cij (C]k + Czjclk)ﬁk(uk)_bizjﬁi(uk)
> ¢i(ck + cijcik) B (uk) —cijeie By (k) = b?jcikﬁk(uk)
> ciBr(uk) = ciPi(w).

Suppose that v € W ends with j and consider vi. If,
we have ¢;(0)B;(0) > cik(v)B(v), we record this

situation using [j] below the i-arrow in the following
diagram:

ER 05 vi.
7
Similarly, if
Cij(n)ﬁj(n) < cik(0) By (v),
we write
oo
—1D — Di.
(]

Remember that B(w) is acyclic and B() = B(wi)
is cyclic. By definition, we have (wi) = sy If

w={, then pB;(wi)= ;i) =0 if w =j, then
Bi(wi) = p,(ji) = sj(%); if = ij, then
Bi(wi) = p,(iji) = s;sj(e;). In all these cases, we
have (4-10).

Now suppose that w = ukij. By Lemma 54, we
have ¢;;f;(w) > cyf(w). Thus we have

J i
—1W — Wi.

)
By Case 1, we have

Bi(wi) = —P;(w) + ¢ (w) = —swsjsi(o) + ciswsj(%)
= Sw [SjOCi—CijOCj] = Sw(OC,‘).

Thus we have
Bi(wi) = s (o) = vh(wi).
This proves (4-10) in this case.

(5-3)

5.3. Case 3: £(0)=06() > p(w) + 2
Assume that B(w) is acyclic and B(wi) is cyclic.

Lemma 5.6. We have
L wi L wij L wiji.
(i i
That is, we have

cij(wi) B;(wi) = ¢ (wi) B (wi),
and  c(wif) B;(wij) > cix(wif) B (wij),

B (wij) = susi(%),
Bi(wiji) = suwsisj(o%;)-

Proof. If the length of w is less than three, it can be
checked directly. Otherwise, write w = ukij. Using
(5-3), we have

Cij(mi)ﬁi(mi) = CijSw (%) = CijSuskSisi(%i)
= CijSu |:( 1)051 =+ cijo; + (C iCik—Cik + Cljcjk> ak:|

=¢jj (c l)su(oc )+ cijsu(aj) + (cijc,-k—cijc,-k + cijcjk) Su(o);



on the other hand, using (5-1), we have

cix(wi) By (wi) = (e + CijCik)ﬁk(Uk) =
Since ui and uk are reduced expressions, we see
that s, (o;) and s, (o) are positive roots. We claim that
su(%) > —su(). Indeed, writing u = 1’j, we have
su(o) + su(%) = swsj(o) + SwSj(%)
= su«(ak + cjkaj)fsu/(ocj)
= sw(o%) + (cjk—l)suf(aj) >0,

(5-4)

since sy (o) is a positive root and cjx > 2.
Now we have only to show that

—l— c,]c,k CiiCik + A Gk = > Cjk + CijCik,
which is equivalent to

2
C]k C:

i~ Cjk + c i Cik— 2¢iicik > 0.

’J

We write the left-hand side of the inequality as

(@-1) =11+ (G-2) cyein,
and we are done since ¢;;, cjx > 2.
Note that c;(wi) = ﬁi(mi),ﬁj(mi)). Indeed, since
Bi(wi) = sw(%) and f;(Wi) = sws;(2;), we have
(ﬁi(mi),ﬁj(mi)) = (Sw (%), SwSj(%))
— (%, %) = ¢j = cij(wi).
Then, from r4 () = Swsis,', We obtain
ﬁ](mlf) = _ﬁj(mi) + Cij<mi)ﬁi(mi)
= —p(wi) + (Bi(awi), By (wi) ) b (wi)
= —7p,(wi) (ﬂj(mi)> = —SwSiSy Swsj(%) = Swsi(%)-
(5-5)
A similar argument establishes c;(wij)f;(wij) >

cik(wif) B (wif) and B;(wiji) = swsis;(o4)-

Lemma 5.9. Let w = wi(ji)" for n € Zxo. Then, we
have

5 (0)5,(0) > (@), (B),  B()) = s6(%), (5-6)

cij(W07) f; () >cir (W) Bie(07),  fi(Wji) = sw8j(2u)-
(5-7)

This means that we have

wi(ji)" —> IDl(J )~ —> - wiji)" !

for each n € Z>,.

