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Introduction

Vertex operator algebras (VOA) are mathematical counterparts of chiral algebras in conformal field
theory. An important family of examples comes from representations of affine Lie algebras. More
precisely, if we let g be an affine Lie algebra, the irreducible g-module L(k,0) with highest weight
kAo, k € C, is a VOA, whenever k # —h", the negative of the dual Coxeter number.

The representation theory of L(k, Q) varies depending on values of k € C. If k is a positive integer,
the VOA L(k, 0) has only finitely many irreducible modules which coincide with the irreducible high-
est weight integrable g-modules of level k, and the category of Z.-graded weak L(k,0)-modules is
semisimple. If k ¢ Q or k < —h", categories of L(k,0)-modules are quite different from those corre-
sponding to positive integer values. (For example, see [10,11].)

For some rational values of k, the category of weak L(k,0)-modules which are in the category
O as g-modules has a structure similar to that for the category of Z,-graded weak modules for
positive integer values. Such rational values are called admissible levels. This notion was defined in the
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important works of Kac and Wakimoto [7,8]. Various cases have been studied with different generality
by many authors. Adamovic studied the case of admissible half-integer levels for type Cl(l) [1]. The

case of all admissible levels of type Agl) was studied by Adamovi¢ and Milas [2], and by Dong, Li
and Mason [3]. In his recent papers [14,15], PerSe studied admissible half-integer levels for type Al(l)

and BV,

In lthese developments, the A(V)-theory has played an important role. The associative algebra
A(V) associated to a vertex operator algebra V was introduced by Frenkel and Zhu (see [5,16]). It was
shown that the irreducible modules of A(V) are in one-to-one correspondence with irreducible Z. -
graded weak modules of V. This fact gives an elegant method for the classification of representations
of V, and was exploited in the works mentioned above.

In this paper, we study one-third admissible levels —%AO, —%Ao, —%Ao for type Ggl) adopting
the method of [1,2,13-15]. We first determine singular vectors (Proposition 2.3) and then obtain
a description of the associative algebra A(L(k,0)) in Theorem 2.6 using the singular vectors for
k= —%, 4 —%. By constructing some polynomials in the symmetric algebra of the Cartan subalge-

-3
bra, we find all the possible highest weights for irreducible A(L(k,0))-modules from the category O
(Proposition 3.6). As a result, in each case of k = —g, —%, —%, we prove that there are only finitely

many irreducible A(L(k, 0))-modules from the category O. Then it follows from the one-to-one cor-
respondence in A(V)-theory that there are only finitely many irreducible weak L(k, 0)-modules from
the category O (Theorem 3.7). In the case of irreducible L(k, 0)-modules, our result provides a com-
plete classification (Theorem 3.10). We also prove that such an L(k, 0)-module is completely reducible
(Theorem 3.12). Thus the VOA L(k, 0) is rational in the category O for k = —%, —%, —%. This result sup-
ports the conjecture made by Adamovi¢ and Milas in [2], which suggests that L(k, 0)’s are rational in
the category O for all admissible levels k.

Although some of our results may be generalized to higher levels k, the first difficulty is in the
drastic growth of complexity in computing singular vectors, as one can see in Appendix A. It seems
to be necessary to find a different approach to the problem for higher levels. The first-named author
will consider singular vectors for other admissible weights in his subsequent paper.

1. Preliminaries
1.1. Vertex operator algebras

Let (V,Y,1,w) be a vertex operator algebra (VOA). This means that V is a Z-graded vector space,
V=,c7Vn, Y is the vertex operator map, Y(-,x) : V — (End V)[[x, x 1], 1 € Vg is the vacuum
vector, and w € Vy is the conformal vector, all of which satisfy the usual axioms. See [3,4,12] for
more details. By an ideal in the vertex operator algebra V we mean a subspace I of V satisfying
Y(a,x)I € I[[x,x"']] for any a € V. Given an ideal I in V such that 1¢ I, @ ¢ I, the quotient V /I
naturally becomes a vertex operator algebra. Let (M, Y);) be a weak module for the vertex operator
algebra V. We thus have a vector space M and a map Yy (-, x) : V — (End M)[[x, x~ 1], which satisfy
the usual set of axioms (cf. [3]). For a fixed element a € V, we write Yy (a,x) =) .. a(m)x~™=1, and
for the conformal element @ we write Yy (w,X) =Y oz @(mx "1 =3 Lnx~™2. In particular,
V is a weak module over itself with Y =Yy.

A Z-graded weak V -module is a weak V-module M together with a Z. -gradation M = @72, My
such that

a(m)M, € Mpyr—m—1 foraeV.andm,n,r € Z,

where M; =0 for n < 0 by definition. A weak V-module M is called a V-module if Ly acts semisimply
on M with a decomposition into Lo-eigenspaces M = @@, .c M« such that for any o € C, dim My < oo
and My4, =0 for n € Z sufficiently small.

We define bilinear maps #:V x V — V and o: V x V — V as follows. For any homogeneous
a € V,, we write deg(a) =n, and for any b € V, we define
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14x dega
axb= Resx%Y(a, x)b,

and

14+ x dega
aob= Resx¥Y(a, x)b,
X

and extend both definitions by linearity to V x V. Denote by O (V) the linear span of elements of
the form a o b, and by A(V) the quotient space V/O(V). For a € V, denote by [a] the image of a
under the projection of V onto A(V). The map a+> [a] will be called Zhu’s map. The multiplication *
induces the multiplication on A(V), and A(V) has a structure of an associative algebra. This fact can
be found in [5,16].

Proposition 1.1. (See [5].) Let I be an ideal of the vertex operator algebra V such that 1 ¢ I, w ¢ 1. Then the
associative algebra A(V /1) is isomorphic to A(V)/A(I), where A(I) is the image of I in A(V).

Given a weak module M and homogeneous a € V, we recall that we write Yy(a,x) =
Zmeza(m)x_m_l. We define o(a) =a(dega — 1) € End(M) and extend this map linearly to V.

Theorem 1.2. (See [16].)

(1) Let M = B2y My, be a Z. -graded weak V -module. Then M is an A(V)-module defined as follows:

[a]-v=0(a)v
foranya eV and v € M.
(2) Let U be an A(V)-module. Then there exists a Z. -graded weak V -module M such that the A(V)-modules
Mg and U are isomorphic.

(3) The equivalence classes of the irreducible A(V)-modules and the equivalence classes of the irreducible
7. -graded weak V -modules are in bijective correspondence.

1.2. Affine Lie algebras

Let g be a finite-dimensional simple Lie algebra over C, with a triangular decomposition g =n_ &
h @ n,. Let A be the root system of (g, h), AL C A the set of positive roots, 6 the highest root and
(-,+) : g x g — C the Killing form, normalized by the condition (¢, 8) = 2. Denote by IT = {«1, ..., o}

the set of simple roots of g, and by ITY = {hq, ..., h;} the set of simple coroots of g. The affine Lie
algebra g associated to g is the vector space

§=9g®C[t.t']®CK
equipped with the bracket operation
[a®@t", b®t"]=[a,b] ™" + m(a,b)dm4noK, a,begmneZ,

together with the condition that K is a nonzero central element. We consider § as a subalgebra of g,
and set

h=h+CK C§.

Let §=A_ ®h @A, be the corresponding triangular decomposition of §.



