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In this paper, we study representations of the vertex operator
algebra L(k,0) at one-third admissible levels k = − 5

3 ,− 4
3 ,− 2

3 for

the affine algebra of type G(1)
2 . We first determine singular vectors

and then obtain a description of the associative algebra A(L(k,0))

using the singular vectors. We then prove that there are only
finitely many irreducible A(L(k,0))-modules from the category O.
Applying the A(V )-theory, we prove that there are only finitely
many irreducible weak L(k,0)-modules from the category O and
that such an L(k,0)-module is completely reducible. Our result
supports the conjecture made by Adamović and Milas (1995) [2].

© 2011 Elsevier Inc. All rights reserved.

Introduction

Vertex operator algebras (VOA) are mathematical counterparts of chiral algebras in conformal field
theory. An important family of examples comes from representations of affine Lie algebras. More
precisely, if we let ĝ be an affine Lie algebra, the irreducible ĝ-module L(k,0) with highest weight
kΛ0, k ∈ C, is a VOA, whenever k �= −h∨ , the negative of the dual Coxeter number.

The representation theory of L(k,0) varies depending on values of k ∈ C. If k is a positive integer,
the VOA L(k,0) has only finitely many irreducible modules which coincide with the irreducible high-
est weight integrable ĝ-modules of level k, and the category of Z+-graded weak L(k,0)-modules is
semisimple. If k /∈ Q or k < −h∨ , categories of L(k,0)-modules are quite different from those corre-
sponding to positive integer values. (For example, see [10,11].)

For some rational values of k, the category of weak L(k,0)-modules which are in the category
O as ĝ-modules has a structure similar to that for the category of Z+-graded weak modules for
positive integer values. Such rational values are called admissible levels. This notion was defined in the
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important works of Kac and Wakimoto [7,8]. Various cases have been studied with different generality
by many authors. Adamović studied the case of admissible half-integer levels for type C (1)

l [1]. The

case of all admissible levels of type A(1)
1 was studied by Adamović and Milas [2], and by Dong, Li

and Mason [3]. In his recent papers [14,15], Perše studied admissible half-integer levels for type A(1)

l

and B(1)

l .
In these developments, the A(V )-theory has played an important role. The associative algebra

A(V ) associated to a vertex operator algebra V was introduced by Frenkel and Zhu (see [5,16]). It was
shown that the irreducible modules of A(V ) are in one-to-one correspondence with irreducible Z+-
graded weak modules of V . This fact gives an elegant method for the classification of representations
of V , and was exploited in the works mentioned above.

In this paper, we study one-third admissible levels − 5
3 Λ0,− 4

3 Λ0,− 2
3 Λ0 for type G(1)

2 adopting
the method of [1,2,13–15]. We first determine singular vectors (Proposition 2.3) and then obtain
a description of the associative algebra A(L(k,0)) in Theorem 2.6 using the singular vectors for
k = − 5

3 ,− 4
3 ,− 2

3 . By constructing some polynomials in the symmetric algebra of the Cartan subalge-
bra, we find all the possible highest weights for irreducible A(L(k,0))-modules from the category O
(Proposition 3.6). As a result, in each case of k = − 5

3 ,− 4
3 ,− 2

3 , we prove that there are only finitely
many irreducible A(L(k,0))-modules from the category O. Then it follows from the one-to-one cor-
respondence in A(V )-theory that there are only finitely many irreducible weak L(k,0)-modules from
the category O (Theorem 3.7). In the case of irreducible L(k,0)-modules, our result provides a com-
plete classification (Theorem 3.10). We also prove that such an L(k,0)-module is completely reducible
(Theorem 3.12). Thus the VOA L(k,0) is rational in the category O for k = − 5

3 ,− 4
3 ,− 2

3 . This result sup-
ports the conjecture made by Adamović and Milas in [2], which suggests that L(k,0)’s are rational in
the category O for all admissible levels k.

Although some of our results may be generalized to higher levels k, the first difficulty is in the
drastic growth of complexity in computing singular vectors, as one can see in Appendix A. It seems
to be necessary to find a different approach to the problem for higher levels. The first-named author
will consider singular vectors for other admissible weights in his subsequent paper.

1. Preliminaries

1.1. Vertex operator algebras

Let (V , Y ,1,ω) be a vertex operator algebra (VOA). This means that V is a Z-graded vector space,
V = ⊕

n∈Z Vn , Y is the vertex operator map, Y (·, x) : V → (End V )[[x, x−1]], 1 ∈ V 0 is the vacuum
vector, and ω ∈ V 2 is the conformal vector, all of which satisfy the usual axioms. See [3,4,12] for
more details. By an ideal in the vertex operator algebra V we mean a subspace I of V satisfying
Y (a, x)I ⊆ I[[x, x−1]] for any a ∈ V . Given an ideal I in V such that 1 /∈ I , ω /∈ I , the quotient V /I
naturally becomes a vertex operator algebra. Let (M, Y M) be a weak module for the vertex operator
algebra V . We thus have a vector space M and a map Y M(·, x) : V → (End M)[[x, x−1]], which satisfy
the usual set of axioms (cf. [3]). For a fixed element a ∈ V , we write Y M(a, x) = ∑

m∈Z a(m)x−m−1, and
for the conformal element ω we write Y M(ω, x) = ∑

m∈Z ω(m)x−m−1 = ∑
m∈Z Lmx−m−2. In particular,

V is a weak module over itself with Y = Y V .
A Z+-graded weak V -module is a weak V -module M together with a Z+-gradation M = ⊕∞

n=0 Mn

such that

a(m)Mn ⊆ Mn+r−m−1 for a ∈ Vr and m,n, r ∈ Z,

where Mn = 0 for n < 0 by definition. A weak V -module M is called a V -module if L0 acts semisimply
on M with a decomposition into L0-eigenspaces M = ⊕

α∈C Mα such that for any α ∈ C, dim Mα < ∞
and Mα+n = 0 for n ∈ Z sufficiently small.

We define bilinear maps ∗ : V × V → V and ◦ : V × V → V as follows. For any homogeneous
a ∈ Vn , we write deg(a) = n, and for any b ∈ V , we define
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a ∗ b = Resx
(1 + x)deg a

x
Y (a, x)b,

and

a ◦ b = Resx
(1 + x)deg a

x2
Y (a, x)b,

and extend both definitions by linearity to V × V . Denote by O (V ) the linear span of elements of
the form a ◦ b, and by A(V ) the quotient space V /O (V ). For a ∈ V , denote by [a] the image of a
under the projection of V onto A(V ). The map a 
→ [a] will be called Zhu’s map. The multiplication ∗
induces the multiplication on A(V ), and A(V ) has a structure of an associative algebra. This fact can
be found in [5,16].

Proposition 1.1. (See [5].) Let I be an ideal of the vertex operator algebra V such that 1 /∈ I , ω /∈ I . Then the
associative algebra A(V /I) is isomorphic to A(V )/A(I), where A(I) is the image of I in A(V ).

Given a weak module M and homogeneous a ∈ V , we recall that we write Y M(a, x) =∑
m∈Z a(m)x−m−1. We define o(a) = a(deg a − 1) ∈ End(M) and extend this map linearly to V .

Theorem 1.2. (See [16].)

(1) Let M = ⊕∞
n=0 Mn be a Z+-graded weak V -module. Then M0 is an A(V )-module defined as follows:

[a] · v = o(a)v

for any a ∈ V and v ∈ M0 .
(2) Let U be an A(V )-module. Then there exists a Z+-graded weak V -module M such that the A(V )-modules

M0 and U are isomorphic.
(3) The equivalence classes of the irreducible A(V )-modules and the equivalence classes of the irreducible

Z+-graded weak V -modules are in bijective correspondence.

1.2. Affine Lie algebras

Let g be a finite-dimensional simple Lie algebra over C, with a triangular decomposition g = n− ⊕
h ⊕ n+ . Let � be the root system of (g,h), �+ ⊂ � the set of positive roots, θ the highest root and
(· , ·) : g × g → C the Killing form, normalized by the condition (θ, θ) = 2. Denote by Π = {α1, . . . ,αl}
the set of simple roots of g, and by Π∨ = {h1, . . . ,hl} the set of simple coroots of g. The affine Lie
algebra ĝ associated to g is the vector space

ĝ = g ⊗ C
[
t, t−1] ⊕ CK

equipped with the bracket operation

[
a ⊗ tm,b ⊗ tn] = [a,b] ⊗ tm+n + m(a,b)δm+n,0 K , a,b ∈ g,m,n ∈ Z,

together with the condition that K is a nonzero central element. We consider h as a subalgebra of ĝ,
and set

ĥ = h + CK ⊂ ĝ.

Let ĝ = n̂− ⊕ ĥ ⊕ n̂+ be the corresponding triangular decomposition of ĝ.
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We set h∨ to be the dual Coxeter number of ĝ. Denote by �̂ the set of roots of ĝ, by �̂+ the set
of positive roots of ĝ, and by Π̂ the set of simple roots of ĝ. We also denote by �̂re the set of real
roots of ĝ and let �̂re+ = �̂re ∩ �̂+ . The coroot corresponding to a real root α ∈ �̂re will be denoted

by α∨ . Let Q̂ = ⊕
α∈Π̂ Zα be the root lattice, and let Q̂ + = ⊕

α∈Π̂ Z+α ⊂ Q̂ . For any λ ∈ ĥ∗ , we set

D(λ) = {λ − α | α ∈ Q̂ +}.

