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1 Introduction

Let Q be an acyclic quiver of rank n, i.e., a quiver with n vertices and without oriented cycles, and

mod(Q) be the category of finite dimensional representations of Q, or equivalently, the category of finite

dimensional modules over the path algebra of Q. Among the objects in mod(Q), the indecomposable

representations M with Ext1(M,M) = 0 are called rigid and their dimension vectors are called real Schur

roots. They play prominent roles in understanding the category mod(Q). Moreover, the real Schur roots

form an important subset of the set of positive real roots of the Kac-Moody algebra g(Q) associated

with Q.

In an attempt to establish a form of homological mirror symmetry [4], we proposed in a previous

paper [5] a correspondence between rigid representations in mod(Q) and the set of certain non-self-

intersecting curves on a Riemann surface Σ with n labeled curves. The conjecture is now proven by

Felikson and Tumarkin [1] for 2-complete quivers Q where, by definition, every pair of vertices in Q is

connected by more than two edges. However, it is wide open for general acyclic quivers.

The conjectural correspondence factors through a family of reflections in the Weyl group of g(Q) to

relate non-self-intersecting curves in Σ with real Schur roots. Since reflections make sense for any Coxeter
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groups, one can consider such a family of reflections in an arbitrary Coxeter group. Indeed, let W be a

Coxeter group with n ordered generators:

W = ⟨s1, s2, . . . , sn : s21 = · · · = s2n = e, (sisj)
mij = e (i ̸= j)⟩,

where mij ∈ {2, 3, 4, . . .} ∪ {∞}. Then we define rigid reflections in W using non-self-intersecting curves

on the Riemann surface Σ and rigid roots to be the associated positive roots to the rigid reflections in the

set of positive roots of W (see Definitions 2.2 and 2.5). These definitions are in line with the conjectural

correspondence. In particular, when mij = ∞ for all i ̸= j, the set of rigid reflections is in bijection with

the set of rigid representations of any 2-complete acyclic quiver Q of rank n.

This paper is concerned with an unexpected, surprising phenomenon that the rigid roots of W are

parametrized by the positive roots of a seemingly unrelated Kac-Moody algebra H. This phenomenon

seems true for a wide range of Coxeter groups W , and we will show this for a family of rank 3 Coxeter

groups in this paper.

To be precise, fix a positive integer m > 2 and consider the following Coxeter group:

W (m) = ⟨s1, s2, s3 : s21 = s22 = s23 = (s1s2)
m = (s2s3)

m = e⟩.

Here, we put m13 = m31 = ∞ as the usual convention. Let H(m) be the rank 2 Kac-Moody algebra

associated with the Cartan matrix ( 2 −m
−m 2 ). We denote an element of the root lattice of H(m) by [a, b],

a, b ∈ Z, where [1, 0] and [0, 1] are the positive simple roots. A root [a, b] of H(m) is called reduced if

gcd(a, b) = 1 and ab ̸= 0. A reduced root determines a non-self-intersecting curve η on the torus Σ with

triangulation by three labeled curves. Then we define a function, [a, b] 7→ s([a, b]) ∈ W , by reading off

the labels of the intersection points of η with the labeled curves on Σ, and make the following conjecture.

Conjecture 1.1. For m > 2, the function, [a, b] 7→ s([a, b]), is a bijection from the set of reduced

positive roots of H(m) to the set of rigid reflections of W (m).

The case m = 2 will be verified in Example 2.9, and the case m = 3 will be established in a forthcoming

paper1) where mutations of quivers and cluster variables will be exploited. As the main result of this

paper, we prove the following theorem.

Theorem 1.2. For m > 2, the function in Conjecture 1.1 is a surjection.

Our proof of Theorem 1.2 shows that the Weyl group of H(m), which is isomorphic to the infinite dihe-

dral group, governs the symmetries of the set of rigid reflections of W (m), and utilizes these symmetries

to make an induction argument work on the values of the square norm of [a, b]. It is intriguing that such

a nice structure dwells in the set of rigid reflections.

The organization of this paper is as follows. In Section 2, we define rigid reflections and rigid roots and

provide examples. After introducing notations for rank 2 Kac-Moody algebras H(m), we state the main

theorem and illustrate with examples. In particular, the case m = 2 is completely described. Section 3 is

devoted to a proof of the main theorem. We first establish several lemmas, and a main step is achieved

in Proposition 3.9 whose proof is an inductive algorithm for, given [a, b] in the positive root lattice, how

to find a reduced positive root [a0, b0] of H(m) with the same rigid reflections, i.e., s([a0, b0]) = s([a, b]).

Then Lemma 3.11 shows that it is enough to consider the positive root lattice, which completes the proof.

2 Rigid reflections and the main theorem

As in the introduction, let

W = ⟨s1, s2, . . . , sn : s21 = · · · = s2n = e, (sisj)
mij = e⟩

be a Coxeter group with mij ∈ {2, 3, 4, . . .} ∪ {∞}. In this section, after the rigid reflections in W and

rigid roots in the root system of W are defined, the main theorem of this paper will be stated.

