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WEAKLY HOLOMORPHIC MODULAR FORMS

AND RANK TWO HYPERBOLIC KAC-MOODY ALGEBRAS

HENRY H. KIM, KYU-HWAN LEE, AND YICHAO ZHANG

Abstract. In this paper, we compute basis elements of certain spaces of
weight 0 weakly holomorphic modular forms and consider the integrality of
Fourier coefficients of the modular forms. We use the results to construct
automorphic correction of the rank 2 hyperbolic Kac-Moody algebras H(a),
a = 4, 5, 6, through Hilbert modular forms explicitly given by Borcherds lifts
of the weakly holomorphic modular forms. We also compute asymptotics of
the Fourier coefficients as they are related to root multiplicities of the rank 2
hyperbolic Kac-Moody algebras. This work is a continuation of an earlier work
of the first and second authors, where automorphic correction was constructed
for H(a), a = 3, 11, 66.

Introduction

The relationship between affine Kac-Moody algebras and Jacobi modular forms
is well understood through the works of Macdonald [20], Kac, Peterson, Wakimoto
[12,13] and others. A more mysterious relationship between hyperbolic Kac-Moody
algebras and automorphic forms was perceived by Lepowsky and Moody [19] and
Feingold and Frenkel [5], and further investigated by Borcherds [1], and Gritsenko
and Nikulin [7]. Surprisingly, it turned out that hyperbolic Kac-Moody algebras
should be “corrected” to be precisely related to automorphic forms. Namely, hyper-
bolic Kac-Moody algebras need to be extended to generalized Kac-Moody super-
algebras so that the denominator functions may become automorphic forms. The
resulting generalized Kac-Moody superalgebras and automorphic forms are called
automorphic correction of the hyperbolic Kac-Moody algebras.

In a series of papers [6–9], Gritsenko and Nikulin constructed automorphic cor-
rection of many rank 3 hyperbolic Kac-Moody algebras. In a recent paper of Kim
and Lee [17], it was shown that rank 2 symmetric hyperbolic Kac-Moody algebras
H(a), a ≥ 3, form infinite families through chains of embeddings. (See [14, 17] for
the definition of H(a).) Moreover, they considered three specific families and con-
structed automorphic correction for the first algebra in each family, i.e. H(3),H(11)
and H(66). Their construction of automorphic correction utilized Hilbert modu-
lar forms given by Borcherds products associated to weakly holomorphic modular
forms of prime levels, which were written explicitly by Bruinier and Bundschuh [4].

More precisely, Borcherds products are associated to vector-valued modular
forms ([2]), and Bruinier and Bundschuh established an isomorphism in [4] between
vector-valued modular forms and scalar-valued modular forms in the case of prime
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levels, and could write Borcherds products associated to scalar-valued forms. The
automorphic corrections in [17] are associated with Borcherds products associated
to scalar-valued weakly holomorphic modular forms of prime levels p = 5, 13, 17.

Only these three families could be considered in [17] because the available in-
formation on weakly holomorphic forms was limited at that time. In order to
obtain automorphic correction of other rank 2 hyperbolic Kac-Moody algebras, we
first need to extend the isomorphism between vector-valued modular forms and
scalar-valued modular forms to non-prime levels, and to explicitly write Borcherds
products associated to the scalar-valued modular forms. Furthermore, it is neces-
sary to compute basis elements of the spaces of scalar-valued modular forms and to
show integrality of their Fourier coefficients. Since such Fourier coefficients are root
multiplicities of generalized Kac-Moody superalgebras, the integrality is crucial. In
the previous paper [17], the integrality was shown only partially and was assumed
to be true.

In this paper, we overcome the obstacles mentioned above and consider more
general families of rank 2 hyperbolic Kac-Moody algebras H(a) attached to the
generalized Cartan matrix

(
2 −a
−a 2

)
. Let a2 − 4 = Ns2, s ∈ N, and suppose that

N is the fundamental discriminant of Q(
√
a2 − 4). Then we obtain automorphic

correction of H(a) in the cases N = 12, a = 4; N = 8, a = 6; N = 21, a = 5.
Actually, a generalization of the isomorphism between vector-valued forms and
scalar-valued forms has already been established by Y. Zhang in his recent preprint
[26], and we use the results throughout this paper.

After introducing notation in Section 1, we compute some basis elements fm
(m ≥ 1) with the principal part 1

s(m)q
−m in the spaces of weight 0 scalar-valued

modular forms for the discriminants N = 12, 8, 21, where s(m) is a normalizing
factor. We start with η-quotients and use SAGE to compute the Fourier coefficients
of fm up to q18. An outline of the computation and a presentation of the results
are the contents of Section 2. The integrality of Fourier coefficients is considered in
Section 3. We use Sturm’s theorem [24] and show how one can check the integrality
of Fourier coefficients. In particular, we check the integrality for f1 in each of the
cases N = 12, 8, 21.

In Section 4, we explicitly write the Borcherds products associated to the scalar-
valued modular forms following [2–4, 26]. They are Hilbert modular forms on the

quadratic extension Q[
√
N ]. After that, we obtain automorphic correction of the

hyperbolic Kac-Moody algebras H(a), a = 4, 5, 6, in Section 5, using the construc-
tion in parallel with that of the cases considered in [17]. Namely, the Borcherds
product associated to f1 provides the automorphic correction (Theorem 5.7).

The Fourier coefficients of f1 are root multiplicities of the generalized Kac-Moody
superalgebras in automorphic correction and give natural bounds for root multi-
plicities of the original rank 2 hyperbolic Kac-Moody algebras. There are no known
results on the asymptotic behavior of the root multiplicities of rank 2 hyperbolic
Kac-Moody algebras, and it is valuable to know the asymptotic behavior of the
Fourier coefficients as it gives information on upper bounds for root multiplicities of
rank 2 hyperbolic Kac-Moody algebras. In Section 6, we investigate asymptotics of
the Fourier coefficients of f1’s using the method of Hardy-Ramanujan-Rademacher.

For other rank 2 symmetric hyperbolic Kac-Moody algebras, the situation is
somewhat different since the obstruction spaces of weight 2 cusp forms are non-
trivial (see Lemma 2.1). In fact we prove that f1 does not exist if N > 21
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(Lemma 2.3). Hence for N > 21, we need new ideas in order to construct au-
tomorphic correction. We hope that we can come back to these issues in the future.