Proof. We have fi(w) = fi(wi(ji)") = By (wi(ji)"j).
Similarly, ¢ = cj(wi) = ¢; (m (ji)n) =< (mz(ji)"j).

(Cik + cijcik ) Su (Ot ) -
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We write y = ¢;; for simplicity. We use induction on
n. The case n=0 is proven in Lemma 5.6. Thus we
assume #n>0. If we consider the vector

(ﬁi(m’),ﬂj(m’) for w’ = wi(ji)" with m <n, the vec-
tor (Bi (w'j), p;(w'j) after mutation j is given by the
matrix J; := <(1) —yl) through right multiplication,
and the vector after mutation i for w' = wi(ji)"j is
given by J; := <_yl (1)> Similarly, if we consider the

vector (cjk(m’),cik(m’ )), the matrices for mutation j

and i are respectively given by the same matrices J;

and J;. )
Let J=Jji= V_yl V\).

First, assume that

-1
y>2. We denote two eigenva

with 4;>4,. Then we have 4;>1>1,>0. A diagonal-

ues of J by 4; and 4,

ization ] = PDP~! of ] is given by D = <;(”)1 /.? )
2

and P— <1 J_ry’ll 1 +j“2>. With 45 + 2, = 722
and 114, = 1, we compute to obtain
1
n __
J= A= 2

A+ 4)=25(1+ 4y) (A1=23)
—y(X1=75) TN )+ AT+ ) )
We let

1
yni=m g (H=A) = AT+ AT e T 2
1T A2

1 n ) n
Xn = (/“1(1 + /“1>_}*2(1 + 12)) = Yn+1 + Yn.
A1 — )vz
Then we have J" = n " ) for n>0.
—V)/n —Xpn—1

Next, assume that y=2, and let y, = n and
X, = 2n + 1. Then, from direct computation, we have

o 2n+1 2n
B —2n —2n+1

'xﬂ n
= L6 for n>0,
_'))yn —Xn—1

and the same formula for J” holds in this case as well.
We want to prove (5-6), which can be written as

7B (wi(ji)") >cjr (wiji)") B (w).
If the length of w is less than 3, i.e. w =0, or ij,

then f;(w) =0 and there is nothing to prove. Thus
we assume W = Ukij.
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Using the matrices J”, we rewrite the inequality as

7 (B (i) =B (i) ) > (5 () = () B (),
(5-8)
which becomes

P (%nSusksisj (%) —VYnSusksi(%)) > (Xn(Cik + VCik) =VYnCik )Su(%k)-
(5-9)
We expand each side of (5-9).
LHS = pxsu[(y*—1)o; + yo; + (Y2cie—cik + y¢ik) o)
=y ynsulysti + o + (cik + yeir) o]
= [pxa (Y =1) =7 yulsu(%) + [72 20— yulsu(%)
[y (V2ei—cix + Vi) =7V (cik + yeix)]su (o),
RHS = [x,(cjk + ycik) =7YnCiksu(ok).

We consider the coefficient of s,(;) in LHS and
find

% (P =1)=1yn = (i1 +y0) (P =1) ="y
= (Vz—l))’nﬂ—)’n >0
since y > 2 and y,11>y,.
Recall that we showed Su(%) > —su(o) in (5-4).
We combine the coefficients of Su (%) and sy(o) in
LHS and need to prove the following inequality.

=% + V2 Yn + P XnCik—yXnCik + 7 XnC
*szncjk*f)’ncik 2 XnCik + PXuCik—YYnCik-

With x, = y,41 + yn substituted, the inequality is
equivalent to

—Vz)’n+1 + (V3_2V)yn+lcik_yyncik + (Vz—l))’n+1cjk—)’ank > 0.
(5-10)

Using 7, cik, ¢jk > 2 and y,11>y,, we see that

= Y1 + (V3—27’))’n+16ik—7’}’n6ik
+(V2_l)yn+lcjk_yncjk
-7 }’n+1 + (V _3V)yn+lczk + ( )}’nJrlC]k

2 Y1 + 21 =39)Yns1 + 21 =2) yi1
=9(29? +9-10)y,s1 > 0.

Thus, the inequality (5-10) is proven, so is the
inequality (5-6).
One can see that ¢;() = ¢; = (ﬁ( ), B;(10 ))

induction. Then, a similar computation to (5.8) gwes

us (1)) = si(2).
Now, we want to prove

7B; (wi(ji)"j) > (wi(ji) ") Bi(w),

which is the same as (5-7). Since

= *n VVn Loy N\ %% Wan
! —Vn  —Xn-1 0 -1 —VWn  —Xn ’

the inequality can be written as

Y (7}’n+1ﬁi(mi) —xnﬁj(mi)) > (7yner6ik(Wi) —xpci(wi) ) B (w),

and becomes
V(Y n15ukSisi (%) =X SuskSi(0)) > (Vynr1 (i + yeix)
—XnCike) Su (o) -

This can be proven in the same way as we did for
(5-9). Similarly, we obtain f;(Wji) = sgsj().