1) Lee K-H, Lee K. A correspondence between rigid modules over path algebras and simple curves on Riemann surfaces

II. In preparation
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Figure 1 Two copies of a regular n-gon
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Figure 2 (Color online) Non-self-crossing admissible curve for n = 3

To begin with, we need a Riemann surface Σ equipped with n labeled curves as below. Let G1 and G2

be two identical copies of a regular n-gon. Label the edges of each of the two n-gons by T1, T2, . . . , Tn

counter-clockwise. On Gi (i = 1, 2), let Li be the line segment from the center of Gi to the common

endpoint of Tn and T1. Later, these line segments will only be used to designate the end points of

admissible curves and will not be used elsewhere. Fix the orientation of every edge of G1 (resp. G2) to

be counter-clockwise (resp. clockwise) as in Figure 1.

Let Σ be the Riemann surface of genus ⌊n−1
2 ⌋ obtained by gluing together the two n-gons with all

the edges of the same label identified according to their orientations. The edges of the n-gons become n

different curves in Σ. If n is odd, all the vertices of the two n-gons are identified to become one point

in Σ and the curves obtained from the edges become loops. If n is even, two distinct vertices are shared

by all curves. Let T = T1 ∪ · · · ∪ Tn ⊂ Σ, and V be the set of the vertex (or vertices) on T .

Let W be the set of words from the alphabet {1, 2, . . . , n}, and let R ⊂ W be the subset of words

w = i1i2 · · · ik such that k is an odd integer and ij = ik+1−j for all j ∈ {1, . . . , k}, in other words,

si1si2 · · · sik is a reflection in W . For w = i1i2 · · · ik ∈ W, denote si1 · · · sik ∈ W by s(w).

Definition 2.1. An admissible curve is a continuous function η : [0, 1] → Σ such that

(1) η(x) ∈ V if and only if x ∈ {0, 1};
(2) η starts and ends at the common end point of T1 and Tn. More precisely, there exists ϵ > 0 such

that η([0, ϵ]) ⊂ L1 and η([1− ϵ, 1]) ⊂ L2;

(3) if η(x) ∈ T \ V then η([x− ϵ, x+ ϵ]) meets T transversally for sufficiently small ϵ > 0.

If η is admissible, then we obtain υ(η) := i1 · · · ik ∈ W given by

{x ∈ (0, 1) : η(x) ∈ T } = {x1 < · · · < xk} and η(xℓ) ∈ Tiℓ for ℓ ∈ {1, . . . , k}.

Note that the word υ(η) only depends on the isotopy class of the admissible curve, and the group

element s(υ(η)) does not change even if we allow non-transversal intersections with T in the isotopy,

because all that can happen in a generic one parameter family is a simple tangency, which inserts/removes

sisi somewhere in a presentation of s(υ(η)).

Conversely, note that for every w ∈ W, there is an admissible curve η with υ(η) = w. Hence, every

element in W can be represented by some admissible curve(s). For brevity, let s(η) := s(υ(η)).

Definition 2.2. An element si1si2 · · · sik in W is called a rigid reflection if there exists a non-self-

crossing admissible curve η with υ(η) = i1 · · · ik ∈ R.
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Example 2.3. Let n = 3, and W = ⟨s1, s2, s3 : s21 = s22 = s23 = e⟩, i.e., mij = ∞ for i ̸= j. Consider

the universal cover of Σ and a curve η as in Figure 2.

Here each horizontal line segment represents T1, vertical T3, and diagonal T2. One sees that η has no

self-intersection in Σ. Thus we obtain the corresponding rigid reflection

s(η) = (s3s2s1)
4s2s3s2s1s2s3s2s3s2s1s2s3s2(s1s2s3)

4.

On the other hand, the reflection s2s3s1s3s2 comes from the curve η′ on the left of Figure 3, which has

a self-intersection. The picture on the right of Figure 3 shows several copies of η′ on the universal cover.

Consequently, the reflection s(η′) = s2s3s1s3s2 is not rigid.

Example 2.4. Let n = 8, and we have a rigid reflection

(s8s7 · · · s2s1)5(s8s7 · · · s2)s1(s2 · · · s7s8)(s1s2 · · · s7s8)5,

which corresponds to non-self-intersecting curve on Σ which is shown in Figure 4.

Let Φ be the root system of W , realized in the real vector space E with basis {α1, . . . , αn} with the

symmetric bilinear form B defined by

B(αi, αj) = − cos(π/mij) for 1 6 i, j 6 n.

For each i ∈ {1, . . . , n}, define the action of si on E by

si(λ) = λ− 2B(λ, αi)αi, λ ∈ E,

and extend it to the action of W on E. Then each root α ∈ Φ determines a reflection sα ∈ W (see [2] for

more details).

Definition 2.5. A positive root α ∈ Φ of W is called rigid if the corresponding reflection sα ∈ W is

rigid.

Example 2.6. In Example 2.3, we obtained the rigid reflection

(s3s2s1)
4s2s3s2s1s2s3s2s3s2s1s2s3s2(s1s2s3)

4.

It give rises to a rigid root

1662490α1 + 4352663α2 + 11395212α3 = (s3s2s1)
4s2s3s2s1s2s3α2.
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Figure 3 (Color online) Self-crossing admissible curve for n = 3

..

7

.

8

.

2

. 1.

3

.

6

.

4

.5 ..

7

.

8

.

2

.

3

.

6

.

