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ABSTRACT

In this paper we study root multiplicities of rank 2 hyperbolic Kac–Moody
algebras using the combinatorics of Dyck paths.
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1. Introduction

This paper takes a new approach to the study of root multiplicities for hyperbolic Kac–Moody algebras.
Even though the rootmultiplicities are fundamental data in understanding the structures of Kac–Moody
algebras, we have not seen much progress in this topic for the last 20 years. The method taken in this
paper is totally new, though depending on the previous developments, and opens di�erent perspectives
that can bring new results on root multiplicities and make advancements, for example, toward Frenkel’s
conjecture. To begin with, let us �rst explain the background of the problem considered in this paper.

A�er introduced by Kac andMoodymore than four decades ago, the Kac–Moody theory has become
a standard generalization of the classical Lie theory. However, it is surprising how little is known beyond
the a�ne case, even for certain hyperbolic algebras which were carefully studied by several authors.

The �rst di�culty in the hyperbolic case and other inde�nite cases stems from wild behaviors of root
multiplicities. To be precise, let g be a Kac–Moody algebra with Cartan subalgebra h. For a root α, the
root space gα is given by

gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h}.

Then we have the root space decomposition

g =
⊕

α∈1+

gα ⊕ h ⊕
⊕

α∈1−

gα ,

which is a decomposition of g into �nite-dimensional subspaces, where 1+ (resp. 1−) is the set
of positive (resp. negative) roots. The dimension of the root space gα is called the multiplicity of
α. Obviously, root multiplicities are fundamental data to understand the structure of a Kac–Moody
algebra g. However, the status of our knowledge shows a dichotomy according to types of g.

CONTACT Kyu-Hwan Lee khlee@math.uconn.edu Department of Mathematics, University of Connecticut, Storrs, Connecticut
06269, USA.
Color versions of one or more of the �gures in the article can be found online at www.tandfonline.com/lagb.

© 2017 Taylor & Francis

http://dx.doi.org/10.1080/00927872.2017.1281935
mailto:khlee@math.uconn.edu
http://www.tandfonline.com/lagb


4786 S.-J. KANG ET AL.

Recall that theWeyl groupW of g acts on the set1 of all roots, preserving root multiplicities. If α is a
real root, α has an expression α = wαi forw ∈ W where αi is a simple root. It follows that dim(gα) = 1.
Since all roots in �nite-dimensional Lie algebras are real, all root spaces in �nite-dimensional Lie algebras
are one dimensional. Let g be an untwisted a�neKac–Moody algebra of rank ℓ+1. Then themultiplicity
of every imaginary root of g is ℓ ([8, Corollary 7.4]). There is a similar formula for twisted a�ne Kac–
Moody algebras as well ([8, Corollary 8.3]).

For hyperbolic and more general inde�nite Kac–Moody algebras, the situation is vastly di�erent, due
to the exponential growth of the imaginary root spaces. Our knowledge of the dimensions of imaginary
root spaces is far from being complete, though there are known formulas for root multiplicities.

The �rst formulas for rootmultiplicities of Kac–Moody algebras are a closed form formula by Berman
and Moody [1] and a recursive formula by Peterson and Kac [8, 20]. Both formulas are based on the
denominator identity for a Kac–Moody algebra g and enable us to calculate the multiplicity of a given
root (of a reasonable height). The paper by Feingold and Frenkel [5], where the hyperbolic Kac–Moody

algebra F of typeHA
(1)
1 was studied, included the �rst results about hyperbolic root multiplicities giving

an in�nite number of them a combinatorial meaning as values of a partition function. Their method

used the Z-grading of F by level with respect to the a�ne subalgebra A
(1)
1 and gave closed formulas for

all the root multiplicities on levels ±1 and ±2. Using the same method, Kac et al. [9] calculated some

root multiplicities for HE
(1)
8 (= E10).

These methods were further systematically developed and generalized by Kang [10, 13] for arbi-
trary Kac–Moody algebras and have been adopted in many works on root multiplicities of inde�nite
Kac–Moody algebras. In his construction, the �rst author adopted homological techniques andKostant’s
formula [7] to devise a method that works for higher levels. For example, he applied his method to

compute root multiplicities of the algebra F of type HA
(1)
1 up to level 5 [11, 12].

Despite all these results, we still do not have any uni�ed, e�cient approach to computing all
root multiplicities. Essentially these methods give answers to root multiplicities one at a time, with
no general formulas or e�ective bounds on multiplicities. In particular, these formulas are given by
certain alternating sums of rational numbers and make it di�cult to control overall behavior of root
multiplicities. Therefore it is already quite hard to �nd e�ective upper or lower bounds for root
multiplicities for hyperbolic and other inde�nite Kac–Moody algebras.

For hyperbolic Kac–Moody algebras, in the setting of the ‘no-ghost’ theorem from String theory,
I. Frenkel [6] proposed a bound on the root multiplicities of hyperbolic Kac–Moody algebras.

Frenkel’s conjecture: Let g be a symmetric hyperbolic Kac–Moody algebra associated to a hyperbolic lattice
of dimension d and equipped with invariant form (· | ·) such that (αi|αi) = 2 for simple roots αi. Then we
have:

dim(gα) ≤ p(d−2)

(

1 −
(α|α)

2

)

,

where the function p(ℓ)(n) is the multi-partition function with ℓ colors.
Frenkel’s conjecture is known to be true for any symmetric Kac–Moody algebra associated to a

hyperbolic lattice of dimension 26 [6], though Kac et al. [9] showed that the conjecture fails for E10.
The conjecture is still open for the rank 3 hyperbolic Kac–Moody algebra F and proposes arguably the
most tantalizing question about root multiplicities.