198 J.D. Axtell, K.-H. Lee / Journal of Algebra 337 (2011) 195-223

We set h to be the dual Coxeter number of g. Denote by A the set of roots of § f g, by A+ the set
of posmve roots of g [ g, and by 17 the set of simple roots of g. We also denote by A™ the set of real
roots of g and let Are AN A+ The coroot corresponding to a real root « € A™ will be denoted

by aV. Let Q =@, .5 Za be the root lattice, and let Q4 = @, Z+a C Q. For any 1 € h*, we set
DAM={—a|aecQi}

We say that a g-module M belongs to the category O if the Cartan subalgebra 6 acts semisimply on
M with finite-dimensional weight spaces and there exits a finite number of elements vy, ...,V € 6*
such that v Uf:] D(vj) for every weight v of M. We denote by M(A) the Verma module for g with
highest weight A € 6* and by L(A) the irreducible g-module with highest weight 1. Let U be a g-
module, and let k € C. We set g, =g®tC[t] and §_ =g®t~IC[t™!]. Let §, act trivially on U and K
as scalar multiplication by k. Considering U as a g® CK & g+ -module, we have the induced g-module

Nk, U) =U(B) Qugockai,) U-

For a fixed u € bh*, denote by V (u) the irreducible highest weight g-module with highest weight
. Denote by P, the set of dominant integral weights of g, and by w1, ..., ®; € P4 the fundamental
weights of g. We will write N(k, ) = N(k, V(u)). Denote by J(k, i) the maximal proper submodule
of N(k, ) and Lk, u) = Nk, )/ Jk, p). We define Ag € 6* by Ag(K) =1 and Ag(h) =0 for any
h € h. Then N(k, n) is a highest weight module with highest weight kAg 4+ 1, and a quotient of the
Verma module M (kA + (). We also obtain L(k, ) = L(kAg + ).

1.3. Admissible weights

vre
)

Let AV-re (respectively, A be the set of real (respectively, positive real) coroots of g, and 784

the set of simple coroots. For AE b*, we define
AV,re AV,re AV,re _ Fv,re o xAVv,re
A ={a e AV |(r,aY)eZ}, and AE=AENATE,
and we set

My ={a" e A" | " is not decomposable into a sum of elements from A}"'¢}.

Let W denote the Weyl group of g. For each o € A we have a reflection Ty € W. Define pE h*
in the usual way, and we recall the shifted action of an element w € W on b* given by w1 =
w4+ p) —

A Weight AE 6* is called admissible if

(A +p,0¥)¢ 7, foralla¥ e AY™ and QA)™=QIT".

The irreducible g-module L(A) is called admissible if the weight A € 6* is admissible. Given a g-module
M from the category O, we call a weight vector v € M a singular vector if ny.v =0.

Proposition 1.3. (See [7].) Let A be an admissible weight. Then
L(A) = M(M/( > U@va),
aveﬁ/\v

where v, € M()) is a singular vector of weight r, - \.



J.D. Axtell, K.-H. Lee / Journal of Algebra 337 (2011) 195-223 199

Proposition 1.4. (See [8].) Let M be a g-module from the category O. If every irreducible subquotient L(v) of
M is admissible, then M is completely reducible.

14. N(k,0) and L(k, 0) as VOA’s

We identify the one-dimensional trivial g-module V (0) with C. Write 1=1® 1 € N(k, 0). The
g-module N(k, 0) is spanned by the elements of the form

aj(—=ny —1)---am(=nm — OH1,

where ay,...,an € g and ny, ..., ny, € Z,, with a(n) denoting the element a ® t" for a e g and n € Z.

The vector space N(k, 0) admits a VOA structure, which we now describe. The vertex operator map
Y(-,x): N(k,0) — End(N(k, 0))[[x, x"']] is uniquely determined by defining Y (1, x) to be the identity
operator on N(k,0) and

Y(a(-11,x) = Za(n)x‘”_1 foraeg.

nez

In the case that k # —h", the module N(k, 0) has a conformal vector

1 dimg 5
= "-1)"1
@ 2(k+hv) Z(a( )

i=1

where {a'}i_1 . dimg 1S an arbitrary orthonormal basis of g with respect to the normalized Killing form
(-,-). Then it is well known that the quadruple (N(k,0), Y, 1, w) defined above is a vertex operator
algebra.

Proposition 1.5. (See [5].) The associative algebra A(N (k, 0)) is canonically isomorphic to U (g). The isomor-
phism is given by F : A(N(k, 0)) — U(g),

F([ai(=n1 — 1) - am(=np — D1]) = (=) + g, .. .qp
foray,...,am€gandny,...,ny € Z,.

Since every g-submodule of N(k,0) is also an ideal in the VOA N(k, 0), the module L(k,0) is a
VOA for any k # —h".

Proposition 1.6. (See [14].) Assume that the maximal g-submodule of N(k,0) is generated by a singular
vector vg. Then we have

A(L(k, 0)) = u(g)/(F([vol))

where (F([vo])) is the two-sided ideal of U(g) generated by F([vg]). In particular, a g-module U is an
A(L(k, 0))-module if and only if F([vg])U = 0.
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2. Affine Lie algebra of type Gg)
2.1. Admissible weights
Let

+ (€1 - €), + (€1 - €3), + (62— €3),
i%@e] — € — €3), i%(Zéz — €1 — €3), i%@@ —€1—€)

be the root system of type G,. We fix the set of positive roots

%(61 —€), (€3 =€), (€3 —e),
A+ =
%(—261 + € +€3), %(—262 + €1 +€3), %(263 — €1 —€2)

Then the simple roots are o = %(61 —€) and B = %(—261 + €3 + €3), and the highest root is

0= %(263 — €1 — €3) =3 + 2B. Let g be the simple Lie algebra over C, associated with the root

system of type G,. Let Eqg, Eo1, F10, Fo1, H10, Ho1 be Chevalley generators of g, where E1g is a root
vector for «, Epp is a root vector for 8, and so on. We fix the root vectors:

E11 =[E10, Eo1],

1
Ex = E[Ell» E10]l= =[[E10. Eo1]. E10].

1
2
1 1
E31 = §[Ez1, Ei0l = E[[[Em, Eo1]. E10]. E1o],

1
Esx =[E31, Eo1]l = 6[[[[510, Eo1l, E1o0], E10], Eo1],

F11 =[Fo1, Fiol,

1 1
Fo1 = E[Fm, Fiul= §[F10, [Fo1, F1ol],
1 1
F31= §[F10, Fa1]l= E[Fm, [F10. [Fo1, F1ol]],
1
F33 = [Fo1, F31]1 = g[Fm, [F1o0, [F10. [Fo1, F1ol]]]- (2.1)

We set Hj;j = [Ejj, Fj;] for any positive root io 4+ j8 € Ay. Then one can check that Hj; is the coroot
corresponding to i + jB, i.e. Hjj = (i + jB)”. For a complete multiplication table, we refer the
reader to Table 22.1 in [6, p. 346], where we have

X1 = Eqo, X2 = Eor, X3 = Eq1, X4 =—En, X5 = —E3q, Xe = —E32,
Y1 = Fro, Y2 = For, Y3 = Fqq, Y4=—Fn, Y5 = —Fsq, Yo = —F3.
All admissible weights for arbitrary affine Lie algebras have been completely classified in [8]. The

next proposition provides a description of the “vacuum” admissible weights for Gg) at one-third
levels. This is a special case of Proposition 1.2 in [9]. We provide a proof for completeness.
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Lemma 2.2. The weight Azp =N —2 + %)Ao is admissible forn € Z, i =1, 2, and we have

., ={(6—@u+p)".a".p").
where § is the canonical imaginary root. Furthermore,
(Asnti+p,¥Y)=1 fory =a,B;
(Asnti+ 0. (6—Qa+p) )=3n+i+1 fori=1,2.

Proof. We have to show

(kansi+p.y") ¢ ~Zs foranyy e AT

and

Any positive real root y € /A\Ef of g is of the form y =y +mé, form>0and y € A, or m=0 and
y € A,. Denote by p the sum of fundamental weights of g. Then we can choose p =hYAg+ p =
4A0 + p.

