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Abstract
In a recent paper by K.-H. Lee and K. Lee, rigid reflections are defined for any Coxeter
group via non-self-intersecting curves on a Riemann surface with labeled curves. When the
Coxeter group arises from an acyclic quiver, the rigid reflections are related to the rigid
representations of the quiver. For a family of rank 3 Coxeter groups, it was conjectured in
the same paper that there is a natural bijection from the set of reduced positive roots of a
symmetric rank 2 Kac–Moody algebra onto the set of rigid reflections of the corresponding
rank 3 Coxeter group. In this paper, we prove the conjecture.
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1 Introduction

Let Q be an acyclic quiver of rank n, and mod(Q) be the category of finite dimensional
representations of Q. In order to understand the category mod(Q), one needs to consider the
indecomposable representations without self-extensions, called rigid representations. Their
dimension vectors form a special subset of the set of positive real roots of the Kac–Moody
algebra g(Q) associated to Q, and are called real Schur roots. These roots also appear in
the denominators of cluster variables, or as the c-vectors of the cluster algebra associated to
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Q, and can be described combinatorially in terms of non-crossing partitions. See [1, 5, 6, 8,
10, 19, 22–24] for more details on these connections.

As a new geometric/combinatorial approach to describe rigid representations and real
Schur roots, K.-H. Lee and K. Lee conjectured in their paper [16] a correspondence between
rigid representations in mod(Q) and the set of certain non-self-intersecting curves on a
Riemann surface � with n labeled curves. The conjecture is now proven by A. Felikson
and P. Tumarkin [7] for acyclic quivers with multiple edges between every pair of vertices.
Very recently, S. D. Nguyen [20] informed us that he proved the conjecture for an arbitrary
acyclic quiver.

The conjecture actually characterizes the family of reflections in the Weyl group of g(Q)

which are associated to real Schur roots via non-self-intersecting curves in �. Since reflec-
tions make sense for any Coxeter groups, the geometric characterization can be carried over.
Indeed, the rigid reflections are defined in [17] for any Coxeter group W to be those cor-
responding to non-self-intersecting curves in �. Unexpectedly, an interesting phenomenon
was observed that the rigid reflections of W are parametrized by the positive roots of a
seemingly unrelated Kac–Moody algebraH, and the phenomenon was investigated in detail
for a family of rank 3 Coxeter groups.

To be precise, for each positive integer m ≥ 2, consider the following Coxeter group

W(m) = 〈s1, s2, s3 : s21 = s22 = s23 = (s1s2)
m = (s2s3)

m = e〉.
Let H(m) be the rank 2 Kac–Moody algebra associated with the Cartan matrix

(
2 −m

−m 2

)
.

Denote an element of the root lattice of H(m) by [a, b], a, b ∈ Z, where [1, 0] and [0, 1]
are the positive simple roots. A root [a, b] of H(m) is called reduced if gcd(a, b) = 1 and
ab �= 0. Note that the set of reduced roots includes both real and imaginary roots. A reduced
root determines a non-self-intersecting curve η on the torus � with triangulation by three
labeled curves.

Now define a function, [a, b] �→ s([a, b]) ∈ W(m), by reading off the labels of the
intersection points of η with the labeled curves on � and by writing down the products of
simple reflections accordingly. See Eq. 3.1 for an example. In [17], it was conjectured that
this function [a, b] �→ s([a, b]) is a bijection from the set of reduced roots ofH(m) onto the
set of rigid reflections of W(m). If established, it would show that the set of rigid reflections
in W(m) has a structure coming from the set of reduced roots of H(m). Most importantly,
the Weyl group action on the set of roots of H(m) would be transported to the set of rigid
reflections on W(m). In the same paper [17], as a main result, it was shown that the function
is surjective; however, injectivity was checked only for m = 2.

One of the main difficulties in showing injectivity is directly related to the word problem
for W(m). Since s([a, b]) are given as words in simple reflections, one needs to determine
when such two words represent the same (or different) elements in W(m). A solution to this
problem may be given by an algorithm to write s([a, b]) into a canonical form or a standard
word.

In this paper, we obtain such a reduction algorithm and prove the conjecture of [17].

Theorem 1.1 For m ≥ 2, the function, [a, b] �→ s([a, b]), is a bijection from the set of
reduced positive roots ofH(m) onto the set of rigid reflections of W(m).

The canonical forms or standard words of the elements in W(m) are determined by
applying Gröbner–Shirshov basis theory. In the first substantial step, canonical sequences
of positive integers are assigned to each [a, b] and a reduction is accomplished accordingly.
The result is described in Corollary 4.17. This reduction through canonical sequences can
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be visualized naturally in terms of associated curves on the torus � and are related to the
aforementioned Weyl group action on the set of rigid reflections in W(m). Moreover, we
note that the canonical sequences was used in a study of 2-bridge link groups [15] in a
slightly different form.

However, this reduction through canonical sequences are not sufficient for our purpose,
and we need to perform further reduction until we obtain standard words for the elements in
W(m) to distinguish them explicitly and to show injectivity of the map [a, b] �→ s([a, b]).

As is well known, the word problem for a group is intractable, in general. Surprisingly,
Gröbner–Shirshov bases for W(m) are not much different from the original set of defining
relations, though W(m) is infinite, and our reduction process becomes feasible. It would be
interesting to see if there are other families of infinite Coxeter groups with relatively simple
Gröbner–Shirshov bases. To such families, the method of this paper will generalize to reveal
precise connections between rigid reflections and roots of Kac–Moody algebras.

The organization of this paper is as follows. In Section 2, we recall the definition of rigid
reflections. In the next section, we consider the rank 3 Coxeter groups W(m) and collect
known results from [17] about the rigid reflections of W(m). In Section 4, the canonical
sequence and level of a reduced root [a, b] are defined and their properties are studied.
Using the canonical sequence, we achieve a substantial reduction of s([a, b]). In Section 5,
we complete the reduction process to obtain the standard words for the elements of W(m)

and prove Theorem 1.1, up to computation of Gröbner–Shirshov bases for W(m) which is
accomplished in the last section.

2 Rigid Reflections

In this section we recall the definition of a rigid reflection from [17].
Let

W = 〈s1, s2, ..., sn : s21 = · · · = s2n = e, (sisj )
mij = e〉 (2.1)

be a Coxeter group with mij ∈ {2, 3, 4, ...} ∪ {∞}. In order to define the rigid reflections of
W , we introduce1 a Riemann surface � equipped with n labeled curves as below. Let G1
and G2 be two identical copies of a regular n-gon. Label the edges of each of the two n-gons
by T1, T2, . . . , Tn counter-clockwise. On Gi (i = 1, 2), let Li be the line segment from the
center of Gi to the common endpoint of Tn and T1. Later, these line segments will only be
used to designate the end points of admissible curves and will not be used elsewhere. Fix
the orientation of every edge of G1 (resp. G2) to be counter-clockwise (resp. clockwise) as
in the following picture.

Tn

T2

T1

Tn−1

T3

...
L1

L2

T3

Tn−1

...

T2

Tn

Let� be the Riemann surface of genus � n−1
2 � obtained by gluing together the two n-gons

with all the edges of the same label identified according to their orientations. The edges of

1One can use a different, equivalent geometric model as in [7, 20].
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the n-gons become n different curves in �. If n is odd, all the vertices of the two n-gons are
identified to become one point in � and the curves obtained from the edges become loops.
If n is even, two distinct vertices are shared by all curves. Let T = T1 ∪ · · · Tn ⊂ �, and V

be the set of the vertex (or vertices) on T .
LetW be the set of words from the alphabet {1, 2, ..., n}, and letR ⊂ W be the subset of

words w = i1i2 · · · ik such that k is an odd integer and ij = ik+1−j for all j ∈ {1, ..., k}, in
other words, si1si2 · · · sik is a reflection in W . For w = i1i2 · · · ik ∈ W, denote si1si2 ...sik ∈
W by s(w).

Definition 2.1 An admissible curve is a continuous function η : [0, 1] −→ � such that

1) η(x) ∈ V if and only if x ∈ {0, 1};
2) η starts and ends at the common end point of T1 and Tn. More precisely, there exists

ε > 0 such that η([0, ε]) ⊂ L1 and η([1 − ε, 1]) ⊂ L2;
3) if η(x) ∈ T \ V then η([x − ε, x + ε]) meets T transversally for sufficiently small

ε > 0.

If η is admissible, then we obtain υ(η) := i1 · · · ik ∈ W given by

{x ∈ (0, 1) : η(x) ∈ T } = {x1 < · · · < xk} and η(x�) ∈ Ti� for � ∈ {1, ..., k}.

Conversely, note that for every w ∈ W of an odd length, there is an admissible curve η with
υ(η) = w. Hence, every reflection in W can be represented by some admissible curve(s).
For brevity, let s(η) := s(υ(η)).

Definition 2.2 An element w ∈ W is called a rigid reflection2 if there exist an expression
w = si1si2 · · · sik and a non-self-crossing admissible curve η such that υ(η) = i1...ik ∈ R.

Example 2.3 Let n = 4, and W = 〈s1, s2, s3, s4 : s21 = s22 = s23 = s24 = e〉, i.e., mij = ∞
for i �= j . Consider the curve η in the following picture:

1

2

3

4

4

3

2

Since there is no self-intersection, we obtain the corresponding rigid reflection

s(η) = s4s1s3s2s3s1s4.

2It was pointed out by the referee that there is an interesting relationship of this definition with decomposi-
tions of the Coxeter element into products of reflections as one can see from [1, 10, 20]; in particular, see the
proof of Theorem 3.1 in [20].
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On the other hand, the reflection s4s2s3s1s3s2s4 comes from the following curve η′ which

has a self-intersection.

1

2

3

4

4

3

2

Consequently, the reflection s(η′) = s4s2s3s1s3s2s4 is not rigid.

Given a Coxeter group W generated by s1, . . . , sn as in Eq. 2.1, let E be a real vector
space with basis {α1, . . . , αn}. Define a symmetric bilinear form B on E by

B(αi, αj ) = − cos(π/mij ) for 1 ≤ i, j ≤ n.

For each i ∈ {1, . . . , n}, define the action of si on E by

si(λ) = λ − 2B(λ, αi)αi, λ ∈ E,

and extend it to the action of W on E. The root system 
 of W is defined to be the collection
of w(αi) for w ∈ W and i ∈ {1, . . . , n}. An element α ∈ 
 is called a root of W . Then each
root α ∈ 
 determines a reflection sα ∈ W . (See [9] for more details.)

Remark 2.4 When W is the Weyl group of a Kac–Moody algebra g, the set 
 is precisely
the set of real roots of g. However, W may not be associated with a Kac–Moody algebra, in
general. We follow [9] to call 
 the set of roots of W .

Definition 2.5 A positive root α ∈ 
 of W is called rigid if the corresponding reflection
sα ∈ W is rigid.

Example 2.6 In Example 2.3, we obtained the rigid reflection

s4s1s3s2s3s1s4.

It give rises to a rigid root

6α1 + α2 + 2α3 + 18α4 = s4s1s3(α2).

3 A Family of Rank 3 Coxeter Groups

In this section we focus our attention to the rank 3 groups W(m) and collect known results
from [17] about the rigid reflections of W(m).