Open Problem: Prove Frenkel’s conjecture for the rank 3 hyperbolic Kac–Moody algebra F.

As mentioned earlier, Feingold and Frenkel [5] and Kang [11, 12] studied root multiplicities of F.
There is another approach to root multiplicities of F and other hyperbolic Kac–Moody algebras, taken
byNiemann [19], which follows Borcherds’ idea in construction of the fakeMonster Lie algebra [2]. This
approach was further pursued by Kim and Lee [15]. A recent survey on root multiplicities can be found
in [3].
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In this paper, we adopt quite a di�erent methodology and investigate root multiplicities of rank
two symmetric hyperbolic Kac–Moody algebras H(a) (a ≥ 3) through combinatorial objects. More
precisely, we use lattice paths, known as Dyck paths, to describe root multiplicities.

Suppose that α = rα1 + sα2 is an imaginary root ofH(a) with r and s relatively prime, for simplicity.
Then our �rst main theorem (Theorem 3.7) shows that

Theorem 1.1. We have

mult (α) =
∑

D:Dyck path
wt(D)=α

c(D).

Here c(D) has values 1, 0, or −1 and is immediately determined by the shape of the Dyck path D.
The result for general α involves considering cyclic equivalence of paths and a minor correction term
coming from paths with weight α/2. An important feature is that this formula only contains integers and
has clear combinatorial interpretation, and makes it possible to prove properties of root multiplicities
through combinatorial manipulations of Dyck paths. For example, in the symmetric rank two case, we
can prove an analogue of Frenkel’s conjecture through combinatorics of Dyck paths.

Proposition 1.2. Let g = H(a). Then we have:

mult (α) ≤ pt

(

1 −
(α|α)

2

)

,

where α = rα1 + sα2, t = max(r, s) and pt(n) is the number of partitions of n with at most t parts.

Even though this upper bound is in the form of Frenkel’s conjecture, it is actually crude. More
interestingly, Theorem 1.1 gives a natural upper bound by only counting paths with c(D) = 1. This
upper bound can be signi�cantly improved by considering cancellation with paths having c(D) = −1.
Namely, we consider a function8 from {D : c(D) = −1} to {D : c(D) = 1}. Suppose that α = rα1+sα2

is an imaginary root ofH(a) with r and s relatively prime, for simplicity. Then we obtain

Theorem 1.3.

mult (α) ≤ #{D : Dyck path, wt(D) = α, c(D) = 1, D is not an image under 8}.

This upper bound is quite sharp and gives exact root multiplicities for roots up to height 16 with
a suitable choice of 8. In Section 5, the function 8 will be carefully constructed. The resulting upper
bound is satisfactorily accurate and enlightens combinatorics of Dyck paths related to rootmultiplicities.

Our approach clearly extends to higher rank Kac–Moody algebras by replacing Dyck paths with
certain lattice paths. In a subsequent paper, wewill consider higher rank cases; in particular, wewill study
the Feingold–Frenkel rank 3 algebra F. We hope that our approach may bring signi�cant advancements
toward Frenkel’s conjecture for the algebra F.

2. Rank two symmetric hyperbolic Kac–Moody algebras

In this section, we �x our notations for rank 2 hyperbolic Kac–Moody algebras. A general theory of Kac–
Moody algebras can be found in [8], and the root systems of rank two hyperbolic Kac–Moody algebras
were studied by Lepowsky and Moody [18] and Feingold [4]. Root multiplicities of these algebras were
investigated by Kang and Melville [14].

Let A = (aij) =
(

2 −a
−a 2

)

be a generalized Cartan matrix with a ≥ 3, and H(a) be the hyperbolic
Kac–Moody algebra associated with the matrix A. In this section, we write g = H(a) if there is no need
to specify a. Let {h1, h2} be the set of simple coroots in the Cartan subalgebra h = Ch1 ⊕ Ch2 ⊂ g.
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Let {α1,α2} ⊂ h∗ be the set of simple roots, andQ = Zα1 ⊕Zα2 be the root lattice. The set of roots of g
will be denoted by1, and the set of positive (resp. negative) roots by1+ (resp. by1−), and the set of real
(resp. imaginary) roots by 1re (resp. by 1im). We will use the notation 1+

re to denote the set of positive
real roots. Similarly, we use 1+

im, 1−
re, and 1−

im. The Lie algebra g has the root space decomposition
g = h ⊕

⊕

α∈1 gα and we de�ne themultiplicity of α by multα := dim gα .
We de�ne a symmetric bilinear form on h∗ by (αi|αj) = aij, where aij is the (i, j)-entry of the Cartan

matrix A. The simple re�ection corresponding to αi in the root system of g is denoted by ri (i = 1, 2),
and the Weyl groupW is given byW = {(r1r2)i, r2(r1r2)i | i ∈ Z}. De�ne a sequence {Bn} by

B0 = 0, B1 = 1, Bn+2 = aBn+1 − Bn for n ≥ 0.

It can be shown that

Bn =
1 − γ 2n

γ n−1(1 − γ 2)
(n ≥ 0),

where γ = a+
√
a2−4
2 . We will write (A,B) = Aα1 + Bα2. Then the set of positive real roots is given by

1+
re = {(Bn,Bn+1), (Bn+1,Bn) | n ≥ 0} .