We have

i o
(Angi +p.vY)= <(n—|—2 + §>Ao +p.(y +m6)v>

2 i
=-——_"\Mm n+2+—)+(,5,_)>-
(%V)( ( 3 ’
If m =0, then it is trivial that (A3p4i, YY) ¢ —Z.. Suppose that m > 1. If (y,y)=2 and m#0

(mod 3), then (A3pyi +p,yY) ¢ —Zy. If (y,y) =2, and m =0 (mod 3), then m > 3, and since
(p,y) = =3 for any y € A, we have

i o 1
<A3n+i+p,yv>=m(n+2+§>+<p,y>>3<n+2+§>—3=3n+4>4,

which implies (Asnii + 0, ¥Y) ¢ —Z1. If (7, 7) = 3, then (5, 7) > —3. We have

, i 7 7 5
(ansi+p.yY)=3(m(n+2+ 5 )+ . 7)) 23(n+ 5+ (7)) 23(n+5 -3

=3n+4+2>2,

which implies (A3p4i + 0, ¥") ¢ —Z. Thus, (Asp+i+p,y ") ¢ —Z, for any y € Kf.
One can easily see that

“~V,re

ot = M3+ 7 [m> 0, m=0(mod3). (7.7)=2]

U{ms+y|m=>0, (y,y)=2/3}UA,.
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Then we obtain

. ={6-a+p) av, "),

A3nti

“AVv,re

and we see that QA rangi = Qﬁkvg = (@ﬁ V. Through direct calculations, we get

(Azn+i +p0,7Y)=1 fory =a,B, and
(hanii+p, (6 — Qa4+ p) )=3n+i+1. O
2.2. Singular vectors
In what follows, let g be the affine Lie algebra of type GS) and U(g) its universal enveloping

algebra. ‘ ‘
We write X'(—m) = X(—m)' for elements in 2/(g). We set

a=Ez(-1),

b=E31(=1)E11(=1) — E32(=1)E10(-1),

¢ =E3,(—1)Eq1(—1) — E3a(—1)E31(—1)Ho1 (=1) — E5(=1)Fo1(—1),
W = E31(=1)E32(=2) — E32(—1)E31(—2),

and define
1 2
Uu=—-a*—b, and v=-a®—ab-3c.
3 9

The following proposition determines singular vectors for the first three admissible weights, i.e.
—%AO, —%Ao, —%AO, respectively.

Proposition 2.3. The vector v € N(k, 0) is a singular vector for the given value of k:

u.l fork =—

vi={ (v+w)l fork=—

WIN WA Wl

u(v—w).1 fork=-—

The proof will be given in Appendix A. As one can see in the proof, the computational difficulty

increases as the level k goes up. A different approach will be used in a subsequent work of the first-
named author on higher levels.

2.3. Description of Zhu’s algebra

Proposition 2.4. The maximal g-submodule | (k, 0) of N(k, 0) is generated by the vector vy for k = — % — %‘,
— % respectively, where v ’s are given in Proposition 2.3.

Proof. Let Aspyi =(—2+n+ %)Ao =kAg as before. It follows from Proposition 1.3 and Lemma 2.2
that the maximal submodule of the Verma module M(A3,4;) is generated by three singular vectors
with weights

rs—Qa+p) " A3n+i>  Ta*Asntis Tp-Asnyi, respectively.
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We consider the three cases

n=0,i=1, k=-5/3; n=0,i=2, k=-4/3; n=1,i=1,k=-2/3.

In each case, there is a singular vector uy € M(A3,4;) of weight rs_(q+g).A3n+i, Whose image under
the projection of M(A3,4) onto N(k, 0) is the singular vector v given in Proposition 2.3.
The other singular vectors have weights

Ta " A3nti = A3ni — (Asnti + 0, o)t = Aznyi — ¢, and

g Asni = Asngi — (A3nti + 0. BY)B = Asnyi — B

so the images of these vectors under the projection of M(\3,1;) onto N(k, 0) are O from the definition.
Therefore the maximal submodule of N(k,0) is generated by the singular vector vy, i.e. J(k,0) =
u(@)Wb U

Now we consider the image of a singular vector v, under Zhu’'s map

[1: N(k,0) —> A(N(k, 0)) = U(g),

which is defined in Section 1. We recall that the vertex algebra N(k, 0) is (linearly) isomorphic to the
associative algebra 2/(g_). We thus have an induced map from ¢/(g_) to U(g) and a commutative
diagram of linear maps:

U@-) ~ N(k,0)
¢ +
Ug) =~ A(N(,0)).

We will identify N(k,0) with 2/(g_) and A(N(k, 0)) with Z{(g). We have:
la] = Enn,

[b] = E31E11 — E32Eq0,

[c]= 5%1501 — E33E31Hpp — E§2F01-
We also have:
[u] = > — b]
=3 ,

2
[v]= §[a]3 — [al[b] - 3[cl,

(w]=0,

2 5
[u(v —w)] =[ullvl= f[a]5 —~ §[a13[b] — [a1?[c] + [al[b]? + 3[b]Ic]. (2.5)

The following theorem is now a consequence of Propositions 1.6 and 2.4.
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Theorem 2.6. The associative algebra A(L(k, 0)) is isomorphic to U(g)/Iy, where I} is the two-sided ideal of
U (g) generated by the vector [vy], where

[u] fork=-3,
vil=1{ vl fork=—3%,
[uv] fork=—-%.

3. Irreducible modules

In this section we adopt the method from [1,2,13-15] in oder to classify irreducible A(L(k, 0))-
modules from the category O by solving certain systems of polynomial equations.

3.1. Modules for associative algebra A(L(k, 0))

Denote by ;| the adjoint action of U/ (g) on U(g) defined by X;f =[X, f] for X e g and f €
U(g). We also write (ad X)f = X;f = [X, f]. Then ad X is a derivation on /(g). Let R(k) be a
U(g)-submodule of U/(g) generated by the vector [vi], where [v] is given in Theorem 2.6. It is
straightforward to see that R(k) is an irreducible finite-dimensional U/ (g)-module isomorphic to
V(Bk+7)2a + B)). Let R(k)g be the zero-weight subspace of R(k).

Proposition 3.1. (See [1,2].) Let V(i) be an irreducible highest weight U (g)-module with highest weight
vector v, for 4 € b*. Then the following statements are equivalent:

(1) V() isan A(L(k,0))-module,
(2) R(k) - V() =0,
(3) R(k)o - v, =0.

Let r € R(k)o. Then there exists a unique polynomial p, € S(h), where S(h) is the symmetric alge-
bra of b, such that

r-vu=pr(lW)vpy.
Set P(k)o ={pr | r € R(k)o}. Then we have:
Corollary 3.2. There is a bijective correspondence between

(1) the set of irreducible A(L(k, 0))-modules V (i) from the category O, and
(2) the set of weights € b* such that p(u) = 0 for all p € P (k)o.

3.2. Polynomials in P (k)q

We now determine some polynomials in the set P(k)g for the cases k = —g, k= —%, k= —%,
respectively. We will use some computational lemmas which we collect and prove in Appendix B.

Lemma 3.3 (Case: k = —3 ). We let
(1) q(H) = Ha1(H21 +2),

(2) p1(H)=H1o(H10— 1), and

(3) p2(H) = $H11(H11 — 1) + 3Ho.

Then q(H), p1(H), p2(H) € P(—3)o.
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Proof. (1) We show that (E3, F5,).[u]l = Cq(H) (mod U (g)n) for some C # 0. Using Lemma B.12 and
Lemma B.13, we have

1
(E31Fa1) [u] = (E§1F§1)L(§[a]2 - [b])
1
E4!2!<§H2](H2] —-1)+ H21>

1
= 4212 H21 (H21 +2) (mod U(g)ny),

which is what we wanted to show.
(2) We will show that (E%OFgl)L[u] = Cp1(H) (mod U(g)ns) for some C # 0. We again use
Lemma B.12 and Lemma B.13 to obtain:

1 1 4
(E%OF;)L(g[aP - [b]) = (2)°3Hio(Hio— 1) = 3 pi(H) (mod U(gny).