As in the introduction, fix a positive integer m ≥ 2 and set

W(m) = 〈s1, s2, s3 : s21 = s22 = s23 = (s1s2)
m = (s2s3)

m = e〉.
Note that we put, in particular, m13 = m31 = ∞. Let H(m) be the rank 2 hyperbolic Kac–
Moody algebra associated with the Cartan matrix

(
2 −m

−m 2

)
. We denote an element of the root

lattice of H(m) by [a, b], a, b ∈ Z, where [1, 0] and [0, 1] are the positive simple roots. A
root [a, b] of H(m) is called reduced if gcd(a, b) = 1 and ab �= 0. One can see that every
non-simple real root is reduced.
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Let P+ = {[a, b] : a, b ∈ Z>0, gcd(a, b) = 1}. For every [a, b] ∈ P+, let η([a, b]) be
the line segment from (0, 0) to (a, b) on the universal cover of the torus, which automatically
has no self-intersections. Write s([a, b]) := s(η([a, b])) ∈ W(m) for the corresponding
rigid reflection. For example, we have

s([5, 3]) = s2s3s2s1s2s3s2s3s2s1s2s3s2 (3.1)

as one can check in the following picture.

3

1

2

Recall from [11, 14] that

[a, b] is a root ofH(m) if and only if a2 + b2 − mab ≤ 1. (3.2)

Define a sequence {Fn} recursively by F0 = 0, F1 = 1, and Fn = mFn−1 −Fn−2. Note that
[a, b] is a real root if and only if [a, b] is either [Fn, Fn+1] or [Fn+1, Fn], n ≥ 0. (See [11,
14].) A non-real root is called imaginary.

Definition 3.1 Let (a1, a2) be a pair of positive integers with a1 ≥ a2.

(1) A maximal Dyck path of type a1 × a2, denoted byDa1×a2 , is a lattice path from (0, 0)
to (a1, a2) that is as close as possible to the diagonal joining (0, 0) and (a1, a2)without
ever going above it.

(2) Assign s2s3 ∈ W(m) to each horizontal edge of Da1×a2 , and s2s1 ∈ W(m) to each
vertical edge. Read these elements in the order of edges along Da1×a2 , then we get a
product of copies of s2s3 and s2s1. Denote the product by sa1×a2 .

Remark 3.2 It was pointed out by the referee that a maximal Dyck path corresponds to
what is known in the literature on combinatorics of words as a Christoffel word. The statis-
tics associated with a maximal Dyck path defined in the next section of this paper have their
counterparts in combinatorics of words. See Chapter 2 of [18] for details.

Lemma 3.3 [17] Assume that [a, b] ∈ P+ with a ≥ b. Then we have the following
formulas.

(1) s([a, b]) = s3s2s
a×bs1.

(2) sF2×F1 = s2s1 and

sFn×Fn−1 =
{

s1(s3s2s1)
(n−3)/2s2s3(s1s2s3)

(n−3)/2s1, for n ≥ 3 odd;
s1(s3s2s1)

(n−4)/2s3s1s2s3(s1s2s3)
(n−4)/2s1, for n ≥ 4 even.

We now state one of the main results of this paper.

Theorem 3.4 The function, [a, b] �→ sa×b, is an injection from the set of reduced positive
roots [a, b] ofH(m) with a ≥ b into W(m).

As will be shown in Section 5-C, Theorem 3.4 and Corollary 4.22 below which estab-
lishes a separation between the cases a ≥ b and a < b together imply Theorem 1.1. After
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all necessary constructions and computations are established, a proof of Theorem 3.4 will
be completed in Section 5-B.

4 Canonical Sequences and Levels

In this section we introduce canonical sequences and levels attached to a positive reduced
root [a, b] (a ≥ b) ofH(m), which will play an important role in computations of sa×b and
in classifying reduced roots and rigid reflections. Recall that a positive reduced real root
[a, b] (a ≥ b) ofH(m) is of the form [Fn, Fn−1]. Since we already have sFn×Fn−1 in Lemma
3.3, we only consider imaginary roots ofH(m) whenever this simplifies the presentation.

We start with some definitions. (Recall Remark 3.2; cf. [15, 18].)

Definition 4.1 Let N be a positive integer. Suppose that c = (a1, a2, . . . , ad) is a finite
sequence such that ai = N or N + 1 for all i.

(1) If d > 1 and (ai, ai+1) �= (N,N) for any i, then c is called type +.
(2) If d > 1 and (ai, ai+1) �= (N + 1, N + 1) for any i, then c is called type −.
(3) If d > 1 and ai �= ai+1 for any i, then c is called type =.
(4) If d = 1, then c is called type 0.

Throughout this section, let [a, b] be a reduced positive root ofH(m) with a ≥ b.

Definition 4.2 Define a sequence c1 = (a1,1, a1,2, . . . , a1,b) of positive integers to be such
that

Da×b = ha1,1vha1,2v · · ·ha1,b v, (4.1)

where h is a horizontal edge and v is a vertical edge and the product means concatenation.

Lemma 4.3 We have

a1,i =
⌈

ai

b

⌉
−
⌈

a(i − 1)

b

⌉
(1 ≤ i ≤ b). (4.2)

Proof Since the slope of the line η([a, b]) is b
a
, the number a1,1 is the smallest positive

integer such that b
a
a1,1 ≥ 1. Thus, we obtain a1,1 = � a

b
�. Since the y-coordinate of the point

on the line with the x-coordinate a1,2 is greater than or equal to 2, the number a1,2 is the
smallest positive integer such that b

a
(a1,1 + a1,2) ≥ 2. Thus, we obtain a1,2 = � 2a

b
� − � a

b
�.

Now assume that a1,i = � ai
b

�−� a(i−1)
b

� for 1 ≤ i ≤ k. By a similar argument, a1,k+1 is the
smallest positive integer such that b

a
(a1,1+· · ·+a1,k+1) ≥ k+1. Since (a1,1+· · ·+a1,k) =

� ak
b

�, we obtain a1,k+1 = � a(k+1)
b

� − � ak
b

�. By induction, we are done.

Lemma 4.4 The function [a, b] �→ (a1,1, . . . , a1,b) is an injection from the set of reduced
positive roots into the set of finite sequences in Z>0.

Proof It follows directly from Eq. 4.2.

Recall the assumption that [a, b] is a reduced positive root ofH(m) with a ≥ b.
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Lemma 4.5 Assume that a
b

�= m. Let

a

b
= N1 + ρ1 with N1 =

⌊a

b

⌋
. (4.3)

Then we have

(1) 1 ≤ N1 ≤ m − 1;
(2) a1,i = N1 or N1 + 1 for all 1 ≤ i ≤ b;
(3) a1,1 = N1 + 1 and a1,b = N1;

(4) c1 = (a1,i ) is of type

⎧
⎪⎨

⎪⎩

+ if ρ1 > 1
2 ,

− if 0 < ρ1 < 1
2 ,

= if ρ1 = 1
2 .

Proof (1) Since [a, b] is a reduced positive root ofH(m), we have a2+b2−mab ≤ 1
from Eq. 3.2. Thus we have 1 ≤ a

b
≤ m. Since we assume that a

b
�= m, we obtain

the desired result.
(2), (3) It is clear from the fact that a1,i = N1 + �ρ1i� − �ρ1(i − 1)�.

(4) Suppose ρ1 > 1
2 . We will show that (a1,i , a1,i+1) �= (N1, N1) for all i. Note that

a1,i = N1 if and only if �ρ1i� − �ρ1(i − 1)� = 0. If (a1,i , a1,i+1) = (N1, N1) for
some i, then

�ρ1(i+1)�−�ρ1i� = �ρ1i�−�ρ1(i−1)� = 0 ⇐⇒ �ρ1(i+1)� = �ρ1i� = �ρ1(i−1)�
which implies that there exists an integer t such that t < ρ1(i − 1) < ρ1i <

ρ1(i + 1) < t + 1. This contradicts to ρ1 > 1
2 . The other cases can be proved

similarly.

Definition 4.6 Let [a, b] be a reduced positive root ofH(m) with a ≥ b. For n ≥ 1, define
inductively ρn,Nn and cn = (an,1, an,2, · · · , an,dn) as follows.

(0) Note that ρ1, N1 and c1 = (a1,1, . . . , a1,d1) with d1 = b are already defined in
Eqs. 4.1 and 4.3.

(1) If cn−1 is of type = or 0, stop the process. Otherwise, cn = (an,i)1≤i≤dn are defined
to be the sequence recording the numbers of consecutive occurrences of

{
(Nn−1 + 1)’s in cn−1 if cn−1 is of type +,

Nn−1’s in cn−1 if cn−1 is of type −,

where dn is the number of Nn−1 (resp. Nn−1 + 1) in cn−1 if it is of type + (resp. type
−).

(2) ρn is defined to be a rational number with 0 ≤ ρn < 1 and Nn is to be a positive
integer such that

Nn + ρn =
⎧
⎨

⎩

ρn−1
1−ρn−1

if ρn−1 ≥ 1
2 ,

1−ρn−1
ρn−1

if ρn−1 < 1
2 .

The sequences cn, n = 1, 2, . . . , are called the canonical sequences of [a, b].

Example 4.7 (1) Let m = 3 and [a, b] = [5, 3]. Then N1 = 1, ρ1 = 2
3 and d1 = b = 3.

From the definition or by Lemma 4.3, the sequence c1 is given by

c1 = (a1,1, a1,2, a1,3) = (2, 2, 1),



Rigid Reflections of Rank 3 Coxeter Groups and Reduced Roots...

which is of type +. Since

ρ1

1 − ρ1
=

2
3

1 − 2
3

= 2 = N2,

we have c2 = (a2,1) = (2), which is of type 0.
(2) Let m = 3 and [a, b] = [8, 5]. In this case, N1 = 1, ρ1 = 3

5 , d1 = b = 5 and

c1 = (a1,1, a1,2, a1,3, a1,4, a1,5) = (2, 2, 1, 2, 1),

which is of type +. Then N2 = 1, ρ2 = 1
2 , d2 = 2 and

c2 = (a2,1, a2,2) = (2, 1),

which is of type =.
(3) Assume m = 3 and [a, b] = [59, 23]. Then we have

c1 = (3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2), N1 = 2, ρ1 = 13/23, type +,

c2 = (2, 1, 1, 2, 1, 1, 2, 1, 1, 1), N2 = 1, ρ2 = 3/10, type −,

c3 = (2, 2, 3), N3 = 2, ρ3 = 1/3, type −,

c4 = (2), N4 = 2, ρ4 = 0, type 0.

(4) Suppose m = 5 and [a, b] = [62, 13]. Then we obtain
c1 = (5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 4), N1 = 4, ρ1 = 10/13, type +,

c2 = (4, 3, 3), N2 = 3, ρ2 = 1/3, type −,

c3 = (2), N3 = 2, ρ3 = 0, type 0.

For a positive rational number r , let D(r) = q when r = p
q
and p, q are relatively prime

integers.

Lemma 4.8 The following holds for n ≥ 2.

(1) cn = (an,i)1≤i≤dn is given by

an,i =

⎧
⎪⎨

⎪⎩

⌈
ρn−1i

1−ρn−1

⌉
−
⌈

ρn−1(i−1)
1−ρn−1

⌉
, when cn−1 is of type +,

⌊
(1−ρn−1)i

ρn−1

⌋
−
⌊

(1−ρn−1)(i−1)
ρn−1

⌋
, when cn−1 is of type −,

for 1 ≤ i ≤ dn, and we get dn = D(ρn).
(2) We have an,i = Nn or Nn + 1 for 1 ≤ i ≤ dn.
(3) an,1 = Nn + 1 (resp. Nn ) and a1,dn = Nn (resp. Nn + 1 ) if ρn �= 0 and cn−1 is of

type + (resp. type −).

(4) cn = (an,i) is of type

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

+ if ρn > 1
2 ,

− if 0 < ρn < 1
2 ,

= if ρn = 1
2 ,

0 if ρn = 0.