See [14] for details. To describe the set of imaginary roots, we �rst de�ne the set

�k =







(m, n) ∈ Z≥0 × Z≥0 :

√

4k

a2 − 4
≤ m ≤

√

k

a − 2
, n =

am −
√

(a2 − 4)m2 − 4k

2







for k ≥ 1. Here, by de�nition, we do not include (m, n) in �k unless n is an integer. For example, when
a = 3 and k = 100, the valuesm = 9, 10 satisfy the inequalities in the condition. But the corresponding
n is an integer for m = 10, precisely n = 10, and it is an irrational number for m = 9. Thus we have
(10, 10) ∈ �100 and (9, n) 6= �100 for any n ∈ Z≥0.

Proposition 2.1 ([14]). For a ≥ 3, the set of positive imaginary roots α ofH(a) with (α|α) = −2k is

1+
im,k =

{

(m, n), (mBj+1 − nBj,mBj+2 − nBj+1),

(mBj+2 − nBj+1,mBj+1 − nBj)

∣

∣

∣
(m, n) ∈ �k or (n,m) ∈ �k, j ≥ 0

}

.

The denominator identity is given by
∏

α∈1+

(1 − e−α)multα =
∑

w∈W
(−1)ℓ(w)ewρ−ρ ,

where ℓ(w) is the length of w and ρ = (α1 + α2)/(2 − a).

3. Contributionmultiplicity

In this section, we �x a hyperbolic Kac–Moody algebraH(a), a ≥ 3. First, we recall Kang and Melville’s
result [14] on root multiplicities of H(a). For r, s ∈ Z≥0, write α = rα1 + sα2. As in [14], we de�ne a
sequence {An}n≥0 as follows:

A0 = 0, A1 = 1,

An+2 = aAn+1 − An + 1 for n ≥ 0.

Let

C =
{

c = (c00, c
1
0, c

0
1, c

1
1, . . .) | cji are non-negative integers, j ∈ {0, 1}, i ≥ 0

}

,
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and let

C (α) =







c ∈ C |
∑

i≥0

(c0i Ai+1 + c1i Ai) = r,
∑

i≥0

(c0i Ai + c1i Ai+1) = s







. (3.1)

For τ ∈ Q, we write τ |α if α = dτ for some d ∈ Z>0, and set α/τ = d.

Proposition 3.2 ([14, Propositions 2.1, 2.2]). We have

mult (α) =
∑

τ |α
µ

(α

τ

) τ

α

∑

c∈C (τ )

(−1)
∑

i:odd(c
0
i +c1i )

(
∑

i≥0(c
0
i + c1i ) − 1)!

∏

i≥0 c
0
i !c

1
i !

, (3.3)

where µ is the Möbius function.

For r, s ∈ Z≥0, de�ne a Dyck path of size r × s to be a lattice path from (0, 0) to (r, s) that never
goes above the main diagonal joining (0, 0) and (r, s). We identify a Dyck path with a word in alphabet
{1, 2}, where 1 represents a horizontal move and 2 a vertical move. Then a Dyck path has 12-corners
(i.e., corners of shape y) and 21-corners (i.e., corners of shape p). We consider the end points (0, 0) and
(r, s) as 21-corners. We de�ne the weight of a Dyck path D of size r × s to be wt(D) := rα1 + sα2 ∈ Q.

We say that two Dyck paths D1 and D2 are equivalent if D1 is a cyclic permutation of D2 (as words
in the alphabet {1, 2}). Then we obtain equivalence classes of Dyck paths. When no confusion arises, we
will frequently identify an equivalence class D with any representative D ∈ D. For an equivalence class
D, the weight wt(D) is well de�ned. The concatenation of Dyck pathsD1,D2, . . . ,Dr will be denoted by
D1D2 · · ·Dr . For a positive integer d and a Dyck path D, the concatenation Dd is de�ned in an obvious
way. We distinguish a concatenation from its resulting path. The resulting path of a concatenation
D1D2 · · ·Dr will be denoted by π(D1D2 · · ·Dr). A Dyck path D is said to be primitive if D 6= π(Dd

0)

for any subpath D0 and d ≥ 2. Likewise, an equivalence class D is said to be primitive if any element D
ofD is primitive.

De�nition 3.4. For any positive integersu, v, denote byLu×v theDyck path of sizeu×v, which consists of
u horizontal edges followed by v vertical edges, and call it an elementary path.We say that the elementary
Dyck path Lu×v is of











type (−1), if An ≤ min(u, v), max(u, v) < An+1, and n : even > 0;

type (1), if An ≤ min(u, v), max(u, v) < An+1, and n : odd;

type (0), if An ≤ min(u, v) < An+1 ≤ max(u, v), and n > 0.

For a given Dyck path D, de�ne S (D) to be the set of all concatenations of copies of LAi+1×Ai and
copies of LAi×Ai+1 for i ≥ 0 in some order that realize D. For a concatenation s in S (D), the number of
copies of LAi+1×Ai is denoted by c0i (s) and the number of copies of LAi×Ai+1 by c

1
i (s). We de�ne

seq(s) = (c0i (s), c
1
i (s))i≥0 ∈ C and sgn(s) = (−1)

∑

i:odd(c
0
i (s)+c1i (s)).

If D is an equivalence class, we observe that S (D1) is in one-to-one correspondence with S (D2)

through cyclic permutation for D1,D2 ∈ D. For an equivalence class D, we de�ne the set S (D) to
be equal to S (D) for a �xed Dyck path D ∈ D. Now the contribution multiplicity c(D) of D is de�ned
by

c(D) =
∑

s∈S (D)

sgn(s).

For a Dyck pathD, a subpathD0 ofD is called framed if the starting point and the ending point ofD0

are both 21-corners.
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Lemma 3.5. For any Dyck path D, we have

c(D) =







0, if D contains a framed subpath of type (0);

(−1)# of framed subpaths of D of type (−1), otherwise.