We say that a ĝ-module M belongs to the category O if the Cartan subalgebra ĥ acts semisimply on
M with finite-dimensional weight spaces and there exits a finite number of elements ν1, . . . , νk ∈ ĥ∗
such that ν ∈ ⋃k

i=1 D(νi) for every weight ν of M . We denote by M(λ) the Verma module for ĝ with
highest weight λ ∈ ĥ∗ , and by L(λ) the irreducible ĝ-module with highest weight λ. Let U be a g-
module, and let k ∈ C. We set ĝ+ = g⊗ tC[t] and ĝ− = g⊗ t−1C[t−1]. Let ĝ+ act trivially on U and K
as scalar multiplication by k. Considering U as a g⊕CK ⊕ ĝ+-module, we have the induced ĝ-module

N(k, U ) = U(ĝ) ⊗U(g⊕CK⊕ĝ+) U .

For a fixed μ ∈ h∗ , denote by V (μ) the irreducible highest weight g-module with highest weight
μ. Denote by P+ the set of dominant integral weights of g, and by ω1, . . . ,ωl ∈ P+ the fundamental
weights of g. We will write N(k,μ) = N(k, V (μ)). Denote by J (k,μ) the maximal proper submodule
of N(k,μ) and L(k,μ) = N(k,μ)/ J (k,μ). We define Λ0 ∈ ĥ∗ by Λ0(K ) = 1 and Λ0(h) = 0 for any
h ∈ h. Then N(k,μ) is a highest weight module with highest weight kΛ0 + μ, and a quotient of the
Verma module M(kΛ0 + μ). We also obtain L(k,μ) ∼= L(kΛ0 + μ).

1.3. Admissible weights

Let �̂∨,re (respectively, �̂
∨,re
+ ) be the set of real (respectively, positive real) coroots of ĝ, and Π̂∨

the set of simple coroots. For λ ∈ ĥ∗ , we define

�̂
∨,re
λ = {

α∨ ∈ �̂∨,re
∣∣ 〈

λ,α∨〉 ∈ Z
}
, and �̂

∨,re
λ,+ = �̂

∨,re
λ ∩ �̂

∨,re
+ ,

and we set

Π̂∨
λ = {

α∨ ∈ �̂
∨,re
λ,+

∣∣ α∨ is not decomposable into a sum of elements from �̂
∨,re
λ,+

}
.

Let Ŵ denote the Weyl group of ĝ. For each α ∈ �̂re, we have a reflection rα ∈ Ŵ . Define ρ ∈ ĥ∗
in the usual way, and we recall the shifted action of an element w ∈ Ŵ on ĥ∗ , given by w · λ =
w(λ + ρ) − ρ .

A weight λ ∈ ĥ∗ is called admissible if

〈
λ + ρ,α∨〉

/∈ −Z+ for all α∨ ∈ �̂
∨,re
+ and Q�̂

∨,re
λ = QΠ̂∨.

The irreducible ĝ-module L(λ) is called admissible if the weight λ ∈ ĥ∗ is admissible. Given a ĝ-module
M from the category O, we call a weight vector v ∈ M a singular vector if n̂+.v = 0.

Proposition 1.3. (See [7].) Let λ be an admissible weight. Then

L(λ) = M(λ)/

( ∑
α∨∈Π̂∨

λ

U(ĝ)vα

)
,

where vα ∈ M(λ) is a singular vector of weight rα · λ.
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Proposition 1.4. (See [8].) Let M be a ĝ-module from the category O. If every irreducible subquotient L(ν) of
M is admissible, then M is completely reducible.

1.4. N(k,0) and L(k,0) as VOA’s

We identify the one-dimensional trivial g-module V (0) with C. Write 1 = 1 ⊗ 1 ∈ N(k,0). The
ĝ-module N(k,0) is spanned by the elements of the form

a1(−n1 − 1) · · ·am(−nm − 1)1,

where a1, . . . ,am ∈ g and n1, . . . ,nm ∈ Z+ , with a(n) denoting the element a ⊗ tn for a ∈ g and n ∈ Z.
The vector space N(k,0) admits a VOA structure, which we now describe. The vertex operator map

Y (·, x) : N(k,0) → End(N(k,0))[[x, x−1]] is uniquely determined by defining Y (1, x) to be the identity
operator on N(k,0) and

Y
(
a(−1)1, x

) =
∑
n∈Z

a(n)x−n−1 for a ∈ g.

In the case that k �= −h∨ , the module N(k,0) has a conformal vector

ω = 1

2
(
k + h∨) dim g∑

i=1

(
ai(−1)

)2
1,

where {ai}i=1,...,dimg is an arbitrary orthonormal basis of g with respect to the normalized Killing form
(· , ·). Then it is well known that the quadruple (N(k,0), Y ,1,ω) defined above is a vertex operator
algebra.

Proposition 1.5. (See [5].) The associative algebra A(N(k,0)) is canonically isomorphic to U(g). The isomor-
phism is given by F : A(N(k,0)) → U(g),

F
([

a1(−n1 − 1) · · ·am(−nm − 1)1
]) = (−1)n1+···+nm a1 · · ·am,

for a1, . . . ,am ∈ g and n1, . . . ,nm ∈ Z+ .

Since every ĝ-submodule of N(k,0) is also an ideal in the VOA N(k,0), the module L(k,0) is a
VOA for any k �= −h∨ .

Proposition 1.6. (See [14].) Assume that the maximal ĝ-submodule of N(k,0) is generated by a singular
vector v0 . Then we have

A
(
L(k,0)

) ∼= U(g)/
〈
F
([v0]

)〉
,

where 〈F ([v0])〉 is the two-sided ideal of U(g) generated by F ([v0]). In particular, a g-module U is an
A(L(k,0))-module if and only if F ([v0])U = 0.
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2. Affine Lie algebra of type G(1)
2

2.1. Admissible weights

Let

� =
⎧⎨
⎩

± 1√
3
(ε1 − ε2), ± 1√

3
(ε1 − ε3), ± 1√

3
(ε2 − ε3),

± 1√
3
(2ε1 − ε2 − ε3), ± 1√

3
(2ε2 − ε1 − ε3), ± 1√

3
(2ε3 − ε1 − ε2)

⎫⎬
⎭

be the root system of type G2. We fix the set of positive roots

�+ =
⎧⎨
⎩

1√
3
(ε1 − ε2),

1√
3
(ε3 − ε1),

1√
3
(ε3 − ε2),

1√
3
(−2ε1 + ε2 + ε3),

1√
3
(−2ε2 + ε1 + ε3),

1√
3
(2ε3 − ε1 − ε2)

⎫⎬
⎭ .

Then the simple roots are α = 1√
3
(ε1 − ε2) and β = 1√

3
(−2ε1 + ε2 + ε3), and the highest root is

θ = 1√
3
(2ε3 − ε1 − ε2) = 3α + 2β . Let g be the simple Lie algebra over C, associated with the root

system of type G2. Let E10, E01, F10, F01, H10, H01 be Chevalley generators of g, where E10 is a root
vector for α, E01 is a root vector for β , and so on. We fix the root vectors:

E11 = [E10, E01],
E21 = 1

2
[E11, E10] = 1

2

[[E10, E01], E10
]
,

E31 = 1

3
[E21, E10] = 1

6

[[[E10, E01], E10
]
, E10

]
,

E32 = [E31, E01] = 1

6

[[[[E10, E01], E10
]
, E10

]
, E01

]
,

F11 = [F01, F10],
F21 = 1

2
[F10, F11] = 1

2

[
F10, [F01, F10]

]
,

F31 = 1

3
[F10, F21] = 1

6

[
F10,

[
F10, [F01, F10]

]]
,

F32 = [F01, F31] = 1

6

[
F01,

[
F10,

[
F10, [F01, F10]

]]]
. (2.1)

We set Hij = [Eij, Fij] for any positive root iα + jβ ∈ �+ . Then one can check that Hij is the coroot
corresponding to iα + jβ , i.e. Hij = (iα + jβ)∨ . For a complete multiplication table, we refer the
reader to Table 22.1 in [6, p. 346], where we have

X1 = E10, X2 = E01, X3 = E11, X4 = −E21, X5 = −E31, X6 = −E32,

Y1 = F10, Y2 = F01, Y3 = F11, Y4 = −F21, Y5 = −F31, Y6 = −F32.

All admissible weights for arbitrary affine Lie algebras have been completely classified in [8]. The
next proposition provides a description of the “vacuum” admissible weights for G(1)

2 at one-third
levels. This is a special case of Proposition 1.2 in [9]. We provide a proof for completeness.
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Lemma 2.2. The weight λ3n+i = (n − 2 + i
3 )Λ0 is admissible for n ∈ Z+ , i = 1,2, and we have

Π̂∨
λ3n+i

= {(
δ − (2α + β)

)∨
,α∨, β∨}

,

where δ is the canonical imaginary root. Furthermore,

〈
λ3n+i + ρ,γ ∨〉 = 1 for γ = α,β;〈

λ3n+i + ρ,
(
δ − (2α + β)

)∨〉 = 3n + i + 1 for i = 1,2.

Proof. We have to show

〈
λ3n+i + ρ,γ ∨〉

/∈ −Z+ for any γ ∈ �̂re+

and

Q�̂
∨,re
λ3n+i

= QΠ̂∨.