Proof (1) Suppose that cn−1 is of type +. We have

an−1,i = �(Nn−1 + ρn−1)i� − �(Nn−1 + ρn−1)(i − 1)�
= Nn−1 + �ρn−1i� − �ρn−1(i − 1)�.
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Since an,1 is the number of first successive Nn−1 + 1 in the sequence cn−1, we have

�ρn−1i� − �ρn−1(i − 1)� =
{
1 if i = 1, 2, · · · , an,1,

0 if i = an,1 + 1.

This implies that

(an,1 − 1)ρn−1 < an,1 − 1 < an,1ρn−1 < (an,1 + 1)ρn−1 ≤ an,1.

So we obtain

an,1 ≥ 1,
ρn−1

1 − ρn−1
≤ an,1 <

1

1 − ρn−1
,

and hence an,1 = � ρn−1
1−ρn−1

�.
Since an,2 is the number of successive Nn−1 +1 in cn−1 between the first and the second

Nn−1, we have

�ρn−1i� − �ρn−1(i − 1)� =
{
1 if i = an,1 + 2, an,1 + 3, · · · , an,1 + an,2 + 1,

0 if i = an,1 + an,2 + 2.

This implies that

(an,1+an,2)ρn−1<an,1+an,2−1 < (an,1+an,2+1)ρn−1<(an,1+an,2+2)ρn−1≤an,1+an,2.

Hence, we have
2ρn−1

1 − ρn−1
− an,1 ≤ an,2 < −an,1 + ρn−1 + 1

1 − ρn−1
.

Since an,2 is an integer and ρn−1+1
1−ρn−1

− 2ρn−1
1−ρn−1

= 1, we obtain

an,2 =
⌈

2ρn−1

1 − ρn−1

⌉
−
⌈

ρn−1

1 − ρn−1

⌉
.

By a similar argument, we have

an,i =
⌈

ρn−1i

1 − ρn−1

⌉
−
⌈

ρn−1(i − 1)

1 − ρn−1

⌉
for i ≥ 3.

Next, we show that dn = D(ρn). By the definition of cn = (an,i)1≤i≤dn , we have

dn−1 =
∑

1≤i≤dn

an,i + dn =
⌈

ρn−1dn

1 − ρn−1

⌉
+ dn.

Suppose that ρn−1 = en−1
dn−1

, where en−1 and dn−1 are relatively prime. Then we have

Nn + ρn = ρn−1

1 − ρn−1
= en−1

dn−1 − en−1
.

Since dn−1 and en−1 are relatively prime, D(ρn) = D(
en−1

dn−1−en−1
) = dn−1 − en−1. Hence,

we obtain

dn−1 =
⌈

en−1dn

dn−1 − en−1

⌉
+ dn ⇐⇒ dn = dn−1 − en−1 = D(ρn).

The proof for the case when cn−1 is of type − is similar, and we omit the details.
(2) Suppose that cn−1 is of type +. Since ρn−1

1−ρn−1
= Nn + ρn, we have

an,i = �Nni + ρni� − �Nn(i − 1) + ρn(i − 1)� = Nn + �ρni� − �ρn(i − 1)�.
Since 0 ≤ ρn < 1, we obtain an,i = Nn or Nn + 1 for 1 ≤ i ≤ dn. The case cn−1 is of type
− is similar.
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(3) Suppose that ρn �= 0 and cn−1 is of type +. Write ρn−1 = en−1
dn−1

with en−1 and dn−1

relatively prime. Then Nn + ρn = en−1
dn−1−en−1

. Since ρn �= 0, we have

an,1 = Nn + �ρn� = Nn + 1,
an,dn = �(Nn + ρn)dn� − �(Nn + ρn)(dn − 1)�

=
⌈

en−1
dn−1−en−1

dn

⌉
−
⌈

en−1
dn−1−en−1

(dn − 1)
⌉

= �en−1� − �en−1 − Nn − ρn� = en−1 − en−1 + Nn = Nn.

The case cn−1 is of type − is similar.
(4) The proof is similar to that of Lemma 4.5 (4), and we omit the details.

Lemma 4.9 Let [a, b] be a reduced positive root of H(m) with a ≥ b, and Nk and ck be
defined as in Definition 4.6. Denote the type of ck by εk . For each k ≥ 0, the data

(N1, ε1, N2, ε2, . . . , Nk, εk, ck+1)

determines [a, b] uniquely.
Proof By Lemma 4.8 and Definition 4.6, we obtain ck from (Nk, εk, ck+1) and continue the
process to obtain c1. Now the assertion follows from Lemma 4.4.

After establishing another lemma below, we will define the level of [a, b].

Lemma 4.10 Assume that [a, b] is an imaginary reduced positive root ofH(m) with a ≥ b.
For n ≥ 2, if Nk = m − 2 + δ1,k and ck is of type + for 1 ≤ k ≤ n − 1, then

1 < Nn + ρn < γ − 1,

where we set γ := m+
√

m2−4
2 . In particular, 1 ≤ Nn ≤ m − 2 for n ≥ 2.

Proof We use induction on n. It follows from the assumptions and Lemma 4.5 that a
b

=
N1 + ρ1 = m − 1 + ρ1 with 1

2 < ρ1 < 1 and N2 + ρ2 = ρ1
1−ρ1

. Since [a, b] is a reduced
positive root of H(m) and [a, b] �= [Fi, Fi−1] for any i = 2, 3, . . . , we have 1 ≤ a

b
< γ

and 1
2 < ρ1 < γ − (m − 1). Note that γ (m − γ ) = 1. Since y = x

1−x
is an increasing

function for 0 ≤ x < 1, we obtain
1
2

1 − 1
2

= 1 < N2 + ρ2 = ρ1

1 − ρ1
<

γ − m + 1

−γ + m
= γ − 1 < m − 1.

Hence, 1 ≤ N2 ≤ m − 2.
Now assume that we have 1 < Nn−1 + ρn−1 < γ − 1. Since Nn−1 = m − 2 and cn−1 is

of type +, we have 1
2 < ρn−1 < γ − (m − 1). By the same argument as in the case n = 2,

we have
1 < Nn + ρn < γ − 1 and 1 ≤ Nn ≤ m − 2.

Let us consider the sequence {γn} given by
γ0 = 0, γ1 = m − 1

2 , γn = m − 1
γn−1

(n ≥ 2).

It is straightforward to check that γn < γn+1 < γ for n ≥ 1, and

γn → γ as n → ∞,
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where γ = m+
√

m2−4
2 as before.

Definition 4.11 Let [a, b] be an imaginary reduced positive root of H(m) with a ≥ b.
Then the level L of [a, b] is defined to be the positive integer uniquely determined by the
inequalities

γL−1 <
a

b
≤ γL.

Example 4.12 Let m = 3 and [a, b] = [339, 130]. Then we have γ1 = 5
2 , γ2 = 13

5 , γ3 =
34
13 and γ2 < a

b
< γ3. Thus the level of [a, b] is 3.

Proposition 4.13 Let [a, b] be an imaginary reduced positive root of H(m) with a ≥ b.
Assume that the level of [a, b] is L. Then the following statements hold:

(i) Nk = m − 2 + δ1,k for 1 ≤ k ≤ L − 1, and hence

(N1, N2, . . . , NL) = (m − 1,m − 2,m − 2, . . . , m − 2, c)

for 1 ≤ c ≤ m − 2 + δ1,L, where δi,j is the Kronecker’s delta.
(ii) ck is of type + for 1 ≤ k ≤ L − 1,
(iii) NL + ρL ≤ m − 2 + δ1,L + 1

2 .

Proof Suppose the level of [a, b] is 1. Then we obtain N1 + ρ1 = a
b

≤ γ1 = m − 1
2 .

Suppose the level of [a, b] is 2. Then (m−1)+ 1
2 < N1+ρ1 ≤ γ2 = (m−1)+ 2m−3

2m−1 . Thus

we obtain 1
2 < ρ1 ≤ 2m−3

2m−1 . It implies that 1 < N2 + ρ2 = ρ1
1−ρ1

≤ (m − 2) + 1
2 . Hence,

N1 = m − 1, c1 is of type + and NL + ρL ≤ m − 2 + 1
2 .

Now suppose the level of [a, b] is L ≥ 3. Then

(m − 1) + 1 − 1

γL−2
= γL−1 <

a

b
≤ γL = (m − 1) + 1 − 1

γL−1
.

Thus we obtain 1 − 1
γL−2

< ρ1 ≤ 1 − 1
γL−1

. It implies that γL−2 − 1 < N2 + ρ2 = ρ1
1−ρ1

≤
γL−1 − 1. Since m − 2 < γL−2 − 1, we have N2 = m − 2 and γL−2 − m + 2 < ρ2 ≤
γL−1 − 1 − m + 2.

By the recursive relation of {γn}, we obtain
γL−3 − 1 < N3 + ρ3 = ρ2

1 − ρ2
≤ γL−2 − 1.

Repeating this argument yields

m − 2 + 1

2
= γ1 − 1 < NL−1 + ρL−1 = ρL−2

1 − ρL−2
≤ γ2 − 1.

Hence, 1 < NL + ρL = ρL−1
1−ρL−1

≤ γ1 − 1 = m − 2 + 1
2 . It implies that Nk = m − 2 + δ1,k

for 1 ≤ k ≤ L − 1. Moreover, ck is of type + for 1 ≤ k ≤ L − 1 because ρk > 1
2 . Since

NL + ρL ≤ m − 2 + 1
2 , we obtain the desired result.

Corollary 4.14 Assume that L is the level of [a, b].
(1) If NL = m − 2 + δ1,L then cL cannot be of type +.
(2) If L ≥ 2 and NL = 1 then cL cannot be of type 0.
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Proof Part (1) is an immediate consequence of Proposition 4.13 (iii) and Lemma 4.8 (4).
For part (2), assume that NL = 1 and cL of type 0. Then ρL = 0 by Lemma 4.8 (4) and
ρL−1 = 1

2 by the definition of ρn. However, ρL−1 > 1
2 by Proposition 4.13 (ii) and Lemma

4.8 (4), which is a contradiction.

4-A Reduction According to Canonical Sequences

In this subsection we show that sa×b can be written through the canonical sequences ck .
This result will be used in the next section and has its own interest. In what follows, we write
only the subscripts of simple reflections when we express elements in W(m). For example,
we write 23 = s2s3 and 21 = s2s1.

Proposition 4.15 Let [a, b] be an imaginary positive reduced root of H(m) with a ≥ b,
and ck = (ak,1, ak,2, . . . , ak,dk

) its canonical sequences. Suppose the level of [a, b] is L.
According to the values of k, define Hk, Vk ∈ W(m) by

k Hk Vk

1 23 21
2 21 31
2l + 1 (l ≥ 1) 1(321)l−123(123)l−11 1(321)l−12123(123)l−11
2l + 2 (l ≥ 1) 13(213)l−112(312)l−131 13(213)l−12312(312)l−131

Then, for 1 ≤ k ≤ L, we have

sa×b = H
ak,1
k VkH

ak,2
k Vk · · · Hak,dk

k Vk . (4.4)

Example 4.16 Continuing Example 4.7 (4), suppose m = 5 and [a, b] = [62, 13]. Since
γ1 = 9

2 < 62
13 < γ2 = 43

9 , the level of [62, 13] is 2. Since c2 = (4, 3, 3), we obtain

s62×13 = (21)4(31)(21)3(31)(21)3(31) ∈ W(5).