Proof. Assume that D = π(D1D2). Then we have

c(D) =
∑

s∈S (D)

sgn(s)

=
∑

(s1,s2)∈S (D1)×S (D2)

sgn(s1) sgn(s2)

=
∑

s1∈S (D1)

sgn(s1)
∑

s2∈S (D2)

sgn(s2)

= c(D1)c(D2).

Thus it is enough to consider the case when D is an elementary path. In this case, we need to prove that
c(D) is equal to its type. We will use induction. Clearly, c(L1×0) = c(L0×1) = 1, and the assertion of the
lemma is true. Suppose that the assertion is true for Lu×v. We will prove the case L(u+1)×v. The other
case Lu×(v+1) is obtained from the symmetry.

Write L = Lu×v and L1 = L(u+1)×v to ease the notations. Assume that c(L) is equal to its type. If L
and L1 are of the same type, then we get all the elements of S (L1) from those of S (L) by adding 1 to
c00(s), s ∈ S (L), and c(L1) = c(L).

If L is of type (1) and L1 is of type (0), then the path L1 newly contains LAn+1×An as a subpath for n
odd, where An+1 = u+ 1. Consequently, c(L1) = c(L) − 1 = 0 by induction. If L is of type (−1) and L1
is of type (0), then the path L1 newly contains LAn+1×An as a subpath for n even, where An+1 = u + 1.
Thus, again, we have c(L1) = c(L) + 1 = 0.

Similarly, if L is of type (0) and L1 is of type (−1) (respectively, if L is of type (0) and L1 is of type (1)),
then L1 newly contains LAn+1×An as a subpath for n odd (respectively, for n even), where An+1 = u+ 1.
Thus we have c(L1) = c(L) − 1 = −1 (respectively, c(L1) = c(L) + 1 = 1). Now, by induction, we are
done.

Remark 3.6. The above lemma enables us to compute c(D) e�ciently and combinatorially. In particular,
c(D) = 1 if D contains no framed subpaths of type (0) and an even number of framed subpaths of
type (−1).

The following theorem is a combinatorial realization of Kang and Melville’s formula (3.3), which
says that the root multiplicity of α is equal to the sum of contribution multiplicities c(D) of primitive
equivalence classesD of weight α plus some correction term.

Theorem 3.7. For α ∈ 1+, we have

mult (α) =
∑

D: primitive
wt(D)=α

c(D) +
∑

D: primitive
wt(D)=α/2

⌊

1 − c(D)

2

⌋

.

By Lemma 3.5, we see that the second sum (i.e., the correction term) is nothing but the number of
primitiveD such that wt(D) = α/2 and c(D) = −1.
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Proof. Write α = rα1 + sα2. Before we deal with the general case, we �rst consider a simpler case and
assume that r and s are relatively prime. Then the correction term is 0, and each equivalence class of
weight α has only one primitive Dyck path. Recall that we de�ned C (α) in (3.1). We claim that, for each

c = (c0i , c
1
i )i≥0 ∈ C (α), the number of concatenations s such that seq(s) = c is

(
∑

i≥0(c
0
i +c1i )−1)!

∏

i≥0 c
0
i !c

1
i !

. Indeed,

let p be a concatenation of the c0i copies of LAi+1×Ai and c
1
i copies of LAi×Ai+1 in some order, and consider

the concatenation pN for N su�ciently large. Then we can �nd a unique line with slope s/r which
intersects the path π(pN) so that the path never goes above the line. Since r and s are relatively prime,
two consecutive intersection points uniquely determine a concatenation which is a cyclic permutation
of p, and the number of cyclic permutations is

∑

i≥0(c
0
i + c1i ). Now the claim follows.

From Proposition 3.2 and the claim above, we obtain
∑

D: primitive
wt(D)=α

c(D) =
∑

D: wt(D)=α

∑

s∈S (D)

(−1)
∑

i:odd(c
0
i (s)+c1i (s))

=
∑

c∈C (α)

(−1)
∑

i:odd(c
0
i +c1i )

(
∑

i≥0(c
0
i + c1i ) − 1)!

∏

i≥0 c
0
i !c

1
i !

= mult (α).

Now we consider arbitrary r, s ∈ Z≥0. We will show

∑

c∈C (α)

(−1)
∑

i:odd(c
0
i +c1i )

(
∑

i≥0(c
0
i + c1i ) − 1)!

∏

i≥0 c
0
i !c

1
i !

=
∑

τ |α

τ

α









∑

D: primitive
wt(D)=τ

c(D) +
∑

D: primitive
wt(D)=τ/2

⌊

1−c(D)
2

⌋









. (3.8)

Let c ∈ C (α). As before, assume that p is a concatenation of the c0i copies of LAi+1×Ai and c1i copies of
LAi×Ai+1 in some order, and consider the concatenation pN for N su�ciently large. Then we can �nd a
unique line with slope s/r which intersects the path π(pN) so that the path never goes above the line.
Then we obtain an equivalence class of concatenations of size r× s. We choose a concatenation from the
equivalence class and denote it again by p.

Ifp = pd0 for some concatenationp0 ofweight τ such thatα/τ = d and d ismaximal, then the number
of cyclic permutations of p is

∑

i≥0(c
0
i + c1i )/d. De�ne the contribution of the equivalence class of p to

be (−1)
∑

i:odd(c
0
i +c1i )/d. Then the total sum of contributions of equivalence classes of concatenations p

such that seq(p) = c is given by (−1)
∑

i:odd(c
0
i +c1i )

(
∑

i≥0(c
0
i +c1i )−1)!

∏

i≥0 c
0
i !c

1
i !

. One can see this by observing that

(
∑

i≥0 c
0
i +c1i )!