Any positive real root γ ∈ �̂re+ of ĝ is of the form γ = γ̄ + mδ, for m > 0 and γ̄ ∈ �, or m = 0 and
γ̄ ∈ �+ . Denote by ρ̄ the sum of fundamental weights of g. Then we can choose ρ = h∨Λ0 + ρ̄ =
4Λ0 + ρ̄ .

We have

〈
λ3n+i + ρ,γ ∨〉 = 〈(

n + 2 + i

3

)
Λ0 + ρ̄, (γ̄ + mδ)∨

〉

= 2

(γ̄ , γ̄ )

(
m

(
n + 2 + i

3

)
+ (ρ̄, γ̄ )

)
.

If m = 0, then it is trivial that 〈λ3n+i, γ
∨〉 /∈ −Z+ . Suppose that m � 1. If (γ̄ , γ̄ ) = 2 and m �≡ 0

(mod 3), then 〈λ3n+i + ρ,γ ∨〉 /∈ −Z+ . If (γ̄ , γ̄ ) = 2, and m ≡ 0 (mod 3), then m � 3, and since
(ρ̄, γ̄ ) � −3 for any γ̄ ∈ �, we have

〈
λ3n+i + ρ,γ ∨〉 = m

(
n + 2 + i

3

)
+ (ρ̄, γ̄ ) � 3

(
n + 2 + 1

3

)
− 3 = 3n + 4 � 4,

which implies 〈λ3n+i + ρ,γ ∨〉 /∈ −Z+ . If (γ̄ , γ̄ ) = 2
3 , then (ρ̄, γ̄ ) � − 5

3 . We have

〈
λ3n+i + ρ,γ ∨〉 = 3

(
m

(
n + 2 + i

3

)
+ (ρ̄, γ̄ )

)
� 3

(
n + 7

3
+ (ρ̄, γ̄ )

)
� 3

(
n + 7

3
− 5

3

)
= 3n + 2 � 2,

which implies 〈λ3n+i + ρ,γ ∨〉 /∈ −Z+ . Thus, 〈λ3n+i + ρ,γ ∨〉 /∈ −Z+ for any γ ∈ �̂re+ .
One can easily see that

�̂
∨,re
λ3n+i ,+ = {

mδ + γ̄
∣∣ m > 0, m ≡ 0 (mod 3), (γ̄ , γ̄ ) = 2

}
∪ {

mδ + γ̄
∣∣ m > 0, (γ̄ , γ̄ ) = 2/3

} ∪ �+.
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Then we obtain

Π̂∨
λ3n+i

= {(
δ − (2α + β)

)∨
,α∨, β∨}

,

and we see that Q�̂
∨,re
λ3n+i

= QΠ̂∨
λ3n+i

= QΠ̂∨ . Through direct calculations, we get

〈
λ3n+i + ρ,γ ∨〉 = 1 for γ = α,β, and〈
λ3n+i + ρ,

(
δ − (2α + β)

)∨〉 = 3n + i + 1. �
2.2. Singular vectors

In what follows, let ĝ be the affine Lie algebra of type G(1)
2 and U(ĝ) its universal enveloping

algebra.
We write Xi(−m) = X(−m)i for elements in U(ĝ). We set

a = E21(−1),

b = E31(−1)E11(−1) − E32(−1)E10(−1),

c = E2
31(−1)E01(−1) − E32(−1)E31(−1)H01(−1) − E2

32(−1)F01(−1),

w = E31(−1)E32(−2) − E32(−1)E31(−2),

and define

u = 1

3
a2 − b, and v = 2

9
a3 − ab − 3c.

The following proposition determines singular vectors for the first three admissible weights, i.e.
− 5

3 Λ0,− 4
3 Λ0,− 2

3 Λ0, respectively.

Proposition 2.3. The vector vk ∈ N(k,0) is a singular vector for the given value of k:

vk =

⎧⎪⎨
⎪⎩

u.1 for k = − 5
3 ,

(v + w).1 for k = − 4
3 ,

u(v − w).1 for k = − 2
3 .

The proof will be given in Appendix A. As one can see in the proof, the computational difficulty
increases as the level k goes up. A different approach will be used in a subsequent work of the first-
named author on higher levels.

2.3. Description of Zhu’s algebra

Proposition 2.4. The maximal ĝ-submodule J (k,0) of N(k,0) is generated by the vector vk for k = − 5
3 , − 4

3 ,

− 2
3 , respectively, where vk’s are given in Proposition 2.3.

Proof. Let λ3n+i = (−2 + n + i
3 )Λ0 = kΛ0 as before. It follows from Proposition 1.3 and Lemma 2.2

that the maximal submodule of the Verma module M(λ3n+i) is generated by three singular vectors
with weights

rδ−(2α+β) · λ3n+i, rα · λ3n+i, rβ · λ3n+i, respectively.
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We consider the three cases

n = 0, i = 1, k = −5/3; n = 0, i = 2, k = −4/3; n = 1, i = 1, k = −2/3.

In each case, there is a singular vector uk ∈ M(λ3n+i) of weight rδ−(2α+β).λ3n+i, whose image under
the projection of M(λ3n+i) onto N(k,0) is the singular vector vk given in Proposition 2.3.

The other singular vectors have weights

rα · λ3n+i = λ3n+i − 〈
λ3n+i + ρ,α∨〉

α = λ3n+i − α, and

rβ · λ3n+i = λ3n+i − 〈
λ3n+i + ρ,β∨〉

β = λ3n+i − β,

so the images of these vectors under the projection of M(λ3n+i) onto N(k,0) are 0 from the definition.
Therefore the maximal submodule of N(k,0) is generated by the singular vector vk , i.e. J (k,0) =
U(ĝ)vk . �

Now we consider the image of a singular vector vk under Zhu’s map

[·] : N(k,0) → A
(
N(k,0)

) ∼= U(g),

which is defined in Section 1. We recall that the vertex algebra N(k,0) is (linearly) isomorphic to the
associative algebra U(ĝ−). We thus have an induced map from U(ĝ−) to U(g) and a commutative
diagram of linear maps:

U(ĝ−) � N(k,0)

↓ ↓
U(g) � A

(
N(k,0)

)
.

We will identify N(k,0) with U(ĝ−) and A(N(k,0)) with U(g). We have:

[a] = E21,

[b] = E31 E11 − E32 E10,

[c] = E2
31 E01 − E32 E31 H01 − E2

32 F01.

We also have:

[u] = 1

3
[a]2 − [b],

[v] = 2

9
[a]3 − [a][b] − 3[c],

[w] = 0,[
u(v − w)

] = [u][v] = 2

27
[a]5 − 5

9
[a]3[b] − [a]2[c] + [a][b]2 + 3[b][c]. (2.5)

The following theorem is now a consequence of Propositions 1.6 and 2.4.
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Theorem 2.6. The associative algebra A(L(k,0)) is isomorphic to U(g)/Ik , where Ik is the two-sided ideal of
U(g) generated by the vector [vk], where

[vk] =

⎧⎪⎨
⎪⎩

[u] for k = − 5
3 ,

[v] for k = − 4
3 ,

[uv] for k = − 2
3 .

3. Irreducible modules

In this section we adopt the method from [1,2,13–15] in oder to classify irreducible A(L(k,0))-
modules from the category O by solving certain systems of polynomial equations.

3.1. Modules for associative algebra A(L(k,0))

Denote by L the adjoint action of U(g) on U(g) defined by XL f = [X, f ] for X ∈ g and f ∈
U(g). We also write (ad X) f = XL f = [X, f ]. Then ad X is a derivation on U(g). Let R(k) be a
U(g)-submodule of U(g) generated by the vector [vk], where [vk] is given in Theorem 2.6. It is
straightforward to see that R(k) is an irreducible finite-dimensional U(g)-module isomorphic to
V ((3k + 7)(2α + β)). Let R(k)0 be the zero-weight subspace of R(k).

Proposition 3.1. (See [1,2].) Let V (μ) be an irreducible highest weight U(g)-module with highest weight
vector vμ for μ ∈ h∗ . Then the following statements are equivalent:

(1) V (μ) is an A(L(k,0))-module,
(2) R(k) · V (μ) = 0,
(3) R(k)0 · vμ = 0.

Let r ∈ R(k)0. Then there exists a unique polynomial pr ∈ S(h), where S(h) is the symmetric alge-
bra of h, such that

r · vμ = pr(μ)vμ.

Set P(k)0 = {pr | r ∈ R(k)0}. Then we have:

Corollary 3.2. There is a bijective correspondence between

(1) the set of irreducible A(L(k,0))-modules V (μ) from the category O, and
(2) the set of weights μ ∈ h∗ such that p(μ) = 0 for all p ∈ P(k)0 .

3.2. Polynomials in P(k)0

We now determine some polynomials in the set P(k)0 for the cases k = − 5
3 , k = − 4

3 , k = − 2
3 ,

respectively. We will use some computational lemmas which we collect and prove in Appendix B.