1. Special subspace of scalar-valued modular forms

In this section, we recall some definitions and notation from [26]. Let N1 > 1
be a square-free integer. Let F = Q(

√
N1) and let OF be its ring of integers.

Let N be the discriminant of F/Q. Thus if N1 ≡ 2, 3 mod 4, then N = 4N1 and

OF = Z[
√
N1], and if N1 ≡ 1 mod 4, then N = N1 and OF = Z

[√
N1+1
2

]
. Let N(x)

and tr(x) denote the norm and trace of x ∈ F/Q, respectively. If d is the different
of F/Q, we know that

d−1 = {x ∈ F : tr(xOF ) ⊂ Z} =

{
1
2Z+ 1

2
√
N1

Z, N1 ≡ 2, 3 mod 4;
1√
N1

OF , N1 ≡ 1 mod 4.

Define the following lattice L = Z2 ⊕OF with the quadratic form

q(a, b, γ) = N(γ)− ab, a, b ∈ Z, γ ∈ OF .

The corresponding bilinear form is given by

((a1, b1, γ1), (a2, b2, γ2)) = tr(γ1γ
′
2)− a1b2 − a2b1.

We see that L is an even lattice of signature (2, 2). Its dual lattice is L′ = Z2⊕d−1,
hence the discriminant form is given by D = L′/L ∼= d−1/OF . The level of D is N .
Denote q mod 1 on D also by q.

Let k be an even integer. Let ρD be the Weil representation of SL2(Z) on C[D];
that is, if {eγ : γ ∈ D} is the standard basis for the group algebra C[D], then the
action

ρD(T )eγ = e(q(γ))eγ ,

ρD(S)eγ =
1√
N

∑
δ∈D

e(−(γ, δ))eδ

defines the unitary representation ρD of SL2(Z) on C[D]. Here e(x) = e2πix, and

T =
(
1 1
0 1

)
, S =

(
0 −1
1 0

)
are the standard generators of SL2(Z).

Let Γ0(N) ⊆ SL2(Z) be the congruence subgroup of matrices whose left lower
entry is divisible by N . The weight k slash operator on a function f on the upper
half plane is defined as

(f |kM)(τ ) = (detM)
k
2 (cτ + d)−kf(Mτ ), for M =

(
a b
c d

)
∈ GL+

2 (R).

We extend the definition of slash operator to a vector-valued form: for F =∑
γ Fγeγ , we define F |kM =

∑
γ(Fγ |kM)eγ . Now we let A(k, ρD) be the space

of modular forms of weight k and type ρD. That is, F =
∑

γ Fγeγ ∈ A(k, ρD)

if F |kM = ρD(M)F for any M ∈ SL2(Z) and Fγ =
∑

n∈q(γ)+Z a(γ, n)q
n with at

most finitely many negative power terms. Let M(k, ρD) and S(k, ρD) denote the
space of holomorphic forms and the space of cusp forms, respectively. We denote by
Ainv(k, ρD) the subspace of modular forms that are invariant under Aut(D). Sim-
ilarly, we have Minv(k, ρD). As we noted in the introduction, Borcherds products
are associated to vector-valued modular forms in A(k, ρD). However, vector-valued
modular forms are not easy to handle, and it is useful if we have an isomorphism
between vector-valued modular forms and scalar-valued modular forms. It was
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done in the case of prime levels in [4]. It turns out that we need to consider a
special subspace whose Fourier expansion is supported on either the squares or the
non-squares modulo the prime. Non-prime level cases are more delicate, and it was
resolved only recently by the third author [26].

Given a Dirichlet character χ modulo N , we denote by A(N, k, χ) (M(N, k, χ),
S(N, k, χ), respectively), the space of holomorphic functions f on the upper half
plane that satisfy

(f |kM)(τ ) = χ(d)f(τ ), for all M =
(
a b
c d

)
∈ Γ0(N),

and that are meromorphic (or are holomorphic or vanish, respectively) at all cusps.
The functions in the space A(N, k, χ) are called weakly holomorphic.

We define the character χD :=
(
N
·
)
. For any positive integer m, we denote by

ω(m) the number of distinct prime divisors of m. Define a subspace Aδ(N, k, χD)
of A(N, k, χD) for each δ = (δp)p|N ∈ {±1}ω(N) as follows:

Aδ(N, k, χD) =

{
f =

∑
n

a(n)qn ∈ A(N, k, χD)

∣∣∣∣∣ a(n) = 0

if χp(n) = −δp for some p | N
}
.

The condition we impose on the Fourier coefficients of the functions in Aδ(N, k, χD)
will be called the δ-condition. Then by [26], Proposition 3.10, A(N, k, χD) =⊕

δ A
δ(N, k, χD), where δ runs over {±1}ω(N). Then we have

Theorem 1.1 ([26, Theorem 3.16]). There is an isomorphism between Ainv(k, ρD)
and Aε(N, k, χD) for a certain ε defined below.

If p is odd, we see that the p-component of χ is χp =
(

·
p

)
. If 2 | N , the

2-component of χ is given by

χ2 =

⎧⎪⎨⎪⎩
(−4

·
)
, if N1 ≡ 3 mod 4,(

2
·
)
, if N1 ≡ 2 mod 8,(−2

·
)
, if N1 ≡ 6 mod 8.

We set χ1 to be the trivial character. For each positive integer m, write χm =∏
p|m χp. For each prime p | N , we define

εp = χp(−1), if p is odd, ε2 =

{
−1, if N1 ≡ 3 mod 4,

χN1/2(−1), if N1 ≡ 2 mod 4.

Then we set

ε = (εp)p|N ∈ {±1}ω(N).

We also define ε∗ = (ε∗p)p|N to be ε∗p = χp(−1)εp. Then we can see easily that ε∗p = 1
for each prime p | N . Note that if p | N , p ≡ 3 mod 4, then the Fourier expansion
of f ∈ Aε(N, k, χD) is of the form f =

∑
n≥n0

anq
n, a1 = 0. We also note that if

f = q +O(q2) ∈ Aδ(N, k, χD) for some δ, then δ = ε∗.
We shall employ the notation pl||N for a prime number p and non-negative

integers l, N , to mean that pl | N but pl+1 � N .
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2. Computation of basis elements

Recall the following lemma on the obstruction of the existence of weakly holo-
morphic modular forms. Let s(m) = 2ω((m,N)) for each m ∈ Z.