∏

i≥0 c
0
i !c

1
i !

counts the number of concatenations and that
(
∑

i≥0(c
0
i +c1i )−1)!

∏

i≥0 c
0
i !c

1
i !

is the weighted number of

cyclic equivalence classes of concatenations when we assign a weight 1/d to an equivalence class of
∑

i≥0(c
0
i + c1i )/dmembers.

We group the equivalence classes of concatenations p according to the resulting equivalence classes
D of Dyck paths so that π(p) ∈ D, and de�ne TD to be the total sum of contributions of the equivalence
classes of p such that π(p) ∈ D. Then we have

∑

c∈C (α)

(−1)
∑

i:odd(c
0
i +c1i )

(
∑

i≥0(c
0
i + c1i ) − 1)!

∏

i≥0 c
0
i !c

1
i !

=
∑

D:wt(D)=α

TD . (3.9)
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We consider an equivalence classD of Dyck paths of weight α and choose a representative D. Let D0

be a primitive subpath of D such that D = π(Dd
0), and let S (D0) = {s1, . . . , sk}. If p is a concatenation

such that π(p) = D then p is equal to a concatenation of d choices of si from S (D0) with repetition
allowed. Thus the total sum TD of contributions is equal to

TD =
1

d
(sgn(s1) + · · · + sgn(sk))

d =
1

d
c(D0)

d.

By Lemma 3.5, we know that c(D0) = −1, 0 or 1. Unless c(D0) = −1 and d is even, we have TD =
1
d c(D0). If c(D0) = −1 and d is even, then we have TD = 1

d = 1
d c(D0) + 2

d .
Now we obtain

∑

D:wt(D)=α

TD =
∑

τ |α

τ

α

∑

D0: primitive
wt(D0)=τ

c(D0) +
∑

2τ |α

2τ

α

∑

D0: primitive
wt(D0)=τ

δc(D0)+1,0

=
∑

τ |α

τ

α









∑

D: primitive
wt(D)=τ

c(D) +
∑

D: primitive
wt(D)=τ/2

⌊

1 − c(D)

2

⌋









,

where δ is the Kronecker delta. Combined with (3.9), this establishes the desired identity (3.8).
Finally, let β = r0α1+ s0α2 be such that r0 and s0 are relatively prime and β|α. Multiplying both sides

of (3.8) by α/β , we obtain

α

β

∑

c∈C (α)

(−1)
∑

i:odd(c
0
i +c1i )

(
∑

i≥0(c
0
i + c1i ) − 1)!

∏

i≥0 c
0
i !c

1
i !

=
∑

τ |α

τ

β









∑

D: primitive
wt(D)=τ

c(D) +
∑

D: primitive
wt(D)=τ/2

⌊

1 − c(D)

2

⌋









. (3.10)

It follows from the Möbius inversion and Proposition 3.2 that

mult (α) =
∑

D: primitive
wt(D)=α

c(D) +
∑

D: primitive
wt(D)=α/2

⌊

1 − c(D)

2

⌋

.

This completes the proof.

As a corollary, we can prove an analogue of Frenkel’s conjecture.

Corollary 3.11. We have

mult (α) ≤ pt

(

1 −
(α|α)

2

)

,

where α = rα1 + sα2, t = max(r, s) and pt(n) is the number of partitions of n with at most t parts.

Proof. Let α = rα1+sα2. We assume by symmetry that r ≤ s. Let n = r−1+(the number of unit boxes
below the diagonal). We de�ne a one-to-one function from the set of Dyck paths to the set of partitions
of n by D 7→ (γ0, γ1, . . . , γs−1), where γk = the number of unit boxes in the k-th row and below D for
k ∈ {1, . . . , s− 1} and γ0 = n−

∑s−1
k=1 γk. It is straightforward to see that γ0 ≥ γ1 ≥ · · · ≥ γs−1. Hence

we have mult (α) ≤ ps(n), so it su�ces to show that n ≤ 1 − (α|α)
2 .



COMMUNICATIONS IN ALGEBRA® 4793

Since mult (α) is invariant under the Weyl group action, we can further assume that r ≤ s ≤ a
2 r.

Then

1 −
(α|α)

2
= 1 + ars − r2 − s2 ≥ 1 +

a2 − 4

2a
rs ≥ 1 +

5

6
rs ≥ r − 1 +

1

2
rs ≥ n.

As another corollary, we obtain combinatorial upper and lower bounds for root multiplicities:

Corollary 3.12. We have
∑

D: primitive
wt(D)=α

c(D) ≤ mult (α) ≤ #{D : primitive, wt(D) = α, c(D) = 1}.

Proof. The inequality for the lower bound is clear. For the upper bound, we need only to prove that

#{D : primitive, wt(D) = α, c(D) = −1} ≥ #{D0 : primitive, wt(D0) = α/2, c(D0) = −1}.

Suppose that D0 is primitive with wt(D0) = α/2 and c(D0) = −1. We choose D0 ∈ D0. Since
mult(α/2) ≥ 0, there exists a primitive D1 with wt(D1) = α/2 and c(D1) = 1. Then D := π(D0D1) is
primitive, and we have wt(D) = α and c(D) = −1. If we �x D1, then the map D0 7→ D is injective.

Example 3.13. Consider α = 4α1 + 4α2 of H(3). Then we have the following representatives of
equivalence classes of primitive Dyck paths and the corresponding contribution multiplicities.

-1 1 1 1 1 1 1 1

Since A2 = 4 forH(3), the weight α/2 = 2α1 + 2α2 does not have any pathD with c(D) = −1, and the
correction term is 0. Thus we have mult (α) = 6.

