WEIGHT MULTIPLICITIES AND YOUNG TABLEAUX
THROUGH AFFINE CRYSTALS

JANG SOO KIM#, KYU-HWAN LEE* AND SE-JIN OH'

ABSTRACT. The weight multiplicities of finite dimensional simple Lie algebras can be computed individ-
ually using various methods. Still, it is hard to derive explicit closed formulas. Similarly, explicit closed
formulas for the multiplicities of maximal weights of affine Kac—Moody algebras are not known in most
cases. In this paper, we study weight multiplicities for both finite and affine cases of classical types for
certain infinite families of highest weights modules. We introduce new classes of Young tableaux, called
the (spin) rigid tableaur, and prove that they are equinumerous to the weight multiplicities of the highest
weight modules under our consideration. These new classes of Young tableaux arise from crystal basis
elements for dominant maximal weights of the integrable highest weight modules over affine Kac—-Moody
algebras. By applying combinatorics of tableaux such as the Robinson—Schensted algorithm and new
insertion schemes, and using integrals over orthogonal groups, we reveal hidden structures in the sets of
weight multiplicities and obtain explicit closed formulas for the weight multiplicities. In particular we
show that some special families of weight multiplicities form the Pascal, Catalan, Motzkin, Riordan and
Bessel triangles.
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INTRODUCTION

The irreducible representations L(w) of finite dimensional complex simple Lie algebras are fundamen-
tal objects in mathematics. We understand their structures through the generating functions of weight
multiplicities, i.e. the characters of the representations, which can be computed by the celebrated Weyl’s
character formula. Individual weight multiplicities can be computed using Kostant’s formula or Freuden-
thal’s recursive formula. One can also exploit the crystal basis theory, initiated by Kashiwara [20], and
its realizations such as Kashiwara-Nakashima tableaux [21], Littelmann paths [29] and Mirkovic—Vilonen
polytopes [17] to name a few.

Nonetheless there are only a few explicit closed formulas in the literature for weight multiplicities.
Kostant’s formula involves a summation over the Weyl group whose size becomes enormous as the rank
increases, and Freudenthal’s formula is recursive, and realizations of crystals convert computing weight
multiplicities into challenging combinatorial problems.

The theory of finite-dimensional simple Lie algebras was generalized to that of Kac—Moody algebras
in 1960’s, and the first family of infinite dimensional Lie algebras is called affine Kac—Moody algebras.
Representations of affine Kac—Moody algebras have been studied extensively as their applications have
been found throughout mathematics and mathematical physics. In particular, weight multiplicities of an
integrable highest weight module V(A) over an affine Kac-Moody algebra are of great interests as they
can be interpreted in several different ways such as generalized partition numbers [28], Fourier coefficients
of certain modular forms [16], and numbers of isomorphism classes of irreducible modules over Hecke-type
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algebras [1, 26]. However, our understanding of weight multiplicities is, in general, very limited though we
can compute them individually through generalizations of classical formulas and constructions, e.g. [22].
The set of weights of V(A) can be divided into J-strings and the first weight of each string is called a
mazimal weight. Maximal weights and their multiplicities are fundamental in understanding the structure
of V(A). Since weight multiplicities are invariant under the Weyl group action, it is enough to consider
dominant maximal weights, and it is well-known that the set of dominant maximal weights for each highest
weight A is finite. Nevertheless, we do not have any explicit description of dominant maximal weights and
their multiplicities in most cases. Except for trivial cases, only level 2 maximal weights of type ASP and
their multiplicities are completely known [36], and recently, some maximal weights of V(kAg+As), k € Z~o,

s=20,1,...,n, of type A%l) have been studied [13, 14, 37], where A are the fundamental weights. Other

than type AS), little is known about descriptions of dominant maximal weights and their multiplicities.

In this paper, we study the multiplicities of dominant weights for finite types and those of dominant
maximal weights for affine types at the same time. We introduce special subsets of Young tableaux,
called (spin) rigid Young tableaux, which are equinumerous to the weight multiplicities of the certain
highest weight modules for finite and affine types simultaneously, and we derive explicit closed formulas
for the weight multiplicities when they are of level £k < 6 or k » 0. Our closed formulas are practically
computable, and related to binomial coefficients, Catalan numbers and Motzkin numbers. We consider all
classical finite types and affine types, but more focus will be made on finite types B,, and D,, and affine
types Bf,,l), DSLI), Agl)_l, Agi) and Dfizl.

We summarize the results of this paper in three main parts as follows.

First, we consider some families of highest weights A over affine Kac-Moody algebras of classical types,
including all highest weights of levels 2 and 3, and determine dominant maximal weights. See, e.g.,
Theorems 5.8, 5.13 and 5.22. We observe that a majority of dominant maximal weights are essentially finite
and can be associated with pairs of staircase partitions. We will denote the set of level k (essentially finite)
maximal dominant weights, associated with pairs of staircase partitions, by smaxg (A|k) or smaxf (Alk),
depending on the corresponding finite types. Each n € smaxg (A|k) or smax} (Alk) is given an index (m, s)
recording the sizes of the associated staircase partitions.

A simple, yet crucial fact we prove is that two essentially finite dominant maximal weights of the
same finite type with the same index (m,s) have the same weight multiplicity even if their affine types
are different. This fact is related to a classification of the zero nodes of affine Dynkin diagrams (cf.
[27]). Furthermore, for essentially finite weights, the weight multiplicities of affine Kac-Moody algebras
are actually the same as those of the corresponding finite dimensional simple Lie algebras, and we may
use the theory of finite dimensional simple Lie algebras. However, as indicated at the beginning of this
introduction, explicit closed formulas are not available even for weight multiplicities of finite dimensional
simple Lie algebras. Therefore, we utilize a realization of affine crystals to determine weight multiplicities.

Second, the realization of affine crystals we use is Young walls introduced by Kang [18] which are
visualization of Kyoto paths. We first embed the crystals of V(A) into a tensor product of Young walls
of level 1 fundamental representations and investigate the sets of Young walls in the spaces of dominant
maximal weights. A careful analysis of the patterns of the Young walls leads to new classes of skew
standard Young tableaux that realize crystal basis elements of dominant maximal weights in the tensor
product of crystals. Namely, we define the set 8%&,’? of rigid Young tableaux and the set S’D%C) of spin
rigid Young tableaux for any k£ > 2 and 0 < s < m. Roughly speaking, a rigid Young tableau is a skew
tableau for which a shift of the last row to the right by 1 makes the tableaux violate column-strictness.
For example, the following are rigid tableaux:

7[5]4] - 2108 7]
1311 R e - 111911 .
62 6/5[4]3]2

Here we are using reverse standard Young tableaux and so the rows and columns are decreasing. Similarly,
a spin rigid Young tableau is a skew tableau for which a shift of the last row to the right by 2 makes the
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tableaux violate column-strictness and whose shape satisfies certain conditions. For example, the following
are spin rigid Young tableaux:

T4[1 T-[413]2]
12 51

3

Using combinatorics of Young walls, we prove that the sets s%ﬂi) and 395,‘? are equinumerous to the
weight multiplicities of highest weight modules of finite and affine types simultaneously (Theorems 6.8 and
6.14).

Theorem 0.1. Letk>2 and 0 <s<m<n.
(1) For n € smaxg (Alk) of index (m,s), we have

dlm V(A)ﬂ = ‘5%’57’];:” = dim L((k - 2)wn + wn*s)(k‘_Q)WnJF&)nfm’
where L(w) is of type By, wy are the fundamental weights, and @ are defined by
B 2w, ift=mn,
Wt =

wi otherwise.
(2) For n € smax (A|k) of index (m,s — 1), we have
dim V(A),, = [®F] = dim L((k — 2)w, + Gns) s

where L(w) is of type D,,, and & are defined by

Wt Zf1<t<’fl—1,
Wy =AWpo1+w, ift=n—1,
2wy, ift =mn,

and the weights | are given by

_ (k — 2)wn + Op—m—1 ifk=2, ork >3 and m %, s,
7 (k= 3)wn + wnot + @nmer if k>3 and m = s.

Our methods unexpectedly reveal hidden structures of weight multiplicities. We consider highest weights
in a family at the same time and form a triangular array consisting of \S%$,’§)| or |S©5§)\ as highest weights
varies in the family. Interestingly, the entries of the resulting triangular arrays count the number of cer-
tain lattice paths and we construct bijections between the sets of lattice paths and the corresponding sets
of tableaux. These arrays are the Pascal, Catalan, Motzkin and Riordan triangles for various families
of highest weights. See the triangular arrays in (4.5) and (4.10) for the Motzkin and Riordan triangles,
respectively. See Example 8.23 for the case of generalized Motzkin paths. Moreover, the entries of the tri-
angular arrays also represent some decomposition multiplicities of tensor products of sl;-modules, invoking
Schur-Weyl type dualities ([2, 7]) into the structures of weight multiplicities.

Third, we use various combinatorial methods to find explicit formulas for the numbers |S%£Z§)| and
|S©$I,f)| for k = 2 (Theorems 7.10, 7.16), for k = 3 (Theorems 8.1, 8.2), and for the number |0©£,]f)| for
2 < k < 5 (Theorem 10.2). In particular, we use the Robinson—Schensted algorithm and a new insertion
scheme for the (spin) rigid tableaux, see Algorithm 8.18. We also use integrals over orthogonal groups
to derive explicit formulas for |0%$L“)| (Theorem 10.9). The set 0B i nothing but the set of (reverse)
standard Young tableaux with m cells and at most k rows. In the literature an explicit formula for its
cardinality is known only for k& < 5 ([10, 32]). We summarize our formulas as follows.

Theorem 0.2. For 0 < s < m, we have

m 2 2u 4+ s — s
o B = ([W—SJ>’ D14l = < ’0) (u=0),

5 u
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|%(3) :lfj m 2i+m—s\ (2i+m—s
Tl A \2itm—s i i—1 ’

ot

m+1—38s0—s
7 3 3
T N € Dl (D oy N X )
i=0
Cn+1
o= () el = CuCon -
m m—1
(5) B 2m - 2m 9
|0©2m71 - ’L;) ( 2 >C1C1+1 - Z;) <2’L + 1) Ci+17
m : m—1 .
27 2m 21 2m
0 =% CiCiy1 — c
l0D2m| ;H?, 2i 1 ;)H:a 2 +1) it

) is the i-th Catalan number.
> 1 and m = 0, we have

m ti+2k—i—5\\"
BE = ) (t t>det<( tot ki )) ’
tittt=m 1y---50k L 2 J i,j=1
ti+2k—i—j\\"
B (2k+1)| _ mn det (C | —F—
o5 2 totrs . tn) 2 o

to+ti+-+tp=m 5,j=1

where C(z) = C; = %H(Q;’“) if « is an integer and C(x) = 0 otherwise.

where C; = H% (2;
For integers k

When k increases, the numbers |S‘B,(ff)| and |S’D§7’§)| (and thus the weight multiplicities) stabilize and we

find their closed formulas (Corollary 9.8 and Theorem 9.9). In particular, from limg_,q |S®£f§) |, we obtain
a triangular array of numbers, called Bessel triangle, consisting of the coefficients of Bessel polynomials,
see (9.6).

The organization of this paper is as follows. In Section 1, we fix notations and present basic definitions
for affine Kac—Moody algebras and quantum affine algebras. Throughout this paper we mainly use the
notations of affine types, even though we study finite types together. The relationship between weights of
finite types and affine types is explained in Section 1.2. In Section 2, after the theory of crystals is reviewed
briefly, we describe constructions of Young walls and explain embeddings of highest weight crystals into
tensor products of level 1 crystals. A connection between affine crystals and finite crystals is pointed out
in Section 2.2. In Section 3, we explain a correspondence between Young walls and Young tableaux, and
introduce some families of Young tableaux that will be used later. Section 4 is devoted to lattice paths
and triangular arrays of numbers. The entries of the triangular arrays are the numbers of certain types of
lattice paths and also the decomposition multiplicities of tensor products of sly-modules. All the entries
of the triangular arrays are also to appear as weight multiplicities.

In Section 5, we determine dominant maximal weights for certain families of highest weight modules.
These families include all highest weight modules of levels 2 and 3 except for types A%l) and Cy(Ll). A
conjecture is made for the numbers of the dominant maximal weights for type BS). We classify staircase
dominant maximal weights according to their finite types. In Section 6, we investigate the Young walls of
dominant maximal weights and define (spin) rigid Young tableaux. Using combinatorics of Young walls,
we prove that the sets of (spin) rigid tableaux are equinumerous to weight multiplicities.

Section 7 is concerned about the level 2 cases. We prove that the weight multiplicities form the Catalan
triangle and the Pascal triangle. The main tool is an insertion scheme for tableaux. We also construct
bijections between the set of lattice paths and the set of rigid Young tableaux in 3%5,?. In Section 8, we
consider the level 3 cases and prove that the weight multiplicities form the Motzkin triangle for rigid Young
tableaux and the Riordan triangle for spin rigid Young tableaux. We prove both cases using the Robinson—
Schensted algorithm and provide a different proof for the Motzkin case using an insertion scheme which
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naturally realizes the Motzkin triangle through combinatorics of tableaux. An explicit bijection from the
set of rigid tableaux in 5587(3) to the set of generalized Motzkin paths is also given.

In Section 9, we investigate the limits of weight multiplicities of level k as k increases. We observe
that the weight multiplicities given by the numbers of (spin) rigid Young tableaux stabilize as k increases,
and compute the limits explicitly. The computation uses formulas for the numbers of involutions in the
symmetric groups.

In the final section, we consider the set Sy(,]f ) of standard Young tableaux with m cells, at most k& rows
and exactly t rows of odd length. Both 0%7(5) and 0@%) can be considered as special cases of the set S,(,]f’t).
Using the Robinson—Schensted algorithm, we find a relation between |S1(ff ’0)|, |$,SiC ’k)| and |O%£,]f_l)|. Using
this relation and some known results, we find an explicit formula for |S7Sf ’t)| for every 0 <t < k < 5. We
then express |0€B£,I§)| as an integral over the orthogonal group O(k). By evaluating this integral we obtain
an explicit formula for |0%£,’§)|.

Acknowledgments. We are grateful to Daniel Bump and Kailash Misra for stimulating discussions. We
thank Georgia Benkart, James Humphreys and Anne Schilling for helpful comments on an earlier version
of this paper. We also thank Ole Warnaar for his helpful comments, which greatly improved Theorem 10.9.
K.-H. L. gratefully acknowledges support from the Simons Center for Geometry and Physics at which some
of the research for this paper was performed. S.-j. O. gratefully acknowledges hospitality of the University
of Connecticut during his visits in 2016 and 2017.