(3) In this case we show that (E%l F%z)L[u] = Cp2(H) (mod U(g)ny) for some C # 0. Similarly to
the first two cases we compute:

1 1
(E%1F§2)L<§[a]2 - [b]> (2')2< Hi1(Hi1 = 1) +3H01>
=Cpa(H) (modU(g)ny). O
We now give polynomials for the next case.

Lemma 3.4 (Case: k = —3). Let

(1) q(H) = 2Ha1(Ha1 — 1)(Ha1 — 2) + Ha1(Ha1 — 2) + 3Ho1 (Ho1 +2),
(2) p1(H)=H10(H1i0 — 1)(H10 — 2),

(3) p2(H) = 2H11(H11 — 1)(H11 — 2) + 6Ho1 Hao.

Then p1(H), p2(H), q(H) € P(—%)o.

Proof. (1) We show that (E3,F5)i[v] = Cq(H) (mod U(g)ny) for some constant C # 0. By
Lemma B.13, we have:

2
(E31F31) vl = (E3,F3;), (5[‘113 — [a][b] — 3[C]>

2 36
5—3!6!§H21(H2] —1)(Hy1 —2) — EZ(HZI )(Egngl)L[b]
—3(E3;F3y) el (modU(g)ny).

By Lemma B.12, we thus have;:

2
(E3,F%),Ivl= —3!6!§H21 (Hz1 — 1)(H21 — 2) + 3!6!(H21 — 2)H21 + 3!6!Ho1 (Ho1 + 2)

=Cq(H) (modU(g)ny).
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(2) We will show that (E3,F3,)i[v] = Cpi(H) (mod U(g)n,) for some constant C # 0. Using
Lemma B.13, we obtain:

2
(E?OFgl)L (5[013 — [al[b] — 3[C]>

3! 3!

(3)?Hiyo(H10 — 1)(H10 — 2) + 2—;2—;(H10 - 2)(E%OF§1)L[b]

—3(E3oF3;),lc]  (mod U(g)ny).

(= \¥)

By Lemma B.12, we thus have

2
(E?OF§1)L<§[a]3 ~la)[b] - 3[c]) = 5 B)?Hio(Hio = D(H10 —2)

2
9
= Cp1(H) (modU(g)ny).

(3) Finally, we show that (E?ngz)L[v] = Cp2(H) (mod U(g)ny) for some constant C # 0. Since
H11 + H3q =2H32, we have

313!

(3Y%H11(H11 — 1)(Hpp —2) — i1

(E‘;’l ng)LV/ =

O N

(H11 —2)(E3; F3,), [b] — 3(E3, F3,), [c]
2
= (3!)2<§H11(H11 —1)(H11 —2) +3(H11 — 2)Ho1 +3Ho1(H31 +2)>

2
= (3!)2<§H11(H11 —1)(H11 —2) + 6Hoy Hsz)
=Cpa(H) (modU(g)ny). O
The last case is presented below.

Lemma 3.5 (Case: k = — % ). We let

2 5

q(H) = §H21(H21 —1)(H21 —2)(Hy1 —3)(Hy1 —4) + §H21(H21 —2)(H1 —3)(H21 — 4)
+ (H21 —3)(H21 —4)Ho1(Ho1 +2) +2H1(H21 —4)(H11 — 1)
+2(H21 —4)H10(H10 — 1) — 6(H21 —4)Ho1(Ho1 + 1) +6(H21 — 3)Ho1(Ho1 + 2),

p1(H) =H19(H10 — 1)(H10 — 2)(H10 — 3)(H10 — 4),

2 5
p2(H) = EHH(HH —1D(H11 —2)(H11 —3)(Hi1 —4) + §(H11 —2)(H11 —3)(H11 —4)Ho
+ (H11 —3)(H11 —4)Ho1(H11 — 3) + 18(H11 —4)Ho1(Ho1 — 1)

—2(H11 —3)(H11 —4)Ho1 + 18Hop1(Ho1 — 1)(H31 + 2).

Then p1(H), p2(H), q(H) € P(—3%)o.
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Proof. First recall from (2.5) that

2 5
[u(v—w)]=[ullv]l= ﬁ[aP — §[a]3[b] — [al®[c] + [al[b]* + 3[b][c].

We will show that (E3, F,9) ([u][v]) = —5!10!q(H) (mod U (g)n).
Using Lemmas B.1, B.11, we have:

2 5
(F39), (ulvl) = (F39), (ﬁ[“]S - §[a]3[b] — [a]?[c] + [a][b]? + 3[b][c])

2100 5. 5 10 3.3 o4
=7y Y T gapa Y (F21), 0]
10!

- (2*)267<—2>2F§1(F§‘1)L[CJ
10!
+ g1 ("2 Fa1 (F51), b1 + 3(F%?)[b][c]

2 510!
2710 F3i+ g 9 al — F21(F3;),1b] = le(F21) [c]
10! 8 2 10
— o Fa1(F8;) [0 + 3(F39) bllc.
Now using Lemma B.3, we obtain:
5 2
101 —(E3,F; ) ([ulv]) = —55!H21(H21 —1)(H21 —2)(H21 — 3)(H21 — 4)
55 1, 5 4
+ § 5(Hm —2)(Ha1 = 3)(Ha1 =4 (E5;F3p),[b]
! 1
— §<H21 =3)(Hn — 4 (E31F%),[c]
5! 4 1T 5 10
- 4_!(H21 ) (521F21) [bT? +310, (E21F21)L([b][c]).
Combining this with Lemmas B.12, B.13, B.14, we obtain:
2
Toi — (E3;F3Y) ([ullv]) = —55”‘121 (Hz1 — 1)(H21 — 2)(H21 — 3)(H21 — 4)
55
+ 55(1-121 —2)(H21 —3)(H21 —4)(—=2)H2
- 3—;(Hz1 —3)(H21 —4)3!Ho1(Ho1 + 2)

5!
— (21— 4)4!(2H21H11 + 2H10(H10 — 1) — 6Ho1 (Ho1 4+ 1))
+ 3 51(=2)Ho1(Ho1 +2)(Hz1 — 3)

= —5lq(H) (modU(g)ny).

The proofs for p1(H) and p,(H) are similar, and we omit the details. O

207
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3.3. Finiteness of the number of irreducible modules

We are now able to obtain the following result for the associative algebra A(L(k, 0)). For conve-
nience, if u € h*, we write p;j = ((Hjj). We will identify u € h* with the pair (w10, to1).

Proposition 3.6. There are finitely many irreducible A(L(k,0))-modules from the category O for each of

k=-— % - %, - % Moreover, the possible highest weights & = (410, o1) for irreducible A(L(k, 0))-modules

are as follows:

(1) ifk=—3, then 1t = (0,0), (0, —2) or (1, —%);

(2) ifk = =3, then ju = (0,0), (0, =3), (0, =3), (1,0), (1, =3) or (2. =3);

(3) if k= —2%, then u = (0,0), (0, —%), (0,—3), (0, ), (0, 1), (1,0), (1,—3), (1,—3), (2,0), 2, —2),
2, —%or 4, -1

Proof. (1) It follows from Corollary 3.2 that highest weights u € h* of irreducible A(L(—%,O))-

modules satisfy p(u) =0 for all p € Po(—g). Lemma 3.3 implies that pi(u) = p2(n) =q(u) =0
for such weights . Let i € h*. The equation p1(u) =0 is

Hio(10 — 1) =0,

which implies @10 =0 or 1.