4

. 5

Figure 4 (Color online) Non-self-crossing admissible curve for n = 8
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.

Figure 5 (Color online) Line segment η([5, 3])

Fix a positive integer m > 2. As in Section 1, we set

W (m) = ⟨s1, s2, s3 : s21 = s22 = s23 = (s1s2)
m = (s2s3)

m = e⟩.

Note that we put, in particular, m13 = m31 = ∞. Let H(m) be the rank 2 hyperbolic Kac-Moody algebra

associated with the Cartan matrix ( 2 −m
−m 2 ). We denote an element of the root lattice of H(m) by [a, b],

a, b ∈ Z, where [1, 0] and [0, 1] are the positive simple roots. A root [a, b] of H(m) is called reduced if

gcd(a, b) = 1 and ab ̸= 0. One can see that every non-simple real root is reduced.

Let P+ = {[a, b] : a, b ∈ Z>0, gcd(a, b) = 1}. For every [a, b] ∈ P+, let η([a, b]) be the line segment

from (0, 0) to (a, b) on the universal cover of the torus, which has no self-intersections. Write s([a, b]) :=

s(η([a, b])) ∈ W (m) for the corresponding rigid reflection. For example, we have

s([5, 3]) = s2s3s2s1s2s3s2s3s2s1s2s3s2

as one can check in Figure 5.

With these definitions, we now state the main theorem of this paper.

Theorem 2.7. The function, [a, b] 7→ s([a, b]), is an onto function from the set of reduced positive

roots of H(m) to the set of rigid reflections of W (m).

Equivalently, if we let β([a, b]) be the rigid root determined by the rigid reflection s([a, b]), then the

above theorem asserts that the function, [a, b] 7→ β([a, b]), is an onto function from the set of reduced

positive roots of H(m) to the set of rigid roots of W (m).

A proof of Theorem 2.7 will be given in the next section. In the rest of this section we will present

some examples. Recall from [3] that

[a, b] is a root of H(m) if and only if a2 + b2 −mab 6 1. (2.1)

We will use this fact in the following example without further mentioning it.

Example 2.8. (1) Let m = 3. Consider the rigid reflection s([4, 1]) = s2s3s2s3s2s3s2 = s2 and its

rigid root β([4, 1]) = α2. The point [4, 1] is not a root of H(3). However, these are covered by the root

[1, 1] of H(3) since s([1, 1]) = s2 and β([1, 1]) = α2.

One can also check s([30, 11]) = s2s3s2s1s2s3s2 = s([3, 2]) and β([30, 11]) = α1+3α2+3α3 = β([3, 2]).

Here, [30, 11] is not a root of H(3), whereas [3, 2] is.

(2) Now let m = 4. Then we have

s([5, 2]) = s([13, 2]) = s2s3s2s3s2s1s2s3s2s3s2 and β([5, 2]) = β([13, 2]) = α1 + 3
√
2α2 + 6α3.

Here, [13, 2] is not a root of H(4), but [5, 2] is a root.

(3) For a general m, let x = 2 cos(π/m). Then s([5, 3]) = s2s3s2s1s2s3s2s3s2s1s2s3s2 and

β([5, 3]) = (x3 + x)α1 + (x6 + 3x4 + 2x2 − 1)α2 + (x5 + 3x3 + 2x)α3.

Example 2.9. Assume that m = 2. Then the Kac-Moody algebra H(2) is the affine Lie algebra ŝl2
and its set of reduced positive roots is given by {[n, n+ 1], [n+ 1, n], [1, 1] : n > 1}. On the other hand,

since s2 commutes with s1 and s3 in W (2), we see that the set of rigid reflections in W (2) is

{s1(s3s1)n−1, s3(s1s3)
n−1, s2 : n > 1},
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and that the set of rigid roots of W (2) is

{nα1 + (n− 1)α3, (n− 1)α1 + nα3, α2 : n > 1}.

Applying the maps s(·) and β(·) to the set of reduced positive roots, we obtain, for n > 1,

s([n, n+ 1]) = s1(s3s1)
n−1, s([n+ 1, 1]) = s3(s1s3)

n−1, s([1, 1]) = s2,

β([n, n+ 1]) = nα1 + (n− 1)α3, β([n+ 1, 1]) = (n− 1)α1 + nα3, β([1, 1]) = α2.

Therefore, the maps are clearly bijections, and Conjecture 1.1 is verified in this case m = 2.

3 Proofs of the main results

In this section, we prove Theorem 2.7. The last lemma (Lemma 3.11) enables us to focus only on the

positive root lattice P+. Lemma 3.6 shows that we can use a certain transformation to preserve rigid

roots. Lemmas 3.2 and 3.8 guarantee this transformation to work inductively, and the inductive algorithm

is given in Proposition 3.9. We explain the algorithm in Example 3.10.

Define a sequence Fn recursively by F0 = 0, F1 = 1, and Fn = mFn−1 − Fn−2. Define another

sequence En by E0 = E1 = 1 and En = mEn−1 −En−2. Below we collect some general facts about these

sequences, which will be frequently used for the rest of the paper.

Lemma 3.1. (a) The sequence F0, F1, . . . , Fn, . . . is monotone, and the pairs (Fn, Fn−1) run through

all the integer points on the quadric x2 + y2 −mxy = 1 subject to the condition x > y > 0.