Let w = wi(ji)" for n € Z>y and v =i(ji)". By
(4-3), we have

d(vj) = si(sjsi)”aj and ¢(vji) = s,-(sjs,-)”sjoci,
and obtain
B;(0j) = s (%) = swp(vj) = ¥ (woj)
= y(wj) and B;(wji) = sgsj(ou) =

Thus we have proven (4-10) in this case.

Y (Wwji).

5.4. Case 4: ¢(0)=6(w) + 1

Lemma 5.15. Let w = wi(ji)" for n € Zxo. Then, we
have

ok (@) B;(@) > (D) (D), Bi(@k) = s (s551)" (%),
(5-11)
Pr(wjk) = sg (sjs,-)”“(otk).
(5-12)

cir (W) B;(wf) > (07) i (w05)

This means that we have

Lo Lok and L)
T i

l»

ojk.

i

Proof. First, we consider the case n =0 and see

Cjk(mi)ﬁj(mi) = (cjk + cijcik) B (w)
= Cjkﬁ (w) + Cljclkﬂ (w),
cik (wi) f;(wi) = Czk( Bi(w) + cijf;(w ))
—cifi(w) + c,kc,Jﬁ]( ).

Thus, we have
cje(wi) B (wi) > cix (wi) B;(wi).
We claim that cj(wi) = ([)’k(mi),ﬂj(mi)
if the length of w is greater than 3, we have
(:Bk(mi)’ﬁj(mi)> = (SwSjsisk (k) SwSj (%)) = (Sisk(etk), %)

— (% + ciri, %) = cjk + cicix = c(Wwi

(5-13)

. Indeed,

Otherwise, it can be checked easily. Then, we
obtain



Br(wik) = — By (wi) + ¢ (wi) f;(wi)
= — (i) + ( Bi(wi), (i) ) (wi)

= T (wi) (ﬁk(mi)) = —Swsjs
= Smsi(ka)~

o Swsjsisk(%)

Now assume #n>0. Using the matrix J" =

( Xn " > defined in the proof of Lemma 5.9,
VW TXn-1

the inequality cjk( )ﬁ]( ®)>cy () i(ﬁo) can be writ-
ten as
(0 (01) =i (i) (3, (i) —3,-1 (i) )
> (V}’ncjk(mi)*xnflcik(mi)) <xnﬁi(mi)*’/ynﬁj(mi)) )

which is equivalent to

(Vz)’f, _xnxnfl) Cjk(mi>ﬁj(mi) > ("/2)’% _xnxnfl) cir(wi) B;(wi).

Since y*y2—x,x,_1 = det J" =1, this inequality is
the same as (5-13) and we are done.
We claim that cy() = (ﬁj(ﬁ)), ﬁk(ﬁ))> Indeed,

we have

¢ () = xuc(wi) —yynci(wi) and
(B, (@), Be)) = (2 (wi) 5,1 (i) B (wi))
= VVn (.Bi(mi)a ﬁk(mi)) —xp—16j(Wi).

(B:(@), (@) = ;).
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Furthermore, we see that
cik(wj) = (B;(wj), Br(wj))

and obtain
Bi(Wjk) = =157 (Be()))

= —swSi($ji)" " j8i85(5i57)”
= smsi(sjs,»)"’lsjsisj(s,-sj)

“Lsisgsu (k)
Lsisjsi(ok) = s (sjsi)”“(ock).

Let w = wi(ji)" for n € Z>¢ and v = i(ji)
we have

¢ (k) = si(sjsi)z”ock and ¢(vjk) = s,-(sjsi)zn“ock,

". By (4-4),

and obtain
Bi(0k) = s (sii)" (%) = Swp(0k)
= y(wk) and B (wjk) = s@(sjs,-)”“(ak) = Y(wjk).

Thus, we have proven (4-10) in this case.