First suppose (19 = 0. Then from q(x) = 0 we must have g =0 or —%. Similarly, from
p2(u) =0, we also get o1 =0 or —%. So the weight u must be of the form © = (w10, o1) = (0, 0)
or (0, —%) in this case. Now suppose 19 = 1. The equation q(u) = 0 gives wo1 = —% or —%, and
the equation py(u) =0 gives o1 =0 or —%. So the only possibility is u = (10, o1) = (1, —%).
Altogether, this gives only three possible weights @ such that pq(u) = p2(®) =q(u) = 0:

= =(0,0 0 2 1 4
u = (10, mo1) = (0,0), ( ’_§) Or( ,—§>.

(2) Similarly to the part (1), we use the polynomials of Lemma 3.4. Using a computer algebra
system, we calculate the common zeros of the polynomials q(H), p1(H), p2(H) to obtain the following
list of possible highest weights:

- = (0.0 (o 3) ol>1o<1 f)r(z 5)
M-(MlO»MO])—(, )’ ’_3 a<’_3 ’(9 )» ,_3 (0] ,—3 .

(3) For this part, we use Lemma 3.5. Using a computer algebra system, we again compute the
common zeros of the polynomials q(H), p1(H), p2(H) to obtain the following list of possible highest
weights:

( 10, 01) ( ’ )’( ’ 3)’< ’ 3>’( ’3)9( ’ )9( ’ )3( ’ 3>5( ’ 3)7
( ’ )’< ’ )’( ’ E) ( ’ )‘

Now we apply the A(V)-theory (Theorem 1.2), and obtain our main result in the following theo-
rem.
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Theorem 3.7. There are finitely many irreducible weak modules from the category O for each of the following
simple vertex operator algebras: L(— % 0), L(— %, 0), L(— % 0).

Remark 3.8. This theorem provides further evidence for the conjecture of Adamovi¢ and Milas in [2],

mentioned in the introduction. Furthermore, if L(A) is an irreducible module of the VOA L(k, 0), for

k= —%, —%, or —%, then we recall from Section 1.2 that we must have L(A) = L(kAg, n) for the

values of u € h* given in Proposition 3.6.

In the case of irreducible L(k,0)-modules, we obtain a complete classification. We state this result
in the following proposition and theorem.

Proposition 3.9. The complete list of irreducible finite-dimensional A(L(k, 0))-modules V (i1) for each k is as
follows:

(1) ifk=—2, then V() = V(0),
(2) ifk=—3, then V(1) = V(0) or V (1),
3) ifk= —%, then V() = V(0), V(w1), V(wy), or VQRw1),

where w1, wy are the fundamental weights of g.

Proof. Among the list of weights in Proposition 3.6, we need only to consider dominant integral
weights, i.e. those weights w = (m1,my) with my,my € Z,. Notice that the weights of the singu-
lar vectors [vg] are 2w1, 3wy and 5w, respectively. Considering the set of weights of V(i) listed
above, we see that each singular vector [vj] annihilates the corresponding modules V (i). Now the
proposition follows from Proposition 1.6. O

We again apply the A(V)-theory (Theorem 1.2), and obtain the following theorem.

Theorem 3.10. The complete list of irreducible L(k, 0)-modules L(k, 1) for each k is as follows:

(1) ifk=—3, then L(k, u) = L(k, 0),
(2) ifk=—3%, then L(k, ) = L(k, 0) or L(k, w1),
3) ifk= —%, then L(k, u) = L(k, 0), L(k, w1), L(k, w2), or L(k, 2w1).

3.4. Semisimplicity of weak modules from the category O

In this subsection we show that the category of weak L(k,0)-modules from the category O is
semisimple.

Lemma 3.11. Assume that A = kAg + p for k = —%, —%, —%, where @ € h* is one of the values given in

Proposition 3.6 for each k. Then the weights )\ are admissible.

l:roof. The proof is essentially the same as Lemma 2.2. Let us write ﬁov ={6—-QRa+p)Y,av,BY},
I ={6 — Ba+ )Y, o, (a+p)"}, and I, ={(6 — 0)",a”, (a + B)"}. Since the proof for the
other cases are similar, we consider only the case k = —%. From Lemma 2.2, we already know that
A=—3 Ao+ is admissible for y = (0, 0), with [T\’ =1y .

If w=(0, —%), we have to show that

5 _~ _~ —~
<—§A0+M+p,yv>¢—Z+ forany y € AT and QA" =QIT".
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Recall that p =449 + p; also y € Zﬂf must have the form y =y +mé, for m> 0 and y € A, or
m=0 and y € A;. We then have:

—EA + V)= ZA 0, (7 8)Y

A E A

We may then check that (—3 Ag+p+p,yY) > 1, so that (—3Ag+u+p,y") ¢ —Z4. One may also
verify that [T = ﬁlv so that QKX’W =QI1v.
Similarly, one can show that A = —%AO + u is admissible for pu = (1, —%) and that ﬁkv = ﬁzv. O

Theorem 3.12. Let M be a weak L(k, 0)-module from the category O, for k = —%, —%, or —%. Then M is
completely reducible.

Proof. Let L()) be an irreducible subquotient of M. Then L(A) is an L(k, 0)-module, and we see from

Remark 3.8 that A must be a weight of the form kAg + i, where w is given in Proposition 3.6 for k =

—%, —%, —%, respectively. From Lemma 3.11 it follows that such a X is admissible. Now Proposition 1.4

implies that M is completely reducible. O
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Appendix A. Proof of Proposition 2.3

In this appendix, we prove Proposition 2.3. We first give a few lemmas.

Lemma A.l.

(1) We have

[a, E10(0)] =3E31(—1), [b, E10(0)] = 2E31(=1)E21(—1),
[C, 510(0)] = E33(=1)E31(=1)E1o(—1) — E§1(_1)Ell(—1),
[u,E10(0)] =0,  [v,E10(0)]=0, [w,E10(0)]=0.

(2) Each of the elementsa, b, c,u, v, w € U(g) commutes with Eg1 (0).

Proof. (1) Using the multiplication table in (2.1), it is easy to see [a, E19(0)] = 3E31(—1). Next, we
have

[b. E10(0)] = [E31(—=1)E11(—1) — E32(—1)E10(—1), E10(0)]
= E31(=1D[E11(=1), E10(0)] + [E31(—1), E10(0)|E11 (1)
—E3(—=1D[E10(=1), E10(0)] — [E32(=1), E10(0)]E10(—1)
=2E31(=1)E21(—1).
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Starting with the definition

[c. E10(0)] = [E3; (=D E01(—1) — E32(—1)E31(—1)Ho1(—1) — E3,(=1)Fo1(—1), E10(0)],

we consider each term separately and obtain

[E31 (=DEo1(=1), E10(0)]
= E3;(=D[Eo1(—1), E10(0)] + E31(—=1)[E31(=1), E10(0) ] Ep1 (—1)
+ [E31(=1), E10(0)]E31(—1)Eq1 (—1)
= —E5;(=DEn(=1),
[E32(—1)E31(=1)Ho1(—1), E10(0)]
= E3(—1)E31(=D[Ho1(—1), E10(0)] + E32(—=1)[E31(=1), E10(0)]Ho1(—1)
+ [E32(—1), E10(0)]E31(=1)Ho1(—1)
= —E3(—1)E31(=1)E10(—1),

and
[E3,(—=1)For(=1). E10(0)]
= E5(=D[For (=1), E10(0)] + Ez2(=D[E32(=1), E10 (0] For (1)

+ [E32(=1), E10(0)|E32(—1)Fo1(—1)
=0.