Proof of Proposition 4.13 If k = 1, then Eq. 4.4 follows from the definition of sa×b and
Eq. 4.1. Suppose k = 2. By Proposition 4.13, N1 = m − 1 and c1 is of type +. Then, by
Lemma 4.5 and the definition of c2, we have

c1 = (a1,1, a1,2, . . . , a1,d1) = (ma2,1 ,m − 1,ma2,2 ,m − 1, . . . , ma2,d2 , m − 1),

where we write ms = m, m, . . . , m︸ ︷︷ ︸
s times

. Since (23)m = e and (23)m−121 = 31, we obtain

sa×b = H
a1,1
1 V1H

a1,2
1 V1 · · ·Ha1,d1

1 V1

= (21)a2,1(31)(21)a2,2(31) · · · (21)a2,d2 (31) = H
a2,1
2 V2H

a2,2
2 V2 · · · Ha2,d2

2 V2.

Suppose that k = 3. By Proposition 4.13, N2 = m − 2 and c2 is of type +. By Lemma
4.8, we have a2,i = m − 2 or m − 1 for 1 ≤ i ≤ d2, a2,1 = m − 1 and a2,d2 = m − 2. Then,
by the definition of c3, we have

c2 = (a2,1, a2,2, . . . , a2,d2)

= ((m − 1)a3,1 , m − 2, (m − 1)a3,2 , m − 2, . . . , (m − 1)a3,d3 , m − 2),
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where we write (m − 1)s = m − 1,m − 1, . . . , m − 1︸ ︷︷ ︸
s times

. Since (21)m−1(31) = 1231 and

(21)m−2(31) = 121231, we have

sa×b = H
a2,1
2 V2H

a2,2
2 V2 · · · Ha2,d2

2 V2
= (1231)a3,1(121231)(1231)a3,2(121231) · · · (1231)a3,d3 (121231)
= H

a3,1
3 V3H

a3,2
3 V3 · · · Ha3,d3

3 V3.

The proof for k = 4 is similar to the case k = 3 with

(1231)m−1(121231) = 1(3123)1 = 13(12)31,
(1231)m−2(121231) = 1(323123)1 = 13(2312)31.

Now let us use induction on k. Suppose (4.4) is true for k = 2l + 2 and consider k + 1 =
2l + 3 ≤ L. Then Nk = m − 2 and ck is of type +. By Lemma 4.8 and the definition of
ck+1, we have ak,1 = m − 1, ak,dk

= m − 2 and

ck = (ak,1, ak,2, . . . , ak,dk
) (4.5)

= ((m − 1)ak+1,1 , m − 2, (m − 1)ak+1,2 ,m − 2, . . . , (m − 1)ak+1,dk+1 ,m − 2).

Since we have

Hm−1
k Vk = 13(213)l−1(12)m−12312(312)l−131 = 1(321)l23(123)l1 = Hk+1,

Hm−2
k Vk = 13(213)l−1(12)m−22312(312)l−131 = 1(321)l2123(123)l1 = Vk+1,

it follows from Eq. 4.5 and the induction hypothesis that

sa×b = H
ak,1
k VkH

ak,2
k Vk · · · Hak,dk

k Vk

= H
ak+1,1
k+1 Vk+1H

ak+1,2
k+1 Vk+1 · · · Hak+1,dk+1

k+1 Vk+1.

The proof for the next step (i.e. k = 2l + 3) is similar, and we omit the details.

The following corollary will play an important role in the next section and has interest in
its own right.

Corollary 4.17 Let [a, b] (a ≥ b) be an imaginary positive reduced root of H(m) with
level L ≥ 2, and ck = (ak,1, ak,2, . . . , ak,dk

) its canonical sequences for 2 ≤ k ≤ L.

(1) If k = 2l + 2, then

sa×b = (132)l(21)ak,1(31)(21)ak,2(31) · · · (21)ak,dk (31)(231)l . (4.6)

(2) If k = 2l + 1, then

sa×b = (132)l(23)ak,1+1(21)(23)ak,2+1(21) · · · (23)ak,dk
+1(21)(231)l . (4.7)

Moreover, we have

(231)lsa×b(132)l = sã×b̃

for [ã, b̃]whose first canonical sequence is (ak,1+1, . . . , ak,dk
+1)with levelL−k+1.

Remark 4.18 The part (2) is related to Lemma 3.3 (2) of [17], which connects the Weyl
group action on the set of roots ofH(m) with the set of rigid reflections. Though the above
corollary is not enough to prove injectivity, one may find that the expressions look more
natural than those obtained in the next section after the reduction is completed.
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Proof Assume that k = 2l + 2. If k = 2 then Eq. 4.6 is nothing but Eq. 4.4. If k ≥ 4, we
obtain from Eq. 4.4

sa×b = 13(213)l−1(12)ak,1 (2312)(12)ak,2 (2312) · · · (12)ak,dk (2312)(312)l−131

= 13(213)l−1(21) (12)(12)ak,1 (23) (12)(12)ak,2 (23) (12)(12)ak,3

· · · (23) (12)(12)ak,dk (2312)(312)l−131

= (132)l1 (12)ak,1 (13) (12)ak,2 (13) · · · (12)ak,dk (13)1(231)l

= (132)l(21)ak,1 (31)(21)ak,2 (31) · · · (21)ak,dk (31)(231)l .

The case k = 2l + 1 is similar and we omit the details. The last assertion is clear from
the definitions.

Though Proposition 4.13 and Corollary 4.17 provide reductions of the initial expression
of sa×b, it is not sufficient to prove injectivity of the map [a, b] �→ sa×b. In Section 5, we
will further reduce sa×b to its standard word to show injectivity.

4-B Separation Between the Cases a ≥ b and a < b

In this subsection, we show that s([a, b]) with a < b cannot be equal to any of s([a1, b1])
with a1 ≥ b1 in W(m). Consequently, since the roles of 1 and 3 can be interchanged, it will
be enough to establish Theorem 3.4 for a proof of Theorem 1.1.

First we recall a result from [17]. Let σ1 and σ2 be the simple reflections of H(m) asso-
ciated with the simple roots [1, 0] and [0, 1], respectively. Then they act on [a, b] ∈ Z

2 in
the usual way by

σ1[a, b] = [−a + mb, b] and σ2[a, b] = [a, −b + ma].

Lemma 4.19 [17, Lemma 3.3 (3)] Assume that [a, b] ∈ P+ with a ≥ b, and write [c, d] =
σ1σ2[a, b]. Then we have

s3s2s1s([a, b])s1s2s3 = s([c, d]).

Next we need to compute explicitly (s2s3)
ns2s1 for n ≥ 0. Let

x = 2 cos(π/m).

Then the matrices of si with respect to {α1, α2, α3} are given by

s1 =
⎡

⎣
−1 x 2
0 1 0
0 0 1

⎤

⎦ , s2 =
⎡

⎣
1 0 0
x −1 x

0 0 1

⎤

⎦ , s3 =
⎡

⎣
1 0 0
0 1 0
2 x −1

⎤

⎦ . (4.8)

Write
(s2s3)

ns2s1 = [τ (n)
i,j ]1≤i,j≤3 for n ≥ 0. (4.9)

Then we have

τ
(n)
1,1 = −1, τ

(n)
1,2 = x, τ

(n)
1,1 = 2 for n ≥ 0,

and obtain the recursive relations
[
τ

(n+1)
2,j

τ
(n+1)
3,j

]

= A

[
τ

(n)
2,j

τ
(n)
3,j

]

+ Bj (j = 1, 2, 3), [τ (0)
i,j ] i=2,3

j=1,2,3
=
[−x x2 − 1 3x
0 0 1

]
,
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where we set

A =
[
x2 − 1 −x

x −1

]
, B1 =

[−3x
−2

]
, B2 =

[
3x2

2x

]
, B3 =

[
6x
4

]
.

Consider x as a variable for the time being. Using induction, we see that An =[
fn(x) −gn(x)

gn(x) −fn−1(x)

]
for n ≥ 1, where the entries are inductively defined by

gn+1 = xfn − gn = (x2 − 1)gn − xfn−1, fn = xgn − fn−1, (4.10)

xgn+1 = (x2 − 1)fn − fn−1, f0 = 1, g0 = 0. (4.11)

From the recurrence relations, we obtain

fn(x) =
n∑

k=0

(−1)n−k

(
n + k

n − k

)
x2k and gn(x) = xUn−1(

x2

2 − 1),

where Un(x) are the Chebyshev polynomials of the second kind. It is well known that the

roots of Un(x) are x = cos
(

k
n+1π

)
, k = 1, 2, . . . , n. (See, e.g., [21].) Thus gn(2) > 0 and

the largest root of gn in the interval [0, 2] is
x = 2 cos

( π

2n

)
for n ≥ 1. (4.12)

Similarly, fn(2) > 0 and the largest root of fn in the interval [0, 2] is
x = 2 cos

(
π

2n + 1

)
for n ≥ 1. (4.13)

Thus when x = 2 cos(π/m) and n = �m
2 �, we have

fk(x) ≥ 0 for k = 1, 2, . . . , n − 1. (4.14)

Lemma 4.20 For n ≥ 2, we have

τ
(n)
3,1 = −(x2 + 2)fn−1 − 2 −

n−2∑

k=1

hk = −xgn − 2 −
n−1∑

k=1

hk,

τ
(n)
3,2 = x4 + x2 + 1

x
fn−1 + 1

x
fn−2 + 2x + x

n−2∑

k=1

hk = (x2 − 1)gn + 2x + x

n−1∑

k=1

hk,

τ
(n)
3,3 = (3x2 + 2)fn−1 + 5fn−2 + 2fn−3 + 4 + 2

n−3∑

k=1

hk

= 3xgn + 1

x
(5gn + 7gn−1 + 2gn−2) + 4 + 2

n−2∑

k=1

hk,

τ
(1)
3,1 = −x2 − 2, τ

(1)
3,2 = x3 + x, τ

(1)
3,3 = 3x2 + 3,

where we set hk = 3fk + fk−1 = 1
x
(3gk+1 + 4gk + gk−1) and f−1 = −3.

Proof The assertions follow from Eq. 4.10, Eq. 4.11 and
[
τ

(n)
2,j

τ
(n)
3,j

]

= An

[
τ

(0)
2,j

τ
(0)
3,j

]

+ (An−1 + An−2 + · · · + I )Bj (j = 1, 2, 3).
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Now we will prove the following proposition.

Proposition 4.21 Assume that [a, b] is a positive reduced root of H(m) with a > b. Let
pα1 + qα2 + rα3 be the positive root of W(m) associated with s([a, b]). Then we have

0 ≤ p < r .

Proof Let x = 2 cos(π/m). Then we obtain from Eq. 4.8

s3s2s1 =
⎡

⎣
−1 x 2
−x x2 − 1 3x

−x2 − 2 x3 + x 3x2 + 3

⎤

⎦ .

Suppose that [c, d] = σ1σ2[a, b]. Then [c, d] is an imaginary positive reduced root of
H(m), since the set of positive imaginary roots are invariant under the Weyl group action.
Let pα1 + qα2 + rα3 be the root associated with s([a, b]), and assume 0 ≤ p < r . (Note
that q ≥ 0 from the assumption.) Then, by Lemma 4.19 and the computation of s3s2s1, the
root associated with s([c, d]) is equal to p′α1 + q ′α2 + r ′α3, where

p′ = −p+qx+2r, q ′ = −px+q(x2−1)+3rx, r ′ = −p(x2+2)+q(x3+x)+3r(x2+1).

We see that 0 ≤ p′ < r ′, and [c, d] also satisfies the assertion of the proposition. Thus it
is enough to consider a set of representatives [a, b] with a > b from the orbits of the Weyl
group action on the set of positive roots.

For the real roots [a, b] (a > b), we can take [F2, F1] as a representative. Then it follows
from Lemma 3.3 that s([F2, F1]) = s3. Since the associated root is simply α3, the assertion
of the proposition holds in this case.