Before we go to the next case, we list the values of
the bilinear form for various roots. Some of them
have already been proved in the proof of Lemma 5.15.
As the others can be easily checked, we omit
the details.

Corollary 5.19. We have

(Bi(@j), Bj(0f)) = cii(j),

(B(®), B(8)) = —ei®) + (D) @), (5,(55), B, (9)) = ex()),
(B(9), ) = @), (8(®)), Bel)) = —(®]) + 5(@)en(@)).

Since X + Xp—1 = P*¥u, k(W) = ¢ +ycx  and
(B:(wi), Bi(wi)) = —cix + ycjk + 7%cik, ome sees that
the claim holds. Then we obtain

Br(wk) = =B, (0) + ci (D) (D)
= —(®) + (8,(®), f(®) ) (@) = —1j ) (B())
— —sms,-(sjsi)”_15j(si5j)”_ls,~s;15u(ock)
= —SmS,‘(5j5,‘)n71Sj(SiSj)n71$i5j5i5k5; Lsu (o)
= smsi(sjs,»)”_lsj(sisj)”_lsisjsi(ock) = Siv (8j1)" (%K)

where we write w = ukij as before.
Similarly, the inequality cik(0f) B;(15)
>cjk(Wj) B;(wj) can be proven in the same way, using the

Xn Wn+1> and det(]n]j): —

matrix J"J; =
! <—Wn —Xn

5.5. Case 5: £(0)=6(w) + 2

Lemma 5.20. We have
likij iikji
/ i
; [i] i [s]
— ukt and — = ukj
X L
UBENS [s]
ukik likjk
Proof. First, we prove
cik(0k) B (k) > ¢; (k) B; (k). (5-14)
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We compute

(0K B () = () (— B, () + () B,(®))
= —ci (D) B (D) + ¢ ()i (0) B J(ﬁo)
(DR () = (—c5(@) + () )
= 5 (®),(®) + el () (1)

Since, we have
()8 (®) = e (wi(ji)" ) B (wi(ji)" 1))
< ¢ (wi(ji)" ) By (wi(ji)" ) = (@) (w),

we see that the inequality (5-14) holds.
Next, we prove

Cjk(ﬁi’k)ﬂk(ﬁi’k) > Cij(&)k>ﬂi(ﬁ)k)-
We compute

(k) B (k) = — (@) B () + () B, (D),
c;j(0k) B;(@j) = —c;(0) B:(0) + ci (@) e (@) B, ().

(5-15)

Since have cjk(ﬁ))ﬁ]( W) > c,k(ﬁa)ﬂ () by Lemma
5.15 and c]k( )ﬁk(m) <c,]( ) (153) by Lemma 5.9,
the inequality (5-15) is proven.

In a similar way, one can prove

Czk( ).Bk( ) = Cl]( )ﬂ](
cjk(wjk) i (wjk) > cij(w J)ﬁ( Jk

establishing the diagram.

\/\./

)

Corollary 5.23. We have
ﬁ,(ﬁ)kl) = Srb(sjsi)nsk(sfsj)n O() ﬁ](mk]>
= Sip (1) sk(s,s])"s( aL
Bi(Wjki) = sg (sjsi)”“sk(s,sj)”+ (o), B
= S (5580)" " sk 8187) "5 (%).
Let w = wi(ji)" for ne€Z>, and v=i(ji)". By
(4-5) - (4-8), we have

 (wjkj)

"sk(sisf)" %, P (vkj)
= 5i(5581)"" sk (5i57)"Si%

i(550) 2" sk (sisy)™ i, D (k)
= si(s;si )z”Hsk(s 5j)"si%;,

and obtain

Bi(ki) = swep(vki) = yy(woki) = (ki)
B (wkj) = swep(0kj) = v (Wkj),
Bi(wjki) = swep(vjki) = v (Wjki),
Bi(wjkj) = sw(0jkj) = (wjkj).

Thus, we have proven (4-10) in this case.

5.6. The case of £(w)=d(w) + 3

Write 1 =w and ® =v, or 1 =wj and D = vj, so
that 1 = wo.