Therefore, we obtain

[c. E10(0)] = E32(=1)E31(=1)E1o(—1) — Egl(—UEn(—l)-

Next, we get

1
[u, E10(0)] = §[a2, E10(0)] = [b. E10(0)]

1 1
= ga[a, E10(0)] + §[a’ E10(0)]a — [b, E10(0)]

= E21(=1)E31(=1) + E31(=1)E21(—=1) — 2E31(=1)E21(—1)
=0,

and

2
[v.E10(0)] = 5[03, E10(0)] — [ab, E10(0)] — 3[c. E10(0)]

=2E3,(=1)E31(=1) —a[b, E10(0)] — [a, E10(0)]b — 3[c, E10(0)]
=25, (—1)E31(—1) — 2E21 (=1 E31(=1)E21 (1)
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— 3E31(=1){E31(=1)E11(—1) — E32(—=1)E10(—1)}
—3{E32(=1)E31(=1E1o(—-1) — 551(—1)511(—1)} =0.

Finally, it is easy to see [w, E19(0)] =0.

(2) The equalities [a, Eg1(0)] =0, [b, Ep1(0)] =0, [c, Eg1(0)] =0 can be proved as in the part (1),
and we omit the details. Then it immediately follows that [u, Eg1(0)] =0 and [v, Eg1(0)] = 0. Since
w= %[a, b], we also obtain [w, Eg1(0)]=0. O

Lemma A.2. We have

[a, F32(1)] = —F11(0),

[b. F32(1)] = E31(=1)F21(0) — E11(—=1)F01(0) — E10(—=1)H32(0) + (K + 1)Eq0(—1),

[c, F32(1)] = E32(=1)E31(—1)F32(0) + E32(—1)Ho1(—1)F01(0) — 2E33(—1)Fo1(—1)H32(0)
+ (2K +2)E33(=1)Fp1(—1) + E§1(—1)F3l(0) — 2E31(—=1)E01(—1)Fp1(0)
— E31(=1)Ho1(—1H32(0) + (K + DE31 (=1 Ho1(-1),

[u, F32(1)] = —(K + g)Elo(—D — E31(=1)F21(0) — %Ezl(—DFn(O)
+ E11(=1)F01(0) + E10(—1)H32(0),

[v, F32(1)] = —E32(—=1)E10(—1)F11(0) — 3E32(—1)Fo1(—1)

4
+ §E31(—2) + E31(=1)E11(—=1)F11(0) — E31(=1)H11(=1)

2 1
— 56121’11(0) - 50510(—1) —a[b, F3(1)] — 3[c, F32(1)],

[w, F32(1)] = —E32(—2)F01(0) + E32(—1)Fo1(—1)
— E31(—=2)H33(0) + E31(=1)H32(—1) + KE31(—2).

Proof. We only prove the equalities for [b, F32(1)] and [u, F32(1)]. The other equalities can be proved
similarly. We obtain

[b, F32(1)] = [E31(—=1)E11(—1) — E32(—1)E10(—1), F32(1)]
= E31(—D[E11(=1), F32(1)] + [E31(=1), F22(D) ]E11(—1)
— E3p(=1)[E1o(—1), F32(1)] — [E32(—1), F32(1)]E10(—1)
= E31(—1)F21(0) — Fo1(0)E11(—1) — {H32(0) — K}E10(—1)
= E31(—=1)F21(0) — E11(=1)F01(0) — E10(=1)H32(0) + (K + 1)E10(—1),

and

1 1
[u, F22(D)] = §a[a, F()]+ g[a, F32(1)]a — [b, F32(1)]

e C1F 0) 215(1)
=3 21(—=1)F11( — 3=
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—E31(—=1)F21(0) + E11(=1)F01(0) + E10(=1)H32(0) — (K + 1)E10(=1)
= —<K + g)Ew(—]) — E31(—=1)F21(0) — §E21 (—1)F11(0)
+E11(=1)F01(0) + E10(=1)H32(0). O
We need one more lemma.

Lemma A.3. We have the following commutator relations:
[H32(0),v —w]=3(v—w), [Fo1(0),v—w]=0,
1
[F11(0), v —w] = <§C’2 - Zb)Elo(—D +aE31(=1)Hio(—1)

—5aE31(—2) +5E31(—1)E1(—2)
+3E2,(—1)F10(—1) + 3E32(—1)E31 (= 1) F11(—1)
—3aE3(—1)Fo1(—1),

[F21(0), v —w]= <_§GZ +b>H21(—1) + 20521(—2)
—2aE31(=1)F10(=1) — 2aE32(=1)F11(=1)
+3E31(=1)E11(=1)Ho1(=1) +3E32(—=1)E10(—=1)Hp1(=1)
—6E31(=1)E10(—=1)Eg1(—=1) + 6E32(—=1)E11(—=1)Fp1(-1)
+4E11(=1)E31(=2) — 4E10(—1)E32(—2).

Proof. Since the proofs of the other equalities are similar, we only provide a proof for F11(0). We first
have

2 3
[F11(0), v — w] = | F11(0), g@ —ab—3c—w.
Considering each term separately, we get

[F11(0), 0] = 6a”E10(—1) — 18aE31(—2),
[F11(0),ab] = [F11(0),a]b +a[F11(0), b]
= —2E10(—1)b — a{—E31(—=1)H11(—1) + aE1o(—1) — 3E3a(—1)For1 (-1},
[F11(0),¢] = —E3; (=1 F10(=1) +aE31 (=D Ho1 (1)
—E32(=1)E31(=1)F11(=1) + 2aE32(=1) Fo1(—1),
[F11(0), w] = aE31(=2) — E31(—1)E21(—2).

Using two more relations

[E10(—=1),b] = —2E31(—1)E21(—=2) and H11 =H1o+ 3Ho1,

one can now obtain the result for [F11(0),v —w]. O
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We now prove Proposition 2.3. For convenience, we state the proposition again:

Proposition A.4. The vector vy € N(k, 0) is a singular vector for the given value of k:

u.l fork=—
vi={ (v+w)l fork=

WIN WA Wl

u(v—w).1 fork=

Proof. To show that each vector vj is a singular vector, it suffices to check that Eqg(0).vy = 0,
Ep1(0).vi =0, and F33(1).v, =0 for each k. Assume that k = —%. By Lemma A.1, we obtain

E10(0).vk = E10(0)u.1=—[u, E10(0)].1=0,

and similarly we get Eg1(0).v, = 0. Now we consider F3;(1) and obtain by Lemma A.2

F32(1).vg = —[u, F3(1)].1=0.

Assume that k = —%. It follows from Lemma A.1 that E19(0).vy =0 and Egq(0).v, = 0. We also
obtain from Lemma A.2

F32(1).vi = —[v + w, F3a(1)]

4 1

=3E32(—=1)Fo1(—1) — §E31(—2) + E31(—=1D)Hq11(=1) + gaEIO(_D + (k+1)aEqp(—1)

+3(2k + 2)E32(—=1)Fo1(—=1) +3(k + 1)E31(—=1)Ho1(—=1) — E32(—=1)Fo1(—1)

— E31(=1)H33(—1) —kE31(-2)
=3E32(=1)Fo1(—=1) — 2E33(=1)Fp1(=1) — E32(=1)Fp1(=1)

2 En(-2) + TEa(=2) + 2aEio(—1) — raEro(~1)

3 E3 3 E3 39E10 3910
+ E31(=1)Hq1(=1) — E31(=1)Ho1(=1) — E31(=1)H32(=1)

=0,
where we drop .1 from the notation and use the equalities

Hi1 =Hi0+3Ho1 and Hszy =Hio+ 2Hos.

Assume that k = —%. We will continue to drop .1 from the notation. It again follows from
Lemma A.1 that E19(0).vy =0 and Eg1(0).v, = 0. We now consider F3;(1) and have

F32(1).vi =[F32(1), u(v — w)| = [F32(1), u](v — w) + u[F32(1), v — w].