For the imaginary roots [a, b] (a > b), such a set of representatives is given by the
condition

0 ≤ 2a

m
≤ b < a. (4.15)

(See [14] for more details.)
For the rest of the proof, we assume that [a, b] satisfies (4.15). Then the first canonical

sequence of [a, b] occurs with N1 ≤ �m
2 �−1, and the root associated with s([a, b]) is equal

to

SlSl−1 · · · S1α,

where Si = (s2s3)
ni (s2s1) with 1 ≤ ni ≤ �m

2 �, i = 1, 2, . . . , l and α = (s2s3)
n0α2 for

1 ≤ n0 ≤ �m
2 �−1, or (s2s3)n0s2α3 for 0 ≤ n0 ≤ �m

2 �−2, or (s2s3)n0s2α1 for n0 = �m
2 �−1.

Write α = p0α1 + q0α2 + r0α3. We claim that 0 ≤ p0 < r0.

i) If α = (s2s3)
n0α2 for 1 ≤ n0 ≤ �m

2 � − 1, then p0 = 0 and r0 = gn0(x). Recall from
Eq. 4.12 that the largest root of gn0 is 2 cos(

π
2n0

). Since x = 2 cos( π
m

) > 2 cos( π
2n0

),
we have r0 > p0 = 0 as claimed.

ii) If α = (s2s3)
n0s2α3 for 0 ≤ n0 ≤ �m

2 � − 2, then p0 = 0 and r0 = fn0(x). Recall
from Eq. 4.13 that the largest root of fn0 is 2 cos( π

2n0+1 ). Since x = 2 cos( π
m

) >

2 cos( π
2n0+1 ), we have r0 > p0 = 0 as claimed.

iii) If α = (s2s3)
n0s2α1 for n0 = �m

2 � − 1, then p0 = 1 and r0 = −τ
n0
3,1. It follows from

Lemma 3.3 and Eq. 4.14 that r0 > p0 ≥ 0 as claimed.
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For induction, write Sl−1 · · · S1α = pα1 + qα2 + rα3 and assume 0 ≤ p < r . Then,
using Eq. 4.9, we compute SlSl−1 · · · S1α = p′α1 + q ′α2 + r ′α3 to obtain

p′ = −p + xq + 2r and r ′ = τ
(nl)
3,1 p + τ

(nl)
3,2 q + τ

(nl)
3,3 r .

Clearly, p′ ≥ 0. It follows from Lemma 3.3 and Eq. 4.14 that τ (nl)
3,2 − x > 0, τ (nl)

3,3 − 2 > 0
and

(τ
(nl)
3,1 + 1) + (τ

(nl)
3,3 − 2) > 0.

Then we have

r ′ − p′ = (τ
(nl)
3,1 + 1)p + (τ

(nl)
3,2 − x)q + (τ

(nl)
3,3 − 2)r

≥ (τ
(nl)
3,1 + 1)p + (τ

(nl)
3,3 − 2)r > (τ

(nl)
3,1 + 1)p + (τ

(nl)
3,3 − 2)p ≥ 0.

Therefore r ′ > p′, and this completes the proof.

The following corollary will be used in the proof of Theorem 1.1.

Corollary 4.22 Assume that [a, b], [a′, b′] are positive reduced roots of H(m) such that
a ≥ b and a′ < b′, respectively. Then s([a, b]) cannot be equal to s([a′, b′]) in W(m).

Proof If the positive root associated to s([a, b]) is pα1+qα2+ rα3, then we have p ≤ r by
Proposition 4.21 and from the fact that [1, 1] is the only positive reduced root with a = b

and s([1, 1]) = s2. If the positive root associated to s([a′, b′]) is p′α1 + q ′α2 + r ′α3, then
we have p′ > r ′ by interchanging the roles of s1 and s3. Thus s([a, b]) cannot be equal to
s([a′, b′]).

5 Reduction to StandardWords

In this section, we reduce each sa×b to its standard word in W(m), starting with an expres-
sion in Proposition 4.13, and prove Theorem 3.4 by showing all the standard words are
distinct.

For k ∈ Z≥2, define

S(2k − 1) = {s21 − e, s22 − e, s23 − e, (s1s2)
k−1s1 − (s2s1)

k−1s2, (s2s3)
k−1s2 − (s3s2)

k−1s3},
S(2k) = {s21 − e, s22 − e, s23 − e, (s1s2)

k − (s2s1)
k,

(s2s3)
k − (s3s2)

k, (s1s2)
k−1s1(s3s2)

k − (s2s1)
ks3(s2s3)

k−1}.

It will be shown in Propositions 6.7 and 6.8 that S(m) is a Gröbner–Shirshov basis of
W(m) for m ≥ 3. Thus we take S(m)-standard words or monomials (see Definition 6.1) as
standard expressions of the elements of W(m).

In this section, as in Proposition 4.13, we write only subscripts of simple reflections
when we express elements in W(m), and the identity element of W(m) will be denoted by
e. Before delving into general cases, let us look at a simple example.

Example 5.1 Suppose [a, b] = [5, 3] and m = 3. By definition an S(3)-standard word
cannot have any of 11, 22, 33, 121, 232 as a subword. Clearly, the level of [5, 3] is 1. By
Example 4.7 (1) and Proposition 4.13, we have

s5×3 = (23)2(21)(23)2(21)(23)1(21),
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which is not S(3)-standard because 232 is a subword. Using the relations 232 = 323, 22 =
e, 33 = e, we obtain

sa×b = (31)(31)(3231),

which is S(3)-standard.

Recall that the positive reduced real roots [a, b] of H(m) with a > b are precisely
[Fn, Fn−1], n ≥ 2. By simple investigations, one can see that the following lemma is true.

Lemma 5.2 The expressions of sFn×Fn−1 in Lemma 3.3 (2) are S(m)-standard and all
distinct for n ≥ 2.

In what follows we obtain S(m)-standard words for sa×b, where [a, b] is a positive
imaginary reduced root of H(m). Let L be the level of [a, b]. The canonical sequences
ck = (ak,1, ak,2, . . . , ak,dk

) and the numbers Nk are defined in Definition 4.6.
Define N := NL − δL,1 and � := �m/2�, where δi,j is Kronecker’s delta. According to

the values of N , let w1 and w2 be the elements of W(m) defined by the following table.

N w1 w2

N ≤ � − 3 (23)N+2(21) (23)N+1(21)
� − 2 (32)m−�−1(31) (23)�−1(21)
� − 1 ≤ N ≤ m − 3 (32)m−N−3(31) (32)m−N−2(31)
m − 2 21 31

(5.1)

Lemma 5.3 (level L = 1) Assume that the level L of [a, b] is 1. Unless m = 3, N1 = 2
and c1 is of type −, the following expression of sa×b is S(m)-standard:

sa×b =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w
a2,1
1 w2 · · ·wa2,d2

1 w2 if c1 is of type +,

w1w
a2,1
2 · · ·w1w

a2,d2
2 if c1 is of type −,

w1w2 if c1 is of type =,

w2, if c1 is of type 0.

The case when m = 3, N1 = 2 and c1 is of type − is covered in Lemma 5.7.

Example 5.4 Continuing with Example 5.1, assume [a, b] = [5, 3] and m = 3. Then
N = N1 − 1 = 0, � = 1, ρ1 = 2

3 and c2 = (2) from Example 4.7 (1). Thus we have
w1 = 31 and w2 = 3231, and

sa×b = w2
1w2 = (31)(31)(3231).

This coincides with the standard word in Example 5.1.

Proof of Lemma 5.3 By Proposition 4.13, we obtain

sa×b = (23)a1,1(21)(23)a1,2(21) · · · (23)a1,d1 (21). (5.2)

Note that the S(m)-standard word of (23)s(21) is equal to

(23)s(21), if s ≤ � − 1, or

(32)m−s−1(31), if � ≤ s < m.
(5.3)

Since N = N1 − 1, we have four different cases according to Eq. 5.1.
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Case 1: 1 ≤ N1 ≤ � − 2. Since a1,i = N1 or N1 + 1, the S(m)-standard word of
(23)a1,i (21) is equal to itself for all 1 ≤ i ≤ d1. Since there are no relations involving
w1 = (23)N1+1(21) and w2 = (23)N1(21) in the expression (5.2), it is already standard.
Thus, if c1 is of type + (resp. −), we obtain

sa×b = w
a2,1
1 w2 · · ·wa2,d2

1 w2 (resp. w1w
a2,1
2 · · · w1w

a2,d2
2 )

from the definition of c2.
Suppose c1 is of type =. Since a

b
= N1 + 1

2 , we obtain b = 2 and

sa×b = (23)N1+1(21)(23)N1(21) = w1w2.

Assume c1 is of type 0. Then a
b

= N1. Since a and b are coprime, a = b = 1 and N1 = 1.
By the definition of sa×b, we obtain

sa×b = (23)(21) = w2.

Case 2: N1 = �−1. Recall a1,i = N1 or N1+1. The word (23)N1(21) is S(m)-standard,
while (23)N1+1(21) is reduced to (32)m−�−1(31). These words are w2 and w1 respectively.
Moreover, there are no additional relations between (23)N1(21) and (32)m−�−1(31). Hence,
we obtain the desired expressions of sa×b similarly to Case 1.

Case 3: � ≤ N1 ≤ m − 2. The S(m)-standard words of (23)N1(21) and (23)N1+1(21)
are w2 = (32)m−N1−1(31) and w1 = (32)m−N1−2(31) respectively. Moreover, there are no
additional relations between w1 and w2. Hence, we obtain the desired expressions of sa×b

similarly to Case 1.
Case 4: N1 = m − 1. Note that

(23)m−1(21) = (32)(21) = 31,
(23)m(21) = 21.

As in Case 1, if c1 is of type 0, then sa×b is equal to w2 = 31, and if c1 is of type =, then
sa×b is equal to w1w2 = (21)(31). If c1 is of type −, then

c1 = (m, (m − 1)a2,1 , m, (m − 1)a2,2 , . . . , m, (m − 1)a2,d2 ),

where we write (m−1)s = m − 1,m − 1, . . . , m − 1︸ ︷︷ ︸
s times

, and sa×b in Eq. 5.2 becomes equal to

(21)(31)a2,1(21)(31)a2,2 · · · (21)(31)a2,d2 = w1w
a2,1
2 · · ·w1w

a2,d2
2 . (5.4)

If m > 3, then this expression is standard and we obtain the desired form. If m = 3, then it
is not standard because of the subword 121 and this case is covered in Lemma 5.7. Finally,
c1 cannot be of type + by Corollary 4.14 (1). It completes the proof.

Now we move on to higher levels. As before, define � := �m/2�. According to the values
of NL, let v1 and v2 be defined by the following table.

NL v1 v2

NL ≤ � − 2 (12)NL+1(13) (12)NL(13)
� − 1 (21)m−�−1(23) (12)�−1(13)
� ≤ NL ≤ m − 2 (21)m−NL−2(23) (21)m−NL−1(23)

(5.5)
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Define

x = (132)�
L−2
2 �1, x−1 = 1(231)�

L−2
2 � and y =

{
(132)

L−4
2 13 if L ≥ 4,

2̂ if L = 2,

where 2̂ means 2 if the following letter is different from 2, or removing the following letter
2 otherwise. For example, 2̂13 = 213 and 2̂23 = 3. If L = 3, we do not need to define y.

Lemma 5.5 (level L ≥ 2) Assume that the level of [a, b] is L ≥ 2.