Example 3.14. Consider α = 5α1 + 5α2 of H(3). Then we have the following representatives of
equivalence classes of primitive Dyck paths and the corresponding contribution multiplicities.

-1 0 0 0 -1

0 1 1 1 1
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1 1 1 1 0

1 1 1 1 1

1 1 1 1 1

Since α/2 is not an integral weight, the correction term is zero. Thus we have mult (α) = 16.

4. Sharper upper bound I

The next goal of this paper is to obtain sharper upper bounds for root multiplicities by considering
cancellation among paths with opposite contribution multiplicities. In this section, we will develop a
procedure to obtain such bounds, which depends on a choice of a certain family of Dyck paths. In the
next section, we will explicitly make a careful choice of such a family of Dyck paths.

We begin with a lemma, which guarantees the existence of a family with desired properties.

Lemma 4.1. For each Lu×v of type (−1), we can choose a primitive Dyck path Mu×v of size u × v which
contains no framed subpaths of type (−1) or of type (0).

Proof. Suppose that Lu×v is of type (−1). We may assume that u ≤ v. Since

A2n+1 − 1

A2n
=

aA2n − A2n−1

A2n
= a −

A2n−1

A2n
< a,

we have 1 ≤ v/u < a. Let Eu×v be the Dyck path that is closest to the diagonal joining (0, 0) and (u, v).
Then Eu×v is given by a concatenation of subpaths of sizes 1 × s with 1 ≤ s ≤ a < A2 = a + 1.
Therefore, if Eu×v is primitive, we can putMu×v = Eu×v. If Eu×v is not primitive, then Eu×v meets with
the diagonal other than (0, 0) and (u, v). Each of these intersection points is incident with a vertical edge
and a horizontal edge. Immediately a�er the horizontal edge, Eu×v travels s steps in the north for some
s = 1, 2, . . . , a − 1. We switch the order of the vertical edge and horizontal edge, so that the resulting
Dyck path, sayMu×v, does not touch the diagonal. Also there are s+1 < A2 vertical edges a�er the new
horizontal edge. HenceMu×v is primitive and does not contain any framed subpaths of type (−1) or of
type (0).

Remark 4.2. The choice ofMu×v made in the proof of Lemma 4.1 is not optimal for upper bounds for
root multiplicities. In Section 5, we will investigate how to make an optimal choice of Mu×v to obtain
sharp upper bounds for root multiplicities.
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For the rest of this section, we �x Mu×v for each Lu×v of type (−1) that satis�es the conditions in
Lemma 4.1. A subpath of the formMu×v is to be called of type (1c). Let 2(α) be the set of equivalence
classes of primitive Dyck paths with weight α = rα1 + sα2. We de�ne a function

8 : {D ∈ 2(α) : c(D) = −1} −→ {D : c(D) = 1} (4.3)

as follows: Choose a representative Dyck path D ∈ D , and we travel from (0, 0) to (r, s) along D. As
soon as we encounter with a subpath of type (−1) or (1c), we stop traveling and de�ne 8(D) as the
equivalence class containing the resulting Dyck path obtained from D by replacing the subpath Lu×v or
Mu×v with the correspondingMu×v or Lu×v, respectively.

Remark 4.4. Note that 8(D) may not be primitive. The de�nition of 8 depends on the choice ofMu×v

and on the choice of representatives D. In general, 8 is not injective.

Now we state the main theorem of this section.

Theorem 4.5. Let α be a positive root ofH(a). Then we have

mult (α) ≤ #{D : primitive, wt(D) = α, c(D) = 1, D is not an image under 8}.

Proof. We set

N1 = #{D ∈ 2(α) : c(D) = 1, D /∈ Im8},
N2 = #{D ∈ 2(α) : c(D) = 1, D ∈ Im8},
N3 = #{D ∈ 2(α) : c(D) = −1, 8(D) is primitive},
N4 = #{D ∈ 2(α) : c(D) = −1, 8(D) is non-primitive},
N5 = #{D ∈ 2(α/2) : c(D) = −1}.

Then the identity in Theorem 3.7 can be written as

mult (α) = N1 + N2 − N3 − N4 + N5.

Note that we are proving mult (α) ≤ N1. Clearly, N2 − N3 ≤ 0, and we have only to show that −N4

+ N5 ≤ 0.
Suppose that D0 is primitive with wt(D0) = α/2 and c(D0) = −1. By Lemma 3.5, D0 has a framed

subpath Lu×v of type (−1). ThusD0 6= 8(D0). SetD := π(D0 8(D0)). ThenD is primitive, and we have
wt(D) = α and c(D) = −1. Moreover 8(D) is non-primitive by construction and the correspondence
D0 7→ D induces an injective map from {D ∈ 2(α/2) : c(D) = −1} to {D ∈ 2(α) : c(D) =
−1, 8(D) is non-primitive}. Thus we have N5 ≤ N4.

Example 4.6. Consider again α = 5α1 + 5α2 ∈ H(3). We chooseM4×4 andM5×5 to be

and , respectively.

Then the map 8 gives

−→ and −→ . (4.7)
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In the �rst correspondence, the whole path is L5×5 and it is simply replaced byM5×5; in the second, the
subpath L4×4 is replaced byM4×4. There are 18 primitive equivalence classes of paths with contribution
multiplicity 1 as one can see from Example 3.14. Since two of them are in the image of 8 as shown in
(4.7), we actually obtain an equality 16 = mult (α) = #{D ∈ 2(α) : c(D) = 1, D /∈ Im8}.