1. AFFINE KAC-MOODY ALGEBRAS
1.1. Preliminaries. Let I = {0,1,...,n} be an index set. The affine Cartan datum (A,PY,P, 11V 1)
consists of
(a) a matrix A = (a;;) of corank 1, called the affine Cartan matriz satistying, for i, j € I,
(1) Qi = 2, (ll) a5 € Zgo for ¢ # ] € I, (111) A5 = 0 if Aj; = 0,
(b) a free abelian group P¥ = @', Zh; ® Zd, the dual weight lattice, with h := C®z P,
(c) a free abelian group P = @), ZA; ® Z& < h*, the weight lattice,

(d) a linearly independent set IIY = {h; | i € [} < PV, the set of simple coroots,
(e) a linearly independent set I = {«; | i € I} < P, the set of simple roots,

which satisfy
(hiyagy = a5 and (hi, Ajy = 0, 5 for all 4,5 € I,
where A; denotes the i-th fundamental weight, & =3 ,_;
Chiy 8y =0, (d,0)=1 and {d,a;)= ;0.
Let ¢ = Y ,.; ;" h; be the unique element such that a;” € Z>o and
Zc = {he @ Zh; | {h,a;y =0 for any i € I}.

iel

a;c; the null root and d the degree derivation:

Recall that A is symmetrizable in the sense that DA is symmetric where
D = diag(d; :=a)a; ' |ie ).
We say that a weight A € P is of level k if A(c) = k. There exists a non-degenerate symmetric bilinear
form (| ) on h* ([15, (6.2.2)]) such that
(vilej) = dyja;;  for any 4,5 € 1.

We denote by P :={A € P | {(h;,A) € Z=o, i € I} the set of dominant integral weights. The free
abelian group Q := @,.; Za; is called the root lattice and we set QF := @), ; Z>oa;. For an element
B = Y kic; € QT and i € I, we define the integer ht(8) := .., ks, called the height of 3, a subset
Supp(B) = {i | k; # 0} of I, called the support of 3.

el
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Definition 1.1. The affine Kac-Moody algebra g associated with an affine Cartan datum (A, PV, P, 11V, II)
is the Lie algebra over C generated by e;, f; (i € I) and h € PV satisfying following relations:

(1) [h, W] =0, [h,e;] = a;(h)es, [h, fi] = —ai(h)f; forall h,h' € PV,

(2) [ei, fj] = 6i7jhi for i,j € I,

(3) (ades)! =2 (e;) = (adfi)1= (f;) = 0if i # j.

A g-module V is called a weight module if it admits a weight space decomposition
V=DV
pneP

where V,, = {v e V| [h,v] = (h,pyv for all h € P¥}. A weight module V over g is integrable if all e; and
fi (i € I) are locally nilpotent on V.

Definition 1.2. The category Oj, consists of integrable g-modules V satisfying the following conditions:

(1) V admits a weight space decomposition V' = @®,,cp V,, and dimc(V,,) < o0 for each weight 4.

(2) There exists a finite number of elements A1, ..., As € P such that
wt(V) < D(A1) u---u D()y).
Here wt(V') := {ue P |V, # 0} and D(X) := {X =X, ; kia; | ki € Z>0}.
It is well-known that the category Oyt is a semisimple tensor category with its irreducible objects being

isomorphic to the highest weight modules V(A) (A € PT), each of which is generated by a highest weight
vector vp. Recall, e.g. from [15, Chapter 10], that if M, N € Oy, then

(a) M ~ N if and only if ch(M) = ch(N),
(b) ch(V(A)) = e *ch(V(A +t8)) for Ae P* and t € Z,
where ch(M) := >, . p(dimg M), )e” is the character of M.

For n € wt(V(A)), we define

(1.1)

Supp, (1) := Supp(A — 7).
The dimension of the p-weight space V(A), is called the multiplicity of p in V(A). A weight p is
mazimal if p+ 5 ¢ wt(V(A)). The set of all maximal weights of V/(A) of level k is denoted by max(A|k).

Proposition 1.3. ([15, Chapter 12.6]) For each A € Pt of level k, we have
wt(V(A) = || {n—s8|seZzg).

pemax(Alk)
We denote by max™ (A|k) the set of all dominant maximal weights of level k in V(A), i.e.,
max " (A]k) := max(A|k) n PT.
It is well-known that
max(A|k) = W -max" (Alk) where W is the Weyl group of g.
Let ho be the C-vector space spanned by {h; | i € Iy} for Iy := I\{0}. Define the orthogonal projection
“b* =g ([15, (6.2.7)]) by
B p—> = — p(c)Ao — (u[Ao)d.
We denote by Q the image of Q under the orthogonal projection ~. Define

(1.2) kCat = {pe by | u(hi) =0, (u|0) <k} where 6:=58 — agayp.

Proposition 1.4. ([15, Proposition 12.6]) The map p — [ defines a bijection from max™*(Alk) onto
kCat n (A + Q) where A is of level k. In particular, the set max™ (Alk) is finite.

For later use, we present the Dynkin diagrams of classical affine types.
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[ ]
0
A e e T A
A % 1 2 not n’> =B )
o O Oﬁ.
1 2 3 n=1 n
A A .0 .71
e et A I
o O o
(1.3) 1 2 3 n—2 n—1
[ ]
0
JARRCIEE ;
ol o o °
1 2 3 - n
YaN ce<——o0 o o o . /\ . e<——o0 o o—=0 .,
AL % 1 2 . n> —=p® % 1 2 n—1 ' n

For an affine Dynkin diagram Ay and a subset J & I, we denote by Ag|; the full-subdiagram of A
whose vertices are in J. We call a vertex s in Ay extremal if Ag|;, for I, := I\{s} is a connected Dynkin
diagram of finite type. For example, every vertex in A AD is extremal, while 0, 1 and n are all the extremal
vertices of A ). In (1.3), the solid dot e denotes an extremal vertex.

Let g5 be the finite dimensional subalgebra of g corresponding to Ay, for an extremal vertex s. Then
each finite dimensional simple Lie algebra gg, of classical types appears as the subalgebra g, of an affine

g as follows:

Ofin g

An ALY

5. | B A D,
Cu | OV, AD), AD)
D, | BV, 4% | DV
TABLE 1.1. Relationship between ga, and g

Convention 1.5. We denote an arbitrary fundamental weight of level 1 by boldfaced A to distinguish
them from other (fundamental) weights.

1.2. Connection to finite types. Let A = Y., m;A; € PT and pp = A=) ,_; k;a; € max ™ (Ak) for some
k. Assume kg = 0 for a fixed s € I. We consider the finite dimensional subalgebra g5 generated by e;, h;, f;
for i € I,. Assume that g, is simple, or equivalently that the Dynkin diagram of g5 is connected. Then s
corresponds to an extremal vertex. We denote by w the weight of g, corresponding to A via w(h;) = m;
foriel;and let n =w — 3, 7. kici. Then 7 is clearly a dominant weight of gs. A highest weight vector
v in V(A) generates the highest weight module L(w) as gs-module. Moreover, since ks = 0, we have

(1.4) dim(V(A),,) = dim(L(w),)-

Conversely, consider a finite dimensional simple Lie algebra gg, of type A,,, B,,, C,, or D,,, and identify it
with the subalgebra g, of an affine Kac-Moody algebra g for some s € I. Let w = }},_; m;w; be a dominant
integral weight of gs, and L(w) be the highest weight module with highest weight w, where w; are the
fundamental weights of gg,. Consider a dominant weight n = w — >}, kjo; of L(w). We may assume
J = I, according to the identification of gs, with gs. If we let A = ..., m;A; and p = A = > kiay,
then p € max™ (A|k) for some k. In this case, the equation (1.4) also holds.

Motivated by the above observation, we make the following definition.

Definition 1.6. Let A = .., m;A; € P*. A dominant maximal weight p = A — 3., k;a; € max™ (Alk)
is called essentially finite of type X, if there is an s € I such that k; = 0 and g, is of finite type X,, with
X=A,B,Cor D.
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In Section 5, we will see that most of the dominant maximal weights are essentially finite.

1.3. Quantum affine algebras. Let ¢ be an indeterminate and m,n € Zsq. For i € I, let ¢; = ¢% and

qn — q._" n m [m]l'
R I (L I I et
g —q " ' ,Bl " nd, [m—nliln]:!
Definition 1.7. The quantum affine algebra U,(g) associated with an affine Cartan datum (A, PV, P, IV, II)
is the associative algebra over Q(q) with 1 generated by e;, f; (i € I) and ¢" (h € PV) satisfying the fol-
lowing relations:

(1) qO _ 1’ qhqh’ _ thrh’7 qheliqfh _ q<h’ai>€i7 thz_qfh — q7<h,ai>fi for h, W e PV,
__](;

K;
(2) eifj — fiei = dij————1, where K; = qf“,
17aij ’ ! 17(1”'
7(11']'7](? k lfaijfki k . . .
(3) Z (_l)kez('l )ejez(‘ ) = Z (_l)kfi( )fjfi( ) = 0 ifd#j.
k=0 k=0

Here we set
e = er/[n];! and  f = f7/[n];).
We define integrable U, (g)-modules, the category O ., the character for M € Ol and highest weight

int»
modules V4(A) for A € P* in the standard way ([11]). It is well-known that Of , is a semisimple tensor

category with its irreducible object being isomorphic to V¢(A) for some A € PT and
(1.5) ch(V(A)) = ch(V?(A))  and hence  dimg(V(A),) = dimgg) (VI(A),)
for any p e P.

2. CRYSTALS AND YOUNG WALLS

In this section, we briefly review the theory of crystals developed by Kashiwara ([19, 20]). Then we
recall the combinatorial realization of affine crystals, called the Young walls, due to Kang ([18]).

2.1. Crystals. For an index 7 € [ and M = (—DHGP M, e O]

ity €very element v € M,, can be uniquely
expressed as

v = Z fi(k)vk;
k=0
where p1(h;) + k > 0 and v, € Ker e; N M, kq,. The Kashiwara operators €; and fz are defined by
(2.1) év = Z fl-(kfl)vk, fiv = Z fi(kﬂ)vk.
k=1 k=0

Let Ao = {f/9€Q(q) | f.g € Q[q], g(0) # 0} and M a weight U,(g)-module.

Definition 2.1. A crystal basis of M consists of a pair (L, B) with the Kashiwara operators é; and ﬁ
(i € I) as follows:

(1) L =@, Ly is a free Ag-submodule of M such that
M~Q(g)®s L and L,=Ln M,
= 1s a basis of the Q-vector space L/qL, where =bBn q ,
2) B uBﬂ'b'fh(@ L/qL, where B, = B n (L,/qL,

(3) & and f; (i€ I) are defined on L, i.e., &L, fiL c L,
(4) the induced maps ¢é; and f; on L/qL satisfy

&B,f;Bc BL{0}, and fib=10 ifandonlyif b=¢b for b b € B.
The set B has a colored oriented graph structure as follows:
b—> ¥ ifandonlyif fib=1.

The graph structure encodes information on the structure of M. For example,
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e |B,| = dimg M, for all ue wt(M),
o the graph of B is connected if and only if M is irreducible.
Theorem 2.2 ([20]). For A € P, the module V4(A) has a crystal basis (L(A),B(A)) given as follows:
(1) L(A) is the Ag-submodule generated by {fi, - fioa | r=0,i €I},
(2) B(A) = {fi, -~ fi,va + qL(A) | r = 0,i) € T}\{0}.
By (1.1), (1.5) and the above theorem, we have that for k € Z
ch(V(A) = D} IB(A)ule”  and  [B(A)u] = [B(A +k8)usnsl-
nepP
In particular,

(a) |B(A)u| = B(A + k) ,4ks| for any p € max™(A),

(2.2) (b) ch(V(A)) = 3 ,cp IB(A + kS),[er ke

Definition 2.3. An (affine) crystal associated to an affine Cartan datum (A, P, P,1IV,1II) is the set B
together with maps

wt:B — P, &0 :B—Zu{-w0} and é&,f;: B— Bu{0} (iel)
satisfying the following conditions:
(i) For i e I, b € B, we have
©i(b) = €i(b) + (wt(D), hy), Wt(Esb) = wt(b) + ay, wt(fib) = wt(b) — o,
(ii) if &b € B, then €;(&;b) = &;(b) — 1 and ¢;(&;b) = ¢;(b) + 1,
(iii) if f;b € B, then &;(f;b) = €;(b) + 1 and ¢;(fib) = ¢4(b) — 1,
(iv) fib="b"if and ounly if b = éjb’ forallie I, b,V € B,
(V) if 6Z(b) = —00, then ézb = f,b =0.

Definition 2.4. The tensor product B; ® Bs of crystals By and B, is defined to be the set By x By whose
crystal structure is given by

(1) Wt(bl ® b2) = Wt(bl) + Wt(bg),

(i) €i(br ®b2) = max(e(by), €i(b2) — (Wt(b1), hap), @i(by ® ba) = max(pi(ba), @i(br) + (wt(ba), ki),

e eib1 ®b if ¢; (b >€ib,~ b1 ®b if ¢, (b >€ib7

(i) eiby @by) = {1 B0 WAO)Zal) iy o) S0 G R A > i)

b1 ®é;by  if pi(b1) < gi(ba), b1 ® fiba if @i(by) < ei(b2).

Theorem 2.5. [19, 20] For M and N € Oiqnt with crystals By and By, the tensor product By @ By is
the crystal of M @ N € O

int*

2.2. Connection to finite type crystals. Now we interpret the arguments in Section 1.2 from the
viewpoint of crystals. As we mentioned above, B(A) can be understood as a colored oriented graph. For
7. the graph obtained by removing the arrows — of color

an extremal vertex s € I, we denoted by B(A)
5. Then we have

B(A)[1, = |_|B(w’) as gs-crystals.

Here B(w') is a connected component of B(A)|;,, which is a crystal of some irreducible module L(w’) over

UL](gs)'
For a highest weight A = >, m;A; and an essentially finite dominant maximal weight © = A —

Dies kic; € maxt (A|k), we have
B(A), = B(w), where w= 2 mjw; and 1 =w — Z ki,
i€Supp, (1) ieSupp, (1)

Definition 2.6. For an extremal s € I and a highest weight A € P*, we denote by B(A)|;. the connected
component of B(A)|;, originated from the highest weight element v, .
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The following lemma is obvious.