(b)

det

(
Fn Fn−1

Fn+1 Fn

)
= 1.

In particular, we get
F0

F1
<

F1

F2
< · · · < Fn

Fn+1
< · · · .

(c) For every [a, b] ∈ P+ such that a > b and a2 + b2 −mab > 1, there exits a unique n such that

Fn−1

Fn
<

b

a
<

Fn

Fn+1
.

(d) We have

En−1

En
>

Fn−1

Fn
, Fn = (m− 1)Fn−1 + En−1,

and

det

(
En−1 En

Fn−1 Fn

)
= 1.

Proof. (a) Let

H = {(x, y) ∈ Z2
>0 : x > y and x2 + y2 −mxy = 1}.

Suppose that (x, y) ∈ H. Then y2 + (my − x)2 −my(my − x) = 1. We also have y > my − x, because if

y 6 my−x then y2−1 = x(my−x) > xy > y2, which is absurd. Hence (y,my−x) ∈ H. Iterate this until

we get (1, 0) ∈ H. By backtracking, we get (x, y) = (Fn, Fn−1) for some n, and F0 < F1 < · · · < Fn · · · .
(b) See [7, Lemma 3.1].

(c) The sequence 0 = F0

F1
, F1

F2
, . . . , Fn

Fn+1
, . . . converges to m−

√
m2−4
2 , because

lim
n→∞

((
Fn

Fn+1

)2

−m

(
Fn

Fn+1

)
+ 1

)
= lim

n→∞

1

F 2
n+1

= 0.
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Since a2 + b2 − mab > 1 implies ( ba )
2 − m( ba ) + 1 > 0, we get b

a < m−
√
m2−4
2 or b

a > m+
√
m2−4
2 . The

inequality a > b implies b
a < m−

√
m2−4
2 . By (a), we have (a, b) ̸∈ H, so (a, b) ̸= (Fn, Fn−1) for any n.

Actually (a, b) ̸= (gFn, gFn−1) for any g and n, since gcd(a, b) = 1. Therefore there exits a unique n such

that
Fn−1

Fn
<

b

a
<

Fn

Fn+1
.

(d) It is easy to see Fn = (m− 1)Fn−1 + En−1 by induction on n. This implies

det

(
En−1 En

Fn−1 Fn

)
= 1

and En−1

En
> Fn−1

Fn
.

The following lemma will be used for the inductive algorithm in the proof of Proposition 3.9.

Lemma 3.2. Assume that [a, b] ∈ P+ is not a root of H(m), and that

Fn−1

Fn
<

b

a
<

Fn

Fn+1
.

We have

either [a, b]−m(−Fn−1a+ Fnb)[Fn, Fn−1] ∈ P+, or [a, b] +m(−Fna+ Fn+1b)[Fn+1, Fn] ∈ P+.

Proof. The properties of the sequence {Fi} imply that [a, b] = α[Fn, Fn−1] + β[Fn+1, Fn], where α

and β are positive integers. Moreover, we have

β = det

(
Fn Fn−1

a b

)
= −Fn−1a+ Fnb

and

α = det

(
a b

Fn+1 Fn

)
= Fna− Fn+1b.

Therefore
[c, d] := [a, b]−mβ[Fn, Fn−1] = α[Fn, Fn−1] + β[Fn+1, Fn]−mβ[Fn, Fn−1]

= [αFn − βFn−1, αFn−1 − βFn−2],

and
[e, f ] := [a, b]−mα[Fn+1, Fn] = α[Fn, Fn−1] + β[Fn+1, Fn]−mα[Fn+1, Fn]

= [βFn+1 − αFn+2, βFn − αFn+1],

where we used the recursive relation Fn = mFn−1 − Fn−2 four times. Now the property

Fn−2

Fn−1
<

Fn−1

Fn
<

Fn

Fn+1
<

Fn+1

Fn+2

implies that

d = αFn−1 − βFn−2 < 0

⇒ c = αFn − βFn−1 < 0

⇒ −f = αFn+1 − βFn < 0

⇒ −e = αFn+2 − βFn+1 < 0.

In particular, if at least one of the numbers c and d is negative, then both e and f are positive. It remains

to show that gcd(c, d) = 1 and gcd(e, f) = 1.
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Let u = Fn−1, v = Fn and w = Fn+1 for convenience. Then we have mv = u+ w, v2 = 1 + uw and

[c, d] = [(1 +muv)a−mv2b,mu2a+ (1−muv)b],

[e, f ] = [(1−mvw)a+mw2b,−mv2a+ (1 +mvw)b].

Note that the matrices (
1 +muv −mv2

mu2 1−muv

)
and

(
1−mvw mw2

−mv2 1 +mvw

)

have determinant 1. Since gcd(a, b) = 1, we have gcd(c, d) = 1 and gcd(e, f) = 1.

Let (a1, a2) be a pair of nonnegative integers, not both zero, with a1 > a2. A maximal Dyck path of

type a1 × a2, denoted by Da1×a2 , is a lattice path from (0, 0) to (a1, a2) that is as close as possible to the

diagonal joining (0, 0) and (a1, a2) without ever going above it. Assign s2s3 ∈ W (m) to each horizontal

edge of Da1×a2 , and s2s1 ∈ W (m) to each vertical edge. Read these elements in the order of edges along

Da1×a2 . Then we get a product of copies of s2s3 and s2s1. Denote the product by sa1×a2 .