Lemma 3.3 (Case: k = − 5
3 ). We let

(1) q(H) = H21(H21 + 2),
(2) p1(H) = H10(H10 − 1), and
(3) p2(H) = 1

3 H11(H11 − 1) + 3H01 .

Then q(H), p1(H), p2(H) ∈ P(− 5
3 )0 .
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Proof. (1) We show that (E2
21 F 4

21)L[u] ≡ Cq(H) (mod U(g)n+) for some C �= 0. Using Lemma B.12 and
Lemma B.13, we have

(
E2

21 F 4
21

)
L[u] = (

E2
21 F 4

21

)
L

(
1

3
[a]2 − [b]

)

≡ 4!2!
(

1

3
H21(H21 − 1) + H21

)

≡ 4!2!1

3
H21(H21 + 2)

(
mod U(g)n+

)
,

which is what we wanted to show.
(2) We will show that (E2

10 F 2
31)L[u] ≡ Cp1(H) (mod U(g)n+) for some C �= 0. We again use

Lemma B.12 and Lemma B.13 to obtain:

(
E2

10 F 2
31

)
L

(
1

3
[a]3 − [b]

)
≡ (2!)2 1

3
H10(H10 − 1) ≡ 4

3
p1(H)

(
mod U(g)n+

)
.

(3) In this case we show that (E2
11 F 2

32)L[u] ≡ Cp2(H) (mod U(g)n+) for some C �= 0. Similarly to
the first two cases we compute:

(
E2

11 F 2
32

)
L

(
1

3
[a]2 − [b]

)
≡ (2!)2

(
1

3
H11(H11 − 1) + 3H01

)
≡ Cp2(H)

(
mod U(g)n+

)
. �

We now give polynomials for the next case.

Lemma 3.4 (Case: k = − 4
3 ). Let

(1) q(H) = 2
9 H21(H21 − 1)(H21 − 2) + H21(H21 − 2) + 3H01(H01 + 2),

(2) p1(H) = H10(H10 − 1)(H10 − 2),
(3) p2(H) = 2

9 H11(H11 − 1)(H11 − 2) + 6H01 H32 .

Then p1(H), p2(H),q(H) ∈ P(− 4
3 )0 .

Proof. (1) We show that (E3
21 F 6

21)L[v] ≡ Cq(H) (mod U(g)n+) for some constant C �= 0. By
Lemma B.13, we have:

(
E3

21 F 6
21

)
L[v] = (

E3
21 F 6

21

)
L

(
2

9
[a]3 − [a][b] − 3[c]

)

≡ −3!6!2

9
H21(H21 − 1)(H21 − 2) − 3!

2!
6!
4! (H21 − 2)

(
E2

21 F 4
21

)
L[b]

− 3
(

E3
21 F 6

21

)
L[c]

(
mod U(g)n+

)
.

By Lemma B.12, we thus have:

(
E3

21 F 6
21

)
L[v] ≡ −3!6!2

9
H21(H21 − 1)(H21 − 2) + 3!6!(H21 − 2)H21 + 3!6!H01(H01 + 2)

≡ Cq(H)
(
mod U(g)n+

)
.
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(2) We will show that (E3
10 F 3

31)L[v] ≡ Cp1(H) (mod U(g)n+) for some constant C �= 0. Using
Lemma B.13, we obtain:

(
E3

10 F 3
31

)
L

(
2

9
[a]3 − [a][b] − 3[c]

)

≡ 2

9
(3!)2 H10(H10 − 1)(H10 − 2) + 3!

2!
3!
2! (H10 − 2)

(
E2

10 F 2
31

)
L[b]

− 3
(

E3
10 F 3

31

)
L[c]

(
mod U(g)n+

)
.

By Lemma B.12, we thus have

(
E3

10 F 3
31

)
L

(
2

9
[a]3 − [a][b] − 3[c]

)
≡ 2

9
(3!)2 H10(H10 − 1)(H10 − 2)

≡ Cp1(H)
(
mod U(g)n+

)
.

(3) Finally, we show that (E3
11 F 3

32)L[v] ≡ Cp2(H) (mod U(g)n+) for some constant C �= 0. Since
H11 + H31 = 2H32, we have

(
E3

11 F 3
32

)
L v ′ ≡ 2

9
(3!)2 H11(H11 − 1)(H11 − 2) − 3!

2!
3!
2! (H11 − 2)

(
E2

11 F 2
32

)
L[b] − 3

(
E3

11 F 3
32

)
L[c]

≡ (3!)2
(

2

9
H11(H11 − 1)(H11 − 2) + 3(H11 − 2)H01 + 3H01(H31 + 2)

)

≡ (3!)2
(

2

9
H11(H11 − 1)(H11 − 2) + 6H01 H32

)

≡ Cp2(H)
(
mod U(g)n+

)
. �

The last case is presented below.

Lemma 3.5 (Case: k = − 2
3 ). We let

q(H) = 2

27
H21(H21 − 1)(H21 − 2)(H21 − 3)(H21 − 4) + 5

9
H21(H21 − 2)(H21 − 3)(H21 − 4)

+ (H21 − 3)(H21 − 4)H01(H01 + 2) + 2H21(H21 − 4)(H11 − 1)

+ 2(H21 − 4)H10(H10 − 1) − 6(H21 − 4)H01(H01 + 1) + 6(H21 − 3)H01(H01 + 2),

p1(H) = H10(H10 − 1)(H10 − 2)(H10 − 3)(H10 − 4),

p2(H) = 2

27
H11(H11 − 1)(H11 − 2)(H11 − 3)(H11 − 4) + 5

3
(H11 − 2)(H11 − 3)(H11 − 4)H01

+ (H11 − 3)(H11 − 4)H01(H11 − 3) + 18(H11 − 4)H01(H01 − 1)

− 2(H11 − 3)(H11 − 4)H01 + 18H01(H01 − 1)(H31 + 2).

Then p1(H), p2(H),q(H) ∈ P(− 2
3 )0 .
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Proof. First recall from (2.5) that

[
u(v − w)

] = [u][v] = 2

27
[a]5 − 5

9
[a]3[b] − [a]2[c] + [a][b]2 + 3[b][c].

We will show that (E5
21 F 10

21)L([u][v]) ≡ −5!10!q(H) (mod U(g)n+).
Using Lemmas B.1, B.11, we have:

(
F 10

21

)
L

([u][v]) = (
F 10

21

)
L

(
2

27
[a]5 − 5

9
[a]3[b] − [a]2[c] + [a][b]2 + 3[b][c]

)

= 2

27

10!
(2!)5

(−2)5 F 5
21 − 5

9

10!
(2!)34! (−2)3 F 3

21

(
F 4

21

)
L[b]

− 10!
(2!)26! (−2)2 F 2

21

(
F 6

21

)
L[c]

+ 10!
2!8! (−2)F21

(
F 8

21

)
L[b]2 + 3

(
F 10

21

)[b][c]

= − 2

27
10!F 5

21 + 5

9

10!
4! F 3

21

(
F 4

21

)
L[b] − 10!

6! F 2
21

(
F 6

21

)
L[c]

− 10!
8! F21

(
F 8

21

)
L[b]2 + 3

(
F 10

21

)[b][c].

Now using Lemma B.3, we obtain:

1

10!
(

E5
21 F 10

21

)
L

([u][v]) = − 2

27
5!H21(H21 − 1)(H21 − 2)(H21 − 3)(H21 − 4)

+ 5

9

5!
2! (H21 − 2)(H21 − 3)(H21 − 4)

1

4!
(

E2
21 F 4

21

)
L[b]

− 5!
3! (H21 − 3)(H21 − 4)

1

6!
(

E3
21 F 6

21

)
L[c]

− 5!
4! (H21 − 4)

1

8!
(

E4
21 F 8

21

)
L[b]2 + 3

1

10!
(

E5
21 F 10

21

)
L

([b][c]).
Combining this with Lemmas B.12, B.13, B.14, we obtain:

1

10!
(

E5
21 F 10

21

)
L

([u][v]) ≡ − 2

27
5!H21(H21 − 1)(H21 − 2)(H21 − 3)(H21 − 4)

+ 5

9

5!
2! (H21 − 2)(H21 − 3)(H21 − 4)(−2)H21

− 5!
3! (H21 − 3)(H21 − 4)3!H01(H01 + 2)

− 5!
4! (H21 − 4)4!(2H21 H11 + 2H10(H10 − 1) − 6H01(H01 + 1)

)
+ 3 5!(−2)H01(H01 + 2)(H21 − 3)

≡ −5!q(H)
(
mod U(g)n+

)
.

The proofs for p1(H) and p2(H) are similar, and we omit the details. �
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3.3. Finiteness of the number of irreducible modules

We are now able to obtain the following result for the associative algebra A(L(k,0)). For conve-
nience, if μ ∈ h∗ , we write μi j = μ(Hij). We will identify μ ∈ h∗ with the pair (μ10,μ01).

Proposition 3.6. There are finitely many irreducible A(L(k,0))-modules from the category O for each of
k = − 5

3 ,− 4
3 ,− 2

3 . Moreover, the possible highest weights μ = (μ10,μ01) for irreducible A(L(k,0))-modules
are as follows:

(1) if k = − 5
3 , then μ = (0,0), (0,− 2

3 ) or (1,− 4
3 );

(2) if k = − 4
3 , then μ = (0,0), (0,− 2

3 ), (0,− 1
3 ), (1,0), (1,− 4

3 ) or (2,− 5
3 );

(3) if k = − 2
3 , then μ = (0,0), (0,− 2

3 ), (0,− 1
3 ), (0, 1

3 ), (0,1), (1,0), (1,− 4
3 ), (1,− 2

3 ), (2,0), (2,− 5
3 ),

(2,− 4
3 ) or (4,− 7

3 ).