Lemma 5.24. We have

wj i i
J i i
) 0 e . (k]
s o — 10 or — 10
Ji] 7 . [k]
wk wk ¥
Proof. First, we prove c,-]-(ﬁki) B, (tiki) >
cjk(ﬁki)ﬂk(ﬁki). We have
¢ (1iki) B;(1iki) =

—¢;(ik) (it k))+ ci(itk) cix (itk) . (itk)
k

C]k(ﬁkl)ﬁk(ﬁkl) = _Cjk(ﬁk>ﬁ ( + Clk(uk)cl](uk) (ﬁkj

Since cjk(ﬁk)ﬂk(ﬁk) > cij(ﬁk)ﬁi(ﬁk) by Lemma 5.20,
we are done.

Now we prove cik(ﬁki)ﬁi(ﬁki) > cjk(ﬁki)ﬁj(ﬁki).
The left-hand side is

LHS = —cy(iik) B, (iik) + cx(iik) B, (iik)
= —cz (), (1) + cie(iik)* B, (iik),
and the right-hand side is
RHS = — g (iik), (k) + e (i) (i) B, (ik)
— )85 + ke (k) (k).

We have c,k(uk)ﬁk(uk) > c,](uk)[f](uk) by Lemma
5.20. If 11 = w, then we have c]k( )ﬁ () > cp(m) B, (1)
by Lemma 5.15 and we have LHS > RHS. If 1 = wj,
then we compute further and obtain

LHS = —cy (i) 3,(i1) + (1) (= (i1) + ca(i) B, (1))

— )( ,k(u> —1) (8) a0’y ),
RHS = —g5.(i1) (1) + (i) (—e5(i) + cur (i) ) (1)

— i) e lk< Y-1),(0)- c,k<u>cl,< )B,(i).

Since, we have
ci()B;(1) > cy() (1) and
cal B () > (@) (5)

by Lemma 5.9 and 5.15, we see that LHS > RHS.
The inequalities for the second diagram can be pro-
ven similarly.

We need another lemma to complete our proof for
this case. Consider two vectors (or line segments) v
and v;, and define v] x v, to be the piecewise linear
curve resulting from moving v, to a parallel position
to concatenate v; and v, so that the end point of v;



and the starting point of v, coincide. Assume that
v * v5 starts at (0, 0) and ends at a lattice point. We
define

v(vi * v3) == p1---pr € W

which records the consecutive intersections of v; * v,
with the sets 7,,,t =1, ...,/ except the starting point
and the ending point. This definition is compatible
with (4-2) if we let 75 = 0.

In the rest of the article, we will simply write v(#)
for S,(7) € W to ease the notation.

Lemma 5.25. Let vpg € W. Then we have
v(v(9p)) B(va(vp)) = —B(va(vpq))-

Proof. Let {p,q,r} = {1,2,3}. Clearly, we have

= 1, 1, 1
75 (Wp) = 3 %5(0p) + 5 V5 (9) + 5 % (up)

| I,
=5 Va(%Pq) 5 Va(0P).

The curves v,(vp) and 1v;(vpq) * 3 vg(vp) make a
triangle with area i. Thus, there is no lattice point in
the interior of the triangle. Consequently, we
have v(v;(vp)) = v(3 V4 (9pq) *3 V4 (vP))-

Since the ending point of v;(vpq) is in T4, we
may write

1 1
( Vg (vpq) * Vq (UP)> = Siy Si 1 SqSj Sjes T Sj
B(va(opq)) = si, -

Sj,_, 0tq. Now, we have

where we have

B(va(vp)) =50+

Si,_,0g and

1 1 5
u(vp (vp) ) ( ) = 0(5 va(0pq) * qu(np)>ﬁ(vq(np))
= (it S SqSjeSjes T Si)Si T S %
= Sj, e Si Sq0lg = —ﬁ(@(npq)).

Corollary 5.26. For (p,q) =
Bq(itkpq) = sw(vkpq) = Y(itkpq) ~ and
Pi(itkpk) = sw¢p(vkpk) = s (iikpk).

(i,7) or (j, i), we obtain

Proof . We first show
cpg(1ikp) = (B, (1ikp), By (1ikp)).

As the other cases are all similar, we only consider
the case it = w and p = j,q = i. We have

(5-16)

Cpq(1kp) = Cij(ﬁi’k) = —Cz]( ) + ci(® )Cjk(m)

On the other hand, since (ﬁi(m),ﬁk(m)) =
—ci(W) + cij(fb)cjk(tb) by Corollary 5.19, we get
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(B, ikp). By (iikp)) = (=
( B () —cx ()
(i
(i

]63 +CJk
B (1 )+C]k(

k
)= (@) ¢ (1) + ci(®) ¢ (D)
)+C]k(m)czk( ).