Lemma 2.7. We assume the following conditions:

1) For V(A) over an affine g and n € max™ (A|k), there exists an extremal s ¢ Supp such that
g Ui A\
Ngl1, is of finite type X,.
(2) For V(A') over another affine ¢ and p € max™ (A'|k'), there exists an extremal s’ ¢ Supp,, (i)
such that Ay, is of the same finite type X, .
(3) We have B(A)?|;, ~ B(A)°];, and n ~ p via a bijection o : I, — Iy which induces a diagram
isomorphism Ngl1, ~ Ag|r,; that is,
n=A- Z mioy;  and  p=AN — Z M (7) X (i) -
iel, iel,

Then we have
dimV (A),, = dimV (A'),,.

2.3. Young walls for level 1 representations. In [18], Kang constructed realizations of level 1 highest
weight crystals B(A) for all classical quantum affine algebras except Cr(Ll) in terms of reduced Young walls.
For the rest of this section, we assume that g is an affine Kac-Moody algebra of type Aéi)fl, Agi), BS),

DY or D).

Young walls are built from colored blocks. There are three types of blocks whose shapes are different
and which appear depending on affine Cartan types as follows:

Shape Width Thickness Height Type
@ -] 1 1 1 all types
- 1 1 12 | A B, D?),
J-20- vz 1 | 40,50.00

The walls are built on the ground-state wall , which is given below as the shaded part in (2.3), by
the following rules:

(1) Blocks should be built in the pattern given below in (2.4), (2.5) or (2.6).
(2) No block can be placed on top of a column of half-unit thickness.
(3) There should be no free space to the right of any block except the rightmost column.

Ground-state Young walls corresponding to A are given as follows:

Defife])> = ofafol1 ]
(23) AHA*I = n<1R n—l‘ n ? :: noom=llinin=l ?

[AF]:= fotstorey > A== Catalatal
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Now we give the patterns mentioned above:

1 1 1 1 1 n—1in—1jn—1n—1jn—1 n—1n—1n—1n—1jn—1
- 0 0 0 0 0 n n n n n n n n n n
212]212]2 ololo]lofo n|n|[n|n|n n|n|n|n|n
1 1 1 1 1 1 1 1 1 1 n—1ln—1n—1n—1n—1 n—lin—1n—1in—1jn—1
0 0 0 0 0
0Ol0OjJO0O]O0]O
1 1 1 1 1
n—1ln—1in—1n—1n—1 1 1 1 1 1 201 2|2]2]2
n n n | n n 0 0 0 0 0 1 0 1 0 1
n|n|mn n | n 0 0 0 0 0 0 1 0 1 0
n n n n n n—1n—1n—1n—1in—1 1 1 1 1 1 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1 n—1n—1n—1n—1jn—1 n—1n—1n—1jn—1jn—1
(2.4) “Tolololo]o “Tolololo]o Ialnlnlnln]| [alnlnln]n
20 0 9 o 0 S 0 0 (0] 0 FEREE O B HELH HEA T A Hifmimigim B
(2) (2) (2) 1)
Ay, Ao D’y Ao Dy As B, A,
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
/10 1 0/11 011 0/11/]0 1/10/11/10 1 0 /1071 0
o110 1170 1,70 17071 o1 o110 170 1,70 1
212|222 202|222 202|222 202|222
n—1n—1n—1n—1n—-1 n—1|n—1n—1jn—1n—1 n—2n—2n—2n—2n—2 n—2n—2n—2n—2n—2
n|n|[n|n|n n|n|n|nl[n =1 =1 Tn - - n /= n H—
n|n|n|[n|n n|n|[n|n|n n | A=/ n|A-1/n n|Aa-1/n|A-1/n
n—1in—1n—1n—1jn—1 n—1n—1n—1n—1n—1 n—2\n—2n—2n—2/n—2 n—2n—2n—2\n—2\n—2
202 2| 22 202|222 202|222 202 2| 22
(2.5) TA041 4041 o1 A04140 TA0A1L 4041 041404140
IV e Ve A Ve Ve iV e e IV e Ve i e IV Ve Ve e
(1) (1) (1) (1)
Br, Al By ) AO Dy, Al Dy, A[)
2 2 2 2 2 2 2 2 2 2 n—2n—2n—2\n—2\n—2 n—2n—2n—2n—2n—2
1 0 1 0 1 0 1 0 1 0 —=Yin /=Y n, n— n/n=Y|n n-y\n
0 1 0 1 0 1 0 1 0 1 n — n — n — n — n | f—
22| 2|22 202|222 n—2n—2\n—2\n—2\n—2| n—2n—2n—2\n—2\n—2|
n—1n—1n—1n—1n—1 n—1n—1n—1n—1jn—1 2 2 2 2 2 2 2 2 2 2
0 1 0 1 0 0 1 0 1 0
n|ln|n|n|ln n|n|n|n|n
1 0 1 0 1 1 0 1 0 1
n—1n—1|n—1n—1n—-1 n—1in—1|n—1n—1jn—1 202|222 202|222
202|222 202|222 n—2n—2n—2\n—2/n—2| n—2n—2n—2\n—2\n—2|
(2.6) TA0ALA0A1L oA 1404140 o Ty v Ry IO T Ry o v
o I (] 1 @ I ant @ L A0 1 _ Am Al Lnl Al On _ AV En | A A A
(2) (2) (1) (1)
Agn—1r M Agp1y Mo Dy’ Any Dy’ Ay

According to the ground-state Young walls in (2.3), we classify the fundamental weights A of level 1
into two types:

e Type B : those A whose ground-state Young wall consists of half-height blocks,
e Type © : those A whose ground-state Young wall consists of half-thickness blocks.

Remark 2.8. For classifying fundamental weights A; of level 1, we use 8 and ® by the following reason:

e When consists of half-height blocks, the vertex 4 in the affine Dynkin diagram is an extremal
vertex incident on a doubly-laced incoming arrow, which can be identified with the extremal vertex
n in the Dynkin diagram Ap, .
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e When consists of half-thickness blocks, the vertex ¢ in the affine Dynkin diagram is an extremal
vertex incident on a simply-laced edge, which can be identified with an extremal vertex n or n — 1
in the Dynkin diagram Ap, .

Later, we will see that this classification is closely related to finite simple Lie algebras of type B,, and
D,,.

Remark 2.9. For g = B,(Il), the patterns of Young walls based on Ag and A; are the same up to one
column; that is, if we ignore the first column of the pattern for A, then we get the pattern for Ag (see
(2.5) and (2.6)).

We denote by Y a Young wall stacked on whose type will be clear from the context. For a Young
wall Ya, we write Yo = (yx)7; = (..., y2,%1) as a sequence of its columns from the right. For u € Z34,
we define Young walls (Ya)s, and (Ya)<y as follows:

(YA)Zu = ( .- ayu+27yu+1ayu)7 (YA)Su = (yuayu—17yu—2a cee 7y1)-

Example 2.10. For g = Bél) and Ay, the following is an example of a Young wall Ya,:

7
el
5 2
= [ 3|
(2.7 g % R
5 | 2 2] 2
%0110 %9401 %

Definition 2.11.

(1) A column of a Young wall is called a full column if its height is a multiple of the unit length and
its top is of unit thickness.

(2) A Young wall is said to be proper if none of the full columns have the same heights.

(3) An i-block of a proper Young wall Y, is called a removable i-block if Y remains a proper Young
wall after removing the block.

(4) A place in a proper Young wall Y, is called an admissible or addable i-slot if Y o remains a proper
Young wall after adding an i-block at the place.

A partition A of m is a weakly decreasing sequence of positive integers (A; = A2 = -+ = Ay > 0) such
that |A] := Zle Ai = m, and we write A - m. Each integer \; is called a part of A. For a given partition
A= (A1, \a,...,\k), we say that the integer £(\) :=k is the length of \. We say that a partition \ is strict
if Ay >Ny >0for 1 <i</l(N)—1. Weset \; =0 when i > £()).

For a partition A = (A1, Aa,..., A;) and 1 < u < k, we define partitions As, and A, as follows:

Az = (Auy Aug1y e i)y Acuw = (A1, A2, -0 A).
Definition 2.12.

(a) For a given proper Young wall Yo = (y;)32,, define |Ya| = (|y1], |y2|,...) to be the sequence of
nonnegative integers, where the |y;| is the number of blocks in the é-th column of YA above the
ground-state wall , and call |Ya| the partition associated to Y.

(b) For a partition A and a fundamental weight A of level 1, we can build a proper Young wall so that
its associated partition is equal to \. If the Young wall is uniquely determined (see Example 2.13
below), we denote it by Y, and call it the Young wall associated to A and A.
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Example 2.13. For the proper Young wall given in (2.10), the associated partition is A = (6,3,1).
However, there are two proper Young walls corresponding to the partition (6, 3,1):

mww‘w’\
o
mww‘wN/

3 ’ 3
2 2
990% %alla%U

For the partition (5,3, 1), one can easily see that ij”l) is well-defined (see [31] also).

For the rest of this paper, we will always deal with partitions A so that the Young walls Y} are uniquely
determined, unless otherwise stated.
We denote by Z(A) the set of all proper Young walls on , and define the Kashiwara operators é;
and f; on Z(A) as follows: Fix i € I and let Yo = (3,)%_, be a proper Young wall.
(a) To each column y, of Ya, assign

—— if y,, is twice i-removable,

— if y,, is once i-removable,

—+ if y, is once i-removable and once i-addable,
+ if y,, is once i-addable,

++ if y, is twice i-addable,

otherwise.

(b) From this sequence of +’s and —’s, we cancel out every (4, —)-pair to obtain a finite sequence of
—’s followed by +’s, reading from left to right. This finite sequence (—---—,+---+) is called the
i-signature of Y and is denoted by sig,;(Ya).

(¢c) We define é;YA to be the proper Young wall obtained from YA by removing the i-block corre-
sponding to the right-most — in the ¢-signature of Yo. We define €;Y A = 0 if there is no — in the

i-signature of Y.
(d) We define f;Ya to be the proper Young wall obtained from YA by adding an i-block to the column

corresponding to the left-most + in the i-signature of Y5. We define fiYA = ( if there is no + in
the i-signature of Y.

For the Y,, in Example 2.10, one can compute that
SigO(YAo) = (_a ) +)a Sigl(YAo) = ("'7_)a Sng(YAo) = <+"")’ SigB(YAo) = ('a -+, )
We define
(a) wt(Ya) = A =, miay,
(b) €;(Ya)(resp. ¢;(Ya)) = the number of —’s (resp +’s) in sig,(Ya),
where m; is the number of i-blocks that have been added to the ground-state wall . We also define
cont(Ya) = A —wt(Yp) = Zmiai
i€l
and call it the content of Yu.
For the Young wall Y, in Example 2.10, we have

Wt(YAO) =Ag— (20&0 + 201 + 3a + 30&3) and COIlt(YAO) = 200 + 201 + 3as + 3as.

Definition 2.14. Let Yo = (..., y2,y1) and Yar = (..., y5,y}) be Young walls of the same affine type.
For t,u € Z>, we write

(Ya)=t 2 (Ya)su
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if, for each s € Z~,
(a) the ground patterns for y;,, and v, , coincide with each other,
(b) cont(yt4s) — cont(yy,, ) € QT

Recall we denote the null root by § = apag + a1 + -+ - + anpay.

Definition 2.15. Set d = 2 if g = D), and d = 1, otherwise.

(i) A connected part of a column in a proper Young wall is called a §-column if it contains dag-many
0-blocks, da;-many 1-blocks, ..., da,-many n-blocks.
(ii) A d-column in a proper Young wall Y is removable if one can remove the 6-column from Y and
the result is still a proper Young wall.
(iii) A proper Young wall is said to be reduced if it has no removable §-column.

We denote by Y(A) the set of all reduced proper Young walls on .

Theorem 2.16 ([18]).

(1) The set Z(A) with &, fi, wt,e; and @; is an affine crystal.
(2) The set Y(A) is an affine subcrystal which is isomorphic to B(A), where B(A) is the crystal of
the highest weight module VI(A).

2.4. Higher level representations. In this subsection, we will realize the crystal B(A) for A(c) = 2 in
terms of tensor products of Young walls. To begin with, we consider the crystal B(kA) of level k and see
that B(kA) is realized as

the subcrystal of Z(A)®* whose graph is the connected component of the k-fold

(2.8) tensor of ground-state Young walls, denoted by = ® - ®.
| —
k-times

Next we consider B(A;) where A; is a fundamental weight of level 2. In order to embed B(Ag) into a
tensor product Z(A’) ® Z(A”) for some A’ and A” of level 1, we first need equations of the form

(2.9) Ay —md=A +A" thiai for some me€ Z and t; € Z, i € I.
iel
For each g and a fundamental weight A of level 2, an equation of the form (2.9) is explicitly given in what

follows according to whether A’ and A” are of type © or %B. Using the pairing { , ), one can compute the
followings:

2u—1
Type ©: Aoy —ud =2A¢ — (uao + (u—1)ag + 2 (2u — i)ai> ,

1=2

2u
Aoyr1 —ud=A1 + Ay — (uao + uoy + Z(Zu +1-— i)ai> ,

i=2
(2.10) 2l
Aoy = 2A, — <uan + (u— Va1 + Z i—(n— 2u)ai> ,
i=n—2
n—2u
ANy ou1=An_ 1+ A, — (uan + uoy, 1 + Z i—(n—2u— 1)ai> .
i=n—2
n u—1
(2.11)  Type B: A, =2A,, — Z (i — u)ay, Ay —ud=2Ag — Z (u—1)ay.
i=u+1 1=0

Here we observe that what is subtracted in the right-hand side of each of the formulas in (2.10) and
(2.11) corresponds to a specific type of partitions. To be precise, we need the following definition.
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Definition 2.17. For a positive integer m, we denote by A(m) the strict partition given by
A(m)=(m,m-—1,...,2,1),
and call A(m) the m-th staircase partition. We also set A(m) = (0) for any non-positive integer m.
Now, for each A; of level 2, the crystal B(A;) is realized up to a weight shift by an element of Zb as the

subcrystal of Z(A')® Z(A”) generated by a highest weight crystal ® Yi\&(,,s) for some staircase partition
A(s). Concretely, we associate a tensor product of Young walls to a fundamental weight A of level 2 using
(2.10) and (2.11).