Let σ1 and σ2 be the simple reflections of H(m) associated with the simple roots [1, 0] and [0, 1],

respectively. Then they act on [a, b] ∈ Z2 in the usual way by

σ1[a, b] = [−a+mb, b] and σ2[a, b] = [a,−b+ma].

Lemma 3.3. Assume that [a, b] ∈ P+ with a > b, and write [c, d] = σ1σ2[a, b]. Then we have

(1) s([a, b]) = s3s2s
a×bs1;

(2) s1s3s2s
a×bs2s3s1 = sc×d;

(3) s3s2s1s([a, b])s1s2s3 = s([c, d]).

Proof. (1) This is straightforward.

(2) Given Da×b, we replace a horizontal step, which is followed by another horizontal step, with

D(m2−1)×m and a two-step path with horizontal step and an immediate vertical step with

D(m2−m−1)×(m−1). Then the resulting path is Dc×d. This transformation of Dyck paths can also be

obtained from a sequence of Dyck path mutations considered in [6, Section 3].

For example, when m = 3, we have Figure 6, and obtain D13×5 from D2×1 through the transformation

in Figure 7. We consider the associated Coxeter group elements

sh := s(m
2−1)×m = s([m, 1])m−1s([m− 1, 1])

= ((s2s3)
ms2s1)

m−1(s2s3)
m−1s2s1 = (s2s1)

m−1s3s1 = s1s2s3s1,

shv := s(m
2−m−1)×(m−1) = s([m, 1])m−2s([m− 1, 1]) = s1s2s1s2s3s1,

. 7→ . . 7→ .

Figure 6 (Color online) Transformations of Dyck paths

. 7→ .

Figure 7 (Color online) The transformation of a Dyck path



Lee K-H et al. Sci China Math July 2019 Vol. 62 No. 7 1325

and obtain

s2s3s1s
hs1s3s2 = (s2s3s1)(s1s2s3s1)(s1s3s2) = s2s3,

s2s3s1s
hvs1s3s2 = (s2s3s1)(s1s2s1s2s3s1)(s1s3s2) = (s2s3)(s2s1).

This proves the assertion.

(3) This is an immediate consequence of the parts (1) and (2).

Lemma 3.4. We have the following formulas:

(a) sF2×F1 = s2s1 and sE2×E1 = s3s1. Moreover,

sFn×Fn−1 =

{
s1(s3s2s1)

(n−3)/2s2s3(s1s2s3)
(n−3)/2s1, for n > 3 odd,

s1(s3s2s1)
(n−4)/2s3s1s2s3(s1s2s3)

(n−4)/2s1, for n > 4 even,

sEn×En−1 =

{
s1(s3s2s1)

(n−3)/2s2s1s2s3(s1s2s3)
(n−3)/2s1, for n > 3 odd,

s1(s3s2s1)
(n−4)/2s3s2s3s1s2s3(s1s2s3)

(n−4)/2s1, for n > 4 even.

(b) (s3s2s1s([Fn, Fn−1]))
m = (s1s2s3s([Fn, Fn−1]))

m = e for all n > 1.

Proof. (a) Let Fn := DFn×Fn−1 and En := DEn×En−1 . We use induction on n. It is easy to check the

base cases. Suppose n > 3. Then the Dyck path Fn consists of m − 1 copies of Fn−1 followed by one

copy of En−1. This is because ((m − 1)Fn−1, (m − 1)Fn−2) is below the diagonal, and Pick’s theorem

implies that there is no integral point in the interior of the triangle formed by (0, 0), (Fn, Fn−1), and

((m − 1)Fn−1, (m − 1)Fn−2). Similarly, the Dyck path En consists of m − 2 copies of Fn−1 followed by

one copy of En−1. It is straightforward to check the induction process as follows.

Suppose that n is odd. From the induction hypothesis, we have

sFn×Fn−1 = s1(s3s2s1)
(n−3)/2s2s3(s1s2s3)

(n−3)/2s1,

sEn×En−1 = s1(s3s2s1)
(n−3)/2s2s1s2s3(s1s2s3)

(n−3)/2s1.

Then

sFn+1×Fn = (s1(s3s2s1)
(n−3)/2s2s3(s1s2s3)

(n−3)/2s1)
m−1(s1(s3s2s1)

(n−3)/2s2s1s2s3(s1s2s3)
(n−3)/2s1)

= s1(s3s2s1)
(n−3)/2(s2s3)

m−1s2s1s2s3(s1s2s3)
(n−3)/2s1

= s1(s3s2s1)
(n−3)/2s3s1s2s3(s1s2s3)

(n−3)/2s1,

and

sEn+1×En = (s1(s3s2s1)
(n−3)/2s2s3(s1s2s3)

(n−3)/2s1)
m−2(s1(s3s2s1)

(n−3)/2s2s1s2s3(s1s2s3)
(n−3)/2s1)

= s1(s3s2s1)
(n−3)/2(s2s3)

m−2s2s1s2s3(s1s2s3)
(n−3)/2s1

= s1(s3s2s1)
(n−3)/2s3s2s3s1s2s3(s1s2s3)

(n−3)/2s1.