__Cl]( )+Cjk( )k

Thus, we have proven (5-16) in this case.
Since, we have

ﬁp(ﬁkp) = smﬁ(ﬁ,(ﬁkp)) and
B, (tikp) = swf(vy(Bkp)),
we obtain from (5-16)

By (ttkpq) = — P, (iikp) + cpg(1ikp) B, (11kp)
= —1p,(iikp) By (11kP)
= _Swug"}(f’kp)ismlswﬁ(ﬁz(ﬁkp))
= —sw0 (v, (0kp)) B (4 (Bkp)).

Now it follows from Lemma 5.25 that

By (ikpq) = —swv (v (3kp)) B(v4 (9kp))
= swB(vq(0kpq)) = swp(vkpq) = Y (likpq).
Similarly, we have
ey (ikp) = (B, (ikp). Biiikp)) (5-17)
and compute
Bi(tikpk) = —rp k) Br(11kp)
= —smvéﬁg(ﬁkp)gsmlsm/}(ﬂ}(f)kp))
= —sur (i (5kp)) B (BRD))
— BV (Bkpk)] = sudb(Bkpk) = s (iikpk).

5.7. The case of £(w) > é(w) + 4
Consider W € I and write
W = liku ku,...kuy,
where we let

= ()", Gi)"

fort=1,2,..., 4

, (ij)™i or (ji)™j for some n; >0

Lemma 5.29. We have

) i i

Proof. Since the other cases are similar, we only con-
sider the case 1y = (ij)"i for n > 0. We use induction
on ¢ and n. When /=1 and n=0, the assertion
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follows from Lemma 5.24. Assume that ¢ > 1 and
n > 1, and suppose that 1, = (ij)"i. First, we want to
prove

Cij(&)ﬁi(tﬁ) > Cjk(ﬁO)ﬁk(ﬁO).

Write w’ = tikujku,.. ;. Let y = c,j(m’k). Then,
using the matrix ], in the proof of Lemma 5.9 with
new 7y, we have

(5-18)

c;i(w)B;(w) = y(xnﬁi(m’ki)—yynﬁj(m’ki))
= 2 (=B (W'k) + cix(w'ke) B (w'ke) ) =72y, B, (w'k)
= =% B;(W'k) + i (w'k) i (W'k) =72y, (w'k),
ek () B () = (xncjk(m/ki)_VJ/nCik(m/ki>>ﬂk(m/k)
~x, (—c,-k(m'k) + ycik(m’k)) B (w'k)
—yynci(w'k) Br(w'k)
= —xucik(W'k) B (W'k) + pxuci(w'k) B (w'k)
—yynci(0'k) B (w'k).

Since we have, by induction,

cit(w'k) By (w'k) > B;(w'k) and
cix(w'k) B (w'k) > ppBi(w'k),

the inequality (5-17) follows.
Next we prove

cix () B; () > Cjk<ﬁ))ﬂj<f0)-
Write w” = ttkuy k... ki(ji)"™
we have
ci(@) () = ci(w”) <_ﬂi(m”) + Cij( ")
= ()" + el ey (") B (o
Gie() () = (—gie(w") + (") cie(w")
= —ci(w”) B, (0") + cze(w”)c;;(w") B;

(5-19)

'j. By induction,

m

](m//)

//
)

)
Bi(w")
).

\_//—\

n3/

/\

Since cjk(m”)ﬂj(m”) > ci(w”)p;(w”) by induction,
we see that the inequality (5-19) holds.

We need another lemma.

Lemma 5.32. Assume W ends with q. Then we have,

forp#4q,
o) = (B,(0), B, ().

Proof. We use induction. If W = itkq, the assertion
follows from (5-16) to (5-17). Now assume W = wrq
for some r # g. Then, we have

(B (0). By() ) = (B, (wr), =B, (wr) + ey (wr)B, (wr)).

If p=r, then, we have by induction

(B,(), B, () =

= Cpq(mvr) = Cpq(ﬁ:’)7

—Cpg(W'r) + 2¢pq (w07)

and we are done.
If p # r, then, we have

~Cpq() + epr (W) (w),
and obtain by induction

(B,(@), B,(@)) = = (,(w

Fegr(wr) (B (wr), B, (w)

= — (B, (w), By(w)

= _Cpq(m) + qu<mv)cpr<m)-

Cpg(D) = cpp(wr) =

8
=
N—
=
=
— =
< 8<
<
N~—
N—

v
+
g}

B
=
—~
g,
=
@h
3
—
g
=~
~—

This proves the desired identity.