Proof. (1) It follows from Corollary 3.2 that highest weights μ ∈ h∗ of irreducible A(L(− 5
3 ,0))-

modules satisfy p(μ) = 0 for all p ∈ P0(− 5
3 ). Lemma 3.3 implies that p1(μ) = p2(μ) = q(μ) = 0

for such weights μ. Let μ ∈ h∗ . The equation p1(μ) = 0 is

μ10(μ10 − 1) = 0,

which implies μ10 = 0 or 1.
First suppose μ10 = 0. Then from q(μ) = 0 we must have μ01 = 0 or − 2

3 . Similarly, from

p2(μ) = 0, we also get μ01 = 0 or − 2
3 . So the weight μ must be of the form μ = (μ10,μ01) = (0,0)

or (0,− 2
3 ) in this case. Now suppose μ10 = 1. The equation q(μ) = 0 gives μ01 = − 2

3 or − 4
3 , and

the equation p2(μ) = 0 gives μ01 = 0 or − 4
3 . So the only possibility is μ = (μ10,μ01) = (1,− 4

3 ).
Altogether, this gives only three possible weights μ such that p1(μ) = p2(μ) = q(μ) = 0:

μ = (μ10,μ01) = (0,0),

(
0,−2

3

)
or

(
1,−4

3

)
.

(2) Similarly to the part (1), we use the polynomials of Lemma 3.4. Using a computer algebra
system, we calculate the common zeros of the polynomials q(H), p1(H), p2(H) to obtain the following
list of possible highest weights:

μ = (μ10,μ01) = (0,0),

(
0,−2

3

)
,

(
0,−1

3

)
, (1,0),

(
1,−4

3

)
or

(
2,−5

3

)
.

(3) For this part, we use Lemma 3.5. Using a computer algebra system, we again compute the
common zeros of the polynomials q(H), p1(H), p2(H) to obtain the following list of possible highest
weights:

μ = (μ10,μ01) = (0,0),

(
0,−2

3

)
,

(
0,−1

3

)
,

(
0,

1

3

)
, (0,1), (1,0),

(
1,−4

3

)
,

(
1,−2

3

)
,

(2,0),

(
2,−5

3

)
,

(
2,−4

3

)
or

(
4,−7

3

)
. �

Now we apply the A(V )-theory (Theorem 1.2), and obtain our main result in the following theo-
rem.
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Theorem 3.7. There are finitely many irreducible weak modules from the category O for each of the following
simple vertex operator algebras: L(− 5

3 ,0), L(− 4
3 ,0), L(− 2

3 ,0).

Remark 3.8. This theorem provides further evidence for the conjecture of Adamović and Milas in [2],
mentioned in the introduction. Furthermore, if L(λ) is an irreducible module of the VOA L(k,0), for
k = − 5

3 , − 4
3 , or − 2

3 , then we recall from Section 1.2 that we must have L(λ) ∼= L(kΛ0,μ) for the
values of μ ∈ h∗ given in Proposition 3.6.

In the case of irreducible L(k,0)-modules, we obtain a complete classification. We state this result
in the following proposition and theorem.

Proposition 3.9. The complete list of irreducible finite-dimensional A(L(k,0))-modules V (μ) for each k is as
follows:

(1) if k = − 5
3 , then V (μ) = V (0),

(2) if k = − 4
3 , then V (μ) = V (0) or V (ω1),

(3) if k = − 2
3 , then V (μ) = V (0), V (ω1), V (ω2), or V (2ω1),

where ω1,ω2 are the fundamental weights of g.

Proof. Among the list of weights in Proposition 3.6, we need only to consider dominant integral
weights, i.e. those weights μ = (m1,m2) with m1,m2 ∈ Z+ . Notice that the weights of the singu-
lar vectors [vk] are 2ω1, 3ω1 and 5ω1, respectively. Considering the set of weights of V (μ) listed
above, we see that each singular vector [vk] annihilates the corresponding modules V (μ). Now the
proposition follows from Proposition 1.6. �

We again apply the A(V )-theory (Theorem 1.2), and obtain the following theorem.

Theorem 3.10. The complete list of irreducible L(k,0)-modules L(k,μ) for each k is as follows:

(1) if k = − 5
3 , then L(k,μ) = L(k,0),

(2) if k = − 4
3 , then L(k,μ) = L(k,0) or L(k,ω1),

(3) if k = − 2
3 , then L(k,μ) = L(k,0), L(k,ω1), L(k,ω2), or L(k,2ω1).

3.4. Semisimplicity of weak modules from the category O

In this subsection we show that the category of weak L(k,0)-modules from the category O is
semisimple.

Lemma 3.11. Assume that λ = kΛ0 + μ for k = − 5
3 ,− 4

3 ,− 2
3 , where μ ∈ h∗ is one of the values given in

Proposition 3.6 for each k. Then the weights λ are admissible.

Proof. The proof is essentially the same as Lemma 2.2. Let us write Π̂∨
0 = {(δ − (2α + β))∨,α∨, β∨},

Π̂∨
1 = {(δ − (3α + β))∨,α∨, (α + β)∨}, and Π̂∨

2 = {(δ − θ)∨,α∨, (α + β)∨}. Since the proof for the
other cases are similar, we consider only the case k = − 5

3 . From Lemma 2.2, we already know that

λ = − 5
3 Λ0 + μ is admissible for μ = (0,0), with Π̂∨

λ = Π̂∨
0 .

If μ = (0,− 2
3 ), we have to show that

〈
−5

3
Λ0 + μ + ρ,γ ∨

〉
/∈ −Z+ for any γ ∈ �̂re+ and Q�̂

∨,re
λ = QΠ̂∨.
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Recall that ρ = 4Λ0 + ρ̄; also γ ∈ �̂re+ must have the form γ = γ̄ + mδ, for m > 0 and γ̄ ∈ �, or
m = 0 and γ̄ ∈ �+ . We then have:

〈
−5

3
Λ0 + μ + ρ,γ ∨

〉
=

〈
7

3
Λ0 + μ + ρ̄, (γ̄ + mδ)∨

〉

= 2

(γ̄ , γ̄ )

7

3
m + 〈

μ, γ̄ ∨〉 + 〈
ρ̄, γ̄ ∨〉

.

We may then check that 〈− 5
3 Λ0 +μ+ρ,γ ∨〉 � 1

3 , so that 〈− 5
3 Λ0 +μ+ρ,γ ∨〉 /∈ −Z+ . One may also

verify that Π̂∨
λ = Π̂∨

1 so that Q�̂
∨,re
λ = QΠ̂∨ .

Similarly, one can show that λ = − 5
3 Λ0 + μ is admissible for μ = (1,− 4

3 ) and that Π̂∨
λ = Π̂∨

2 . �
Theorem 3.12. Let M be a weak L(k,0)-module from the category O, for k = − 5

3 ,− 4
3 , or − 2

3 . Then M is
completely reducible.

Proof. Let L(λ) be an irreducible subquotient of M . Then L(λ) is an L(k,0)-module, and we see from
Remark 3.8 that λ must be a weight of the form kΛ0 +μ, where μ is given in Proposition 3.6 for k =
− 5

3 ,− 4
3 ,− 2

3 , respectively. From Lemma 3.11 it follows that such a λ is admissible. Now Proposition 1.4
implies that M is completely reducible. �
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Appendix A. Proof of Proposition 2.3

In this appendix, we prove Proposition 2.3. We first give a few lemmas.

Lemma A.1.

(1) We have

[
a, E10(0)

] = 3E31(−1),
[
b, E10(0)

] = 2E31(−1)E21(−1),[
c, E10(0)

] = E32(−1)E31(−1)E10(−1) − E2
31(−1)E11(−1),[

u, E10(0)
] = 0,

[
v, E10(0)

] = 0,
[

w, E10(0)
] = 0.

(2) Each of the elements a,b, c, u, v, w ∈ U(ĝ) commutes with E01(0).

Proof. (1) Using the multiplication table in (2.1), it is easy to see [a, E10(0)] = 3E31(−1). Next, we
have

[
b, E10(0)

] = [
E31(−1)E11(−1) − E32(−1)E10(−1), E10(0)

]
= E31(−1)

[
E11(−1), E10(0)

] + [
E31(−1), E10(0)

]
E11(−1)

−E32(−1)
[

E10(−1), E10(0)
] − [

E32(−1), E10(0)
]

E10(−1)

= 2E31(−1)E21(−1).
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Starting with the definition

[
c, E10(0)

] = [
E2

31(−1)E01(−1) − E32(−1)E31(−1)H01(−1) − E2
32(−1)F01(−1), E10(0)

]
,

we consider each term separately and obtain

[
E2

31(−1)E01(−1), E10(0)
]

= E2
31(−1)

[
E01(−1), E10(0)

] + E31(−1)
[

E31(−1), E10(0)
]

E01(−1)

+ [
E31(−1), E10(0)

]
E31(−1)E01(−1)

= −E2
31(−1)E11(−1),[

E32(−1)E31(−1)H01(−1), E10(0)
]

= E32(−1)E31(−1)
[

H01(−1), E10(0)
] + E32(−1)

[
E31(−1), E10(0)

]
H01(−1)

+ [
E32(−1), E10(0)

]
E31(−1)H01(−1)

= −E32(−1)E31(−1)E10(−1),

and

[
E2

32(−1)F01(−1), E10(0)
]

= E2
32(−1)

[
F01(−1), E10(0)

] + E32(−1)
[

E32(−1), E10(0)
]

F01(−1)

+ [
E32(−1), E10(0)

]
E32(−1)F01(−1)

= 0.