Lemma 2.1 ([26, Theorem 4.5]). Let P (q) =
∑

n<0 a(n)q
n be a polynomial in q−1

that satisfies the ε-condition; namely a(n) = 0 if χp(n) = −εp for some p | N .
There exists f ∈ Aε(N, k, χD) with prescribed principal part P (q) if and only if∑

n<0

s(n)a(n)b(−n) = 0,

for each g =
∑

n>0 b(n)q
n ∈ Sε∗(N, 2− k, χD).

We consider the cases of N = 12, N = 8 and N = 21. With SAGE, we
can easily see that in all of these cases we have S(N, 2, χD) = {0}, hence there
are no obstructions for the existence of elements in Aε(N, 0, χD). We explicitly
compute the basis elements of the space Aε(N, 0, χD). We denote by fm, m ∈
Z>0, the function in the space Aε(N, 0, χD) with the principal part 1

s(m)q
−m, i.e.

fm = 1
s(m)q

−m + O(1). We will compute the Fourier coefficients of fm up to q18.

We briefly explain how the computations are performed. Firstly, we compute the
weight, character, and behavior at all cusps of the η-quotients of corresponding
level ([21]). Secondly, we compute the order of zeros of fm at all cusps. Then we
multiply fm by a suitable quotient of those η-quotients to bring fm to a holomorphic
modular form of certain weight and character. Finally, with SAGE, we can obtain
a basis of modular forms of the same weight and character, and by solving a linear
system we find our fm.

Before we list our fm explicitly in each case, we first prove the uniqueness of fm
if it exists. Note that in the case of 2 � N1 this is known by Corollary 3.13 in [26].
For the general case, we pass to the vector-valued forms using the isomorphism in
[26].

Lemma 2.2. If fm exists, then it is unique.

Proof. It is enough to prove that if f ∈ Aε(N, 0, χD) is holomorphic at ∞, then
f = 0. The isomorphism from Aε(N, 0, χD) to Ainv(0, ρD), constructed in [26], is
denoted by ψ and its inverse by φ. Let F = ψ(f) ∈ Ainv(0, ρD). By Theorem 3.16
in [26], we see that Fγ is holomorphic at ∞ for each γ ∈ D. Let W = spanC{Fγ}
and W ′ = spanC{F0|M : M ∈ SL2(Z)}. Therefore all functions in W , hence in W ′,
are holomorphic at ∞, since we know that W = W ′ ([26, Section 3]). It follows
that F0|M is holomorphic at ∞ for each M ∈ SL2(Z) and F0 ∈ M(N, 0, χD). So
F0 = 0, F = 0 and f = φ(F ) = 0. �

2.1. N = 12. In this case, ε2 = ε3 = −1. By Theorem 4.5 in [26], we know that
fm exists if and only if m ≡ 0, 1, 4, 6, 9, 10 mod 12. We list the first few Fourier
coefficients of fm as follows:

f1 = q−1 + 1 + 2q2 + q3 − 2q6 − 2q8 + 4q12 + 4q14 − q15 +O(q18),

f4 =
1

2
q−4 +

5

2
− 2q2 + 16q3 + 22q6 − 35q8 − 160q11 +

209

2
q12

− 172q14 + 416q15 +O(q18),
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f6 =
1

4
q−6 + 3 +

27

2
q2 − 16q3 + 36q6 + 162q8 − 864q11 + 292q12

+ 1080q14 − 1440q15 +O(q18),

f9 =
1

2
q−9 + 5− 54q2 + 6q3 − 330q6 + 1782q8 + 54q11 + 4884q12

− 20844q14 − 87

2
q15 +O(q18),

f10 =
1

2
q−10 + 2− 40q2 − 160q3 +

1045

2
q6 − 1460q8 + 11840q11 + 9080q12

− 20235q14 − 59456q15 + 88440q18 +O(q20),

f12 =
1

4
q−12 +

3

2
+ 54q2 + 144q3 + 606q6 + 3807q8 + 35424q11 + 14184q12

+ 69444q14 + 106144q15 + 177246q18 + O(q20).

For m > 12, fm can be obtained by multiplying one of the above by j(12τ ) and
then eliminating other negative power terms.

2.2. N = 8. Note that ε2 = 1. We know that fm exists if and only if m ≡ 0, 1, 2,
4, 6, 7 mod 8. We can explicitly compute the following list:

f1 = q−1 + 2 + 2q + 4q2 − 4q4 − 8q6 + q7 + 12q8 − 2q9 + 16q10 − 24q12

− 32q14 − q15 + 44q16 + 4q17 +O(q18),

f2 =
1

2
q−2 + 3 + 8q − 3q2 + 14q4 − 24q6 − 64q7 + 42q8 + 120q9 − 80q10

+ 132q12 − 447

2
q14 − 576q15 + 370q16 + 912q17 + O(q18),

f4 =
1

2
q−4 + 5− 16q + 28q2 + 89q4 + 280q6 − 896q7 + 730q8 − 2288q9 + 1744q10

+ 3984q12 + 8480q14 − 24448q15 + 17366q16 − 48928q17 +O(q18),

f6 =
1

2
q−6 + 2− 48q − 72q2 + 420q4 − 1708q6 + 6528q7 + 6012q8

− 21200q9 − 36669

2
q10 + 51128q12 − 133056q14 + 419200q15

+ 325644q16 − 1000800q17 + O(q18),

f7 = q−7 + 16 + 7q − 224q2 − 1568q4 + 7616q6 + 128q7 + 29792q8 + 14q9

− 101248q10 − 310464q12 + 878336q14 − 896q15 + 2328928q16 − 7q17+O(q18),

f8 =
1

2
q−8 + 9 + 96q + 168q2 + 1460q4 + 8016q6 + 34048q7 + 34737q8

+ 136608q9 + 130144q10 + 434472q12 + 1330368q14 + 4533504q15

+ 3799986q16 + 12556992q17 +O(q18).

As in the case of N = 12, we can compute fm when m > 8 using j(8τ ) and the
above list.