We first compute [F3(1), u](v — w). We use Lemma A.2 and obtain:
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[F32(1), u](v —w)

5
= (k + §)E10(—1)(v — W)+ E31(=DF21(0)(v —w)

2
+ 5521(—1)1”11(0)(\/ —w) —E11(=1)Fp1(0)(v —w) — E1o(—=1)H32(0)(v — w)
5
= (k + §>E10(—1)(V — W) + E31(=1)[F21(0), v — W]

2
+ §Ez1(—1)[F11(0), v—w]—E11(=1)[F01(0), v — w] — E1o(=1)[H32(0), v — w].

Now using Lemma A.3 and the fact that Hy; = 2H19 + 3Hp1 along with the relation [a, b] = 3w,
we obtain the following:

[F32(1), u](v — w)

= 3 k — 3 a’Eq9(=1) —k -baEqg(—=1) — 3k +2)E19(—1)c

8
- <4l< + g)WEIO(_D — 6uE31(—=1)Hp1(—=1) — 6uE3;(=1)Fp1(—1)
4
—2uE31(=1)H10(-1) + (Zk + §>Ea1(—1)0521(—2) +3k-bE31(—2)
(20+3)e
— 2k+§ a‘E3z1(—2)

— _ga3510(—1) + %baEm(—l) — 6uE31(—1)Ho1(~1)
— 6uE3y(—1)Fo1(—1) — 2uE31(—=1)H1o(—1) + 2uE31(—2)
= —%uaEm(—l) — 6uE31(—1)H1o(—1) — 6uE33(—1)Fo1(—1)
— 2uE31(—1)H1o(=1) + 2uE31(=2),

where the second equality is obtained by substituting k = —%.
Now we finally compute u[F3,(1), v — w]. From Lemma A.2 and Hi1 = H1p + 3Ho1, we obtain:

4
u[F32(1), v — w] = (6k + 10)uE3x(—1)Fo1(—1) + (k + §>uaE10(—1)
+ 2uE31(=1)Hio(=1) + Bk + 8)uEs1 (=D Ho1(—1) + (k - g)uEal(—Z)

2
=6uE3(—1)Fo1(—1) + §UGE10(—1)

+ 2uE31(=1)H10(=1) +6uE31(=1)Ho1(—=1) — 2uE31(-2),

where we again substitute k = —%. Now it is clear that

F3a(1).v = [F32(1), u](v —w)+ U[F32(1), v — W] =0. O
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Appendix B. Lemmas for construction of polynomials

The following results will be useful.

Lemma B.1. (See [14].) Let X e gand let Y1, ..., Ym € U(g). Then

(X"), (Y1...Ym) = > (kl'" )(xkl)Lh co (XEm), Y,

.k
K1,k E€(Z )™ mn
> ki=n

n!

n _ !
where (lq...kn) = Ikl

Proof. This can be seen most readily by considering an exponential generating function. Given a
derivation D of U/(g), we may form the generating function

D2
exp(Dt) =1+ Dt + 7t2 +--- € (EndU(g))I[t]].

Applying this to a Y € U(g), we obtain an element exp(Dt)Y € U(g)[[t]]. The lemma is a direct con-
sequence of the fact that exp(Dt) satisfies the identity

exp(Dt)(Yq - -+ Yy) = exp(Dt)Y - - - exp(Dt) Y. (B.2)

(See [12].) To obtain the lemma, replace D with the adjoint action X;(=ad X) in Eq. (B.2), and equate
the coefficient of t" on both sides. Finally, multiplying both coefficients by n!, we obtain the identity
in the lemma. O

Lemma B.3.

(1) (E’]]?)L(Fl’.}.‘) em!H;j(Hjj —1)--- (Hjj —m+1) + U(g)Ejj, for all i + jB € A
(2) Suppose X € U(g)o, the zero-weight subspace of U(g). Then X e n_U(g) if and only if X € U(g)n .
(3) ForY e d(g) and n > r > 0, we have

(Efj) . (Fi;Y) € Fijtd(g) + ﬁ(HU —n+1)--(Hj—n+D(E;"), Y +U@Ej;.

Proof. Part (1) follows from direct computation and part (2) follows by considering a PBW basis

given in triangular form for U/(g)o. For part (3), we consider an exponential generating function. For
simplicity, let us write E, H, F, in place of Ejj, Hjj, F;j. We then have:

exp((adE)t)F'Y = (exp((adE)t)F)" exp((adE)t)Y
= (F + Ht — Et?)" exp((adE)t)Y. (B.4)
One can check
(F+ Ht — Ef®) e FU@IIt] + Y (:)(—1)"(14 —DH—i—1)---(H—r+DEt.  (B5)
i=0

For convenience, we introduce the notation (x)¢ =x(x—1)---(x—i+1) for i >0, and (X)) = 1.
Then we have
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X)) = (=D (=x+i=1), (B.6)
n m
X+ V= ( ; )(X)(i) (Y) m—i)- (B.7)
i=0

We obtain the following identity using (B.6) and (B.7):

x—n+np=-D'(n—-r—x—-r+ 1))(r)

_( 1) Z( >(n_r)(l) (X_r+1))(r—i)
= (1) Z( )(n—m)( D x = 1) i)
—Z( )( D= 1) & — D i (B.8)

Using this notation we combine Eqgs. (B.4) and (B.5) to write:

exp((adE)t)F'Y € FU(g)[[t]] + Z ( )( DI(H — )iy E't™ exp((adE)t) Y.

i=0

Taking the coefficient of t" on both sides gives:

1 n(gry 1 n—r—i

1

With the substitution x = H, we obtain from (B.8)

<H—n+r><r>=2( )(— >'((”—_)l.),<H—i><r_i>. (B.10)

i=0

After multiplying (B.9) by n!, we use the identity (B.10) to obtain

(@dE)"(F'Y) € FU(g) + (H—n+1)@(@dE)""Y +U(g)E.

n!
n—r)!
This proves part (3). O

The following lemmas will be needed for the construction of certain polynomials.
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Lemma B.11. The following identities hold in U(g). First we have:

[b]=4!(F31F11 — F32F10),
,[c]=—6!(F4 Fo1 — F32F31Ho1 — F5,E), and
F3,),[al= (F3,),[b]1 = (FJ;),[c]=0

Next we have:

(F31)rlal = Fro,

(F31),[b] = —2!(F31E11 — F21Eo1),

(F3,),[c1=3!(Fs1(H32 + 1)Eo1 + F32E§; — F5,E32), and
(Fgl)L[a] = (F§1)L[b] = (Fgl)L[C] =

Finally we have:

(F32)ilal = Fi1,
(F3,),[b] =2!(F32E10 — F21Fo1),
(F3,),[c1=—3!(Fs2Fo1(H31 +2) + F31F3; — F3,E31), and
(F%,),la] = (F3,),[b] = (F,),[c]=0

Proof. Using Lemma B.1, we have;
4 4 3 4 3
(F3;),[b]1= 31 (F31),E31(Fa1.E11) — 31 (F3;),E32(F21.E10)
(2 (F3,),E31(F3;),E11 — ) (£2,), Enn(F2,), E
21)E31F21) BT ( 21)L 32( 21)L 10
22 22
= 4 (6F32)(2F10) 4 (—6F31)(—2F11)
=131 32 10 31 31 11

4 4
—2F —6F — 2F 6F
+<22>( 11)( 31) (22)( 10)(6F33)
=4!F31F11 — 4'F32Fqp.

We also have:

5 5
o) 2B () v = () (), Ea(F20) v

5 5
( )(6F32)( 6F31) — (
0.