Corollary 5.33. Assume that W = tkujku,..ku, € W
where 1w, = (ij)™, (ji)™, (ij)™i or (ji)"j for some n; >0
for t =1,2,...,0. Suppose that W does not end with p
for p =1i,j or k. Then, we have

B, (0p) = swp(dkkuy...kugp) = (5-20)

(p).

Proof. With Lemma 5.29 established, the proof is
very similar to that of Corollary 5.26. Suppose that W
ends with g. By Lemma 5.32 and Lemma 5.25, we
have

By (p) = =B, () + cpg(0), (D) = _rﬂq%)ﬁp(ﬁ’)
— sV (Dkuiky...kuy) ) sy sw B (v, (Dkatyku,.. k1))
= —so (vg (Dkuy k.. kug) ) B (v (Dkusku,...kuy ) )
= swf (V) (Dku k... kugp))
= sw(Dkuiku,...kup) = y(wp).

This completes the proof of Theorem 4.17.

Acknowledgments

We thank Cheol-Hyun Cho, Christof Geiss, Ralf Schiffler,
Hugh Thomas, Pavel Tumarkin, Jerzy Weyman, and
Nathan Williams for helpful discussions. We also thank an
anonymous referee for letting us know of [Crawley-Boevey
92]. K.-H. L. gratefully acknowledges support from the
Simons Center for Geometry and Physics at which some of
the research for this article was performed.

Funding

K.-H. L. work was partially supported by a grant from the
Simons Foundation (#318706). K. L. work was partially sup-
ported by the University of Nebraska-Lincoln, Korea



Institute for Advanced Study, AMS Centennial Fellowship,
and NSA grant H98230-16-1-0059.

References

[Aigner 13] M. Aigner, Markov’s Theorem and 100 Years of
the Uniqueness Conjecture, A Mathematical Journey from
Irrational Numbers to Perfect Matchings. Cham: Springer,
2013.

[Apruzzese and Igusa 18] P. J. Apruzzese and K. Igusa,
Stability conditions for affine type A, arXiv:1804.09100.
[Assem et al. 06] I. Assem, D. Simson and A. Skowronski,
Elements of the Representation Theory of Associative
Algebras. Vol. 1. Techniques of Representation Theory
(London Mathematical Society Student Texts 65),

Cambridge: Cambridge University Press, 2006.

[Avramov and Buchweitz 00] L. L. Avramov and R.-O.
Buchweitz, “Support Varieties and Cohomology Over
Complete Intersections,” Invent. Math. 142 (2000),
285-318.

[Baumeister et al. 14] B. Baumeister, M. Dyer, C. Stump,
and P. Wegener, “A Note on the Transitive Hurwitz
Action on Decompositions of Parabolic Coxeter
Elements,” Proc. Amer. Math. Soc. Ser. B. 1 (2014),
149-154.

[Bessis 06] D. Bessis, “A Dual Braid Monoid for the Free
Group,” J. Algebra. 302 (2006) 55-69.

[Briistle and Zhang 11] T. Bristle and J. Zhang. “On the
Cluster Category of a Marked Surface Without
Punctures,” Algebra and Number Theory 5 (2011),
529-566.

[Caldero and Keller 06] P. Caldero and B. Keller, “From
Triangulated Categories to Cluster Algebras II,” Ann. Sci.
Ecole Norm. Sup. 39:6 (2006), 983-1009.

[Canakci and Schroll 17] I. Canakci and S. Schroll,
“Extensions in Jacobian Algebras and Cluster Categories
of Marked Surfaces,” Adv. Math. 313 (2017), 1-49.

[Chavez 15] A. N. Chavez, “On the C-Vectors of an Acyclic

Cluster Algebra,” Int. Math. Res. Not. 6 (2015),
1590-1600.
[Crawley-Boevey 92] W. Crawley-Boevey, “Exceptional

sequences of representations of quivers,” Proceedings of
the Sixth International Conference on Representations of
Algebras (Ottawa, ON, 1992), 7 pp., Carleton-Ottawa
Math. Lecture Note Ser., 14, Carleton University, Ottawa,
ON, 1992.

[Davison 18] B. Davison, “Positivity for Quantum Cluster
Algebras,” Ann. of Math. 187:1 (2018), 157-2109.