2.3. N = 21. This is a case when N1 is composite. Note that in this case ε3 = ε7 =
−1 and ε∗3 = ε∗7 = 1. Therefore fm exists if and only if

m ≡ 0, 1, 4, 7, 9, 15, 16, 18 mod 21.
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By similar computations in the previous cases, we obtain

f1 = q−1 +
1

2
+ q3 + q5 − q6 − q14 − q17 + 2q20 + q21 + q24 − 2q27

−q33 − q35 − 2q38 + 3q41 + 2q42 + 3q45 + q47 − 4q48 +O(q49).

Here we show more terms as the level is large. Similar computations can give all
fm with m ≤ 21 and then using j(21τ ) we can have all fm.

We prove a lemma for later use in Section 5, which is interesting in its own right.

Lemma 2.3. The modular form f1 exists if and only if 1 < N ≤ 21.

Proof. The fundamental discriminants for 1 < N ≤ 21 are N = 5, 8, 12, 13, 17, 21.
Now it can be checked that S(N, 2, χD) = {0} for 1 < N ≤ 21. It follows from
Lemma 2.1 that f1 exists in Aε(N, 0, χD). Now assume that N > 21. Using
dimension formulas [23, Section 6.3, page 98], one can see that S(N, 2, χD) �= {0}.
Since χD is primitive, the space S(N, 2, χD) consists of newforms f =

∑
n≥1 b(n)q

n.

In particular, if f is a Hecke eigenform, we have b(1) �= 0. It follows that there
exists g = q + O(q2) ∈ Sδ(N, 2, χD) for some δ. By the definition of ε∗, δ = ε∗.
Hence by Lemma 2.1, f1 does not exist. �

3. Integrality of Fourier coefficients

In this section, we prove the integrality of Fourier coefficients of f1 in the above
cases and the case when N = 17, using Sturm’s theorem. More precisely, if f1 =∑

n a(n)q
n, we prove that s(n)a(n) ∈ Z. The case N = 17 was considered in [17],

where the integrality was assumed to be true.
For any congruence subgroup Γ, we denote by M(Γ, k) the space of holomorphic

modular forms of weight k for Γ. For a commutative ring R, let R�q� be the ring
of power series in q over R. We begin with Sturm’s theorem.

Theorem 3.1 ([24]). Let Γ be any congruence subgroup of SL2(Z), let OF be
the ring of integers in a number field F , and let p be any prime ideal. Assume
f =

∑
n anq

n ∈ M(Γ, k) ∩ OF �q�. If an ∈ p for n ≤ k
12 [SL2(Z) : Γ], then an ∈ p

for all n.

Corollary 3.2. Let Γ be any congruence subgroup of SL2(Z). Assume f =∑
n anq

n ∈ M(Γ, k) ∩ Q�q� with bounded denominator. If an ∈ Z for n ≤
k
12 [SL2(Z) : Γ], then an ∈ Z for all n.

Proof. Let M be the smallest positive integer such that Mf ∈ Z�q�, and we need
to prove that M = 1. Suppose M > 1 and let p be any prime divisor of M . Now
Mf ∈ M(Γ, k)∩Z�q� and p | Man for all n up to k

12 [SL2(Z) : Γ]. By Theorem 3.1,

we have p | Man for all n. Therefore, p−1Mf ∈ Z�q�, contradicting the minimality
of M . �

Example 3.3. In the case when N = p = 17, we have [SL2(Z) : Γ1(17)] = 288,
so the Sturm’s bound is 96. By Proposition 8 in [4] or Proposition 4.7 in [26], fm
has bounded denominator for each m. In this case we see that η(τ )7η(17τ )f1 ∈
M(Γ1(17), 4) (Mayer [22] used a different η-product). Because the constant term of
f1 is 1/2, we consider the form g = η(τ )7η(17τ )(f1 − 1

2 ) instead. With SAGE, we
can explicitly see that all of the first 96 Fourier coefficients of g are integral, hence
all Fourier coefficients of g are integral by Corollary 3.2. Therefore, all Fourier
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coefficients of f1 − 1
2 are integral. We can similarly do the cases N = 12, 8 and 21.

Here we only briefly mention some details:

• N = 12: we have f1(τ )η(τ )
2η(3τ )−2η(4τ )η(6τ )2η(12τ ) ∈ M(Γ1(12), 2), so

the Sturm’s bound is 16 and we readily see the integrality.
• N = 8: we have f1(τ )η(τ )

−2η(2τ )3η(4τ )η(8τ )2 ∈ M(Γ1(8), 2), so the
Sturm’s bound is 8 and the integrality follows easily.

• N = 21: Because the constant term is 1/2, we consider(
f1(τ )−

1

2

)
η(τ )12η(3τ )−3η(7τ )3 ∈ M(Γ1(21), 6).

Then the Sturm’s bound is 192 and the integrality also follows via SAGE.

Remark 3.4. The integrality of s(n)a(n) is expected to hold generally for a reduced
modular form like fm. This type of integrality is more precise than the naive
integrality a(n) ∈ Z. This question is raised in [25]; see Section 6 therein for
details.

4. Borcherds products

In this section, we explicitly write Borcherds products corresponding to modu-
lar forms in Aε(N, 0, χD). We will use the Hilbert modular forms given by these
Borcherds products to establish automorphic correction of some rank 2 hyperbolic
Kac-Moody algebras in the next section.

Let F = Q(
√
N1) for N1 > 1, a square-free integer, and let N be the fundamental

discriminant as before. We keep the notation in Section 1. We write x′ for the
conjugate of an element x ∈ F . Then tr(x) = x + x′ and N(x) = xx′. Denote
by ε0 the fundamental unit in F ; in particular ε0 > 1. Recall that we have the
lattice L = Z2⊕OF with the quadratic form q(a, b, λ) = N(λ)−ab for a, b ∈ Z and
λ ∈ OF . We also have the dual lattice L′ = Z2 ⊕ d−1 of L, the discriminant form
D = L′/L, and χD =

(
N
·
)
.

Denote by ΓF = SL2(OF ) the Hilbert modular group. Let H be the upper half
plane; we use (z1, z2) as a standard variable on H × H and write (y1, y2) for its
imaginary part. For every positive integer m, we denote by T (m) the ΓF -invariant
algebraic divisor on H×H defined by:

T (m) =
∑

(a,b,λ)∈L′/{±1}
ab−N(λ)=m/N

{(z1, z2) ∈ H×H : az1z2 + λz1 + λ′z2 + b = 0} .