(F§1), b1 =

39 3 2)(—61:31)(5F32)

The other cases are proved similarly. O
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Lemma B.12. The following identities hold in U (g). First we have:

%(E21F§1)L[a] = —Ha,
41(55151) [bl=—2Hz  (mod U(g)n+),
é(E%lF%)L[C]EfﬂHm(Hm+2) (mod U(g)n+).
Next:
(E1oF31)1[al = Hio, ;(E%Fal) b=+ 31 (E0F31),[c1=0  (mod U(g)n).
Finally:

(E11F32)Llal = Hqq,

1
3 (E3,F3,),[bl=—6Hp (modU(g)ny),

1
5 (E}1F3) (€] = —6Hon (H31 +2)  (mod U(gn..).

Proof. Using Lemmas B.1, B.11, we have:

1

a1 (E%1F21) [b] = (E3;),(F31F11 — F32F10)
2EFF2F2FF 2FFFF
50 51), F31)F11 20 (( 21)L 32) F1o + 11 (F211.F31)(F21.F11)

Fo1; F33)(Fo1 F 2 \Eai(F2)). F 2 Ve (F2) F
11 (F211F32)(F211.F10) + 02 31( 21)L 11~ \g> 32( Zl)L 10

2 2 2
= (2 0)( 2E11)F11 — (2 O)(ZElo)Fm + (1 1)(—1’10)(—21510)
2 F 2E 2 F 6E 2 F35(6E
(1 1)(— 11)( 11)+<02) 31(— 31)—(02) 32(6E32)

2 2
=—-2 H F11E -2 H F10E 2 F10E
(20>( 11 + F11E11) (20)( 10 + F10E10) + (1 1) 10E10

2 2 2
2 F11E11—6 F316E31 — 6 F3oE
+ (1 ]> 11L£11 (02) 310L31 (02) 32E32

= —2Hy1 —2Hjo=—2H2; (mod U(g)ny).

The other cases follow in the same way. O
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Lemma B.13. Suppose thatn,r, s, t € Z and n =r + 2s + 3t. Then the following hold in U (g):

(E5 F37), ([l bY°[c])
n! (2n)!

=1 (2n —ary H2t =+ Do (o = N (ESTFA" "), (IbPLel),

= (-1

(E1oF5), (lal"[bF[c]")

N
((ni )l) (Hio—n+1)---(Hio —n+n)(E];"F3;"), (IbP[c]),

(E%, F,), ([al"[bY’[cT)

N
((ni )!) (Hii—n+1)---(Hiy —n+n)(E]F35 ) (IbP[c]),

where all the congruences are modulo U (g)n..

Proof. We prove only the first case. Using Lemma B.1 we have:

; 2n)! . .
(F31), (lal [bF[el) = m( 21), (Lal) (F™)  (1bFLe))

(2n)! 2r)! - .
= Grian —am1 @y (Faulal) (Fa"™"), (11l
(2n)! Ny S
= m((%) [a)) (F2"") (1bT°[el!)
_ (@n)!
T 2r@2n—2n)!

r (2n)! 2(n r)
=(=1) m(l; 21)" ( ) ([b] [C])

(—2F20) (F31""), (1bF[c1’)

since (F%)L[a] = (Fgl)L[b] = (F71)L[C] 0 and (F?2 5p)tlal = —2F;1 by Lemma B.11.
Then we use Lemma B.3(3) with Y = (Fz(" YL (Ib][c]") to obtain:

(E5F31), ([l [bP°[c])
(2n)! ner S

G —amy Ea)(Far (F2" ), (BYLer)

. n (2n)! n—r -2(n—r) Syt

c -V (Zn_Zr),(Hm—n+r>---(Hm—n+1)(1521 F5" "), (IbY[c])

+ F1U(g) +U(g)E21.

="

Now it follows from Lemma B.3 (2) that we have



J.D. Axtell, K.-H. Lee / Journal of Algebra 337 (2011) 195-223 221

(E5,F31), (lal' [bP[c])
! 2n)! . .
=V (25 _n)Zr)!(Hm — 1) (Hay —n+ D(ERTFA"™) (IbFLel’)

(modU(gny). O

We give one more lemma.

Lemma B.14. The following hold:

(E5,F5,), (b1

) =418!(2H21H11 + 2H10(H10 — 1) — 6Ho1(Ho1 + 1)),
(E31F21), (Ibllc])

)

)

5!10!2Ho1(Ho1 + 2)(H21 — 3),

(E?0F31) (Ibllc1) =0,
= (41)*2(9Ho1 (Ho1 — 1) — Ho1(H11 — 3)),

(EfoF31),(1b)
(E?lFaz) (Ib1?
(E31F3,), (Ib)lc]) = (51*6Ho1(Ho1 — 1)(H31 +2),

where all the congruences are modulo U (g)n..

Proof. We prove the first part only. From Lemma B.11, we have:

8

(F3),07) = () ()16
= 8!(F31F11 — F32F10)?
= 8!(F2,F}, — 2F32F31F11F10 — 2F32F31Fa1 + F4,F3,y).

We thus obtain:

1
g(Eg‘1 F5,),(1b1%) = (E3,) (F3,F{; — 2F32F31F11F10 — 2F32F31F21 + F5,F5).

This equals the following element modulo U/ (g)n:
( 4 )(—6532)(—F10)F121—2< 4 )(5531)(—F10)F11F10
3100 3100
+< 4 >(—GE32)F31(—2510)F11—2< § )(6531)F31(—2510)F10
3010 3010
+< 4 >(—2511)(—2511)F121—2< 4 >(2510)(—2511)F11F10
2200 2200

4 2E F 2E10)F 2 4
+<2110>(— 11)(=F10)(—=2E10)F11 — (

2110) (2E10)(—=F10)(—=2E10)F10

4 4
—2E11)F31(—6E31)F1 — 2 2E10)Fa1(—6E31)F
+<2020)( 11)F31(=6E31)F11 (2020>( 10)F31(=6E31)F1o

4 4
- 2(3100) (6E31)(=Fio)Fa1 + (3100)(6531)(—F11)F120
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w
o
—_
(=]

4 4
-2 6E31)F31H 6E31)F32(—2E11)F
( )( 31)F31 21+<3010>( 31) F32( 11)F10

4
—2(2 )(2510><—2511)F21+< )(2510)<2510>F%0

.}
o
o

2200

4 4
- 2(2110) (2E10)(=F10)Ha1 + (2“0) (2E10)(=F11)(=2E11)F10
4
+ <2020> (2E10)F32(—6E32) F1p,

where we have omitted the term (13400)(—F10)(—6E32)F121 € F1oU(g), which belongs to U/ (g)ns by
Lemma B.3(2), as well as similar terms which also belong to I/ (g)n_.
We now see that ﬁ(E; FSI)L([b]Z) is equal to the following element modulo U (g)n:

E32F10F120 + E31F10F11F10 + 2E31F10F21 — E31F11F120
+ 2E32F31E10F11 +4E31F31E10F10 — 2E31F31H21 — 2E31F32E11F10
+ 5%11’121 +2E10E11F11F10 +2E10E11F21 + E%OFIZO
—2E11F10E10F11 —4E10F10E10F10 + 2E10F10H21 + 2E10F11E11 F10
+3E11F31E31F11 + 6E10F31E31F10 — 3E10F32E32F10.

Again modulo U (g)n, this is equal to

6Ho1 —4H10+ 2H21 +2H10(H10 — 1) +2H11(H11 — 1) +4H31H1o
—2H21H31 — 18Ho1 +2H10(H11 +1) —4H1o —4H%O +2H10H2;1.

After simplifying terms in this expression, we finally obtain:

1
g1 E21F51) (ID1%) = 2Ha1Hiy — 6Hoi (Hot +1) + 2H1o(Hio — 1) (modU(@)ny). O
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