2u—1
(i) For type ®, Agy —ud =2A¢— (uao +(u—1oy + Z 2u — i)a-) — | A9 |:= ®Y7\(2u b,

— [N |- [A e vy,

o [A = [Aa] o i,

2u
Aoy —ud=A1+ Ay — (uozoJruqurZ 2u+1—ia

=2

n—2u+1
An2u=2An—<u0¢n (u—1)ap—1 + Z i—(n—2u)a )

e [ (B,
i=n—2
n—2u
Ap—ou_1 = 2A,, — (uan—i—uan 1+ Z i—(n—2u—1)a; | «— AZZLQ_ul_l *@Yx(ful),
i=n—2
Example 2.18. Forg:Dgl), we describe | AY” [and | AS” |
- [3]
3 44
0,0] _ 22 6,7 _ 5055
Ay _®0‘1 04’ Az _® 64741647
10,4 Eih
n—1
(ii) For type B, Au—2An—< Z (i —uw)a ><—> -®YAn W,
i=u+1
u—1
Au—u6=2A0—<Z(u—z ><—> =A@ YA
i=0

Example 2.19. For g = Bgl), we have

N |

AT =] A 7
> ®l7

The tensor products of Young walls given above will be denoted by without superscripts if there is
no possible confusion. One can see that the crystal B(A;) is realized as the subcrystal of Z(A) ® Z(A”)
generated by for each fundamental weight Ay of level 2.

Next, the crystal B((k — 2)A + A;) of level k is realized as
the subcrystal of Z(A)®*2® Z(A’)® Z(A”) generated by the highest weight crystal

(2.12) (k—2)A ®\M whose weight is (kK — 2)A + Ag up to Z5. Here, = ®k as

defined in (2.8).
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Remark 2.20.

(1) There are several other possible realizations of B((k—2)A + A;) depending on the choice of highest
weight crystals. For example, the connected component originated from

aA @Ay @A |c Z(IN®P*®@ Z(AN)QZ(A")QZ(A)® (a+b=k—2)
is also a realization of B((k — 2)A + A;), and we can also choose different highest weight crystals
for Ag.
(2) For each A € Pt of level k with A = }"" - m;A;, the crystal B(A) can be realized as the subcrystal
®m;
of Z(A;) ® Z2(A4,) ® - ® Z(A,,) for some (iy,12,...,4), which is generated by ®?:0 .
(Here we abuse notations a little bit and write = even if A; is of level 1.)

Throughout this paper we will use the following notational convention.

Convention 2.21. For a statement P, the number §(P) is equal to 1 if P is true and 0 if P is false.
Sometimes, we will write dp for 6(P).

3. YOUNG TABLEAUX AND ALMOST EVEN TABLEAUX
In this section, we make connections between tensor products of Young walls and Young tableaux.

3.1. Young tableaux. For partitions A() and A, we define the partition A(") %« A(?) by rearranging
the parts of A and A\? in a weakly decreasing way. As an obvious generalization, for partitions
AW AR AE=D AR we set

(3.1) ilw = A G A®) g AL\
t=

Example 3.1. For partitions A1) = (7,3,1), A(?) = (8,6,6,3) and A\®) = (7,5,4,1), we have
tfélA(t) = (8,7,7,6,6,5,4,3,3,1,1).

The Young diagram Y> associated to a partition A = (A1, Aa,...,A\x) is a finite collection of cells
arranged in left-justified rows, with the i-th row length given by A;.

We also define a partial order < on the set of all partitions, called the inclusion order, in the following
way:

pc A ifandonly if YHc Y

A skew partition, denoted by A/u, is a pair of two partitions A and p satisfying p < A. For a skew
partition \/p, the skew Young diagram Y* is the diagram obtained by removing cells corresponding to
Y*# from Y*. The notation \/p — m means that the number of cells in Y is m.

We will identify a usual partition A with the skew partition A/ZJ. In this identification, every definition
on the skew partitions in this section induces a definition on the usual partitions.

Definition 3.2.

(1) A tableau T is a filling of the cells in the skew Young diagram Y** with integers 1,2,...,m for
some skew partition \/p = m. In this case we say that the shape Sh(T) of the tableau T is A/p.

(2) A standard Young tableau is a tableau in which the entries in each row and each column are
increasing. We denote by SM# the set of standard Young tableaux of shape \/p.

(3) A reverse standard Young tableau is a tableau in which the entries in each row and each column
are decreasing. We denote by RM* the set of reverse standard Young tableaux of shape A .

Example 3.3. The following tableaux are a reverse standard Young tableau of shape (4,3,1) and a
standard Young tableau of shape (4,3, 1):

8]6[4]3] , 1[3]5]6]
2 1 €R(4,3,1), Tl:l? 8 68(4,3,1).
4

T =

7]
9]
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Note that there is an obvious bijection between RM# and SM* that replaces each integer i with m+1—1i,
where \/u - m. The two tableaux in Example 3.3 correspond to each other under this bijection. Thus we
have |RM#| = |SM#|. We will sometimes identify reverse standard Young tableaux and standard Young
tableaux using this bijection. We denote by f* = |[R*| = |S*|. Recall that there is a well known formula
for f* called the hook-length formula.

In this paper, we only consider reverse standard Young tableaux except the last 3 sections. Hence, for
simplicity, we call a reverse standard Young tableau just a Young tableau.

For later use, we define another notation related to a tableau.

Definition 3.4. For a Young tableau 7" with m cells, we denote by T~ for 1 < s < m the tableau which
is obtained by removing all cells filled with ¢ such that ¢ < s and replacing v > s with © — s for all u > s.

For T in Example 3.3,

5[3]2]

T>1 =

‘pucaxl
—

Let %Sff) denote the set of Young tableaux with m cells and at most & rows. It is well known that the
cardinality of B s equinumerous to the number of (k+ 1, k, ..., 1)-avoiding involutions in the symmetric
group G,,.

In the literature an explicit formula for |%,(j§)| is known only for k£ < 5 as follows.

Theorem 3.5. [10, 32] We have

[7YLJ [ J )

D= (| @D=N (), 1B = 6)| — m)_(2i+2)G

Bl = <l?J)’ e ; CZ(%)’ Bl = CrmgaCmgay, [B] =6 (22) (i +2)1(i +3)V
1 (Qm

2
i=0 1=0
m+1\m

o3

where C,,, = ) is the m-th Catalan number.

Note that each element in %,ﬁ’i’ can be expressed in terms of a sequence of strict partitions as follows:

Bk = {Az AW AO) 2 <k A S A (1< < f) and A 5.5 2O = A(m)}.

In Example 3.3, the tableau T' can be identified with ((8,6,4,3) 2 (7,2,1) 2 (5)) € %S):

6T4T3] [ ] (TT 1]

211 <—>A: D o]

\m\]oo

3.2. Tensor products of Young walls. As we have seen in Definition 2.12, we can construct a Young
wall when we have a partition A and a fundamental weight A of level 1. Since a (skew) Young tableau T is
identified with a sequence A = (A", ... )\(k)) of strict partitions, we can make a correspondence between
a (skew) Young tableau T of shape p/A with k rows and a k-fold tensor product of Young walls,

Yi or Ya:i=Ya, ®YA, ® @YX, with A=A,

for a fixed sequence A = (A;,, A4,, ..., A;,) of fundamental weights of level 1.

Example 3.6. For g = D$1)7 let A = (Ag, Ap) and consider the Young wall AZ’O in Example 2.18. Then
we have the correspondence

L (0)AB3) _ AGB) _[ 70,0
T=5051  Y(aoao —®YA0 = A7)
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>~

For g = B§1)7 consider T’ = 3]2] of shape (4,2)/(1) and A = (Ag,A;). Then the corresponding

Young wall Yz is given by

3.3. Some families of Young tableaux. In this subsection, we shall introduce special families of Young
tableaux and study the cardinalities of the families.

A composition A of m is a sequence (\1,..., ;) of nonnegative integers such that Zle A =m.
Definition 3.7. We say that a composition A of m is almost even when it satisfies one of the following
conditions:

e If m is odd, then it contains one odd part and the other parts are even.
e If m is even, then it contains two odd parts and the other parts are even.

We write A |-g m to denote an almost even composition A of m.
We denote by D (k < 'm) the subset of B consisting of the tableaux T such that Sh(T') kg m and
call T e @,S’f) an almost even tableau of m with at most k rows.

Example 3.8. For m = 5,6 and k£ = 2, we have

5[3[2] . ~@ [5]4]3]2]_ ~@ 6]5[3[2] . ~@ [6]5]4]3][2]_ ~®@
111 50 1 eD; and41 ¢©6,1 eD

For € € {0,1} and k < m, we denote by E‘ﬁm the subset of B consisting of the tableaux T satisfying
(3.2) A:=Sh(T)+m and X =€ (mod2) foralll<i<k.

We say that T e “Bm is an e-parity tableau for € € {0,1}. We set ‘)355) = 0‘13%) L 1‘4355) and call it the set
of parity tableauz of m cells with at most k& rows.

Example 3.9. The following are examples of parity tableaux:

5[3]2]
: 2[1
e, (952l og
1
On the other hand, we have
413]2], 0m(3) 5[3[2], @
i ¢ ‘le ) 4 1 ¢€B5

Remark 3.10. Note that ng,i_l = %52,,{_1, and by Theorem 3.5, we have
2 2 2m —1
ol = B = ().
Furthermore, one can observe that
* By, =05 0 Py and D) =P
e there exists a bijection 1 : @éi)l — O‘Bg,)l such that ¢(T) is the tableau which is obtained by
moving the cell filled with 1 from its row in 7" to the other row.
Since B2 | = (*™) by Theorem 3.5, we have
2 2 2m 2m —
(33 o) - PRl = rl = 5 (2 - (1) -

m m
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4. LATTICE PATHS AND TRIANGULAR ARRAYS

In this section, we find an interesting relationship among Young tableaux with at most £k = 2 or 3
rows, triangular arrays related to lattice paths and composition multiplicities of m-fold tensor products of
irreducible sly-modules.

4.1. Motzkin triangle.

Definition 4.1. A Motzkin path is a path on the lattice Z? starting from (0, 0), having three kinds steps
called an up step U = (1,1), a horizontal step H = (1,0), a down step D = (1,—1), and not going below
the z-axis.

Example 4.2. The following path is a Motzkin path from (0,0) to (10, 1):

S
?

(4.1) (0,0) (2,00 (40) (6,0 (3,0 (10,0)

We also express the above path as a sequence of steps by UHHUUDDDHU.

Definition 4.3. A generalized Motzkin number M, ) for m > s > 0 is the number of all Motzkin paths
ending at the lattice point (m,s). In particular, we write M,,, = M, o) and call it the m-th Motzkin
number.

Interestingly, the Motzkin number M,, is also equal to the number of all Young tableaux with m cells
and at most 3 rows, see [4]. That is, we have

(42) M = 130 = Y ¢, (m)

A recursive formula and a closed formula for M, ) are known and easy to derive:

(4.3) Mim,s) = Min—1,6) * Mn—1,6—1) + M(m—1,s41)

» SO N (G Y )]

Consider the following triangular array consisting of M, ;) and reflecting the recursive relation (4.3).

(4.5)

Here a solid line represents the contribution of a number to the number connected by the line in the next
column. For example, we obtain 76 as 25 + 30 + 21 from the previous column. We call this triangular
array the Motzkin triangle.

Remark 4.4. For m € Zx¢, let V,,, be the (m + 1)-dimensional irreducible module over sly. In particular,
the standard module V is (isomorphic to) V4 and the adjoint module V is V4. The Clebsch-Gordan formula
yields

Vi ®V >V, 0@V, ®V,pyo form = 2.
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Using (4.3), one can show that M, ) is equal to the multiplicity of V5511 in 'V ® VO™ The same
observation holds for V:=V; @ Vj (see [2]); that is, one can check that My, ) is equal to the multiplicity
of V, in V®™ . Thus we have

(4.6) 3™ = (s + DMn.s).
s=0

4.2. Riordan triangle.
Definition 4.5. A Riordan path is a Motzkin path which has without horizontal step on the z-axis.

Example 4.6. The following path is a Riordan path:

(47) (0,00 (2,0) (4,0) (6,00 (80) (10,0)

Note that the path in (4.1) is not a Riordan path.

Definition 4.7. A generalized Riordan number Ry, sy for m > s > 0 is the number of all Riordan paths
ending at the lattice point (m, s). In particular, we write R,;, = R(;,,0) and call it the m-th Riordan number.

The Riordan number R,, has a closed formula: Rp = 1, Ry = 0 and
Lm/2]

1 m+1\/m-—1—1
48 R, = for m > 2.
(4.8) m+1;< i )( i—1 ) orm

We see that R(,, ) has a recursive formula

(4.9) Rome) = {R(m—l,s) +Rim—1,5-1) + Rim—1,641) if s =1,

Rim—1,1) if s =0.

Consider the following triangular array consisting of R, ;) and reflecting the recursive formula (4.9).

1/5><21><m

(4.10) ol o <
143>—<10X29z84zm

142X6><15><40>—<105><m
141z3z6><15><36>7<91>7<m
1/0><1><1><3><6><15><36><»~

We call this triangular array the Riordan triangle.

Remark 4.8. Let V be the adjoint representation of sly as before. By the same argument as in Remark
4.4, the number R, , is equal to the multiplicity of Va, in the decomposition of VO™, Then we have the
identity

3" =

13

(28 + 1)R(m75).

Il
o

S

Let ﬁ(m,s) = M) — Rm,s)- In other words, ﬁ(m,s) is the number of Motzkin paths ending at (m, s)
which have at least one horizontal step on the x-axis.
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Lemma 4.9. Form > s > 1, we have B
Rm,s) = Rim,s-1)-

Proof. We prove this by constructing a bijection ¢ : A — B, where A is the set of Motzkin paths ending at
(m, s) with at least one horizontal step on the z-axis and B is the set of Motzkin paths ending at (m,s—1)

with no horizontal step on the x-axis. Let T' = t1ts...t,,, € A, where tq,ts, ..., 1, are the steps of T in this
order. Let t; be the first horizontal step on the z-axis. Then we define ¢(T) = t1...t;—1(1, 1)ti1 ... tim.
It is easy to see that ¢ is a bijection from A to B. O

There is a simple relation between Motzkin numbers and Riordan numbers.