Moreover, define for m > 0 the subset in R>0 × R>0:

S(m) =
⋃

λ∈d−1

−N(λ)=m/N

{(y1, y2) ∈ R>0 × R>0 : λy1 + λ′y2 = 0} .

Fix a weakly holomorphic form f =
∑

n∈Z a(n)q
n ∈ Aε(N, 0, χD). Each con-

nected component W of the space

R>0 × R>0 −
⋃
n<0

a(n) �=0

S(−n)

is called a Weyl chamber associated to f , following the terminology in [3]. We say
λ ∈ F is positive with respect to a Weyl chamber W , if λy1 + λ′y2 > 0 for all
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vectors (y1, y2) ∈ W , in which case we write (λ,W) > 0. For each positive integer
m and each Weyl chamber W , define

R(m,W) = {λ ∈ d
−1 : N(λ) = −m/N, (ε−2

0 λ,W) < 0, (λ,W) > 0}.

When N is a prime p ≡ 1 mod 4, Bruinier and Bundschuh explicitly described
Borcherds products corresponding to weight 0 weakly holomorphic modular forms
in [4]. With the above settings and computations, we extend their description to
cover non-prime cases in Theorem 4.1 below. The general construction of Borcherds
can be found in his seminal paper [2].

Theorem 4.1 (cf. [4, Theorem 9]). Let f =
∑

n∈Z a(n)q
n ∈ Aε(N, 0, χD) be such

that s(n)a(n) ∈ Z for all n < 0. Then there is a meromorphic function Ψ(z1, z2)
on H×H with the following properties:

(1) Ψ is a meromorphic Hilbert modular form for ΓF with some unitary character
of finite order. The weight of Ψ is equal to s(0)a(0)/2.

(2) The divisor of Ψ is determined by the principal part (at ∞) of f and equals∑
n<0

s(n)a(n)T (−n).

(3) Let W be a Weyl chamber attached to f . Then the function Ψ has the
Borcherds product expansion

(4.2) Ψ(z1, z2) = e(ρz1 + ρ′z2)
∏

ν∈d−1

(ν,W)>0

(1− e(νz1 + ν′z2))
s(Nνν′)a(Nνν′)

,

where e(z) = e2πiz. Furthermore, the Weyl vector ρ associated to f and W is given
by

ρ = ρf,W =
1

ε20 − 1

∑
m>0

s(−m)a(−m)
∑

λ∈R(m,W)

λ.

The product converges normally for all (z1, z2) with y1y2 � 0.
(4) There exists a positive integer c such that Ψc has integral rational Fourier

coefficients with greatest common divisor 1.

Proof. Most of the statements follow from Borcherds’ Theorem 13.3 in [2] and the
isomorphism between vector-valued and scalar-valued modular form spaces (The-
orem 1.1). For the computation of the Weyl vector, one can see Section 3.2 in
[3]. The last statement follows from Proposition 4.7 in [26], except the case when
N1 ≡ 2 mod 4. Actually, by a similar argument utilized in Lemma 2.2, we can
see that Proposition 4.7 in [26] is also true for the case N1 ≡ 2 mod 4 when δ is
specified to be ε (or ε∗). �

Remark 4.3. When f = q−1 +O(1), we can compute Weyl vectors more explicitly.
For example, if we choose W to be the one that contains (1, ε0), then

(4.4) ρf,W =

{
ε0√
N

1
tr(ε0)

if N(ε0) = −1,
1+ε0

tr(
√
Nε0)

if N(ε0) = 1.

This formula is given in Example 3.11 in [3].
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4.1. Computing the weights. In this subsection, we explain how to compute
the weights of the Hilbert modular forms in Theorem 4.1 and will consider the case
N = 12 as an example. Let fm be defined as above, and the corresponding vector-
valued modular form will be denoted by Fm =

∑
γ Fγ,meγ . By Theorem 13.3 in

[2], the weight of Ψf is given by 1
2a0(0) where a0(0) is the constant coefficient of

F0,m. By Theorem 3.16 in [26], this is in turn given by

1

2
a0(0) =

1

2
s(0)a(0),

where a(0) is the 0th Fourier coefficient of fm. According to this, the weights in
the case of N = 12, where s(0) = 4, are given by

m 1 4 6 9 10 12
a(0) 1 5/2 3 5 2 3/2

weight 2 5 6 10 4 3

Alternatively, one can also compute the weight by the theorem on obstructions
([26, Theorem 4.5]) as noted in [4]. More precisely, a(0) is given by the Eisenstein
series, Eε∗ = 1 +

∑
n>0 B(n)qn, in the dual modular form space, as follows:

a(0) = − 1

s(0)

∑
n<0

s(n)a(n)B(−n),

and the weight is then − 1
2

∑
n<0 s(n)a(n)B(−n). Therefore, the principal part

determines the weight explicitly. It follows that if s(n)a(n) ∈ Z for all negative n,
the weight is half integral (or integral). In the case N = 12, the constant term a(0)

of fm is given by −B(m)
4 . Since we have

Eε∗ = 1− 4q − 10q4 − 12q6 − 20q9 − 8q10 − 6q12 − 56q13 − 34q16 +O(q18),

we see that a(0) matches the data given above for each m.

Remark 4.5. (1) The computation of a(0) by B(m) is a special case of a more general
phenomenon, Zagier duality. See Theorem 5.7 in [25]; note that we normalize Eε∗

differently therein.

(2) Since −B(m)
2 , if it is non-zero and m > 0, represents the weight of some

holomorphic Hilbert modular form, it agrees with the fact that the coefficients
B(m) (m > 0) are all non-positive and integral.

5. Automorphic correction

In this section, we construct automorphic correction of some rank 2 hyperbolic
Kac-Moody algebras. We begin with the definition of automorphic correction. More
details on automorphic correction can be found in [7, 10, 15, 17].