Therefore, we obtain

[
c, E10(0)

] = E32(−1)E31(−1)E10(−1) − E2
31(−1)E11(−1).

Next, we get

[
u, E10(0)

] = 1

3

[
a2, E10(0)

] − [
b, E10(0)

]
= 1

3
a
[
a, E10(0)

] + 1

3

[
a, E10(0)

]
a − [

b, E10(0)
]

= E21(−1)E31(−1) + E31(−1)E21(−1) − 2E31(−1)E21(−1)

= 0,

and

[
v, E10(0)

] = 2

9

[
a3, E10(0)

] − [
ab, E10(0)

] − 3
[
c, E10(0)

]
= 2E2

21(−1)E31(−1) − a
[
b, E10(0)

] − [
a, E10(0)

]
b − 3

[
c, E10(0)

]
= 2E2

21(−1)E31(−1) − 2E21(−1)E31(−1)E21(−1)
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− 3E31(−1)
{

E31(−1)E11(−1) − E32(−1)E10(−1)
}

− 3
{

E32(−1)E31(−1)E10(−1) − E2
31(−1)E11(−1)

} = 0.

Finally, it is easy to see [w, E10(0)] = 0.
(2) The equalities [a, E01(0)] = 0, [b, E01(0)] = 0, [c, E01(0)] = 0 can be proved as in the part (1),

and we omit the details. Then it immediately follows that [u, E01(0)] = 0 and [v, E01(0)] = 0. Since
w = 1

3 [a,b], we also obtain [w, E01(0)] = 0. �
Lemma A.2. We have

[
a, F32(1)

] = −F11(0),[
b, F32(1)

] = E31(−1)F21(0) − E11(−1)F01(0) − E10(−1)H32(0) + (K + 1)E10(−1),[
c, F32(1)

] = E32(−1)E31(−1)F32(0) + E32(−1)H01(−1)F01(0) − 2E32(−1)F01(−1)H32(0)

+ (2K + 2)E32(−1)F01(−1) + E2
31(−1)F31(0) − 2E31(−1)E01(−1)F01(0)

− E31(−1)H01(−1)H32(0) + (K + 1)E31(−1)H01(−1),

[
u, F32(1)

] = −
(

K + 5

3

)
E10(−1) − E31(−1)F21(0) − 2

3
E21(−1)F11(0)

+ E11(−1)F01(0) + E10(−1)H32(0),[
v, F32(1)

] = −E32(−1)E10(−1)F11(0) − 3E32(−1)F01(−1)

+ 4

3
E31(−2) + E31(−1)E11(−1)F11(0) − E31(−1)H11(−1)

− 2

3
a2 F11(0) − 1

3
aE10(−1) − a

[
b, F32(1)

] − 3
[
c, F32(1)

]
,[

w, F32(1)
] = −E32(−2)F01(0) + E32(−1)F01(−1)

− E31(−2)H32(0) + E31(−1)H32(−1) + K E31(−2).

Proof. We only prove the equalities for [b, F32(1)] and [u, F32(1)]. The other equalities can be proved
similarly. We obtain

[
b, F32(1)

] = [
E31(−1)E11(−1) − E32(−1)E10(−1), F32(1)

]
= E31(−1)

[
E11(−1), F32(1)

] + [
E31(−1), F32(1)

]
E11(−1)

− E32(−1)
[

E10(−1), F32(1)
] − [

E32(−1), F32(1)
]

E10(−1)

= E31(−1)F21(0) − F01(0)E11(−1) − {
H32(0) − K

}
E10(−1)

= E31(−1)F21(0) − E11(−1)F01(0) − E10(−1)H32(0) + (K + 1)E10(−1),

and

[
u, F32(1)

] = 1

3
a
[
a, F32(1)

] + 1

3

[
a, F32(1)

]
a − [

b, F32(1)
]

= −2

3
E21(−1)F11(0) − 2

3
E10(−1)
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−E31(−1)F21(0) + E11(−1)F01(0) + E10(−1)H32(0) − (K + 1)E10(−1)

= −
(

K + 5

3

)
E10(−1) − E31(−1)F21(0) − 2

3
E21(−1)F11(0)

+E11(−1)F01(0) + E10(−1)H32(0). �
We need one more lemma.

Lemma A.3. We have the following commutator relations:

[
H32(0), v − w

] = 3(v − w),
[

F01(0), v − w
] = 0,

[
F11(0), v − w

] =
(

1

3
a2 − 2b

)
E10(−1) + aE31(−1)H10(−1)

− 5aE31(−2) + 5E31(−1)E21(−2)

+ 3E2
31(−1)F10(−1) + 3E32(−1)E31(−1)F11(−1)

− 3aE32(−1)F01(−1),

[
F21(0), v − w

] =
(

−2

3
a2 + b

)
H21(−1) + 2

3
aE21(−2)

− 2aE31(−1)F10(−1) − 2aE32(−1)F11(−1)

+ 3E31(−1)E11(−1)H01(−1) + 3E32(−1)E10(−1)H01(−1)

− 6E31(−1)E10(−1)E01(−1) + 6E32(−1)E11(−1)F01(−1)

+ 4E11(−1)E31(−2) − 4E10(−1)E32(−2).

Proof. Since the proofs of the other equalities are similar, we only provide a proof for F11(0). We first
have

[
F11(0), v − w

] =
[

F11(0),
2

9
a3 − ab − 3c − w

]
.

Considering each term separately, we get

[
F11(0),a3] = 6a2 E10(−1) − 18aE31(−2),[
F11(0),ab

] = [
F11(0),a

]
b + a

[
F11(0),b

]
= −2E10(−1)b − a

{−E31(−1)H11(−1) + aE10(−1) − 3E32(−1)F01(−1)
}
,[

F11(0), c
] = −E2

31(−1)F10(−1) + aE31(−1)H01(−1)

−E32(−1)E31(−1)F11(−1) + 2aE32(−1)F01(−1),[
F11(0), w

] = aE31(−2) − E31(−1)E21(−2).

Using two more relations

[
E10(−1),b

] = −2E31(−1)E21(−2) and H11 = H10 + 3H01,

one can now obtain the result for [F11(0), v − w]. �



Author's personal copy

214 J.D. Axtell, K.-H. Lee / Journal of Algebra 337 (2011) 195–223

We now prove Proposition 2.3. For convenience, we state the proposition again:

Proposition A.4. The vector vk ∈ N(k,0) is a singular vector for the given value of k:

vk =

⎧⎪⎨
⎪⎩

u.1 for k = − 5
3 ,

(v + w).1 for k = − 4
3 ,

u(v − w).1 for k = − 2
3 .

Proof. To show that each vector vk is a singular vector, it suffices to check that E10(0).vk = 0,
E01(0).vk = 0, and F32(1).vk = 0 for each k. Assume that k = − 5

3 . By Lemma A.1, we obtain

E10(0).vk = E10(0)u.1 = −[
u, E10(0)

]
.1 = 0,

and similarly we get E01(0).vk = 0. Now we consider F32(1) and obtain by Lemma A.2

F32(1).vk = −[
u, F32(1)

]
.1 = 0.

Assume that k = − 4
3 . It follows from Lemma A.1 that E10(0).vk = 0 and E01(0).vk = 0. We also

obtain from Lemma A.2

F32(1).vk = −[
v + w, F32(1)

]
= 3E32(−1)F01(−1) − 4

3
E31(−2) + E31(−1)H11(−1) + 1

3
aE10(−1) + (k + 1)aE10(−1)

+ 3(2k + 2)E32(−1)F01(−1) + 3(k + 1)E31(−1)H01(−1) − E32(−1)F01(−1)

− E31(−1)H32(−1) − kE31(−2)

= 3E32(−1)F01(−1) − 2E32(−1)F01(−1) − E32(−1)F01(−1)

− 4

3
E31(−2) + 4

3
E31(−2) + 1

3
aE10(−1) − 1

3
aE10(−1)

+ E31(−1)H11(−1) − E31(−1)H01(−1) − E31(−1)H32(−1)

= 0,

where we drop .1 from the notation and use the equalities

H11 = H10 + 3H01 and H32 = H10 + 2H01.

Assume that k = − 2
3 . We will continue to drop .1 from the notation. It again follows from

Lemma A.1 that E10(0).vk = 0 and E01(0).vk = 0. We now consider F32(1) and have

F32(1).vk = [
F32(1), u(v − w)

] = [
F32(1), u

]
(v − w) + u

[
F32(1), v − w

]
.

We first compute [F32(1), u](v − w). We use Lemma A.2 and obtain:
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[
F32(1), u

]
(v − w)

=
(

k + 5

3

)
E10(−1)(v − w) + E31(−1)F21(0)(v − w)

+ 2

3
E21(−1)F11(0)(v − w) − E11(−1)F01(0)(v − w) − E10(−1)H32(0)(v − w)

=
(

k + 5

3

)
E10(−1)(v − w) + E31(−1)

[
F21(0), v − w

]
+ 2

3
E21(−1)

[
F11(0), v − w

] − E11(−1)
[

F01(0), v − w
] − E10(−1)

[
H32(0), v − w

]
.