(1) Suppose that L is even. Unless m = 3, 4, 5 and NL = m − 2, the S(m)-standard
word of sa×b is equal to
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yv2v
aL+1,1−1
1 v2[vaL+1,2

1 v2 · · · vaL+1,dL+1
1 v2]x−1 if cL is of type +,

yv
aL+1,1+1
2 [v1vaL+1,2

2 · · · v1vaL+1,dL+1
2 ]x−1 if cL is of type −,

yv22x
−1 if cL is of type =,

y(12)NL−113x−1 if cL is of type 0 and NL ≤ �,

xv2x
−1 if cL is of type 0 and NL ≥ � + 1.

Here the expression inside [ ] is void if dL+1 = 1. The case when m = 3, 4, 5 and
NL = m − 2 is considered in Lemma 5.10.

(2) Suppose that L is odd. Unless m = 3 and cL is of type −, the S(m)-standard word of
sa×b is equal to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xw2w
aL+1,1−1
1 w2[waL+1,2

1 w2 · · · waL+1,dL+1
1 w2]23x−1 if cL is of type +,

xw
aL+1,1+1
2 [w1w

aL+1,2
2 · · · w1w

aL+1,dL+1
2 ]23x−1 if cL is of type −,

xw2
223x

−1 if cL is of type =,
x(23)NL2123x−1 if cL is of type 0 and NL ≤ � − 1,
x32w223x−1 if cL is of type 0 and NL ≥ �.

Here w1 and w2 are given by Eq. 5.1 as before and the expression inside [ ] is void
if dL+1 = 1. The case when m = 3 and cL is of type − is dealt with in Lemma 5.9.

Example 5.6 Let m = 6 and [a, b] = [73, 13]. Then
c1 = (6, 6, 5, 6, 6, 5, 6, 5, 6, 6, 5, 6, 5), c2 = (2, 2, 1, 2, 1), c3 = (2, 1),

and N1 = 5, N2 = 1, ρ1 = 8
13 , ρ2 = 3

5 . The level L is equal to 2 and c2 is of type +. Note
that v1 = 121213 and v2 = 12134 from Eq. 5.5. By Lemma 5.5 (1), we obtain

s73×13 = yv2v1v2v1v2x
−1 = 2(1213)(121213)(1213)(121213)(1213)1.

Proof of Lemma 5.5 Suppose L = 2g + 2 ≥ 2. By Corollary 4.17 (1), we have

sa×b = (132)g(21)aL,1(31)(21)aL,2(31) · · · (21)aL,dL (31)(231)g

= (132)g1(12)aL,1(13) · · · (12)aL,dL (13)1(231)g

= x(12)aL,1(13) · · · (12)aL,dL (13)x−1.

We have 1 ≤ aL,i ≤ m − 1 for 1 ≤ i ≤ dL by Lemma 4.8 (2) and Lemma 4.10. Note
that the S(m)-standard word of (12)s(13) for 1 ≤ s ≤ m − 1 is

{
(12)s(13) if s ≤ � − 1,

(21)m−s−1(23) if � ≤ s ≤ m − 1.
(5.6)

We apply the same argument as in the proof of Lemma 5.3 to

x−1sa×bx = (12)aL,1(13) · · · (12)aL,dL (13) (5.7)
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with Eq. 5.3 replaced by Eq. 5.6 and obtain

x−1sa×bx =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v
aL+1,1
1 v2 · · · vaL+1,dL+1

1 v2 if cL is of type +,

v1v
aL+1,1
2 · · · v1vaL+1,dL+1

2 if cL is of type −,

v1v2 if cL is of type =,

v2, if cL is of type 0.

After conjugating both sides by x, we obtain an expression of sa×b. Assume it is not the
case that m = 3, 4, 5 and NL = m − 2. If cL is of type +, − or =, we apply xv1 = yv2 to
the leftmost part of the expression and obtain the desired standard word. For cL of type 0,
the word xv2x

−1 is standard if NL ≥ �+1; otherwise xv2x
−1 reduces to y(12)NL−113x−1,

which is standard.
In the case when m = 3, 4, 5 and NL = m − 2, the standard word of (12)aL,i (13) in

Eq. 5.7 is 2123 or 23 since aL,i = m − 2 or m − 1 for i = 1, 2, . . . , dL. For example, if cL

is of type −, an expression of sa×b is equal to

x(23)(2123)aL+1,1(23)(2123)aL+1,2 · · · (23)(2123)aL,dL+1 x−1.

Since this expression has a subword 23232, it is not standard exactly when m = 3, 4, 5.
This case will be handled in Lemma 5.10.

Now suppose L = 2g + 1 ≥ 3. By Corollary 4.17 (2), we have

sa×b = (132)g(23)aL,1+1(21)(23)aL,2+1(21) · · · (23)aL,dL
+1(21)(231)g

= x(32)(23)aL,1+1(21)(23)aL,2+1(21) · · · (23)aL,dL
+1(21)(23)x−1.

We apply the same argument as in the proof of Lemma 5.3 to

(23)x−1sa×bx(32) = (23)aL,1+1(21)(23)aL,2+1(21) · · · (23)aL,dL
+1(21) (5.8)

and obtain

(23)x−1sa×bx(32) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w
aL+1,1
1 w2 · · · waL+1,dL+1

1 w2 if cL is of type +,

w1w
aL+1,1
2 · · · w1w

aL+1,dL+1
2 if cL is of type −,

w1w2 if cL is of type =,

w2 if cL is of type 0.

(5.9)

Here the shift of cL = (aL,1, . . . , aL,dL
) by 1 in the exponents of Eq. 5.8 is reflected in

the definition of N = NL − δL,1, and we still get cL+1 = (aL+1,1, . . . , aL+1,dL+1) in the
exponents of Eq. 5.9 since the shift of cL by 1 does not change how many times a number
repeats in the sequence.

We see from Eq. 5.1 that

(32)w1 = w2 for 1 ≤ NL ≤ m − 2.

For example, when NL = � − 2, we have

(32)w1 = (32)m−�(31) = (23)�(31) = (23)�−1(23)(31) = (23)�−1(21) = w2.

Assume it is not the case that m = 3 and cL is of type −. After conjugating both sides
of Eq. 5.9 by x(32), we obtain an expression of sa×b. If cL is of type +, − or =, we
apply x(32)w1 = xw2 to the leftmost part of the expression and obtain the desired stan-
dard word. For cL of type 0, the word x(32)w2(23)x−1 is standard if NL ≥ �; otherwise
x(32)w2(23)x−1 reduces to the standard word x(23)NL2123x−1.

In the case m = 3, the standard word of (23)aL,i+1(21) in Eq. 5.8 is equal to w2 = 31 or
w1 = 21 since aL,i = 1 or 2, and the word w2w1 is not standard. The sequence cL cannot
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be of type + or 0 by Corollary 4.14. If cL is of type =, the expression in the lemma does
not have w2w1 as a subword (and the argument in the previous paragraph is valid). If cL is
of type −, the expression in the lemma is not standard since it has w2w1 as a subword. This
case will be considered in Lemma 5.9.

5-A Exceptional Cases

In this subsection, we deal with exceptional cases in which the expressions in Lemmas 5.3
and 5.5 are not standard. These cases are restricted to specific conditions with m = 3, 4 or 5.

Lemma 5.7 (m = 3; level 1) Assume that the level of [a, b] is 1 and suppose that m = 3,
N1 = 2 and c1 is of type −.

(1) If N2 > 1, then the following expression of sa×b is S(3)-standard:

w1[(w2)
a2,1−1w3 · · · (w2)

a2,d2−1−1w3](w2)
a2,d2 ,

where w1 = 21, w2 = 31, w3 = 3212 and the expression inside [ ] is void if d2 = 1.
(2) If N2 = 1, then the following expression of sa×b is S(3)-standard:

⎧
⎪⎨

⎪⎩

w1w3(w2w3)
a3,1−1[w6(w2w3)

a3,2−1 · · · w6(w2w3)
a3,d3−1]w2

2 for c2 of type +,

21321(w4)
a3,1−1[w5(w4)

a3,2 · · · w5(w4)
a3,d3 ]23131 for c2 of type −,

w1w3w
2
2 for c2 of type =,

where w1 = 21, w2 = 31, w3 = 3212, w4 = 3231, w5 = 231321, w6 = 3132132312
and the expression inside [ ] is void if d3 = 1.

Example 5.8 Suppose m = 3 and [a, b] = [17, 7]. Then the level of [a, b] is 1. Since 17
7 =

2 + 3
7 < 2 + 1

2 , we get N1 = 2 and c1 of type −. One can check c1 = (3, 2, 3, 2, 3, 2, 2).
By Proposition 4.13 or by definition of sa×b, we obtain

sa×b = (23)3(21)(23)2(21)(23)3(21)(23)2(21)(23)3(21)(23)2(21)(23)2(21)
= 213 121 3 121 3131 = 21321 232 123131 = 21321323123131,

where the underlined subwords are replaced using relations 121 = 212 and 232 = 323.
On the other hand, we have c2 = (1, 1, 2), N2 = 1 and c2 of type −. It is clear that

c3 = (2). By Lemma 5.7 (2),

sa×b = 21321(w4)
123131 = 21321323123131.

Thus we get the same standard word.

Proof of Lemma 5.7 Since

(31)a2,i (21) = (31)a2,i−13121 = (31)a2,i−13212 for 1 ≤ i ≤ d2,

we obtain from Eq. 5.4

sa×b = (21)(31)a2,1(21)(31)a2,2 · · · (21)(31)a2,d2
= (21)(31)a2,1−1(3212)(31)a2,2−1(3212) · · · (31)a2,d2−1(3212)(31)a2,d2

= w1(w2)
a2,1−1w3 · · · (w2)

a2,d2−1−1w3(w2)
a2,d2 . (5.10)

Suppose N2 > 1. It implies that a2,i > 1 for all 1 ≤ i ≤ d2, and the expression (5.10) is
standard.
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Now suppose N2 = 1. If c2 is of type +, we have

c2 = (1, 2, . . . , 2︸ ︷︷ ︸
a3,1 times

, 1, 2, . . . , 2︸ ︷︷ ︸
a3,2 times

, . . . , 1, 2, . . . , 2︸ ︷︷ ︸
a3,d3 times

)

by Lemma 4.8 (3). We start from Eq. 5.10 to see that sa×b is equal to

(21)(31)a2,1−1(3212)(31)a2,2−1(3212) · · · (31)a2,d2−1−1(3212)(31)a2,d2−1(31)
= (21)(321231)a3,1 (3212)(321231)a3,2 (3212) · · · (321231)a3,d3 (31)
= (213212)[(313212)a3,1−1(3132123212)(313212)a3,2−1(3132123212) · · · (313212)a3,d3−1](3131)
= (213212)[(313212)a3,1−1(3132132312)(313212)a3,2−1(3132132312) · · · (313212)a3,d3−1](3131)
= w1w3(w2w3)

a3,1−1w6(w2w3)
a3,2−1 · · · w6(w2w3)

a3,d3−1(w2)
2,

where the underlines are put to indicate the replacements 232 = 323. The remaining cases
can be proven similarly.

Recall that we set

x = (132)�
L−2
2 �1 and x−1 = 1(231)�

L−2
2 �.

Now we present the remaining cases in Lemmas 5.9 and 5.10 below. Since the proofs of
these lemmas are similar to that of Lemma 5.7, we omit the proofs.

Lemma 5.9 (m = 3; odd L ≥ 3) Assume that the level L of [a, b] is ≥ 3 and odd. Suppose
m = 3, NL = 1 and cL is of type −.