5.1. Definition. A Kac-Moody algebra g is called Lorentzian if its generalized
Cartan matrix is given by a set of simple roots of a Lorentzian lattice M , namely,
a lattice with a non-degenerate integral symmetric bilinear form (·, ·) of signature
(n, 1) for some integer n ≥ 1. A vector α ∈ M is a root if (α, α) > 0 and (α, α)
divides 2(α, β) for all β ∈ M . Let Π be a set of (real) simple roots. Then the
generalized Cartan matrix A is given by

A =
(

2(α,α′)
(α,α)

)
α,α′∈Π

.
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The Weyl group W is a subgroup of O(M). Consider the cone

V (M) = {β ∈ M ⊗ R | (β, β) < 0},
which is a union of two half cones. One of these half cones is denoted by V +(M).
The reflection hyperplanes of W partition V +(M) into fundamental domains, and
we choose one fundamental domain D ⊂ V +(M) so that the set Π of (real) simple
roots is orthogonal to the fundamental domain D. Then

D = {β ∈ V +(M) | (β, α) ≤ 0 for all α ∈ Π}.
We have a Weyl vector ρ ∈ M ⊗Q satisfying (ρ, α) = −(α, α)/2 for each α ∈ Π.

Define the complexified cone Ω(V +(M))=M⊗R+iV +(M). Let L=
(

0 −m
−m 0

)
⊕

M be an extended lattice for some m ∈ N. We consider the quadratic space
V = L ⊗ Q with the quadratic form induced from the bilinear form on L. Let
V (C) be the complexification of V and let P (V (C)) = (V (C) − {0})/C∗ be the
corresponding projective space. Let K+ be a connected component of

(5.1) K = {[Z] ∈ P (V (C)) : (Z,Z) = 0, (Z, Z̄) < 0},
and let O+

V (R) be the subgroup of elements in OV (R) which preserve the compo-
nents of K.

For Z ∈ V (C), write Z = X+iY with X,Y ∈ V (R). Let Γ ⊆ O+
L := OL∩O+

V (R)
be a subgroup of finite index. Then Γ acts on K discontinuously. Set

K̃+ = {Z ∈ V (C)− {0} : [Z] ∈ K+}.
Let k ∈ 1

2Z and let χ be a multiplier system of Γ. Then a meromorphic function

Φ : K̃+ −→ C is called a meromorphic modular form of weight k and multiplier
system χ for the group Γ, if

(1) Φ is homogeneous of degree −k, i.e. Φ(cZ) = c−kΦ(Z) for all c ∈ C− {0},
(2) Φ is invariant under Γ, i.e. Φ(γZ) = χ(γ)Φ(Z) for all γ ∈ Γ.

Define a map Ω(V +(M)) → K by z �→
[
(z,z)
2m e1 + e2 + z

]
, where {e1, e2} is the

basis for
(

0 −m
−m 0

)
. Then the space K+ is canonically identified with Ω(V +(M)).

Consider a meromorphic automorphic form Φ(z) on Ω(V +(M)) with respect to
a subgroup Γ ⊆ O+

L of finite index. The function Φ(z) is called an automorphic
correction of the Lorentzian Kac-Moody algebra g if it has a Fourier expansion of
the form

(5.2) Φ(z) =
∑
w∈W

det(w)

⎛⎝e (−(w(ρ), z))−
∑

a∈M∩D, a �=0

m(a) e(−(w(ρ+ a), z))

⎞⎠ ,

where e(x) = e2πix and m(a) ∈ Z for all a ∈ M ∩D.
We note that O+

V (R) is the orthogonal group O(n+ 1, 2), and when n = 2, the
automorphic forms on O(3, 2) are Siegel modular forms since SO(3, 2) is isogeneous
to Sp4. When n = 1, which is our case in this paper, the automorphic forms on
O(2, 2) are Hilbert modular forms since SO(2, 2) is isogeneous to SL2 × SL2. We
also note that the denominator of g is

∑
w∈W det(w)e (−(w(ρ), z)), which is not an

automorphic form on Ω(V +(M)) in general, and one can see from (5.2) that the
denominator of g is corrected to be an automorphic form Φ(z).

An automorphic correction Φ(z) defines a generalized Kac-Moody superalgebra
G as in [10] so that the denominator of G is Φ(z). In particular, the function
Φ(z) determines the set of imaginary simple roots of G in the following way: First,
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assume that a ∈ M ∩D and (a, a) < 0. If m(a) > 0, then a is an even imaginary
simple root with multiplicity m(a), and if m(a) < 0, then a is an odd imaginary
simple root with multiplicity −m(a). Next, assume that a0 ∈ M ∩D is primitive
and (a0, a0) = 0. Then we define μ(na0) ∈ Z, n ∈ N, by

1−
∞∑
k=1

m(ka0)t
k =

∞∏
n=1

(1− tn)μ(na0),

where t is a formal variable. If μ(na0) > 0, then na0 is an even imaginary simple
root with multiplicity μ(na0); if μ(na0) < 0, then na0 is an odd imaginary simple
root with multiplicity −μ(na0).

The generalized Kac-Moody superalgebra G will also be called an automorphic
correction of g. Using the denominator identity for G, the automorphic form Φ(z)
can be written as the infinite product

Φ(z) = e(−(ρ, z))
∏

α∈Δ(G)+
(1− e(−(α, z)))mult(G,α),

where Δ(G)+ is the set of positive roots of G and mult(G, α) is the root multiplicity
of α in G.

5.2. Rank 2 hyperbolic Kac-Moody algebras. Let A =
(

2 −a
−a 2

)
be a gen-

eralized Cartan matrix with a ≥ 3, and let H(a) be the hyperbolic Kac-Moody
algebra associated with the matrix A. We write g = H(a) if there is no need
to specify a. Let {h1, h2} be the set of simple coroots in the Cartan subalgebra
h = Ch1+Ch2 ⊂ g. Let {α1, α2} ⊂ h∗ be the set of simple roots, let Q = Zα1+Zα2

be the root lattice, and define h∗Q = Qα1 + Qα2 and h∗R = Rα1 + Rα2. The set of

roots of g will be denoted by Δ, the set of positive (resp. negative) roots by Δ+

(resp. by Δ−), and the set of real (resp. imaginary) roots by Δre (resp. by Δim).
We will use the notation Δ+

re to denote the set of positive real roots. Similarly, we
use Δ+

im, Δ
−
re and Δ−

im.

Let F = Q(
√
a2 − 4) and let N be the discriminant of F . We define s ∈ N by

a2 − 4 = Ns2. We keep the notation in Section 1 for the quadratic field F . We set

η =
a+

√
a2 − 4

2
=

a+ s
√
N

2
.

Then we have η′ = η−1 and 1 + η2 = aη. The simple reflection corresponding to
αi in the root system of g is denoted by ri (i = 1, 2) and the Weyl group by W .
The eigenvalues of r1r2 as a linear transformation on h∗ are η2 and η−2. Let γ+

be an eigenvector for η2 and we set γ− = r2γ
+. Then γ− is an eigenvector for η′

2
.