The other case can be similarly proved.

(b) Each of s3s2s1s([Fn, Fn−1]) = s3s2s1s3s2s
Fn×Fn−1s1 and s1s2s3s([Fn, Fn−1]) = s1s

Fn×Fn−1s1 is a

conjugate of one of s1s2, s2s1, s2s3, or s3s2, which implies the statement.

Remark 3.5. Notice that s3s2s1 can be considered as a curve going around below an integral point

and s1s2s3 going around above an integral point (see the illustrations in Figure 8).

.

.

Figure 8 (Color online) Curves going around an integral point
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This fact will be used frequently in the proof of the following lemma.

Lemma 3.6. For a fixed positive integer n and [a, b] ∈ P+ with a > b, let κ = −Fn−1a+Fnb. Assume

that

a′ := a−m|κ|Fn > 0 and b′ := b−m|κ|Fn−1 > 0.

Then

s([a′, b′]) = s([a, b]).

Proof. If κ = 0 then trivial. Here, we give a proof for the case of κ > 0, as the κ < 0 case is similar.

We need to be able to locate the integral points inside the triangle, say T , formed by (0, 0), (a, b) and

(a′, b′). Pick’s theorem implies that there are exactly m
(
κ
2

)
integral points in the interior of T . For each

i ∈ {1, . . . , κ}, let Li ⊂ R2 be the line segment from ( i
κa

′, i
κb

′) to ( i
κa,

i
κb). For technical simplicity,

assume that Lκ is open ended at (a, b) so that Lκ contains exactly mκ integral points. Also note that

κ > 0 implies b
a < b′

a′ .

First, observe that all integer points inside T have to be on the intervals Li. Indeed, if (c, d) is an

integer point inside T , consider the triangle with vertices (a, b), (c, d), and (a−Fn, b−Fn−1) (the integer

point on the interval Lκ, next to (a, b)). Suppose that its area is i/2, where i is an integer. Note that

the area of the triangle with vertices (0, 0), (a, b), and (a− Fn, b− Fn−1) equals

1

2
det

(
Fn Fn−1

a b

)
=

κ

2
.

Therefore, (c, d) has to be κ
i times closer to the interval Lκ, than (0, 0). So, (c, d) belongs to Lκ−i.

Note that the distances between consecutive integer points on all Li’s are the same and equal to 1
mκ |Lκ|,

and the lengths of the intervals are given by |Li| = i
κ |Lκ|. Therefore, since for 0 < i < κ the end points

of Li are not integer points, each Li contains exactly mi integer points.

For i ∈ {1, . . . , κ}, let Mi be an admissible curve which starts at (0, 0), goes below Pi,1, . . . , Pi,mi but

above Pi−1,1, . . . , Pi−1,m(i−1), and ends at (a, b). It would be useful to give two different names to Mi

by letting M−
i (resp. M+

i ) be a curve (isotopic to Mi) sufficiently close to Pi−1,1, . . . , Pi−1,m(i−1) (resp.

Pi,1, . . . , Pi,mi). Note that

s(Mi) = s(M+
i ) = s(M−

i ).

For i ∈ {1, . . . , κ − 1}, let Si be the line segment from Pi−1,1 to Pi,1 (where P0,1 = (0, 0)), and let Ti

be the line segment from Pi,mi+1 to Pi+1,m(i+1)+1, where Pi,mi+1 is the integral point that makes Pi,mi

become the midpoint between Pi,mi−1 and Pi,mi+1 (see Figure 9).

Then, by Lemma 3.4(b) and Remark 3.5, we have

s([a, b]) = s(M1) = s(M+
1 ) = s(S1)(s3s2s1s([Fn, Fn−1]))

ms1s2s3s(T1) · · · s1s2s3s(Tκ−1)

= s(S1)(s1s2s3s([Fn, Fn−1]))
ms1s2s3s(T1) · · · s1s2s3s(Tκ−1) = s(M−

2 ) = s(M2)

= s(M+
2 ) = s(S1)s1s2s3s(S2)(s3s2s1s([Fn, Fn−1]))

2ms1s2s3s(T2) · · · s1s2s3s(Tκ−1)

= · · · = s(S1)s1s2s3s(S2) · · · s1s2s3s(Sκ−1)(s1s2s3s([Fn, Fn−1]))
(κ−1)ms1s2s3s(Tκ−1)

= s(M−
κ ) = s(M+

κ ) = s([a′, b′])(s3s2s1s([Fn, Fn−1]))
κm = s([a′, b′]).

The proof is completed.

When n = 0 in the above lemma, we have κ = b and obtain the following corollary.

Corollary 3.7. Let [a, b] ∈ P+. Then, for j ∈ Z>0,

s([a+ jmb, b]) = s([a, b]).

For [a, b] ∈ P+, define

Q([a, b]) = a2 + b2 −mab.
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..

P3,1

.

P3,10

.

P1,1

.

P1,4

.

P2,1

.

P2,7

Figure 9 (Color online) A picture illustrating the case of m = κ = 3, [a, b] = [48, 17] and [a′, b′] = [21, 8]. The three

blue-colored curves represent M1,M2 and M3 (from the bottom). The four orange-colored line segments are S1, S2, T1

and T2.