Lemma 4.10. For m > 0, we have
M., = R, + Rip41-
Proof. By definition, we have M,,, = R,, + R,,. By Lemma 4.9, we have
Ry, = ﬁ(m,O) = Rim,1) = Rim+1,00 = Rm1- O
Note that R(;, ) = M, ) = 0 if m < s.
Proposition 4.11. For m,s > 1, we have

R(m,s) = M(mfl,s) + M(mfl,sfl) - R(mfl,s)v

and
m—s

R(m,s) = Z (_1)i(M(m—l—i,s) + M(m—l—i,s—l))'
=0

Proof. The left side of the first equation is
Rim,s) = Rim—1,s-1) + Rim—1,5) T+ Ram—1,541)-
The right side is B B
R(m—l,s) + R(m—Ls) + R(m—l,s—l) + R(m—lﬁs—l) - R(m—l,s)'

By Lemma 4.9, these two quantities are equal.
Using the first identity iteratively, we obtain the second identity. O

Proposition 4.12. For m > 1, we have

R = D5 | = 1)

Proof. One can see that %7(7?{) = &p,‘f;) |_|®£2). Consider the map ¢ : &]3,(2) — 92)71 given by
T+— T>17

where T is defined in Definition 3.4. Then it is easy to check that the map ¢ is a bijection. Thus we
have |‘I§52)| = |33£3)_1| Now we use an induction on m. If m = 1, then |‘J3§3)| = R; = 0. Assume that

pm = Ryp. SINce m = m we nave

Remark 4.13. The set of parity tableaux ‘,]352) and the set of almost even tableaux @7(2)71 can be taken as

tableaux models for the Riordan number R,,, so much as the set %5,31) can be used to realize the Motzkin
number M,,.

4.3. Catalan triangle.

Definition 4.14. A Dyck path is a Motzkin path without horizontal steps.
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Example 4.15. The following path is a Dyck path:

A

7

(4.11) 0,00 (20 @0 (6,0 (80 (10,0)

Note that the path in (4.7) is not a Dyck path.

Definition 4.16. A generalized Catalan number C,, o) for m > s > 0 is the number of all Dyck paths
ending at the lattice point (m, s). In particular, we write C,, = C(2,,,0) which is known as the m-th Catalan
number.

A recursive formula and a closed formula for C,, ) are also well-known:
ml(s+1
(412) C(m,s) = 5m£zs ﬁlmf)sw C(m,s) = C(m—l,s-&-l) + C(m—l,s—1)7
2 2 -

where we write m =5 s for m = s (mod 2).
We have the following triangular array consisting of C,, ) and reflecting the recursive relation (4.12).

1/

1/0\...

1/0\6/»»»

1/0\5/0\\»»»
1/0\4/0\14/»»»
1/0\3/0\9/ 0 \
1/0\2/0\5/0\14/-»»
1/0\1/0\2/0\5/ 0 \\

Remark 4.17. By the same argument as in Remark 4.4, the number C,, ;) is equal to the multiplicity
of V, in the decomposition of V&,

Remark 4.18. It is well-known that the number of standard tableaux of shape A = (m + s, m) coincides
with the number C(2;, 15 -

4.4. Pascal Triangle. If we consider lattice paths from (0,0) to (m,s) for m = s > 0, having U = (1, 1)
and D = (1,—1), that may go below the z-axis, then the number B, ,) of such paths is given by

m
B(m,s) = 6m£2s <ms>

2
Clearly, we have B(,, s) = B(—1,s+1) + Bm—1,s—1) and the corresponding triangular array is the (half of
the) Pascal triangle. The number B, ) is also equal to the multiplicity of V;,, 4, in the composition series
of V,, ® V®™ where V is the standard module over sl as before.
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We present the following triangular array consisting of By, ) for reference.

1/

1/0\\...

1/0\7/”'

(4.13) 1/0\6/0\'”
1/0\5/0\21/~.

1/0\4/0\15/0\~~
1/0\3/0\10/0\35/-~
1/0\2/0\6/0\20/0\.“

5. DOMINANT MAXIMAL WEIGHTS

In this section, we investigate the set of dominant maximal weights of highest weight modules V(A)
over affine Kac—Moody algebras of classical types. We will see that most of the dominant maximal weights
of levels 2 and 3 are essentially finite, and will classify them into the corresponding finite types. Then,
by Lemma 2.7, the multiplicities of distinct dominant maximal weights of the same finite type can be
determined simultaneously even though they appear in highest weight modules over different affine Kac—
Moody algebras. In other words, the multiplicities of essentially finite dominant maximal weights depend
only on their finite types.

Another goal of this section is to determine certain families of dominant maximal weights of all levels,
which can be associated with pairs (A(m),A(s)) of staircase partitions and are essentially finite of type B,
or D,. Again, applying Lemma 2.7, we see the following:

For two essentially finite dominant maximal weights of the same finite type, which are
(5.1) associated with the same (A(m), A(s)), their multiplicities coincide with each other, even
if their affine types are different.

Throughout this section, the (fundamental) weights A of level 1 will be written in boldface; the weights
A of level 2 in regular; the weights A of level > 3 in upright. As arguments and techniques are similar,
some details are omitted for other types after we consider type B,gl) thoroughly.

5.1. Type ASL- This case was studied in [13, 14, 36, 37]. In this subsection, we briefly review their
results and show that the dominant maximal weights obtained in [36, 37] are essentially finite. Hence we
can reduce them as dominant weights for some L(w) over A,,_1.

F0r0<s<nand1<€<[n2_sJ and1<u<[%J,WedeﬁneAsonJrAS and

n—1 s l+s—1
g i= Z (k—n+£)ak+€2ai+ Z (£—j+s)ay,
k=n—£+1 i=0 j=s+1
s—1 n—1 u—1
Mo s 2= Z (k*S‘FU)OLk‘FUZOLi‘FZ(U*j)OLJ’.
k=s—u+1 1=s 7=0

Lemma 5.1. [36, Theorem 1.4 (i)] For V(A) over A

max*(AQ):{A}I_l{A—/\ZS | 1<£<t::{;l2sJ}|_|{A—uZ7s t<us<|]}.

The above lemma tells us that every element in max™ (A|2) is essentially finite, since

(5.2) l+s<n—f¢+1 and u<s—u+l.
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Now we show that we obtain all the dominant weights of L(w; + wi4s) from max™(A|2). Since
J=10,+s—1] |_|[n—£+ L,n —1]:=Supp(\},) & I :=[0,n — 1]
and £+ s <n—{+1 for all £/, we can choose s +t as an extremal vertex (see (1.3)). Thus
O = (A} [{A- 2, [1<e<t}
can be considered as a subset of dominant maximal weights of L(w; + wy4s) over A,,_1 via the embedding
[0,t+s—1]u[t+s+1,n]—{1,2,...,n— 1} such that z —> a = s+t — z (mod n).
Hence €7 can be identified with
(5.3) {Wimr + Wersir | 0 <7 <t}

which is a subset of dominant weights of L(w; + wiys). (Here we set wg :=0.) By [12, §13], L(w: + wits)
has (¢t + 1)-many dominant weights and hence the set in (5.3) indeed coincides with the set of dominant
weights of L(ws + wiys).

By a similar argument, the set

Q= {A}U{A*NZ,S [1<u<t = [EJ}
can be identified with the dominant weights
(5.4) {wy—r + Wn—sqp—r | 0 <7 < '}
of L(wy + wp—sttr) over Ap_q.
5.2. Type Br(Ll). Assume that g = B,(LI). If A= Ag + A, one can check that there are only two maximal
weights A and Ay + A,, — 0, and their multiplicities are 1 and n, respectively. When A = A; + A,,, the

same is true with Ag replaced by Aj.
Assume that A is of level 2, other than Ag + A, and Ay + A,,; that is,

2A¢ if1 =0,
Ag+ Ay ifi=1,
A= 14+0b60+6in)Ni+6i1A0 =
(00 + 6in) TR0 24, if i = n,
A; ifi#0,1,n.

Recall that
d=ap+a1+2(as+--+a, and c=hog+hy+2ha+- -+ hy_1)+ ha,
and we have
(5.5) 2ot 0 (A+ Q) = {A =K+ > mia; | Ahi) >0 (1 <i<n), (AF) <2},
i=1
where 6 = a1 +2(ag + - + ap).

Lemma 5.2. Let A = (85,0 +05,1)Ao +As (0 < s <n—1). Then the following weights are in max™(A|2),
i.e., they are dominant mazimal weights of V(A) :

(]- + 52u71+s,n)A2u71+s —ud =

(5.6) A — cont (YX?*MMQH)) + cont (Y;\‘(jfl)> for 14+d6s0<u<|(n—s+1)/2],
(5.7) (1 + Saussn)Aours — ud = A — cont (Yﬁf“‘“”) + cont (v?{;‘”) for 0<u<|(n—s)2

Proof. The equalities in (5.6) and (5.7) can be checked by direct computations. In each equation in (5.6)
and (5.7), the RHS shows that the image of the weight under the orthogonal projection is in A + Q, and
the LHS shows that the image of the orthogonal projection belongs to 2C,s. Thus the weights are in
max ™t (A|2) by Proposition 1.4. O
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Let g,, be the finite dimensional subalgebra of g, generated by e;, h;, f; for ¢ € I,, := I\{n}, as in Section
1.2. Then g, is of type D,,. For each dominant maximal weight = A —> . _; kj; in (5.7), we have k,, = 0
and so p is essentially finite of type D,,. Denote by w the dominant integral weight of g,, corresponding to
A and consider the highest weight module L(w) of g,, with highest weight w.

Proposition 5.3. All the dominant weights of L(w) over g, of type D,, are obtained from the weights in
(5.7) through the correspondence A — >, ki, — w — Y., kiay.

iel, iel,
Proof. Since

n ¢ Supp (cont (YMZ“ 1+s)> — cont (YX(:_U)) ,
we can take n as an extremal vertex. Thus we can identify the weights in (5.7) with
ez | 1<k < (0= 8)/20} | {(Bo0 + Got)im + wnsl,
which is the subset of dominant weights of V' ((ds,0 + s,1)wn + wn—s) over g, via the embedding
I, =[0,n—1] — [1,n] such that i— n—i.

By [25, Lemma 2.6], V((ds,0 + 05,1)wn + wn—s) has (|(n — s)/2] + 1)-many dominant weights and hence
the weights in (5.7) coincides with the set of dominant weight of V((ds,0 + 0s1)wn + Wn—s)- O

Example 5.4. For g = Bél) and A = A3, the dominant maximal weight A7 — 26 € max*(A|2) can be
written as follows:

Ay —26=A— {30[04‘3&14-2 —Z }+{OZ0+O¢1+OZQ}
=2

+ cont

il

= A — cont

‘222

%0110011001

Define Yj;én(n) (e = 0,1) to be the Young wall determined by the staircase partition A(n) whose top of
the first column is the half-thickness block with color e.

Example 5.5. The Yj‘x‘;(") and Y;;ln(") for Bél) are given as follows:

'y
N | W | O
Moa»bcno‘

1

0
A A1
YA(:(3) 212 and YA3(3) = 212

Lemma 5.6. Let A = (1 + 05,)As +51A0 (1 < s <n). Then the following weights are in max™t (A|2):

(5.8) (1+0un)Ay = A — cont ( (n u)) + cont (Yx(:_s)) (2<u<s),
(5.9) Ao+ Ay = A —cont < (n= 1)) + cont (Yj;(ffs)> ,

o m< 20) o (1)

(5.11) 9A¢ = A — cont ( M(n)) + cont (Yx(:’S)) .

For A = 2Ay, we have

(5.12) 2A; — 25 = 2A¢ — 2(ag + Y @) € max™ (A]2).

1=2
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Proof. One can use the same argument as in Lemma 5.2. O

Let g1 (resp. go) be the finite dimensional subalgebra of g, generated by e;, h;, f; for i € I; := I\{1}
(vesp. i € I; := I\{0}). Then g; (resp. go) is of type B,,. One can see that each dominant maximal weight
p=A—=>,_;kio; in Lemma 5.6 is essentially finite of type B,.

Proposition 5.7. All the dominant weights of L(w) over B,, are obtained from the weights in Lemma 5.6
through the correspondence A — ki — w— Y, ko

i€l 1€l

Proof. One can easily check that 0 (resp. 1) does not appears as an element of support for weights in
(5.8), (5.9) and (5.11) (resp. (5.8), (5.9), (5.10) and (5.12)). Hence we can take 0 (resp. 1) as an extremal
vertex. Thus we can identify the weights in (5.8), (5.9) and (5.11) (resp. (5.8), (5.9), (5.10) and (5.12))
with

{wep |0<k<s}, ifs#0,

{2w1, w1, wo} if s =0,
which is the subset of dominant weights of L((s,5 )wn +(140s,0)ws s, ,) over By, via the natural embedding

Iy =[1,n] > [1,n] (resp. [0]u[2,n] — [1,n]).

By [25, Lemma 2.4], L((dsn)wn + (1 + 0s,0)wWsts,,) has (s + 1 + d50)-many dominant weights and
hence the weights in (5.8), (5.9) and (5.11) (resp. (5.8), (5.9), (5.10) and (5.12)) coincides with the set of
dominant weight of L((0s,n)wn + (1 + 0s,0)Wst6,.4)- O

Let max;" (A]2) be the set of the dominant maximal weights in Lemma 5.2 and max;(A[2) be the set of
those in Lemma 5.6. Combining these two sets, we obtain the whole set of dominant maximal weights as
stated in the following theorem.

Theorem 5.8. Assume that g = Br(Ll) and A = (850 + 051)Ao + dsnAyy + A (0 < s < 1) is of level 2.
Then we have the union
max" (A[2) = max; (A]2) | |max;(A[2),

and the number of elements in max* (A|2) is equal to n + 2, since
lmax; (A|2)] =n—s and |max}(A2)] =s+2.
Before we begin the proof of Theorem 5.8, we make some preparation. Recall that for a statement P,

the number §(P) is equal to 1 if P is true and 0 if P is false. Sometimes, we will write dp for §(P).
Now we consider the conditions on max™t(A[2) for A = (05,0 + d5,1)Ao + ds.nAn + As (0 < s < n). For
n= Z zi0; € 2Ca N (A 4+ Q) such that i # 0, the condition (5.5) tells us that
i=1
(1) n(h1) = 221 — w9 = =015,
(1) ﬁ(h7) = —x;—1+ 2I1 — Tigp1 = 751'75 (2 <i1<n-— 1),
(H) n(hn) = _21'?1*1 + an = _2671,53

and
Mf) = 22 + (2 — 05,1 — 205,0) < 2.
Then by summing inequalities (2)~(n—1) and 3 x (n), we have
(5.13) —x1 + x2 = —6(s > 1).
We have also that
(a) for s<i<n-—1,
Tir1 = x; and x; = ;41 implies x; = Tij11 = Tjpo = -+ = Xp;

(b) for 1 <i<s—1,
—x; + Tip1 = —0(1 < i < 8);
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(c) for all 2 <i < mn,
1 +x; = wip1 —0(i =) xd(s=1).
With the inequality (1), the inequality (5.13) implies that
x1=—0(s=1) and z9>=—-2§(s>=1).