5. Sharper upper bound II

The upper bound in Theorem 4.5 depends on the choice of Dyck pathsMu×v and the resulting function
8. In this section, we will make an optimal choice ofMu×v so that 8 may become close to an injection
and consequently produce sharp upper bounds for root multiplicities.

Recall that we have de�ned the sequences {An}, {Bn} by

A0 = 0, A1 = 1, An+2 = aAn+1 − An + 1 for n ≥ 0,
B0 = 0, B1 = 1, Bn+2 = aBn+1 − Bn for n ≥ 0.

Lemma 5.1. We have, for i = 1, 2, . . . ,

Ai+1Ai−1 = A2
i − Ai.

Proof. We use induction. If i = 1, then the assertion is clearly true. Assume that we have AiAi−2 =
A2
i−1 − Ai−1. Then we obtain

Ai+1Ai−1 = (aAi − Ai−1 + 1)Ai−1 = aAiAi−1 − A2
i−1 + Ai−1

= aAiAi−1 − AiAi−2 = Ai(aAi−1 − Ai−2) = Ai(Ai − 1) = A2
i − Ai.

For any positive integers u, v, denote by Eu×v the Dyck path of size u×v that is closest to the diagonal
joining (0, 0) and (u, v). For any integer n ≥ 2, we de�ne

MA2n×(A2n+1−i)

=















































LA2n−1×(A2n−2)E(A2n−2A2n−1)×(A2n+1−2A2n+2)LA2n−1×(A2n−1), for i = 1;

LA2n−1×(A2n−3)E(A2n−2A2n−1)×(A2n+1−2A2n+4−i)LA2n−1×(A2n−1), for 2 ≤ i ≤ a + 2;

L(A2n−1+1)×j1E(A2n−2A2n−1−1)×(A2n+1−A2n+1−j1−i)LA2n−1×(A2n−1), for a + 3 ≤ i ≤
(a + 3)A2n

A2n−1
;

L(A2n−1+1)×j1E(A2n−2A2n−1−1)×(A2n+1−j1−j2−i)LA2n−1×j2 , for
(a + 3)A2n

A2n−1

< i ≤ A2n+1 − A2n,

where j1 is the integer satisfying

j1

A2n−1 + 1
≤

A2n+1 − i

A2n
<

j1 + 1

A2n−1 + 1

and j2 is the integer satisfying

j2 − 1

A2n−1 + 1
<

A2n+1 − i

A2n
≤

j2

A2n−1 + 1
.

For 1 ≤ i ≤ A2n+1 −A2n − A2n
A2n−1+1 , we de�neM(A2n+1−i)×A2n to be the transpose ofMA2n×(A2n+1−i).

For A2n+1 − A2n − A2n
A2n−1+1 < i < A2n+1 − A2n, de�neM(A2n+1−i)×A2n by

Lj2×A2n−1E(A2n+1−j1−j2−i)×(A2n−2A2n−1−2)Lj1×(A2n−1+2),
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where j2 is the integer satisfying

A2n−1

j2
≤

A2n

A2n+1 − i
<

A2n−1

j2 − 1

and j1 is the integer satisfying

A2n−1 + 2

j1 + 1
<

A2n

A2n+1 − i
≤

A2n−1 + 2

j1
.

Lemma 5.2. The paths MA2n×(A2n+1−i) and M(A2n+1−i)×A2n are Dyck paths for each n ≥ 2 and 1 ≤ i ≤
A2n+1 − A2n.

Proof. Since the other case is similar, we only consider MA2n×(A2n+1−i). First we need to show that
A2n+1−i

A2n
≤ A2n−1

A2n−1
which is equivalent to

A2n+1A2n−1 − iA2n−1 ≤ A2
2n − A2n.

By Lemma 5.1, this becomes iA2n−1 ≥ 0, which is obvious.

Next, we consider A2n+1−1
A2n

≥ A2n−2
A2n−1

which is equivalent to

A2n+1A2n−1 − A2n−1 ≥ A2
2n − 2A2n.

Again by Lemma 5.1, this becomes A2n−1 ≤ A2n, which is clearly true. The remaining cases can be
checked in a similar way.

For n ≥ 2 and k ∈ {1, 2, . . . ,A2n+1 − A2n − 1}, we de�ne

M(A2n+k)×(A2n+1−i)

=

{

L(A2n−1+1)×j1E(A2n−2A2n−1+k−1)×(A2n+1−A2n+1−j1−i)LA2n−1×(A2n−1), for 1 ≤ i ≤ p;

L(A2n−1+1)×j1E(A2n−2A2n−1+k−1)×(A2n+1−j1−j2−i)LA2n−1×j2 , for p < i ≤ A2n+1 − A2n − k,

where j1 is the integer satisfying

j1

A2n−1 + 1
≤

A2n+1 − i

A2n + k
<

j1 + 1

A2n−1 + 1
,

j2 is the integer satisfying

j2 − 1

A2n−1 + 1
<

A2n+1 − i

A2n + k
≤

j2

A2n−1 + 1
,

and p is the integer satisfying

(A2n − 3) − 1

A2n−1 + 1
<

A2n+1 − p

A2n + k
≤

(A2n − 3)

A2n−1 + 1
.

For 1 ≤ i ≤ A2n+1 − A2n − k − A2n+k
A2n−1+1 , we de�ne M(A2n+1−i)×(A2n+k) to be the transpose of

M(A2n+k)×(A2n+1−i). For A2n+1 − A2n − k− A2n+k
A2n−1+1 < i < A2n+1 − A2n − k, de�neM(A2n+1−i)×(A2n+k)

by

Lj2×A2n−1E(A2n+1−j1−j2−i)×(A2n−2A2n−1+k−2)Lj1×(A2n−1+2),

where j2 is the integer satisfying

A2n−1

j2
≤

A2n + k

A2n+1 − i
<

A2n−1

j2 − 1
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and j1 is the integer satisfying

A2n−1 + 2

j1 + 1
<

A2n + k

A2n+1 − i

≤
A2n−1 + 2

j1
.