Now using Lemma A.3 and the fact that H21 = 2H10 + 3H01 along with the relation [a,b] = 3w ,
we obtain the following:

[
F32(1), u

]
(v − w)

= 2

9

(
k − 1

3

)
a3 E10(−1) − k · baE10(−1) − (3k + 2)E10(−1)c

−
(

4k + 8

3

)
w E10(−1) − 6uE31(−1)H01(−1) − 6uE32(−1)F01(−1)

− 2uE31(−1)H10(−1) +
(

2k + 4

3

)
E31(−1)aE21(−2) + 3k · bE31(−2)

−
(

2k + 2

3

)
a2 E31(−2)

= −2

9
a3 E10(−1) + 2

3
baE10(−1) − 6uE31(−1)H01(−1)

− 6uE32(−1)F01(−1) − 2uE31(−1)H10(−1) + 2uE31(−2)

= −2

3
uaE10(−1) − 6uE31(−1)H10(−1) − 6uE32(−1)F01(−1)

− 2uE31(−1)H10(−1) + 2uE31(−2),

where the second equality is obtained by substituting k = − 2
3 .

Now we finally compute u[F32(1), v − w]. From Lemma A.2 and H11 = H10 + 3H01, we obtain:

u
[

F32(1), v − w
] = (6k + 10)uE32(−1)F01(−1) +

(
k + 4

3

)
uaE10(−1)

+ 2uE31(−1)H10(−1) + (3k + 8)uE31(−1)H01(−1) +
(

k − 4

3

)
uE31(−2)

= 6uE32(−1)F01(−1) + 2

3
uaE10(−1)

+ 2uE31(−1)H10(−1) + 6uE31(−1)H01(−1) − 2uE31(−2),

where we again substitute k = − 2
3 . Now it is clear that

F32(1).vk = [
F32(1), u

]
(v − w) + u

[
F32(1), v − w

] = 0. �
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Appendix B. Lemmas for construction of polynomials

The following results will be useful.

Lemma B.1. (See [14].) Let X ∈ g and let Y1, . . . , Ym ∈ U(g). Then

(
Xn)

L(Y1 . . . Ym) =
∑

(k1,...,km)∈(Z+)m∑
ki=n

(
n

k1 . . .km

)(
Xk1

)
L Y1 . . .

(
Xkm

)
L Ym,

where
( n

k1...kn

) = n!
k1!···km ! .

Proof. This can be seen most readily by considering an exponential generating function. Given a
derivation D of U(g), we may form the generating function

exp(Dt) = 1 + Dt + D2

2! t2 + · · · ∈ (
EndU(g)

)[[t]].
Applying this to a Y ∈ U(g), we obtain an element exp(Dt)Y ∈ U(g)[[t]]. The lemma is a direct con-
sequence of the fact that exp(Dt) satisfies the identity

exp(Dt)(Y1 · · · Yn) = exp(Dt)Y1 · · ·exp(Dt)Yn. (B.2)

(See [12].) To obtain the lemma, replace D with the adjoint action XL(= ad X) in Eq. (B.2), and equate
the coefficient of tn on both sides. Finally, multiplying both coefficients by n!, we obtain the identity
in the lemma. �
Lemma B.3.

(1) (Em
ij )L(F m

ij ) ∈ m!Hij(Hij − 1) · · · (Hij − m + 1) + U(g)Eij , for all iα + jβ ∈ �+ .
(2) Suppose X ∈ U(g)0 , the zero-weight subspace of U(g). Then X ∈ n−U(g) if and only if X ∈ U(g)n+ .
(3) For Y ∈ U(g) and n > r > 0, we have

(
En

ij

)
L

(
F r

i j Y
) ∈ FijU(g) + n!

(n − r)! (Hij − n + r) · · · (Hij − n + 1)
(

En−r
i j

)
L Y + U(g)Eij .

Proof. Part (1) follows from direct computation and part (2) follows by considering a PBW basis
given in triangular form for U(g)0. For part (3), we consider an exponential generating function. For
simplicity, let us write E, H, F , in place of Eij, Hij, Fij . We then have:

exp
(
(adE)t

)
F r Y = (

exp
(
(adE)t

)
F
)r

exp
(
(adE)t

)
Y

= (
F + Ht − Et2)r

exp
(
(adE)t

)
Y . (B.4)

One can check

(
F + Ht − Et2)r ∈ FU(g)[[t]] +

r∑
i=0

(
r

i

)
(−1)i(H − i)(H − i − 1) · · · (H − r + 1)Eitr+i. (B.5)

For convenience, we introduce the notation (x)(i) = x(x − 1) · · · (x − i + 1) for i > 0, and (x)(0) = 1.
Then we have
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(x)(i) = (−1)i(−x + i − 1)(i), (B.6)

(x + y)(m) =
m∑

i=0

(
m

i

)
(x)(i)(y)(m−i). (B.7)

We obtain the following identity using (B.6) and (B.7):

(x − n + r)(r) = (−1)r(n − r − (x − r + 1)
)
(r)

= (−1)r
r∑

i=0

(
r

i

)
(n − r)(i)

(−(x − r + 1)
)
(r−i)

= (−1)r
r∑

i=0

(
r

i

)
(n − r)(i)(−1)r−i(x − i)(r−i)

=
r∑

i=0

(
r

i

)
(−1)i(n − r)(i)(x − i)(r−i). (B.8)

Using this notation we combine Eqs. (B.4) and (B.5) to write:

exp
(
(adE)t

)
F r Y ∈ FU(g)[[t]] +

r∑
i=0

(
r

i

)
(−1)i(H − i)(r−i)Eitr+i exp

(
(adE)t

)
Y .

Taking the coefficient of tn on both sides gives:

1

n! (adE)n(F r Y
) ∈ FU(g) +

r∑
i=0

(
r

i

)
(−1)i(H − i)(r−i)Ei 1

(n − r − i)! (adE)n−r−i Y

⊆ FU(g) +
r∑

i=0

(
r

i

)
(−1)i(H − i)(r−i)

1

(n − r − i)! (adE)n−r Y + U(g)E. (B.9)

With the substitution x = H , we obtain from (B.8)

(H − n + r)(r) =
r∑

i=0

(
r

i

)
(−1)i (n − r)!

(n − r − i)! (H − i)(r−i). (B.10)

After multiplying (B.9) by n!, we use the identity (B.10) to obtain

(adE)n(F r Y
) ∈ FU(g) + n!

(n − r)! (H − n + r)(r)(adE)n−r Y + U(g)E.

This proves part (3). �
The following lemmas will be needed for the construction of certain polynomials.
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Lemma B.11. The following identities hold in U(g). First we have:

(
F 2

21

)
L[a] = −2F21,(

F 4
21

)
L[b] = 4!(F31 F11 − F32 F10),(

F 6
21

)
L[c] = −6!(F 2

31 F01 − F32 F31 H01 − F 2
32 E01

)
, and(

F 3
21

)
L[a] = (

F 5
21

)
L[b] = (

F 7
21

)
L[c] = 0.

Next we have:

(F31)L[a] = F10,(
F 2

31

)
L[b] = −2!(F31 E11 − F21 E01),(

F 3
31

)
L[c] = 3!(F31(H32 + 1)E01 + F32 E2

01 − F 2
31 E32

)
, and(

F 2
31

)
L[a] = (

F 3
31

)
L[b] = (

F 4
31

)
L[c] = 0.

Finally we have:

(F32)L[a] = F11,(
F 2

32

)
L[b] = 2!(F32 E10 − F21 F01),(

F 3
32

)
L[c] = −3!(F32 F01(H31 + 2) + F31 F 2

01 − F 2
32 E31

)
, and(

F 2
32

)
L[a] = (

F 3
32

)
L[b] = (

F 4
32

)
L[c] = 0.

Proof. Using Lemma B.1, we have:

(
F 4

21

)
L[b] =

(
4

3 1

)(
F 3

21

)
L E31(F21L E11) −

(
4

3 1

)(
F 3

21

)
L E32(F21L E10)

+
(

4

2 2

)(
F 2

21

)
L E31

(
F 2

21

)
L E11 −

(
4

2 2

)(
F 2

21

)
L E32

(
F 2

21

)
L E10

=
(

4

3 1

)
(6F32)(2F10) −

(
4

3 1

)
(−6F31)(−2F11)

+
(

4

2 2

)
(−2F11)(−6F31) −

(
4

2 2

)
(2F10)(6F32)

= 4!F31 F11 − 4!F32 F10.

We also have:

(
F 5

21

)
L[b] =

(
5

3 2

)(
F 3

21

)
L E31

(
F 2

21

)
L E11 −

(
5

3 2

)(
F 3

21

)
L E32

(
F 2

21

)
L E10

=
(

5

3 2

)
(6F32)(−6F31) −

(
5

3 2

)
(−6F31)(6F32)

= 0.

The other cases are proved similarly. �
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Lemma B.12. The following identities hold in U(g). First we have:

1

2

(
E21 F 2

21

)
L[a] = −H21,

1

4!
(

E2
21 F 4

21

)
L[b] ≡ −2H21

(
mod U(g)n+

)
,

1

6!
(

E3
21 F 6

21

)
L[c] ≡ 3!H01(H01 + 2)

(
mod U(g)n+

)
.