Specifically, we choose

γ+ =
α1 + η′α2

s
and γ− =

α1 + ηα2

s
.

We define a symmetric bilinear form (·, ·) on h∗ to be given by the Cartan matrix
A with respect to {α1, α2}. Then we have (γ+, γ+) = (γ−, γ−) = 0 and (γ+, γ−) =
−N .

We will use the column vector notation for the elements in h∗ with respect to
the basis {γ+, γ−}, i.e. we write

(
x
y

)
for xγ+ + yγ−. Then we have

α1 =
1√
N

(
η

−η′

)
and α2 =

1√
N

(
−1
1

)
.
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It follows that h∗Q = {
(
x
x′

)
|x ∈ F}. A symmetric bilinear form 〈·, ·〉 on F is defined

by 〈x, y〉 = −N tr(xy′). We define a map ψ : h∗Q → F by
(
x
x′

)
�→ x. Then the

map ψ is an isometry from (h∗Q, (·, ·)) to (F, 〈·, ·〉). In particular, the root lattice

Q = Zα1 + Zα2 is mapped onto a sublattice of O/
√
N .

Let ωi (i = 1, 2) be the fundamental weights of g. Then we have

ω1 =
1

4− a2
(2α1 + aα2) and ω2 =

1

4− a2
(aα1 + 2α2).

In the column vector notation,

ω1 =
−1

sN

(
1
1

)
and ω2 =

−1

sN

(
η
η′

)
.

We define ρ := −(ω1 + ω2) =
1
sN

(
1+η
1+η′

)
. The simple reflections have the matrix

representations

r1 =

(
0 η2

η′
2

0

)
and r2 =

(
0 1
1 0

)
.

The Weyl group W also acts on F by

r1x = η2x′ and r2x = x′ for x ∈ F,

so that the isometry ψ is W -equivariant. Since W = {(r1r2)i, r2(r1r2)i | i ∈ Z}, we
calculate the set of positive real roots and obtain

Δ+
re =

{
1√
N

(
ηj

−η′
j

)
(j > 0),

1√
N

(
−η′

j

ηj

)
(j ≥ 0)

}
.

We can also obtain a description of the set of positive imaginary roots. See [14] for
details.

5.3. Hilbert modular forms. We put M = ψ−1(d−1) ⊂ h∗Q. Then M is of
signature (1, 1) and the Kac-Moody algebra g = H(a) is Lorentzian. We take the
Weyl group W for the reflection group of M , and choose the cone

(5.3) V +(M) = {xγ+ + yγ− ∈ h
∗
R |x > 0, y > 0}.

We set Π = {α1, α2} and obtain the Weyl chamber

D = {β ∈ V +(M) | (β, αi) ≤ 0, i = 1, 2} = R≤0 ω1 + R≤0 ω2.

The Weyl vector is given by ρ = −(ω1 + ω2).
From our choice of V +(M) in (5.3), we have the complexified cone

Ω(V +(M)) = M ⊗ R+ iV +(M) =

{(
z1
z2

)
: Im(z1) > 0, Im(z2) > 0

}
⊂ h

∗

with respect to the basis {γ+, γ−}. Then Ω(V +(M)) is naturally identified with
H2. We choose the extended lattice L =

(
0 −N

−N 0

)
⊕ M . Now it can be shown

that an automorphic form on Ω(V +(M)) is a Hilbert modular form through the
identification Ω(V +(M)) ∼= H2. See [3, 17] for details. As we identify H2 with
Ω(V +(M)) ⊂ h∗, the Weyl group W acts on H2; in particular, we have

r1(z1, z2) = (η2z2, η
′2z1) and r2(z1, z2) = (z2, z1).
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We also define a pairing on F ×H2 by

(5.4) (ν, z) = −N (νz2 + ν′z1),

for ν ∈ F and z = (z1, z2) ∈ H2.
Our automorphic correction will be a Hilbert modular form with respect to the

congruence subgroup Γ0(N) defined by

Γ0(N) =

{(
a b
c d

)
∈ SL2(OF ) : a, b, d ∈ OF , c ∈ (N)

}
⊂ O+

L ,

where (N) ⊂ OF is the principal ideal generated by N . We will need the following
lemma, whose proof is essentially the same as that of Lemma 5.13 of [17].

Lemma 5.5. Let g(z) be a Hilbert modular form with respect to SL2(OF ). Define
f(z) = g(Nz), where g(z1, z2) = g(z2, z1). Then the function f(z) is a Hilbert
modular form with respect to the congruence subgroup Γ0(N).

5.4. Construction of automorphic correction. Assume that 1 < N ≤ 21.
Then the modular form f1 exists by Lemma 2.3. In particular, we consider the
following three cases: (1) N = 12, a = 4; (2) N = 8, a = 6; (3) N = 21, a = 5.

The fundamental units ε0 are: 2 +
√
3, 1 +

√
2, 5+

√
21

2 , respectively, and η = ε0 for

N = 12, 21, and η = ε20 for N = 8.
We choose the Weyl chamber W attached to f1 which contains the point (1, ε0).

Then the Weyl vector is given by the formula (4.4). In the case N(ε0) = −1, the
point (ε−1

0 , ε0) lies in the same Weyl chamber W . (See Example 3.11 in [3].)
Recall that we have the isometry ψ : h∗Q → F by

(
ν
ν′

)
�→ ν. One can check that

(5.6) ψ(ρ) =
1

sN
(1 + η) = ρf1,W ,

and we write ρ = ρf1,W if there is no peril of confusion.
First, assume that ν � 0 and (ν,W) > 0 for ν ∈ d−1. Then N(ν) > 0 and

〈ν, ν〉 = −Ntr(νν′) < 0. Thus ν corresponds to an imaginary root of H(a) by
Proposition 5.10 of [11]. We can also check 〈ρ, ν〉 < 0 using ν + ε0ν

′ > 0 or
ε−1
0 ν + ε0ν

′ > 0 if N(ε0) = −1. Thus ν is positive, i.e. ν ∈ ψ(Δ+
im).