Proof of Theorem 5.8. (a) Assume that A = 2A. Then we have the inequalities
0<z1<29<2 and 2z;1—29=0.
Then (z1,22) = (0,0), (1,1), (1,2) and (2,2). Now one can prove that, for n = .\ | z;0; € 2Car N Q such
that 1 # 0, we have
Zzal—&-uZat for some 1 < u < n, or
T] =
Z a; = 2A; — 25.

=1

Here {}/' i a; +u),,_, a;} contributes to (5.6) and (5.7).

(b) Assume that A = Ag + A;. Then we have the inequalities
r1=2—-1,1>22x -2, 2x1 —2x9 =2 -1, —x1+220 —2x3=>0and x, = --- = 9 = x7.

Then (z1, z2) = (0,0), (0, 1), (1,1) and (-1, —1). Now one can prove that, for n = A;+> | z;0; € 2CarnQ
such that n # A, we have

iz—l u—l)iat for 2 <u < mn,
n= i=1
ia1—2A1—60r —Zaz—2A0
i=1

= 1=1

Here {30 (i —1) oy + (u—1) X", a;} contributes to (5.6) and (5.7).

(c) Assume that A = A; (2 < s<n—1)or 2A,,. Then we have inequalities
12-1, 02z >2-2, —x1+x22-1, Xp2Tp12 " 2Tsp1 = Ty,
-z + 22, —x;41 =20 fori<s, 2z —x9 =0,
T+ 2w fori<s and x +x; =z —1fori>s.
Then (x1,2z2) = (0,0), (1,0), (—1,—2) and (0, —1).
(1) Assume z7 = 0. Then, for 2 < i < s — 1, we have

(5.14) Ti = xip1 = x;— L

(1-1) If there exists 1 < u < s — 1 such that ;.1 = z; — 1, take ¢ the smallest one; that is x441 = —1.
Since
(5.15) —xy — 2@y 1 — Typqo = 0,
the inequality (5.14) implies 242 = —2. Repeating this process, we obtain xp11 = 2 —1fort < h < s—1.
Since

—Tg—1 — 21'5 — Tg+1 = *17

we have xs = x441 and hence x4 = 541 = -+ = z,. Thus 7 is of the following form
S n

(i—t+1) i+ (s—t+1) > oy forl<t<s—1,

i=t

which contributes to (5.8) and (5.9).
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(1-2) Now we assume that qy = 29 = -+ = x5 = 0. Then we have, for u > s,
Tyl S Ty < Ty—1 + 1.

Then, by applying the same method as in (a), we see that 7 is of the following form:
u n
Z (i—3s) ai—l—(u—s)Zat fors+1<u<n
1=s+1 t=u
which contributes to (5.6) and (5.7).
(2) Assume (x1,22) = (1,0). As in (1-1), we can conclude that

S

77:041—2(2‘—2)%—(3—2) 2 a; = 2A, — 0.

i=3 j=s+1
(3) Assume (z1,22) = (—1,—2). As in (1-1), we can conclude that
S n
n=72iaifs Z aj = 2Ag. [l
i=1 j=s+1

Definition 5.9. Assume that 7 € max™t(A|2) is of the form
n = A — cont (Yx(m)) + cont (YX(S)> or A — cont (Y%)*A(m71)> + cont (Yx(s)> )

where s = 0 if A # 2Ap and s = —1 if A = 2A. (See Remark 5.10 below.) Then we define the index of
the maximal weight 7 to be (m, s). Similarly, if € max™(A|2) is of the form

n = A — cont (Yj\((")> + cont (Yj\x(s)) , €=0,1,

then define the index of the maximal weight 7 to be (n, s).
Remark 5.10. Though we have A(0) = A(—1) = (0), we use A(—1) when A = 2A,.

Now we consider A of level > 3. The following lemma is useful:
Lemma 5.11. For any ', A" € P with A'(c) = k and A"(c) = k', we have

A" + maxt (A'|k) € max™ (A" + A'|k + k).

Proof. The assertion follows from Proposition 1.4. O

In the following lemma, we obtain maximal weights of level 3 that do not come from those of level 2.

Lemma 5.12. Let A = (14 650 + 65,1)A0 + As (0 < s < n—1). Then the following weights are in
max*(A|3):

(516) A+ (1 + 52u+s,n)A2u+s — (u + 1)6 = A — cont (st"l)*?\@u—l-ks)) + (041 _ aO)
+ cont (Yj;(os_l)) Jor b5+ 051 <u<|(n—s)/2],

(5.17) A1+ (1 + b2uti4sn)Nout14s — (w+1)0 = A — cont (Yj\x(fuﬂ)) + (o1 — )

+cont (YAo™) for do0<u<ln—1-2)2

( n

3a0+32ai if s =0,
1=2

(5.18)  3A;— (246008 =A—{ |200+2)> ey if s =1,
=2

2a0+2(i+1)ai+(8+1) Z aj) if2<s<n-—1,
=2 j=s+1
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n

(5.19) A1+Au—6—/\—<iai+ i (J+l—wa;+(s+1—u) Z ozt> 2<u<s—1).
i=0

j=u+1 t=s+1

Proof. The equalities can be checked through direct computations. Then, as in the proof of Lemma 5.2,
we use Proposition 1.4 to show that the weights are dominant maximal. U

We denote the set of weights in Lemma 5.12 by max};;(A|3). By Lemma 5.11, we also have
Ap + maxt(A|2) € maxT(Ag + A|3) and A, + maxt(A|2) € maxT (A, + A[3),
where A is of level 2.
Theorem 5.13. We have
max " (Ag + A|3) = (Ag + maxT (A]2)) |_| max;; (Ao + A|3)
for A= (ds0+0s1)Ao+As (0<s<n-—1), and
max’ (A, + A|3) = A, + maxT(A]2)

Jor A = (14 05 n)As + 0s1A0 (1 < s < n). In particular, the number of elements in max™ (Ao + A3) is
equal to 2(n + 1), and the number of elements in max™t (A, + A|3) is equal to n + 2.

Proof. One can prove by applying a similar argument to that of the proof of Theorem 5.8. O

Proposition 5.14. For A:= (1 + 65,)As + 6510 (1 < s < n), the set A, + max;;(A|]2) of dominant
mazimal weights corresponds to the set of dominant weights of L((1 + 05 )wn + ws) over By,.

Proof. As in Proposition 5.7, one can show that the set A,, + max};(A[2) corresponds to
{wn +wi | 1<k < s} |_|{(1 + 0s,n)wn + W},
which is a subset of dominant weights of L((1+ 0,y )wy, +ws) over By,. By [25, Lemma 2.4], L((1+ 05 »)wn +

ws) has (s + 1)-many dominant weights and hence our assertion follows. O
Define
W fl<s<n-1
(5.20) Ws =< Wp_1 +w, ifs=n-—1,
2n, if s =n.

Proposition 5.15. Let a be the set of dominant weights in (5.18) and b those in (5.7). Then the union
of a and Ag + b corresponds to the set of dominant weights of L(w) over D,,, where w := wy, + @&p_s for
0<s<n—1.

Proof. Clearly, the sets a and Ay + b are disjoint. As in Proposition 5.3, one can show that the union of
a and Ay + b corresponds to
{{ws_ﬁwn_éi |i=0,1,...,s} ifs<n—1,

5.21
(5:21) 1=0,2,3...,s} ifs=n,

{‘:}n—i + Wn—§;

which is a subset of dominant weights of L(w). Here &g is to be understood as 0 and 6; = 1 if 7 is an
odd integer and ¢; = 0 otherwise. By [25, Lemma 2.6], L(w) over D,, has (n — s + 5.0)-many dominant
weights and hence our assertion follows. 0

Definition 5.16. Assume that 7 € maxt (A + AJ3), and set A = A + A.
(1) If n = A + p with g € max™(A|2) of index (m, s), then we define the indezx of  to be (m, s).
(2) Assume that 7 is of the form

n = A — cont (Y;\\(m)) + (a1 — ag) + cont (Yj\x(,s))

or A — cont (Y%)*A(mil)) + (a1 — o) + cont (Yj\\(,s)) )
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where s = 0 if A # 3Ag and s = —1 if A = 3A¢. (cf. Remark 5.10) Then we define the indez of the
maximal weight 7 to be (m, s).

We generalize Definition 5.16 to higher levels.

Definition 5.17. Assume that 7 € (k—1)A + max™ (A + AJ3) for k > 1, and write n = (k —1)A + p with
p € maxt (A + A|3). If p is of index (m, s), then we define the index of  to be (m, s).

Whenever the index is defined for a maximal weight n € max™ (kA + Alk + 2), k > 0, the weight n will
be called a staircase dominant mazimal weight. The set of staircase dominant maximal weights will be
denoted by smax™ (kA + Alk + 2).

We close this subsection with a conjecture on the number of the dominant maximal weights.

Conjecture 5.18. Assume that g = B,Sl), and let £ > 2.
(1) The number of elements in max™ ((£ — 2)Ay + Al¢) is equal to

(i) = (e ™)

(2) The number of elements in max™ ((¢ — 2)A,, + AJ¢) is equal to

(n + [Z/QJ) N (n + 4/2] — 1)
1€/2] le/2]-1 )
5.3. Type C'T(Ll). Unlike other affine types, the set max™*(A;|1) is not trivial for any fundamental weight

A of type C’T(Ll), 0<s<n.

For 0 < s < n, we define
s 20—1

(5.22) o =log +20) i+ D (20— jlag; (1<E<|(n—5)/2)),
i=1 j=1
2u n—s—1
(5.23) E =D i guri+2u Y. e tua, (1<u<|s/2).
i=1 j=1

Using a similar argument to that of the proof of Theorem 5.8, one can prove the following theorem:

Theorem 5.19. For 0 < s < n, we have
max" (As|1) = {AJ| [{Ac = 1< e<|(n—9)/21}| [{As =€, [1<u<]|s/2]}.
Now we show that every element in max*t(Ag|1) is essentially finite. Since
Supp(¢7,) = [0,2¢ — 1+ 5] < [0, 7],
we can choose n as an extremal vertex. Then the set
2= (A [{A -G 1< e<|(n—s9)/21}
can be considered as a subset of dominant maximal weights of L(w,_s) over C,, via the embedding
[0,n—1] — [1,n] given by i — n —i.

Hence Q7 can be identified with
(5.24) {wn—san | 0 <k < [(n—5)/2]}

which is a subset of dominant weights of L(w,_s) (Here we set wp :=0). By [25, Lemma 2.5], L(w,—s) has
([(n — 8)/2] + 1)-many dominant weights and the set in (5.24) coincides with the set of dominant weights
of L(w,—s) indeed.

In a similar way, the set

Oy = {AJ| {A -0, [T <u<s/2]}
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can be identified with the set of dominant weights

(5.25) (war1 o [0k < (5 4+ 1)/2])

of L(ws+1) over C,.

5.4. Type Dﬁf). Recall that the affine type D,(Ll) has fundamental weights Ag, A1, A,—1, A, of level 1.
Since (Ap, A1) and (A,_1,A,,) are symmetric, we only consider the case when

A=(6s0+0s1)A0+As (0<s<n-—2).

Lemma 5.20.
(1) If s is odd, we have
(526) A() + Al; A2u+1 € max"' (A‘Q) fO’I" 1<u< 851,
and if s is even,
(5.27) 200, 2A1 — (1+050)8, Ay emax®(A2) forl<u< 5
(2) For 1 <u < |(n—2—s5)/2]|, the following weights are in max™*(A|2):
(5.28) Agioy —ud = A —cont (Yj‘\(f“_“rs)) + cont (Yi‘\gs_l)) .
(3) Assume n — s is an even integer. Then the following weights are in maxt(A]2):
2A, — D88 = A~ cont (Yi’;’l(nfl)) + cont (Yj‘\(:_l)) ,
(5.29)
n—s An(n—1 A(s—1
2A 1 — 3 d=A—cont (YAO( )) + cont (YA(O )) ,
where Yj\fo("_l) (e = n—1,n) is the Young wall whose top of the first column is the half-thickness block

with color €.
(4) Assume n — s is an odd integer. Then the following weight is in max™t(A]2):

—_ 1 _ _ .
(5.30) A1+ A, — % 5= A — cont (Y}(O" 2)) + cont (Y,ﬁ(j ”) .

Proof. The lemma can be prove using direct computation as in Lemma 5.2, and we omit the details. O
Remark 5.21. We see that all the weights in Lemma 5.20 (2)-(4) are essentially finite of type D,,.

Theorem 5.22. For A = (§50 4+ d5.1)Ao + A5 (0 < s <n—2) of level 2, the set max™(A[2) is completely
given by the maximal weights in Lemma 5.20. In particular, we have

”T*B if n is odd,
|max™ (A[2)] = 5 +3 ifnis even and s is even,
5 otherwise.
Proof. One can prove the theorem by applying a similar strategy as in Theorem 5.8. O

We define the index of a maximal dominant weight in a similar way to Definition 5.9.
Definition 5.23. Assume that € max™*(A|2) is of the form
n = A — cont <Y;\\(m)> + cont (Yx(s)) ,

where s = 0 if A # 2Ap and s = —1 if A = 2A(. (See Remark 5.10.) Then we define the index of the
maximal weight 7 to be (m, s). Similarly, assume that n € max™(A|2) is of the form

n=A— cont (Yj\((n_l)) + cont (Yj‘\(s)> , e=n—1,n,

where s > 0 if A # 2Ag and s = —1 if A = 2Ag. Then define the indez of the maximal weight n to be
(n—1,s).
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Now we consider highest weights of level 3.
Lemma 5.24.
(1) The following weights are in maxt (Ao + A|3): For 0 <u<|(n—3-—1s)/2],
(5.31 Ay +Agiour1 — (u+1)8=Ag+ A —cont (Yx(fuﬂ)) + (a1 — ap) + cont (Yj‘\(os_l)) )

(2) Assume n — s is an even integer. Then the following weight is in max™ (Ag + A|3):

n —

5 %5 = Ao + A — cont (Y;\\(On—2)) + (a1 — ap) + cont (Yj‘x(os_l)) :

)

)
(5.32) Al +Ap 1+ Ay —
(3) Assume n — s is an odd integer. Then the following weights are in maxt (Ao + A|3): t€ {n—1,n}
)

n—s+1

(533 Ay + 20 - 2 8= Ao+ A —cont (Yﬁto(”_l)) + ds=50(a1 — ap) + cont (Yj;(os_l)) ,

where we write s =4 0 for s =0 (mod 2).
Remark 5.25. We see that all the weights in Lemma 5.24 are essentially finite of type D,,.
The following definition is an analogue of Definition 5.16.
Definition 5.26. Assume that 7 € max™(Ag + A[3), and set A = Ag + A.
(1) If n = Ap + p with g € max™(A|2) of index (m, s), then we define the indez of 1 to be (m, s).
(2) Assume that 7 is of the form
n = A — cont (Yj‘\(om)) + (o — a) + cont (Yj‘\(os)) ,
where s > 0 if A # 3Ag and s = —1 if A = 3Ag. Then define the index of the maximal weight n
to be (m, s).
(3) Assume that 7 is of the form

n = /A — cont (Yko(nfl)) + d5=,0(01 — ) + cont (YX(OS)) , e=n—1,n,

where s = 0 if A # 3Ag and s = —1 if A = 3Ay. We define the index of the maximal weight 7 to
be (n —1,s).
Similarly, we consider higher levels to make the following definition.
Definition 5.27. Assume that n € (k—1)A +maxt (A + AJ3) for k& > 1, and write n = (k — 1)A + p with
p € maxt (A + A|3). If p is of index (m, s), then we define the index of  to be (m, s).