[Davison et al. 15] B. Davison, D. Maulik, J. Schiirmann,
and B. Szendroi, “Purity for Graded Potentials and
Quantum Cluster Positivity,” Compos. Math. 151:10
(2015), 1913-1944.

EXPERIMENTAL MATHEMATICS . 331

[Felikson and Tumarkin 17] A. Felikson and P. Tumarkin,
“Acyclic Cluster Algebras, Reflections Groups, and
Curves on a Punctured Disc,” 2017. arXiv:1709.10360.

[Fomin and Zelevinsky 02] S. Fomin and A. Zelevinsky,
“Cluster Algebras I: Foundations,” J. Amer. Math. Soc.
15:2 (2002), 497-529.

[Fomin and Zelevinsky 07] S. Fomin and A. Zelevinsky,
“Cluster Algebras IV: Coefficients,” Compos. Math. 143
(2007), 112-164.

[Gross et al. 18] M. Gross, P. Hacking, S. Keel, and M.
Kontsevich, “Canonical Bases for Cluster Algebras,” J.
Amer. Math. Soc. 31:2 (2018), 497-608.

[Hubery and Krause 16] A. Hubery and H. Krause, “A
Categorification of Non-Crossing Partitions,” J. Eur.
Math. Soc. 18:10 (2016), 2273-2313.

[Igusa and Schiffler 10] K. Igusa and R. Schiffler,
“Exceptional Sequences and Clusters,” J. Algebra 323:8
(2010), 2183-2202.

[Kontsevich 95] M. Kontsevich, “Homological Algebra of
Mirror Symmetry,” Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Ziirich, 1994),
Birkhauser, Basel, 1995, pp. 120-139.

[Lee and Schiffler 13] K. Lee and R. Schiffler, “Positivity for
Cluster Algebras of Rank 3,” Publ. Res. Inst. Math. Sci.
49:3 (2013), 601-649.

[Lee and Schiffler 15] K. Lee and R. Schiffler, “Positivity for
Cluster Algebras,” Ann. of Math. 182:1 (2015), 73-125.
[Musiker et al. 11] G. Musiker, R. Schiffler, and L.
Williams, “Positivity for Cluster Algebras from Surfaces,”

Adv. Math. 227 (2011), 2241-2308.

[Schofield 92] A. Schofield, “General Representations of
Quivers,” Proc. London Math. Soc. 65:1 (1992), 46-64.

[Seven 15] A. Seven, “Cluster Algebras and Symmetric
Matrices,” Proc. Amer. Math. Soc. 143 (2015), 469-478.

[Shende 15] V. Shende, D. Treumann, H. Williams, and E.
Zaslow, “Cluster Varieties from Legendrian Knots,” 2015,
arXiv:1512.08942.

[Shende et al. 16] V. Shende, D. Treumann and H.
Williams, On the Combinatorics of Exact Lagrangian
Surfaces,” 2016, arXiv:1603.07449.

[Speyer and Thomas 13] D. Speyer and H. Thomas,
“Acyclic Cluster Algebras Revisited,” In Algebras, Quivers
and Representations, vol. 8, pp. 275-298, Abel Symp.,
Springer, Heidelberg, 2013.

[Treumann 18] D. Treumann, H. Williams and E. Zaslow,
“Kasteleyn  operators  from symmetry,”
arXiv:1810.05985.

[Zhang et al. 13] J. Zhang, Y. Zhou and B. Zhu, “Cotorsion
Pairs in the Cluster Category of a Marked Surface,” J.
Algebra 391 (2013), 209-226.

mirror



	Abstract
	Introduction
	A conjectural correspondence
	The statement of conjecture
	Type A quivers
	Type D quivers
	A quiver of type E8
	Rank 2 quivers
	Rank 3 tame quiver

	Preliminaries
	Cluster variables
	Positive real roots

	Real Schur roots of rank 3 quivers
	Curves representing real roots
	Curves representing real Schur roots
	Mutations of vectors and the definition of (w)
	Denominators of cluster variables

	Proof of Theorem 4.17
	Case 1: (w)(w)(w)
	Case 2: (w)(w)(w)+1
	Case 3: (w)(w)(w)+2
	Case 4: (w)(w)+1
	Case 5: (w)(w)+2
	The case of (w)(w)+3
	The case of (w)(w)+4

	Acknowledgments
	References