Next, assume that ν �� 0 and (ν,W) > 0 for ν ∈ d−1. Then N(ν) < 0 and
a(Nνν′) �= 0 only for ν with N(ν) = νν′ = −1/N , in which case s(Nνν′)a(Nνν′) =
1. Further, 〈ν, ν〉 = 2, and ν corresponds to a positive real root of H(a), i.e.
ν ∈ ψ(Δ+

re).
Now, from the above observations, the Borcherds product (4.2) can be written:

Ψ(z1, z2) = e(ρz1 + ρ′z2)
∏

ν∈d
−1

(ν,W)>0

(1− e(νz1 + ν′z2))
s(Nνν′)a(Nνν′)

= e(ρz1 + ρ′z2)
∏

ν∈d
−1

ν�0

(1− e(νz1 + ν′z2))
s(Nνν′)a(Nνν′)

×
∏

ν∈d
−1,ν+ε0ν

′>0
N(ν)=−1/N

(1− e(νz1 + ν′z2))
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= e(ρz1 + ρ′z2)
∏

ν∈ψ(Δ+
im)

(1− e(νz1 + ν′z2))
s(Nνν′)a(Nνν′)

×
∏

ν∈ψ(Δ+
re)

(1− e(νz1 + ν′z2)) .

Define Φ(z) = Φ(z1, z2) = Ψ(Nz2, Nz1). Then by Lemma 5.5, Φ is a Hilbert
modular form with respect to Γ0(N). By (5.4), Φ can be written as

Φ(z) = e(−(ρ, z))
∏

ν∈ψ(Δ+
im)

(1− e(−(ν, z)))s(Nνν′)a(Nνν′)
∏

ν∈ψ(Δ+
re)

(1− e(−(ν, z))) .

As in [17], we can prove

Φ(wz) = det(w)Φ(z) for w ∈ W.

This in turn implies that Φ(z) can be written as

Φ(z) =
∑
w∈W

det(w)

⎛⎝e(−(w(ρ), z))−
∑

ν∈M∩D,ν �=0

m(ν)e(−(w(ρ+ ν), z))

⎞⎠ .

This is exactly the form for the automorphic correction in (5.2), and hence it
provides an automorphic correction for H(a). So we have obtained:

Theorem 5.7. Let H(a) be the rank 2 symmetric hyperbolic Kac-Moody algebra,

and let N be the discriminant of the quadratic field Q(
√
a2 − 4). Assume that

1 < N ≤ 21. Then the Hilbert modular form Φ provides an automorphic correction
for the hyperbolic Kac-Moody algebra H(a). In particular, there exists a generalized

Kac-Moody superalgebra H̃ whose denominator function is the Hilbert modular form
Φ.

Remark 5.8. The prime level cases N = 5, 13, 17 were established in Theorem 5.16
of [17]. The above Theorem 5.7 includes three non-prime level cases N = 12, 8, 21.
Altogether, we have constructed automorphic correction for the hyperbolic Kac-
Moody algebra H(a) corresponding to each of the fundamental discriminants 1 <
N ≤ 21. We summarize it in a table:

N 5 8 12 13 17 21
a 3 6 4 11 66 5

If N > 21, the modular form f1 does not exist by Lemma 2.3, and we need a new
idea to construct automorphic correction.

6. Asymptotics of Fourier coefficients

In this section, we obtain asymptotics of Fourier coefficients of the modular forms
f1 defined in Section 2. Note that the Fourier coefficients of f1 are root multiplicities

of the generalized Kac-Moody superalgebra H̃ with some modifications and give
natural bounds for root multiplicities of H(a). Hence, asymptotics of the Fourier
coefficients give information on upper bounds for root multiplicities of H(a).

We apply the result of J. Lehner [18] on Fourier coefficients of modular forms
using the method of Hardy-Ramanujan-Rademacher to our special case. We refer
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to [18] for unexplained notation. (See [16, 17] for the details.) Let

f1 = q−1 +

∞∑
n=0

a(n)qn.

Since f1 is holomorphic at all other cusps except at ∞ (Corollary 3.6 of [25] and
Corollary 3.14 of [26]), we can show that

a(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2π
3
√
n
sin π(n−1)

2 sin π(n−1)
3 I1

(
π
√
n

3

)
+O

(
n

1
4

(
log π

√
n

3

)
I1

(
π
√
n

6

))
, if N = 12,

π√
n
sin π(n−1)

2 sin π(n−1)
4 I1

(
π
√
n

2

)
+O

(
n

1
4

(
log π

√
n

2

)
I1

(
π
√
n

4

))
, if N = 8,

2π√
21n

(
n
21

)
I1

(
4π

√
n√

21

) ∑
v2≡−nmod 21

e
(
2v
21

)
+O

(
n

1
4

(
log 4π

√
n

21

)
I1

(
2π

√
n

21

))
, if N = 21,

where I1 is the Bessel I-function, and it has the asymptotic expansion I1(x) =
ex√
2πx

(
1 +O( 1x )

)
.

Remark 6.1. Following [16, 17], when N = 12, we can show that f12 has non-
negative Fourier coefficients: Note the following Fourier expansions along various
cusps: f12 is holomorphic at 1

2 ,
1
6 , and by the ε-condition,

f12
(
1
3 − 1

τ

)
= − i

2q
− 1

12 +O(1); f12
(
1
4 − 1

τ

)
= − i

√
3

4 q−
1
12 +O(1);

f12
(
− 1

τ

)
=

√
3
2 q−

1
12 +O(1).

Then if f12 = 1
4q

−12 +
∑∞

n=0 a(n)q
n, then a(n) ≥ 0 for all n, and

a(n) = π√
n

(
1√
3

(
sin πn

2 sin πn
3 − sin 2πn

3

)
+ 1

2

(
1− sin πn

2

))
I1

(
4π

√
n√

12

)
+ O

(
n

1
4

(
log 4π

√
n√

12

)
I1

(
2π

√
n√

12

))
.

Similarly, when N = 8, f8 has non-negative Fourier coefficients: f8 is holomorphic

at 1
2 and 1

4 , and f8
(
− 1

τ

)
=

√
2q−

1
8 + O(1). So if f8 = 1

2q
−8 +

∑∞
n=0 a(n)q

n, then
a(n) ≥ 0 for all n, and

a(n) = π√
n

(
1 +

√
2 sin πn

2 sin πn
4

)
I1(π

√
2n) +O

(
n

1
4

(
log π

√
2n

)
I1

(
π
√
n√
2

))
.
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