(1) If NL+1 �= 1, the S(3)-standard word of sa×b is equal to

x31[u3aL+1,1−1u4 · · · u3aL+1,dL+1−1−1
u4]u3aL+1,dL+1 23x−1,

where u3 = 31, u4 = 3212 and the expression inside [ ] is void if dL+1 = 1.
(2) If NL+1 = 1, the S(3)-standard word of sa×b is equal to

⎧
⎪⎨

⎪⎩

x3132u5aL+2,1−1[u6u5aL+2,2 · · · u6u5aL+2,dL+2 ]u723x−1 for cL+1 of type −,

x3132[u6aL+2,1u5u6
aL+2,2 · · · u5]u6aL+2,dL+2−1

u723x−1 for cL+1 of type +,

x3132u723x−1 for cL+1 of type =,

where u5 = 1323, u6 = 123132, u7 = 123131 and the expression inside [ ] is void if
dL+2 = 1.

Lemma 5.10 (m = 3, 4, 5; even L ≥ 2) Assume that the level L of [a, b] is ≥ 2 and even.
Suppose m = 3, 4, 5 and NL = m − 2. Let

v3 = 31, v4 = 3231, v5 = 2321 and v6 = 323231.

Then the S(m)-standard word of sa×b is given by the following:

for m = 3,

{
xv

aL+1,1
4 [v3vaL+1,2−1

4 · · · v3vaL+1,dL+1−1

4 ]23x−1 if cL is of type −,

xv423x−1 if cL is of type =;

for m = 4,

⎧
⎪⎨

⎪⎩

xv
aL+1,1
5 [v4vaL+1,2−1

5 · · · v4vaL+1,dL+1−1

5 ]23x−1 if cL is of type −,

xv523x−1 if cL is of type =,

y1213x−1 if cL is of type 0;
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for m = 5,

⎧
⎪⎨

⎪⎩

xv
aL+1,1
5 [v6vaL+1,2−1

5 · · · v6vaL+1,dL+1−1

5 ]23x−1 if cL is of type −,

xv523x−1 if cL is of type =,

x2123x−1 if cL is of type 0.

Here the expression inside [ ] is void if dL+1 = 1.

Remark 5.11 By Corollary 4.14 (1) the sequences cL cannot be of type + in Lemma 5.10.
Moreover, when m = 3, the type of cL cannot be 0 by Corollary 4.14 (2). Thus all the
possible cases are covered.

Example 5.12 (1) Suppose m = 3 and [a, b] = [13, 5]. Since c1 = (3, 3, 2, 3, 2) and
c2 = (2, 1), we obtain from Proposition 4.13

sa×b = (23)3(21)(23)3(21)(23)2(21)(23)3(21)(23)2(21)
= (21)2(31)(21)(31) = 12321231 = 13231231,

where we use the relations 121 = 212, 232 = 323 and 22 = e. On the other hand,
L = 2, N2 = 1, ρ2 = 1

2 and c2 is of type =. By Lemma 5.10, we have

sa×b = xv423x
−1 = 13231231,

which is the same standard word.
(2) Let m = 4 and [a, b] = [85, 23]. Then

c1 = (4, 4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 4, 3, 4, 4, 3, 4, 4, 3, 4, 4, 3),

c2 = (3, 2, 2, 3, 2, 2, 2), c3 = (2, 3),

and N1 = 3, N2 = 2, ρ1 = 16
23 , ρ2 = 2

7 . The level L is equal to 2 and the sequence c2
is of type −. By Lemma 5.10, we obtain

sa×b = xv25v4v
2
523x

−1 = 1(2321)2(3231)(2321)2231. (5.11)

One can check that the initial word of sa×b indeed reduces to the standard word in
Eq. 5.11.

5-B Proof of Theorem 3.4

Proof Suppose [a, b] �= [c, d] with a ≥ b and c ≥ d . If [a, b] and [c, d] are both real, then
sa×b �= sc×d by Lemma 5.2. Suppose that [a, b] and [c, d] are both imaginary. We will
show that sa×b �= sc×d by comparing S(m)-standard words given in Lemmas 5.3, 5.5, 5.7,
5.9 and 5.10.

Let the levels of [a, b] and [c, d] be L and L′, respectively. Without loss of generality,
we may assume L ≤ L′. Write g = �L−2

2 �. It is enough to show (231)gsa×b(132)g �=
(231)gsc×b(132)g . By Corollary 4.17 (2), an expression of (231)gsa×b(132)g is equal to
sã×b̃ where [ã, b̃] has level L − 2g = 1 or 2. Similarly, (231)gsc×d(132)g is equal to sc̃×d̃

where [c̃, d̃] has level L′ − 2g. Consequently, we may assume that [a, b] has level L = 1 or
2 and [c, d] has level L′ ≥ L, and it is sufficient to prove sa×b �= sc×d .

We summarize consequences of Lemmas 5.3, 5.5, 5.7, 5.9 and 5.10 in what follows. Let
[e, f ] be an arbitrary imaginary positive reduced root of level L′′.
• If L′′ = 1, the standard word of se×f starts with one of

2131, 2132, 2321, 2323, 31, 3231, 3232, (5.12)

as one can see from Lemmas 5.3 and 5.7.
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• If L′′ = 2, the standard word of se×f starts with one of

12121, 12123, 12321, 13231, 21212, 21213 (5.13)

from Lemmas 5.5 and 5.10. Note that 2131 cannot occur as having c2 of type 0 and
N2 = 1 is impossible by Corollary 4.14 (2). Likewise 12323 cannot occur because
having c2 of type + and NL = m − 2 is impossible by Corollary 4.14 (1).

• If L′′ = 2g + 1 ≥ 3, the standard word of se×f starts with one of

x2323, x31, x3231, x3232 (5.14)

from Lemmas 5.5 and 5.9, where x = (132)� L′′−2
2 �1. Note that x2321 cannot occur

since having NL = 1 and cL of type 0 is impossible by Corollary 4.14 (2).
• If L′′ = 2g + 2 ≥ 4, the standard word of se×f starts with one of

y1212, y1213, y13, y2121, y2123, x2121, x2123, x2321, x3231,
(5.15)

from Lemmas 5.5 and 5.10, where x = (132)� L′′−2
2 �1 and y = (132)

L′′−4
2 13.

First assume L < L′. If L = 1, then none of the words in Eq. 5.12 appears as a starting
word in Eqs. 5.13, 5.14 and 5.15. Thus the standard word of sa×b must be different from
that of sc×d , and hence sa×b �= sc×d . If L = 2 and L′ ≥ 4, then none of the words in
Eq. 5.13 appears as a starting word in Eqs. 5.14 and 5.15, and we obtain sa×b �= sc×d . If
L = 2 and L′ = 3, then 13231 is common in Eqs. 5.13 and 5.14. However, if L = 2, a
standard word of sa×b starts with 13231 only when m = 3; now, if L′ = 3 and m = 3, no
standard word actually starts with 13231 by Lemmas 5.5 and 5.9. Thus the standard word
sa×b is different from that sc×d in this case, and we have sa×b �= sc×d .

Next assume that L = L′ = 1. Let Nk , ck and εk be defined for [a, b] as in Definition
4.6, where εk denotes the type of ck , and use notations N ′

k , c′
k and ε′

k for [c, d]. One can
check that the standard words in Lemmas 5.3 and 5.7 are all different for each m. If m �=
3, the standard words of sa×b and sc×d are determined by (N1, ε1, c2) and (N ′

1, ε
′
1, c

′
2)

respectively by Lemma 5.3. Since [a, b] �= [c, d], we have (N1, ε1, c2) �= (N ′
1, ε

′
1, c

′
2)

by Lemma 4.9 and the corresponding standard words are different. Thus sa×b �= sc×d . If
m = 3, the standard words are determined either by (N1, ε1, c2) and (N ′

1, ε
′
1, c

′
2), or by

(N1, ε1, N2, ε2, c3) and (N ′
1, ε

′
1, N

′
2, ε

′
2, c

′
3). Since [a, b] �= [c, d], we have sa×b �= sc×d by

Lemmas 4.9, 5.3 and 5.7.
Finally assume that L = L′ = 2. Similarly, as in the case that L = L′ = 1, one

can check that the standard words in Lemmas 5.5 (1) and 5.10 are all different for each
m. The standard words of sa×b and sc×d are determined by (N2, ε2, c3) and (N ′

2, ε
′
2, c

′
3)

respectively, and note that N1 = N ′
1 = m − 1 and ε1 = ε′

1 = +. Since [a, b] �= [c, d], we
have (N2, ε2, c3) �= (N ′

2, ε
′
2, c

′
3) by Lemma 4.9 and the corresponding standard words are

different. Thus sa×b �= sc×d .
Now suppose that [a, b] is real and [c, d] is imaginary. Then the S(m)-standard

expression of sa×b is given by Lemma 3.3 (2) and Lemma 5.2, and can be written as

21, (132)l1(231)l+1 or (132)l131(231)l+1 for some l ≥ 0. (5.16)

Comparing Eq. 5.16 with Eqs. 5.12, 5.13, 5.14 and 5.15, we see that only possibilities occur
when sc×d starts with x31 or y2123. Further, we compare (5.16) with the standard words
starting with x31 or y2123 in Lemmas 5.5, 5.9 and 5.10 and see that sa×b �= sc×d in all the
possibilities. This completes the proof.
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5-C Proof of Theorem 1.1

Proof By Theorem 1.2 in [17], the map [a, b] �→ s([a, b]) is a surjection from the set of
reduced positive roots ofH(m) onto the set of rigid reflections of W(m). Thus we have only
to prove that the map is an injection.

Suppose that [a, b] and [c, d] are two distinct reduced positive roots of H(m). If a ≥
b and c ≥ d , then sa×b �= sc×d by Theorem 3.4. It follows from Lemma 3.3 (1) that
s([a, b]) �= s([c, d]). If a < b and c < d , then we also have s([a, b]) �= s([c, d]) since
interchanging roles of 1 and 3 yields a symmetry to cover this case. If a ≥ b and c < d ,
or if a < b and c ≥ d , then s([a, b]) �= s([c, d]) by Corollary 4.22. This completes the
proof.

6 Gröbner–Shirshov Basis forW(m)

In this section we determine Gröbner–Shirshov bases for W(m), which are used in the
previous sections.

6-A Gröbner–Shirshov Basis Theory

We briefly recall the Gröbner–Shirshov basis theory (or Diamond Lemma). See [2–4, 12,
13] for more details. Let X = {x1, x2, · · · } be an alphabet and let X∗ be the free monoid
of associative monomials on X. We denote the empty monomial by e and the length of a
monomial u by l(u). Thus we have l(e) = 0. A well-ordering ≺ on X∗ is called a monomial
order if x ≺ y implies axb ≺ ayb for all a, b ∈ X∗. For two monomials

u = xi1xi2 · · · xik , v = xj1xj2 · · · xjl
∈ X∗,

define u ≺deg-lex v if and only if k < l or k = l and ir > jr for the first r such that ir �= jr ;
it is a monomial order on X∗ called the degree lexicographic order. We denote the degree
lexicographic order on X∗ simply by ≺. In particular, we have x1 � x2 � . . . .

Let AX be the free associative algebra generated by X over a field F. Given a nonzero
element p ∈ AX , we denote by p the maximal monomial appearing in p under the ordering
≺. Thus p = αp + ∑

βiwi with α, βi ∈ F, wi ∈ X∗, α �= 0 and wi ≺ p. If α = 1, p is
said to be monic.

Let S be a subset of monic elements ofAX , let J be the two-sided ideal ofAX generated
by S. Then we say that the algebra A = AX/J is defined by S. The images of p ∈ AX in
A will also be denoted by p.

Definition 6.1 Given a subset S of monic elements of AX , a monomial u ∈ X∗ is said to
be S-standard if u �= asb for any s ∈ S and a, b ∈ X∗. Otherwise, the monomial u is said
to be S-reducible.