Whenever the index is defined for a maximal weight n € max™ (kA + Alk + 2), k > 0, the weight n will
be called a staircase dominant maximal weight. The set of staircase dominant maximal weights will be
denoted by smax™ (kA + Alk + 2).

5.5. Type Agi)fr Recall that the affine type Agil1 has the fundamental weights Ay and A; of level 1.
Let us take a level 2 dominant integral weight A of the form

A= ((557() + (5571)A(] + AS (0 <s < ’I'L)

Lemma 5.28.
(1) For 0 < u < |(n— s)/2|, we have
(5.34) (05,0 + 0s,1) Ao + Asyo, —ud = A — cont (Yx(fu_us)) + cont (Yi\\(os_l)) € max ™ (A2).

(2) For1 <u < l%J, we have
(1 + 6572u,0)A572u + 5372u,1A1
(535) max(s,n—1) n—1

=A, — Z (1 — s+ 2u)ay; + 2u Z aj + uay, | € max*t(A]2).
1=s—2u+1 j=s+1
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(3) If s = 2 is even, then we have

max(s,n—1) n—1

(5.36) 2A; —5=A—| > iaitagts Y aj+ gan € max* (A[2).
i=2 j=s+1
(4) When s =0, we have
n—1
(5.37) 2A; —26 = A; — (2 Z a; + 209 + an> € max ' (A|2).
i=2

Remark 5.29. We see that the weights in (5.34) are essentially finite of type D,,, and that those in (5.35),
(5.36) and (5.37) are essentially finite of type C,.

Theorem 5.30. For A = (050 + 051)A0 + As (0 < s <n) of level 2, the mazimal weights in Lemma 5.28
ezhaust the whole set max™ (A|2). Hence the number of elements in max™ (A|2) is |n/2] + 2 if s is even,
and |(n—1)/2] + 1 if s is odd.

Proof. One can prove the theorem by applying a similar argument as in Theorem 5.8. O

Now we consider highest weights of level 3.
Lemma 5.31. The following weights are in max™ (Ao + Al3): For 0 <u < |(n—s)/2],
(5.38) A+ Agpoupr — (u+1)8 = Ag + A — cont (Y;\\(fws)) + (o1 — ap) + cont (Yj‘\(:_l)) :

We define the index of the weights in (5.34) and (5.38) as we did in Definition 5.9 and 5.16, respectively,
and we extend it to higher levels as in Definition 5.17. Similarly, whenever the index is defined for a
maximal weight € maxt (kA + Alk +2), k > 0, the weight n will be called a staircase dominant mazimal
weight. The set of staircase dominant maximal weights will be denoted by smax™ (kA + Ak + 2).

5.6. Type Aéi) Recall that the affine type Agl) has the only fundamental weight Ay of level 1. Let us
take level 2 dominant integral weights A as follows:

A=0d0A0+A; (0<s<n).

Lemma 5.32.
(1) For 0 < u < |(n—s)/2], we have
- A(2u—1+s) A(s) +
. s+2u,n— s+2u T - - .
(5.39) (14 dst2u,n—1)Ast2u — 2ud = A — cont (YAO ) + cont (YAO ) € max ™ (A|2)

(2) For1<u< {EJ, we have

max(s,n—1) n—1
(5.40) (14 0s—20,0)As—2u = As — Z (1 — s+ 2u)ay + 2u Z aj + ua, | € maxt(A]2).
i=s—2u+1 Jj=s+1

Remark 5.33. We see that the weights in (5.39) are essentially finite of type B,,, and that those in (5.40)
are essentially finite of type C),.

Theorem 5.34. For A = 050A0 + As (0 < s < n) of level 2, the mazimal weights in Lemma 5.32
exhaust the whole set max™ (A|2). Hence the number of elements in max™ (A|2) is (n+1)/2 if n is odd and
n/2 4+ §s=,0 if n is even.

Proof. A similar argument as in Theorem 5.8 can be used. (]

As in the previous cases, one can determine dominant maximal weights of level 3 highest weights. We
leave it to interested readers.
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Definition 5.35. Assume that n € max™ (A]2) is of the form
n = A — cont (Yj\\(om)> + cont (Yj‘\(os)) ,
where s = 0. Then we define the index of the maximal weight 7 to be (m, s).

We extend the above definition to higher levels as before. Whenever the index is defined for a maximal
weight 7 € maxt (kA + Alk + 2), k = 0, the weight n will be called a staircase dominant mazimal weight.
The set of staircase dominant maximal weights will be denoted by smax™ (kA + Alk + 2).

5.7. Type D,(izl. Recall that the affine type D,(L2 _21 has the fundamental weights Ay, A,, of level 1. Let us

consider level 2 dominant integral weights A:
A=(6s0+0sn)Ao+As (0<s<n-—1).

Lemma 5.36. The following weights are in max*t(A]2):

(5.41) (14 dstun)Asiu —ud = A — cont (YX(OufHS)) + cont (YX(US)) 0<u<n-—s),
(5.42) (1 + 0y 0)Ay = A — cont (Yj\\(:_U)> + cont (Y;‘\(n"_s)) (1<u<s).

Remark 5.37. We see that the weights in (5.41) and (5.42) are essentially finite of type B,,.

Theorem 5.38. For A = (d50 + 0s.n)Ao + As (0 < s <n—1) of level 2, the mazimal weights in Lemma
5.36 exhaust the whole set max™t(A|2). The number of elements in max™ (A|2) is n + 1.

Dominant maximal weights of level 3 highest weights can be determined as in the previous types, and
we leave it to interested readers.

Definition 5.39. Assume that € max*(A|2) is of the form
n = A — cont (Yj‘\(m)) + cont (Yj‘x(s)) , A=Ay, A,,
where s > 0. Then we define the indez of the maximal weight 1 to be (m,s).

We extend the above definition to higher levels as before. The set of staircase dominant maximal weights
is defined in a similar way as in the previous subsections.

5.8. Classification of staircase dominant maximal weights. As we have observed in the previous
subsections, the staircase maximal weights in smax™ (A) are essentially finite of type B,, or D,,. Hence we
classify the staircase dominant maximal weights into two classes according to their finite types, and make
the following definition.

Definition 5.40. Define smaxg (Alk) (resp. smaxf(A|k)) to be the set of staircase dominant maximal
weights of A of level k > 2, that are essentially finite of type B,, (resp. D).

Remark 5.41 (Indices for smaxg (Alk) and smaxh (A|k)).
(1) For k > 2, the indices for smaxg (A]k) are given as follows (see Lemma 5.6):
{(m,s) | m=s=0}
(2) For k = 2, the indices for smax (A|k) are given as follows (see Lemma 5.2, 5.12 and (5.21)):

{{(m,sl) | s>0, m>s—1and m#; s)\{(0,—1)} ifk =2,

(5.43) {(m,s —1)| s=0and m = s — 1}\{(0,—1)} itk > 3.

We make a table to show which affine types are related to each type of staircase dominant maximal
weights.
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Staircase Type Affine Types
smaxg (Alk) B, AD), DY),
smax (Ak) B, DV, AD)_|

6. WEIGHT MULTIPLICITIES AND (SPIN) RIGID YOUNG TABLEAUX

In this section, we will introduce the notion of (spin) rigid Young tableauz, and show that the set of these
tableaux is equinumerous to the set of crystal basis elements in B(A),, for staircase dominant maximal
weights 7 € smaxt(Alk), k = 2. As noted in (5.1), it suffices to consider their finite types. Hence in this
section we only consider affine type BS" and the sets smaxg (Alk) and smax (A]k).

Considering the crystal rules for Young walls, one can prove the following lemma.

SN G)
Lemma 6.1. For strict partitions AV, ..., X*) with max{/\gl), R /\gk)} < n, the Young wall YE;\x(l):.':.),)}x(k)))

corresponds to a highest weight if and only if the following condition holds: X% = \(s;) fori=1,2,...,k
for some nonnegative integers si,..., sy with s; = 0.

Definition 6.2. For strict partitions A(Y) and A(®), A and A’ of the same type, we define sp o/ (A1), A(?))
to be the smallest nonnegative integer s satisfying

e A
7

(6.1) YA 2 (YA )zst1-

The following lemma implies that the quantity sa, A/()\(l), )\(2)) is invariant under application of €;’s.

Proposition 6.3. For strict partitions X\, A\ with max{)\gl), A§2)} < n, suppose that

5 (YOIA)y )

(AA) “taay:

Then SAVA/(A(I), )\(2)) = SA,A’()\/7 )\”).

Proof. Let s = sa a/(AM, A3)) and 5" = sp a/(N, \). Let € = 0 if A and A® are of type B, and e = 1
if they are of type ©. The assumption implies that we have either

(1) X = 2D and [A® /)| =1 or

(2) M = X® and AV /N|| = 1.

Since the second case can be proved similarly, we will only consider the first case. Since N = AV 5
)‘(2224—1 o ML, 1, if s <, then it is the smallest possible and we have s’ = s. Now assume that s > 1+e¢. Let
j be the unique integer such that A§2) = A7 +1. In order to show s = &, it suffices to show \" $ AZ,__. For
a contradiction, suppose that X' > \.___. Then we have A = X 5 A2 _and A® $ A2 Since A@

>s—e€

and \” differ by only one part, we obtain that (") must have a part equal to t— 1, where ¢ := )\5-2) =N +1.

Moreover, by considering the Young diagrams of A(1), )\g 2_6, and A\, ., one can see that the position of
(2)

the part t — 1 in A(Y) is equal to the position of the part ¢ in ASi_ .. Therefore, we have j > s — € and

NG

(2)
j—s+te+1l — sfe)jfs+6+1 -1= )\j —1=t-—1.

If j = s — ¢, then )\gl) =t —1 and sigi(Yf‘\(l)) = (+). If j = s — e+ 1, then by the assumption
A =X o\, ., we have

MY = V) jmsre = Ny = AP > A =g,

Thus we also have sigi(Yl){(l)) = (+). This means that
- )\(U,A(Z) - (1) (2)
G(YG ) D =aa )eYa =0,

which is a contradiction. Therefore, we must have A" D A\Z,__, which implies s = s’ O
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6.1. Case smaxg(Alk). In this subsection, we assume that 7 is an element of smaxg, (A|k) and that
is of type *B.

Let k € Z=, and s € Z=(. A skew Young tableau T of shape p/(s*~1) with m cells for a partition u of
length £ is naturally identified with a sequence of strict partitions

AW @ AE=D AR
such that AV s« X2 s x XE=D 5 XK = A(m), AO o XD for 1 <4 < k—2 and A~V o )‘gs)-u- For

example, take k = 3 and s = 1 and we identify the following skew Young tableau with the corresponding
sequence of partitions

-[7]5]4]

1311] «—((7,5,4),(3,1),(6,2)).
62
From now on, we will freely use this identification of skew tableaux and sequences of strict partitions.

Definition 6.4. For k € Z>; and s,m € Z=q, let T = (A, X®) AE=D \(*)) be a skew Young tableau
of shape /(s¥~1) with m cells for a partition p of length k. Then T is called a rigid Young tableau of
index (m, s) with k rowsif s =0 or s > 1 and

(6.2) A= 5 2B

We denote by S%%’i) the set of all rigid Young tableaux of index (m, s) with k rows. In particular, we have
(k) (k)

O%m = %m .

Note that if T = (A, A®) . XE=1D (k) is a rigid tableau of index (m, s), then £(A*)) > 5. The
condition (6.2) says that a shift of the last row to the right by 1 makes the tableau violate the column-
strictness.

Example 6.5.
(1) T = ((432), (51)) € 1B since

5 111 3]2] is a skew Young tableau but g i) 2] is not a Young tableau.
On the other hand, ((532), (41)) ¢ 1289 since
Z%M is a skew Young tableau and %%ﬂ is also a Young tableau.
L[ 12n0[8]7] ; -] [12f10/8]7]
2) -] -l11fol1] e 3%52) since | - |- [11]9]1 is not a skew Young tableau.
6]5/4|3]2 6]5/4|3]2
(3) We also have T = ((0), (0), (2,1)) «— |- |- |e 2B
211

1 \@
Proposition 6.6. For strict partitions XV and A with maX{)\gl), /\52)} < n, the Young wall ng‘\ 1/\’))\ )

is connected to ®Yj\x(s) where s = sA’A()\(l), )\(2)), Conversely, for strict partitions A\ and A2 with

max{)\gl), )\52)} < n, if the Young wall ng‘\(lj)"))‘m) is connected to ®Y1);(5), then s = sa A(A,A2)),

CONE!
Proof. If we apply é;’s to YEj‘\ A’)’\ ) until no longer possible, we obtain a Young wall corresponding to a

highest weight vector. By Lemma 6.1, the resulting Young wall is of the form ® Yj;(r) for some 7 = 0.
By Proposition 6.3, we have

s = sAQA()\(l),)\(Q)) = SAA(T,A(r)) =1
The converse is obtained by using the fact that ®Yi\‘(s) and ®Yx(s/) are not connected for s # s/. O
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As in Introduction, define

2w, if s =mn,
(6.3) Gy = e
Ws otherwise.