Lemma 3.8. Assume that
Fn−1

Fn
<

b

a
<

Fn

Fn+1
, [a, b] ∈ P+.

Then, for any j ∈ Z>0, we have

Q([a, b]−mj(−Fn−1a+ Fnb)[Fn, Fn−1]) < Q([a, b]),

Q([a, b] +mj(−Fna+ Fn+1b)[Fn+1, Fn]) < Q([a, b]).

Proof. Let u = Fn−1, v = Fn and w = Fn+1 for convenience. First, set

x = a+mjauv −mjbv2 and y = b+mjau2 −mjbuv.

We want to prove

x2 −mxy + y2 < a2 −mab+ b2.

We compute

x2 −mxy + y2 − (a2 −mab+ b2) = mj(mju4 −m2jumv +mju2v2 −mu2 + 2uv)a2

+mj(mju2v2 −m2juvm +mjv4 − 2uv +mv2)b2

− 2mj(mjumv −m2ju2v2 +mjuvm − u2 + v2)ab. (3.1)

Since ua < vb, we multiply the identity (3.1) by v/mj and then replace vb by ua to obtain the inequality

(3.1)× (v/mj) < (mju4v −m2jumv2 +mju2vm −mu2v + 2uv2)a2

+ (mju2v −m2juv2 +mjvm − 2u+mv)u2a2

− 2(mjumv −m2ju2v2 +mjuvm − u2 + v2)ua2 = 0.

Thus we have (3.1)< 0 as desired.

Now let

x1 = a−mjavw +mjbw2 and y1 = b−mjav2 +mjbvw,

and compute to obtain

x2
1 −mx1y1 + y1

2 − (a2 −mab+ b2) = mj(mjv4 −m2jvmw +mjv2w2 +mv2 − 2vw)a2

+mj(mjv2w2 −m2jvwm +mjw4 + 2vw −mw2)b2
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− 2mj(mjvmw −m2jv2w2 +mjvwm + v2 − w2)ab. (3.2)

Since wb < va, we multiply the identity (3.2) by v/mj and then replace va by wb to obtain the

inequality

(3.2)× (v/mj) < (mjvm −m2jv2w +mjvw2 +mv − 2w)w2b2

+ (mjvmw2 −m2jv2wm +mjvw4 + 2v2w −mvw2)b2

− 2(mjvmw −m2jv2w2 +mjvwm + v2 − w2)wb2 = 0.

This implies (3.2)< 0 as desired.

Combining the lemmas in this section, we obtain the following proposition, which is a main step toward

the proof of Theorem 2.7.

Proposition 3.9. Assume that [a, b] ∈ P+. Then there exists [a0, b0] ∈ P+ such that [a0, b0] is a

reduced root of H(m) and s([a0, b0]) = s([a, b]) or equivalently, β([a0, b0]) = β([a, b]).

Proof. If [a, b] ∈ P+ is a root of H(m), it is already reduced from the definition of P+ and we simply

take [a0, b0] = [a, b]. Assume that [a, b] is not a root of H(m). Without loss of generality, we may further

assume that a > b. Then, by Lemma 3.1 (c), we have Fn−1

Fn
< b

a < Fn

Fn+1
for some n ∈ Z>0. By Lemma 3.2,

we have either [a, b] −m(−Fn−1a + Fnb)[Fn, Fn−1] ∈ P+ or [a, b] +m(−Fna + Fn+1b)[Fn+1, Fn] ∈ P+.

Put [a′, b′] = [a, b] − m(−Fn−1a + Fnb)[Fn, Fn−1] or [a′, b′] = [a, b] + m(−Fna + Fn+1b)[Fn+1, Fn], so

that [a′, b′] ∈ P+. Then we have s([a′, b′]) = s([a, b]) and Q([a′, b′]) < Q([a, b]) by Lemmas 3.6 and 3.8,

respectively.

If Q([a′, b′]) 6 1, then [a′, b′] is a positive reduced root of H(m) from (2.1) and we take [a0, b0] = [a′, b′].

If Q([a′, b′]) > 1, then [a′, b′] is not a root of H(m) and we repeat the process by putting a′ and b′ to be

new a and b. Clearly, this process ends in a finite number of steps.

Example 3.10. Assume that m = 3, and consider [487, 186]. Since Q([487, 186]) = 19, it is not a root

of H(3). Note that 21
55 < 186

487 < 55
144 . We compute 3× (−55× 487 + 144× 186) = −3 and

[487, 186]− 3× [144, 55] = [55, 21] ∈ P+.

Since Q([55, 21]) = 1, [55, 21] is a real root of H(3) and the process ends here. Indeed, we have

s([487, 186]) = s([55, 21]) and

β([487, 186]) = β([55, 21]) = 6α1 + 8α2 + 17α3.

Now consider [1789, 683] with Q([1789, 683]) = 1349. Since 8
21 < 683

1789 < 21
55 , we get

[1789, 683] + 3(−21× 1789 + 55× 683)[55, 21] = [1129, 431], Q([1129, 431]) = 605.