Through inductive steps, every p ∈ AX can be expressed as

p =
∑

αiaisibi +
∑

γkuk, (6.1)

where αi, γk ∈ F, ai, bi, uk ∈ X∗, si ∈ S, aisibi � p, uk � p and uk are S-standard. The
term

∑
γkuk in the expression (6.1) is called a standard (or normal) form of p with respect

to the pair S (and with respect to the monomial order ≺). In general, a standard word is
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not unique. Nonetheless, it is clear that the set of S-standard monomials linearly spans the
algebra A defined by S.

Definition 6.2 A subset S of monic elements of AX is a Gröbner–Shirshov basis if the set
of S-standard monomials forms a linear basis of the algebra A defined by S.

Let p and q be monic elements of AX with leading terms p and q. We define the
compositions of p and q as follows.

Definition 6.3 (a) If there exist a, b,w ∈ X∗ such that pa = bq = w with l(p) > l(b),
then the composition of intersection of p and q with respect to w is defined to be (p, q)w =
pa − bq.

(b) If there exist a, b,w ∈ X∗ such that b �= e, p = aqb = w, then the composition of
inclusion of p and q with respect to w is defined to be (p, q)w = p − aqb.

For p, q ∈ AX and w ∈ X∗, we define a congruence relation on AX as follows: p ≡ q

mod (S; w) if and only if p − q = ∑
αiaisibi , where αi ∈ F, ai, bi ∈ X∗, si ∈ S, and

aisibi ≺ w.

Definition 6.4 A subset S of monic elements inAX is said to be closed under composition
if (p, q)w ≡ 0 mod (S; w) for all p, q ∈ S and for any w ∈ X∗ whenever the composition
(p, q)w is defined.

The following is Shirshov’s Composition Lemma.

Lemma 6.5 [3] Let S be a subset of monic elements of AX , and let A = AX/J be the
associative algebra defined by S. Assume that S is closed under composition. If the image
of p ∈ AX is trivial in A, then the word p is S-reducible.

As a consequence, we obtain:

Theorem 6.6 [2, 3] Let S be a subset of monic elements in AX . Then the following are
equivalent :

(a) S is a Gröbner–Shirshov basis;
(b) S is closed under composition;
(c) For each p ∈ AX , the standard word of p is unique.

6-B Coxeter Groups

Consider a Coxeter group

W = 〈s1, s2, ..., sn : s21 = · · · = s2n = e, (sisj )
mij = e (i �= j)〉,

where mij ∈ {2, 3, 4, ...} ∪ {∞}. Let X = {s1, s2, . . . , sn}. Then X∗ has the degree
lexicographic order ≺ defined in the previous subsection. In particular, we have

s1 � s2 � · · · � sn.
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Let S be the set of relations:

s2i −e for i = 1, 2, . . . , n,

(sisj )
mij /2 −(sj si)

mij /2 if si � sj and mij is even,

(sisj )
�mij /2�si −(sj si)

�mij /2�sj if si � sj and mij is odd.

As in the previous subsection, let J be the ideal of AX generated by S, and A = AX/J be
the algebra defined by S. Then A is nothing but the group algebra F[W ] of W .

If S is not a Gröbner–Shirshov basis, we extend S by putting all nontrivial compositions
into S, and denote the resulting set of relations by S(1). If it is a Gröbner–Shirshov basis, we
stop; otherwise, we extend S(1) in the same way to obtain S(2) and continue the process. If
this process terminates at S(N) for some N , we obtain a Gröbner–Shirshov basis S := S(N)

for A = F[W ]. By abusing language, we also call S a Gröbner–Shirshov basis for W .
It follows from the construction that every element in S is of the form u − v with

u, v ∈ X∗, and the identity u = v is valid in the group W . Consequently, an element in
w ∈ W can be written uniquely into an S -standard monomial using the identities u = v in
W for u − v ∈ S .

6-C The GroupsW(m)

In this subsection, for each m ≥ 3, we will compute a Gröbner–Shirshov basis for W(m).
We need to separate two cases according to the parity of m. In the proofs, we simply write
u = v for u ≡ v mod (S′; w) where S′ and w are clear from the context.

(i) Assume that m = 2k − 1, k ≥ 2. Let X = {s1, s2, s3}. The set S of the defining
relations are given by

s21 −e, (6.2)

s22 −e, (6.3)

s23 −e, (6.4)

(s1s2)
k−1s1 −(s2s1)

k−1s2, (6.5)

(s2s3)
k−1s2 −(s3s2)

k−1s3. (6.6)

Proposition 6.7 Let m = 2k − 1 for k ≥ 2. The set S of defining relations (6.2)-(6.6) is a
Gröbner–Shirshov basis S for W(m). That is, we have S = S in this case.

Proof There are no possible compositions among Eqs. 6.2, 6.3 and 6.4. The composition of
Eqs. 6.2 and 6.5 is

(62) × s2(s1s2)
k−2s1 − s1 × (6.5) = s1(s2s1)

k−1s2 − s2(s1s2)
k−2s1

= (s1s2)
k−1s1s2 − s2(s1s2)

k−2s1 = (s2s1)
k−1s2s2 − (s2s1)

k−1 = 0,

where we use Eqs. 6.5 and 6.3. The composition of Eqs. 6.5 and 6.2 is

(6.5) × s1 − (s1s2)
k−1 × (6.2) = −(s2s1)

k + (s1s2)
k−1 = −s2(s2s1)

k−1s2 + (s1s2)
k−1

= −(s1s2)
k−1 + (s1s2)

k−1 = 0,

where we use Eqs. 6.5 and 6.3. Similarly, the composition of Eqs. 6.3 and 6.6 and that of
Eqs. 6.6 and 6.3 are all trivial.
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The compositions between (6.5) and (6.5) are

(6.5) × s2(s1s2)
�−1s1−(s1s2)

� × (6.5) = −(s2s1)
k−1s2s2(s1s2)

�−1s1 + (s1s2)
�(s2s1)

k−1s2

= −(s2s1)
k−�s1 + (s2s1)

k−�−1s2 = 0

for 1 ≤ � ≤ k − 1, where we use Eqs. 6.2 and 6.3. Similarly, the compositions between
(6.6) and (6.6) are trivial.

There is no more possible composition. Thus the set of defining relations (6.2)–(6.6) is
closed under composition, and it is a Gröbner–Shirshov basis by Theorem 6.6.

(ii) Assume that m = 2k, k ≥ 2. Let X = {s1, s2, s3}. The set S of the defining relations
are given by

s21 − e, (6.7)

s22 − e, (6.8)

s23 − e, (6.9)

(s1s2)
k − (s2s1)

k, (6.10)

(s2s3)
k − (s3s2)

k . (6.11)

Proposition 6.8 Let m = 2k for k ≥ 2. A Gröbner–Shirshov basis S for W(m) is given
by the set consisting of defining relations (6.7)–(6.11) and one additional relation

(s1s2)
k−1s1(s3s2)

k − (s2s1)
ks3(s2s3)

k−1. (6.12)

Proof There are no non-trivial compositions among Eqs. 6.7, 6.8 and 6.9. The composition
of Eqs. 6.7 and 6.10 is

(6.7) × s2(s1s2)
k−1 − s1 × (6.10) = s1(s2s1)

k − s2(s1s2)
k−1 = (s1s2)

ks1 − s2(s1s2)
k−1

= (s2s1)
ks1 − s2(s1s2)

k−1 = 0,

where we use Eqs. 6.10 and 6.7. The composition of Eqs. 6.10 and 6.8 is

(6.10) × s2 − (s1s2)
k−1s1 × (6.8) = −(s2s1)

ks2 + (s1s2)
k−1s1=−s2(s1s2)

k + (s1s2)
k−1s1

= −s2(s2s1)
k + (s1s2)

k−1s1 = 0,

where we use Eqs. 6.10 and 6.8. Similarly, the composition of Eqs. 6.8 and 6.11 and that of
Eqs. 6.11 and 6.9 are all trivial.

The composition between (6.10) and (6.11) is

(6.10) × s3(s2s3)
k−1 − (s1s2)

k−1s1 × (6.11) = (s1s2)
k−1s1(s3s2)

k − (s2s1)
ks3(s2s3)

k−1.

Thus we have obtained a new relation

(s1s2)
k−1s1(s3s2)

k − (s2s1)
ks3(s2s3)

k−1,

which is the relation (6.12).
The composition between (6.7) and (6.12) is

(6.7) × s2(s1s2)
k−2s1(s3s2)

k − s1 × (6.12)=s1(s2s1)
ks3(s2s3)

k−1− s2(s1s2)
k−2s1(s3s2)

k

= (s1s2)
ks1s3(s2s3)

k−1 − (s2s1)
k−1(s3s2)

k = (s2s1)
ks1s3(s2s3)

k−1 − (s2s1)
k−1(s3s2)

k

= (s2s1)
k−1(s2s3)

k − (s2s1)
k−1(s3s2)

k = 0,
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where we use Eqs. 6.10, 6.7 and 6.11. The composition between (6.12) and (6.8) is

(6.12) × s2 − (s1s2)
k−1s1(s3s2)

k−1s3 × (6.8)

= −(s2s1)
ks3(s2s3)

k−1s2 + (s1s2)
k−1s1(s3s2)

k−1s3

= −s2(s1s2)
k−1s1(s3s2)

k + (s1s2)
k−1s1(s3s2)

k−1s3

= −s2(s2s1)
ks3(s2s3)

k−1 + (s1s2)
k−1s1(s3s2)

k−1s3

= −(s1s2)
k−1s1s3(s2s3)

k−1 + (s1s2)
k−1s1(s3s2)

k−1s3 = 0,

where we use (6.12) and (6.8).
The compositions between (6.10) and (6.12) are, for 1 ≤ � ≤ k − 1,

(6.10) × (s1s2)
�−1s1(s3s2)

k − (s1s2)
� × (6.12)

= −(s2s1)
k(s1s2)

�−1s1(s3s2)
k + (s1s2)

�(s2s1)
ks3(s2s3)

k−1

= −(s2s1)
k−�+1s1(s3s2)

k + (s2s1)
k−�s3(s2s3)

k−1

= −(s2s1)
k−�(s2s3)

ks2 + (s2s1)
k−�(s3s2)

k−1s3

= −(s2s1)
k−�(s3s2)

ks2 + (s2s1)
k−�(s3s2)

k−1s3 = 0,

where we use Eqs. 6.7, 6.8 and 6.11. The compositions between (6.12) and (6.11) are, for
1 ≤ � ≤ k,

(6.12) × (s3s2)
�−1s3 − (s1s2)

k−1s1s3(s2s3)
�−1 × (6.11)

= (s1s2)
k−1s1s3(s2s3)

�−1(s3s2)
k − (s2s1)

ks3(s2s3)
k−1(s3s2)

�−1s3

= (s1s2)
k−1s1s3(s3s2)

k−�+1 − (s2s1)
ks3(s2s3)

k−�s3

= (s1s2)
k−1s1(s2s3)

k−�s2 − (s2s1)
k(s3s2)

k−�

= (s1s2)
k(s3s2)

k−� − (s2s1)
k(s3s2)

k−� = 0,

where we use Eqs. 6.8, 6.9 and 6.10.
The compositions between (6.10) and (6.10) are

(6.10) × (s1s2)
� − (s1s2)

� × (6.10) = −(s2s1)
k(s1s2)

� + (s1s2)
�(s2s1)

k

= −(s2s1)
k−� + (s2s1)

k−� = 0

for 1 ≤ � ≤ k − 1, where we use Eqs. 6.7 and 6.8. Similarly, the compositions between
(6.11) and (6.11) are trivial.

There is no more possible composition. Thus the set consisting of relations (6.7)–(6.12)
is closed under composition, and it is a Gröbner–Shirshov basis by Theorem 6.6.
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