Next:

(E10 F31)L[a] = H10,
1

2

(
E2

10 F 2
31

)
L[b] ≡ 1

3!
(

E3
10 F 3

31

)
L[c] ≡ 0

(
mod U(g)n+

)
.

Finally:

(E11 F32)L[a] = H11,

1

2

(
E2

11 F 2
32

)
L[b] ≡ −6H01

(
mod U(g)n+

)
,

1

3!
(

E3
11 F 3

32

)
L[c] ≡ −6H01(H31 + 2)

(
mod U(g)n+

)
.

Proof. Using Lemmas B.1, B.11, we have:

1

4!
(

E2
21 F 4

21

)
L[b] = (

E2
21

)
L(F31 F11 − F32 F10)

=
(

2

2 0

)((
E2

21

)
L F31

)
F11 −

(
2

2 0

)((
F 2

21

)
L F32

)
F10 +

(
2

1 1

)
(F21L F31)(F21L F11)

−
(

2

1 1

)
(F21L F32)(F21L F10) +

(
2

0 2

)
F31

(
F 2

21

)
L F11 −

(
2

0 2

)
F32

(
F 2

21

)
L F10

=
(

2

2 0

)
(−2E11)F11 −

(
2

2 0

)
(2E10)F10 +

(
2

1 1

)
(−F10)(−2E10)

−
(

2

1 1

)
(−F11)(2E11) +

(
2

0 2

)
F31(−6E31) −

(
2

0 2

)
F32(6E32)

= −2

(
2

2 0

)
(H11 + F11 E11) − 2

(
2

2 0

)
(H10 + F10 E10) + 2

(
2

1 1

)
F10 E10

+ 2

(
2

1 1

)
F11 E11 − 6

(
2

0 2

)
F316E31 − 6

(
2

0 2

)
F32 E32

≡ −2H11 − 2H10 ≡ −2H21
(
mod U(g)n+

)
.

The other cases follow in the same way. �



Author's personal copy

220 J.D. Axtell, K.-H. Lee / Journal of Algebra 337 (2011) 195–223

Lemma B.13. Suppose that n, r, s, t ∈ Z+ and n = r + 2s + 3t. Then the following hold in U(g):

(
En

21 F 2n
21

)
L

([a]r[b]s[c]t)
≡ (−1)r n!

(n − r)!
(2n)!

(2n − 2r)! (H21 − n + 1) · · · (H21 − n + r)
(

En−r
21 F 2(n−r)

21

)
L

([b]s[c]t),
(

En
10 F n

31

)
L

([a]r[b]s[c]t)
≡

(
n!

(n − r)!
)2

(H10 − n + 1) · · · (H10 − n + r)
(

En−r
10 F n−r

31

)
L

([b]s[c]t),
(

En
11 F n

32

)
L

([a]r[b]s[c]t)
≡

(
n!

(n − r)!
)2

(H11 − n + 1) · · · (H11 − n + r)
(

En−r
11 F n−r

32

)
L

([b]s[c]t),
where all the congruences are modulo U(g)n+ .

Proof. We prove only the first case. Using Lemma B.1 we have:

(
F 2n

21

)
L

([a]r[b]s[c]t) = (2n)!
(2r)!(4s + 6t)!

(
F 2r

21

)
L

([a]r)(F 4s+6t
21

)
L

([b]s[c]t)
= (2n)!

(2r)!(2n − 2r)!
(2r)!
(2!)r

((
F 2

21

)
L[a])r(

F 2(n−r)
21

)
L

([b]s[c]t)
= (2n)!

2r(2n − 2r)!
((

F 2
21

)
L[a])r(

F 2(n−r)
21

)
L

([b]s[c]t)
= (2n)!

2r(2n − 2r)! (−2F21)
r(F 2(n−r)

21

)
L

([b]s[c]t)
= (−1)r (2n)!

(2n − 2r)! (F21)
r(F 2(n−r)

21

)
L

([b]s[c]t),
since (F 3

21)L[a] = (F 5
21)L[b] = (F 7

21)L[c] = 0 and (F 2
21)L[a] = −2F21 by Lemma B.11.

Then we use Lemma B.3(3) with Y = (F 2(n−r)
21 )L([b]s[c]t) to obtain:

(
En

21 F 2n
21

)
L

([a]r[b]s[c]t)
= (−1)r (2n)!

(2n − 2r)!
(

En
21

)
L

(
F r

21

(
F 2(n−r)

21

)
L

([b]s[c]t))
∈ (−1)r n!

(n − r)!
(2n)!

(2n − 2r)! (H21 − n + r) · · · (H21 − n + 1)
(

En−r
21 F 2(n−r)

21

)
L

([b]s[c]t)
+ F21U(g) + U(g)E21.

Now it follows from Lemma B.3 (2) that we have
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(
En

21 F 2n
21

)
L

([a]r[b]s[c]t)
≡ (−1)r n!

(n − r)!
(2n)!

(2n − 2r)! (H21 − n + r) · · · (H21 − n + 1)
(

En−r
21 F 2(n−r)

21

)
L

([b]s[c]t)
(
mod U(g)n+

)
. �

We give one more lemma.

Lemma B.14. The following hold:

(
E4

21 F 8
21

)
L

([b]2) ≡ 4!8!(2H21 H11 + 2H10(H10 − 1) − 6H01(H01 + 1)
)
,(

E5
21 F 10

21

)
L

([b][c]) ≡ −5!10!2H01(H01 + 2)(H21 − 3),(
E4

10 F 4
31

)
L

([b]2) ≡ (
E5

10 F 5
31

)
L

([b][c]) ≡ 0,(
E4

11 F 4
32

)
L

([b]2) ≡ (4!)22
(
9H01(H01 − 1) − H01(H11 − 3)

)
,(

E5
11 F 5

32

)
L

([b][c]) ≡ (5!)26H01(H01 − 1)(H31 + 2),

where all the congruences are modulo U(g)n+ .

Proof. We prove the first part only. From Lemma B.11, we have:

(
F 8

21

)
L

([b]2) =
(

8

4 4

)((
F 4

21

)
L[b])2

= 8!(F31 F11 − F32 F10)
2

= 8!(F 2
31 F 2

11 − 2F32 F31 F11 F10 − 2F32 F31 F21 + F 2
32 F 2

10

)
.

We thus obtain:

1

8!
(

E4
21 F 8

21

)
L

([b]2) = (
E4

21

)
L

(
F 2

31 F 2
11 − 2F32 F31 F11 F10 − 2F32 F31 F21 + F 2

32 F 2
10

)
.

This equals the following element modulo U(g)n+:

(
4

3100

)
(−6E32)(−F10)F 2

11 − 2

(
4

3100

)
(6E31)(−F10)F11 F10

+
(

4

3010

)
(−6E32)F31(−2E10)F11 − 2

(
4

3010

)
(6E31)F31(−2E10)F10

+
(

4

2200

)
(−2E11)(−2E11)F 2

11 − 2

(
4

2200

)
(2E10)(−2E11)F11 F10

+
(

4

2110

)
(−2E11)(−F10)(−2E10)F11 − 2

(
4

2110

)
(2E10)(−F10)(−2E10)F10

+
(

4

2020

)
(−2E11)F31(−6E31)F11 − 2

(
4

2020

)
(2E10)F31(−6E31)F10

− 2

(
4

3100

)
(6E31)(−F10)F21 +

(
4

3100

)
(6E31)(−F11)F 2

10
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− 2

(
4

3010

)
(6E31)F31 H21 +

(
4

3010

)
(6E31)F32(−2E11)F10

− 2

(
4

2200

)
(2E10)(−2E11)F21 +

(
4

2200

)
(2E10)(2E10)F 2

10

− 2

(
4

2110

)
(2E10)(−F10)H21 +

(
4

2110

)
(2E10)(−F11)(−2E11)F10

+
(

4

2020

)
(2E10)F32(−6E32)F10,

where we have omitted the term
( 4

1300

)
(−F10)(−6E32)F 2

11 ∈ F10U(g), which belongs to U(g)n+ by
Lemma B.3(2), as well as similar terms which also belong to U(g)n+ .

We now see that 1
4!8! (E4

21 F 8
21)L([b]2) is equal to the following element modulo U(g)n+:

E32 F10 F 2
10 + E31 F10 F11 F10 + 2E31 F10 F21 − E31 F11 F 2

10

+ 2E32 F31 E10 F11 + 4E31 F31 E10 F10 − 2E31 F31 H21 − 2E31 F32 E11 F10

+ E2
11 F 2

11 + 2E10 E11 F11 F10 + 2E10 E11 F21 + E2
10 F 2

10

− 2E11 F10 E10 F11 − 4E10 F10 E10 F10 + 2E10 F10 H21 + 2E10 F11 E11 F10

+ 3E11 F31 E31 F11 + 6E10 F31 E31 F10 − 3E10 F32 E32 F10.

Again modulo U(g)n+ , this is equal to

6H01 − 4H10 + 2H21 + 2H10(H10 − 1) + 2H11(H11 − 1) + 4H31 H10

− 2H21 H31 − 18H01 + 2H10(H11 + 1) − 4H10 − 4H2
10 + 2H10 H21.

After simplifying terms in this expression, we finally obtain:

1

4!8!
(

E4
21 F 8

21

)
L

([b]2) ≡ 2H21 H11 − 6H01(H01 + 1) + 2H10(H10 − 1)
(
mod U(g)n+

)
. �
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