We continue to obtain

[1129, 431] + 3(−21× 1129 + 55× 431)[55, 21] = [469, 179], Q([469, 179]) = 149,

[469, 179]− 3(−8× 469 + 21× 179)[21, 8] = [28, 11], Q([28, 11]) = −19.

Thus [28, 11] is an imaginary root of H(3), and we have

β([1789, 683]) = β([28, 11]) = 55α1 + 55α2 + 144α3.

Lemma 3.11. Let η be any non-self-crossing admissible curve with υ(η) ∈ R. Then there exists

[a, b] ∈ P+ such that s(η) = s([a, b]).

Proof. Each non-self-crossing closed curve on the torus is a torus knot. As an admissible curve has a

distinguished marked point, which is the origin, we allow Dehn twists around the origin. Hence (the lift

of) the curve η (to the universal cover) is isotopic to a spiral (around the origin) followed by a line segment
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which is then followed by the opposite spiral (around the end point of η). Without loss of generality, we

may assume that the first spiral goes around counterclockwise. Then s(η) can be written in one of the

forms

(s3s2s1)
ns(ν)(s1s2s3)

n, (s3s2s1)
ns3s(ν)s3(s1s2s3)

n and (s3s2s1)
ns3s2s(ν)s2s3(s1s2s3)

n

for some n > 0 and a line segment ν. We will consider the case when n = 0 and show that each of the

forms is equal to s([a, b]) with [a, b] ∈ P+ and a > b. Then we immediately obtain the statement for any

n > 0 by Lemma 3.3(3) and an induction argument. Thus we only need to consider each of the reflections

s(ν), s3s(ν)s3 and s3s2s(ν)s2s3.

First, if s(η) = s(ν) with ν a line segment, then we have s(η) = s([a, b]) with a > b, if necessary, by

applying Corollary 3.7.

Next, if s(η) = s3s(ν)s3, then s(ν) starts with the letter 1; if s(ν) starts with the letter 2, then s(η)

would be of the form s3s2s(ν)s2s3, which would fall into the next case. Let D(η) be the lattice path from

(0, 0) to (0, 1) then to the end point of η that goes North and West, and is closest to (but never crosses)

the line segment ν.

Assign the element s2s1 ∈ W (m) to each vertical edge of D(η), and s1s2s3s1 to each horizontal edge.

Let w(η) ∈ W (m) be the product of these elements obtained by reading them while traveling along D(η).

Then s(η) = s3s2w(η)s1.

Let (c, d) be the end point of η. The maximal Dyck path D(c+md)×d consists of (copies of)m consecutive

horizontal edges followed by a vertical edge, and (copies of) m − 1 consecutive horizontal edges (which

is preceded by a vertical edge) followed by a vertical edge. Remember s([c +md, d]) = s3s2s
(c+md)×ds1

from Lemma 3.3(1).

A vertical edge of D(η), which is followed by another vertical edge, corresponds to m consecutive

horizontal edges followed by a vertical edge in D(c+md)×d. A vertical edge followed by a horizontal edge

in D(η) corresponds to m − 1 consecutive horizontal edges followed by a vertical edge in D(c+md)×d.

Moreover, the element s2s1 of a vertical edge of D(η), which is followed by another vertical edge, is

equal to (s2s3)
ms2s1 that is associated with m consecutive horizontal edges followed by a vertical edge

in D(c+md)×d. The combined element (s2s1)(s1s2s3s1) = s3s1 of a vertical edge followed by a horizontal

edge in D(η), is equal to (s2s3)
m−1s2s1 that is associated with m−1 consecutive horizontal edges followed

by a vertical edge in D(c+md)×d.

Hence w(η) = s(c+md)×d, so s(η) = s([c + md, d]). Since c + d > 0, we have c + md > d and

[c+md, d] ∈ P+. For example, Figure 10 illustrates the case m = 3 and (c, d) = (−2, 3). Here, we have

s(η) = s3s2(s2s1)
2(s1s2s3s1)(s2s1)(s1s2s3s1)s1 = s3s1s3s1s3

= s2s3s2s3s2s1s2s3s2s3s2s1s2s3s2s3s2 = s([7, 3]).

Lastly, suppose that s(η) = s3s2s(ν)s2s3. Let (c, d) be the end point of η. If [c+md, d] ∈ P+, then a

similar argument to the previous case shows that s(η) = s([c+md, d]). Otherwise, we have c+md < 0

and take a curve η′ such that

s(η′) = s3s2s(ν
′)s2s3,

.

.

Figure 10 (Color online) Admissible curves and Dyck paths for m = 3 and (c, d) = (−2, 3)
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where ν′ is a line segment between (c + md + ϵ, d − ϵ) and (−ϵ, ϵ) for some small ϵ > 0. Then one

can see that s(η) = s(η′). Repeating this process, we obtain a curve η′′ whose end point is (c′′, d) with

c′′ +md > 0 and we are done by Corollary 3.7 as s(η) = s([c′′ +md, d]).

Proof of Theorem 2.7. Assume that s(η) is a rigid reflection of W (m) given by a non-self-intersecting

admissible curve η. By Lemma 3.11, there exists [a, b] ∈ P+ such that s(η) = s([a, b]). Then by

Proposition 3.9 there exists a reduced positive root [a0, b0] of H(m) such that

s(η) = s([a, b]) = s([a0, b0]).

This completes the proof.
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