Lemma 5.3. The paths M(A2n+k)×(A2n+1−i) and M(A2n+1−i)×(A2n+k) are Dyck paths for each n ≥ 2, 1 ≤
k ≤ A2n+1 − A2n − 1 and 1 ≤ i ≤ A2n+1 − A2n − k.

Proof. The proof is even simpler than the proof of Lemma 5.2, so we will omit it.

We recall the de�nition ofmutation ofDyck paths, which is developed by Lee and Schi	er [17], Rupel
[21], and Lee et al. [16].

De�nition 5.4. Consider the bijective function φ : {1a2, 1a−12, . . . , 12, 2} −→ {1, 12, . . . , 12a−1, 12a}
de�ned by

φ(1a2) = 1, φ(1a−12) = 12, . . . φ(12) = 12a−1, φ(2) = 12a.

Suppose that a �nite sequence S is obtained by concatenating (copies of) 1a2, 1a−12, · · · , 12, 2. Let φ(S)
be the sequence obtained from S by replacing each subsequence 1a2 (resp. 1a−12, · · · , 2) with φ(1a2)
(resp. φ(1a−12), · · · , φ(2)). We call φ(S) themutation of S.

Lemma 5.5. Let u and v be positive integers with 0 ≤ av − u ≤ v ≤ u. Then φ(Eu×v) = Ev×(av−u).

Proof. See [16, p. 68].

Now, for each (u, v) with A2 ≤ min(u, v), max(u, v) < A3, we choose a primitive Dyck path Mu×v

of size u × v such that Mu×v 6= Eu×v except for (u, v) = (A2,A3 − 1) and (A3 − 1,A2) and which
contains no framed subpaths of type (−1) or of type (0). A subpath of the form Mu×v with A2n ≤
min(u, v), max(u, v) < A2n+1 (n ≥ 1) is said to be of type (1s). More speci�cally, a subpath of the form
Mu×v with A2 ≤ min(u, v), max(u, v) < A3 is said to be of type (1s1). If n ≥ 2, then a subpath of
the form Mu×v with A2n ≤ min(u, v), max(u, v) < A2n+1 is said to be of type (1s2). Here we do not
further specify the pathsMu×v of type (1s1) since the conditions given above are enough to obtain the
main result (Proposition 5.6), whereas the paths Mu×v of type (1s2) have been deliberately chosen in
this section.

The following proposition shows that our choice of Mu×v made above for type (1s2) is optimal in
the sense that the resulting map 8 in (4.3) is as close to an injection as possible. Before stating the
proposition, we de�ne one more terminology: For a Dyck path D, a pair of two subpaths of D is said to
be disjoint if the two subpaths share no edges.

Proposition 5.6. Suppose that Mu×v 6= Eu×v for A2 ≤ min(u, v), max(u, v) < A3 except for (u, v) =
(A2,A3 − 1) and (A3 − 1,A2). Consider a Dyck path D. Then each subpath of type (1s2) of D is disjoint
from all other subpaths of type (1s).

Proof. First we show that any pair of two distinct subpaths of type (1s2) is disjoint. Suppose that two
distinct subpaths of type (1s2) are not disjoint. Let one of the two subpaths be Lu1×v1Eu2×v2Lu3×v3 and
the other Lu′

1×v′1
Eu′

2×v′2
Lu′

3×v′3
. Without loss of generality, assume that the �rst subpath starts before the

second one does. Since u1, v1, u3, v3, u
′
1, v

′
1, u

′
3, v

′
3 > 2, the only possibility is that u3 = u′

1 and v3 = v′
1.

We will check that this never happens. By symmetry we further assume that u3 ≤ v3.
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Then, by de�nition of j2, we get

j2 − 1 <
A2n−1 + 1

A2n

(

A2n+1 −
(a + 3)A2n

A2n−1

)

=
A2n−1A2n+1

A2n
+

A2n+1

A2n
− (a + 3) −

a + 3

A2n−1

Lemma 5.1= A2n − 1 +
A2n+1

A2n
− (a + 3) −

a + 3

A2n−1

< A2n − 1 + a − (a + 3) = A2n − 4,

which implies that j2 ≤ A2n − 4. So if u3 = u′
1 = A2n−1 then v3 6= v′

1. For other cases, it is easy to see
that if u3 = u′

1 then v3 6= v′
1.

Next we show that each subpath of type (1s2) is disjoint from any subpath of type (1s1). Let W be
a subpath of type (1s2) and V a subpath of type (1s1). Note that W is of the form Lu1×v1Eu2×v2Lu3×v3

with min(u1, v1, u3, v3) ≥ A3, and that V is of the form Mu×v with A2 ≤ min(u, v), max(u, v) < A3.
So if W and V are not disjoint, then Mu×v should be a subpath of Eu2×v2 . This happens only when
Mu×v = Eu×v, in otherwords,Mu×v is closest to the diagonal.Hence (u, v) = (A2,A3−1) or (A3−1,A2).
Without loss of generality, let (u, v) = (A3 − 1,A2). However (φ ◦ φ)(Eu×v) is not de�ned, because
aA2 − (A3 − 1) = A1 = 1 and aA1 − A2 < 0. On the other hand, it is straightforward to check that
(φ ◦ φ)(Eu2×v2) is well de�ned, which implies that Eu×v cannot be a subpath of Eu2×v2 .
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