Let L(w) be the highest weight module with highest weight w over the finite dimensional Lie algebra of
type B,,.

We have the following result:
Proposition 6.7. For n € smaxg(A[2) of index (m,s), we have

dim(V(A)n) = ‘s%g” = dim (L<‘L’n78>&)nfm)-
Proof. Note that
cont(Y{AyA)) = cont(Yj‘x(m)) for any T e (B2,

By Proposition 6.6, the set {Y(TA,A) | T € S%%)} forms the crystal basis for V(A),, which implies our
assertion. The last equality follows from Proposition 5.7 and (1.4). (]

Now, we obtain the main theorem of this subsection:

Theorem 6.8. Assume that k > 2 and 0 < s < m. Then, for n € smaxg (A|k) of index (m, s), we have

dim V(A)n = |S%£r}f)‘ = dim L((k — 2)w, + wn—s)(k—Q)w,ﬂrazn,,ﬂ-

Proof. Since s < m < n, a Young wall Y € B(A), connected to =|(k—1A ®Yj\\(s) cannot contain

a removable 8. Thus, for each Y € Z(A)®* connected to , there exists a sequence of strict partitions
A= (WA AED AR satisfying A s X2« ox XEZD 5 AR = \(m), and hence Y = Y%.
Let ¢ be the smallest integer such that ¢ < & and A(¥)  X(*D_ If there is no such integer, we let t = k.
If ¢t < k, we also define u to be the smallest nonnegative integer satisfying
NOIESNGE

>u+1-

By applying the arguments in Proposition 6.6 to the higher levels, one can see that if ¢ < k,
Y is connected to | (k — 1)A ®Yj‘\(s) e t=k—1landu=s < )€ S%,(ff),

and if t = k,
Y is connected to = t=k = )€ 0535,’:). O

As a special case, when s = 0, the numbers |%£:f)| for m < n are the multiplicities of maximal weights of
V(kA). Explicit formulas for the numbers |%£,’f)\ are given in Theorem 3.5 for 1 < k < 5. We will obtain
a closed formula for |%$S)| in Corollary 10.10. In [37], Tsuchioka and Watanabe studied the case A = kAg

2) @)
for types A5,/ and D, /.
6.2. Case smax} (Alk). In this subsection, we will deal with 1 in smax} (Alk). Throughout this section,
we assume that A is of type D.

Proposition 6.9.
(1) For strict partitions X, \2) such that

max{)\gl), )\52)} <n, AV > )\(;%S and, s =1 or AP )\(;2)5_2 for some s = 2,
the Young wall Y;\x(ol) ®Y1)§(12) 18 connected to = ®Yj\x(12572).
(2) For strict partitions X\, \?) such that

max{)\gl), )\§2)} <n, A\ 5 )\(;22)5“ and XV 5 )\(223571 for some s = 1,

the Young wall Yf{(:) ®Yf§(j) is connected to = ®Yj\\(028_1).
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Proof. By Remark 2.9, the patterns appearing in Yl){(ol) and (Yj\&<12))>2s coincide with each other. By
applying €;’s until no longer possible, we obtain a Young wall corresponding to its highest weight vector.
By Proposition 6.3, its highest weight vector is of the form ®Yj‘\(12t) for some 2t > 0. By Lemma 6.1,

25 — 2 = saga, AV, AP) = 57,4, (T, A(21)) = 2t

This proves the first statement.

The second statement follows similarly with the consideration on patterns. O

Recall that each 7 € smax} (A[2) is of index (2m — 1 + 5,5 — 1) (see (5.7)).
Theorem 6.10. For 1 € smaxf (A|2) of index (2m—1+s,5—1), sete = 0 if s is even and e = 1 otherwise.
Then

Y e B((0s,0 + 05,1)A0 + As)y (1 <s<n)ifand only if Y = Yfi(:) ®Yf‘\(€2) satisfies
(a) AW« X@) = 2m — 1+ s),

(6.4) A SAD and XD AL ifs> 2,
(b) { A 520 if s =1,
AL 5 A3 if s = 0.

Proof. The “if” part follows from Proposition 6.9. Now it suffices to prove the “only if” part. Since
71 corresponds to (A(2m — 1 + s),A(s — 1)) for 2m — 1 + s < n, Y should be of the form Yj‘\(:> ® Yi\x(j)
for some pair of strict partitions (A, \(2)). Note that any pair of strict partitions (A(Y, \(?)) has the
largest ¢ satisfying one of three conditions in (b) of (6.4). One can also check that max{/\gl), )\(12)} < n.

Then the “only if” part follows from the form of weight n and Proposition 6.9 again; that is, s = t and
AD e X@) = A2m — 1+ 5) by (5.7). a

Let k € Z>; and s € Z=g. Recall that a skew Young tableaux T of shape u/(s*~!) with m cells for a
partition p of length k is identified with a sequence of strict partitions

1) @) (k=1) 5 (k)
(AW A@ A= A(R))
such that A % A2 s 5 XE=D 4 AB) = A\(m), AD 5 AO+D for 1 < < k— 2 and A*=D 5 \B)

=>s+1°
Now we define a family of tableaux which will play an important role for type ® constructions.

Definition 6.11. For s,m € Zo with m > s — 1, let T be a skew Young tableau of shape yu/(s*~!) with
m cells for a partition p of length %, which is identified with the sequence of strict partitions

A=A X AED AR with A = e(AD), i =1, k.
Then T is called a spin rigid Young tableau of index (m, s) with k rows if it satisfies the following conditions:
(a) (M,A2, - s A1, Ak + 8) IFo m + s,
(b) if s > 2, then Ak=D AP,

We denote by 82)57’? the set of all spin rigid Young tableaux of index (m,s) with k rows. In particular,
0D = D% and hence 02‘3%2_1 = %gi,{_l. (See Remark 3.10.)

Note that the condition (b) implies £(A*)) > max{0,s — 1}. The condition (b) says that a shift of the
last row to the right by 2 makes the tableau violate the column-strictness. The condition (a) naturally
arises when we connect a spin rigid tableau with a staircase dominant maximal weight through a tensor
product of Young walls. See Lemma 6.13 below.

We will color the columns of a spin rigid Young tableau in white and gray as follows to indicate the
corresponding columns of Young walls starting from 0-blocks and 1-blocks.

The first column of spin rigid Young tableaur T € 2397(75) is colored in white while the first column of

()

spin rigid Young tableaux T € 254_1@75 is colored in gray.
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Example 6.12.
(1) We have

T =[[-14][2]1]¢ 29513), since ‘- T412]1]  is not a skew tableau.
3] T3
Here T corresponds to A = ((4,2, 1), (0), (3)).

The set 294&3) consists of the following 15 spin rigid Young tableaux:

(3121 [-[-Tal2]1] [-T-Tal3]1] [-T-T4l3]2] [ .3!T| . ~4F| . .4,?|
- - - - ]2 ] N
14] 13] 12] 1] 14] 13] 12]
T8T2] []-]4]1] 4] 4] [-]-]3] 2] []-T4a] [-]-]3]
T el s e R T ) R
14] 13] 201 [3[1] [4]1] [4[3] [3]2] [4]2]
(2) The set 3’)3513) consists of the following 10 spin rigid Young tableaux:
3 X L% R S L R A R A SN S 1 2 S S EV S R VY S Y S
V3 N ' N v 3 R - 3 N 5% R ¥ R 3 3 S 13 1 A v 1 3 R E I

When A = (k—2+651)Ao + Aas_1, the crystal B(A) is embedded into Z(Ag)®*~!® Z(A4), and when
A = (k—2)Ag + (1 + 650)A2s, the crystal B(A) is embedded into Z(Ag)®*. Hence we use gray color
to distinguish the columns of Young walls starting with 1-blocks with those starting with 0-blocks. For
example, we have

o (5]
4 n
303 3 (4,3,2) (5,1) )
6.5 [ T 4 Y «— []4]3]2] € 1®
(6.5) 222 © 2 A O VA, e
%% %4146
- (5]
4 4|
313 3 (4,3,2) (5,1) (2)
6.6 2] «—— Y Y «— [[-]4[8]2] € 2@,
(6.6) 2122 © 2 Ao O Vay 2
%4249% 14

Note that the cells filled with white (resp. gray) color represent the columns starting with 0-blocks (resp.
1-blocks). In (6.6), we use

1-T4[3]2] ... -14]3]2]
511 instead of 511
so that each column of the tableaux may have the same color.

Let

Ao (Ao, ..., Ao, Ag) if sis even,
(Ao, .. -7A07A1) if s is odd.

The following lemma follows from the definitions of DO and smax} (Alk):

Lemma 6.13. Let s,m e Zso withn>=2m>=s—1, and A = (k—2+ 650 + 05,1)Ao + As, k = 2. Then,
forTe SC‘D%), we have

cont(Y%) =

cont(Yi\\(lm)) — (o1 — )  ifs=2m,
cont (Yi‘\(om) ) otherwise,
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and the tableau T is associated with 1 € smax} (Alk) of index (m,s — 1) such that
cont(Yy) — cont(Yx(OS*l)) =A—-n.
Recall the set of indices for smax (A|k) in (5.43). The following is the main theorem of this subsection:

Theorem 6.14. Assume that k > 2. Then, for n € smaxi (Alk) of index (m,s — 1), we have
dim V(A), = [{DF| = dim L((k — 2)wn + @n—s)

w
where the definition of @s is given in (5.20) and the weights p are given by
_{(k?)wn+(bn_m_1 ifk=2, ork>=3 and m #5 s,

(k—3)wn + wn—1+ On—m—1 if k=3 and m =y s.

Proof. Let n,n' € smax} (Alk) of index (m,s — 1). If n is associated with (A(m),A(s — 1)) and n’ with
((n) *A(m —1),A(s —1)), one can see that dim V' (A),, = dim V(A), by replacing the role of (n)*A(m —1)
with that of A(m) to construct a one-to-one correspondence between the corresponding sets of tensor
products of Young walls. Thus we only need to consider 1 associated with (A(m),A(s — 1)).

Set
®YZ;(US_1) if s is even,
Al:=

(k—1)Ao|®@YA™ if s is odd.

Since m < n, a Young wall Y € B(A),, connected to cannot contain a removable 8. Hence Lemma
6.13 tells us that Y € B(A),, corresponds to a sequence of strict partitions A = AM AR NE=D A(R))
satisfying the condition (a) in Definition 6.11:

(Ao, ..., Ao, Ag) if sis even,

Y =Y2  where A =
A = {(AO,...,AO,Al) if s is odd.

Note that if £(A*)) < max{0,s — 1}, then Y cannot be connected to . Now the condition (b) in
Definition 6.11 follows to represent the columns of Young walls starting with 1-blocks from Proposition
6.9 and Theorem 6.10. O

We record the special case s = 0 as a corollary for reference to be used later.

Corollary 6.15. The numbers |®§q]§)| of almost even tableauz of m with at most k rows are the multiplicities
of dominant mazimal weights for V(kA) and hence the multiplicities of dominant weights for V (kwy,).

For the rest of this subsection, we investigate relationship between 02‘355) and 1@5:)_1, which will be used

in Section 8. Set A = (k—1)Ag+ A1 for k = 3. The crystal B(A) can also be realized by the subcrystal of
Z(A1)®Z(Ao)®F! (as opposed to Z(Ag)®*1®Z(A1)) connected to | A1 |®| (k — 1)Aq | By applying the
argument in this subsection, one can prove that the crystal basis of V(A), for n € smax} ((k—1)Ag+ Aq|k)
is realized by

(6.7) oD — (T\E | T € @)},

where 1 € smaxt(Alk) is of index (m — 1,0) and T\[ml is the tableau obtained by removing the cell
located in the position (1,1). For example, when m = 6 and k = 3,

5

3]6 0@&3).

w
Do w = ‘
N | W ‘ =~

® «— T\[6]= 5 ;1 3]  where T =

D[ >~

l»—lUl@
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One the other hand, by Theorem 6.14, the crystal basis of V(A),, is also realized by 15‘355)_1 consisting of
spin rigid Young tableaux.
Hence we can conclude that
0D%] = 0D = 1934,

which will explain the correspondence with the equation R(,, 0y = R(m—1,1) in (4.9) (see Section 8 below).

Example 6.16. The set 0@513)\ is given as follows:
18] [ 2] [-]1] F F F
’ ’ ’ 7 ’
On the other hand, the set 1©§3) is given as follows:

(R, CEEEL B, [ B2
C2 EL T2 [T [
2l 3]

1

We make a summary of the observation made above as a corollary:

Corollary 6.17. Set A = (k—1)Ag+ Ay for k = 2. Then the number of the almost even tableauz of m =1
with at most k rows appears as the multiplicity of a mazimal weight n € smax™* (Alk) of index (m — 1,0).
That is, we have

0P| = 1% | = dim(V(A),).

Remark 6.18. Explicit formulas for the numbers |©5,lf)\ for 1 < k < 5 will be given in Theorem 10.2. Thus
we know explicitly the multiplicities of € smax™ (Alk) of indices (m,—1) and (m — 1,0) for 1 < k < 5.

7. LEVEL 2 WEIGHT MULTIPLICITIES: CATALAN AND PASCAL TRIANGLES

In this section, we prove that all the multiplicities of the (staircase) dominant maximal weights of level
2 are generalized Catalan numbers or binomial coefficients. As will be indicated in Section 7.1, the results
can be obtained through classical constructions. We will provide a different proof, which utilizes a new
insertion scheme for (spin) rigid Young tableaux and makes the Catalan and Pascal triangles compatible
with the insertion scheme. This insertion scheme will naturally generalize in the next section to the case
of level 3 weights, where classical constructions do not easily generalize.

7.1. Classical realizations. Now we restate and give an alternative proof for [36, Theorem 1.4 (ii)],
which was on the affine type Afllllz

Theorem 7.1. (cf. [36, Theorem 1.4 (ii)]) For finite type An—1, we have
dim L(wi + Wit s)w, g twesorn = Clst2ks)  Jor 0< k <t,
where C,, s are generalized Catalan numbers.
Proof. By Kashiwara—Nakashima realization ([21]) of the crystal basis for B(w; + w4 ) via semi-standard
tableaux filled with 1,2,...,n, the dimension dim L(w; + Wiys)w, y+wis.,n i the same as the number

of semi-standard tableaux T' (the convention for semi-standard tableaux in [21] is different from ours)
satisfying the following conditions:

e Sh(T) = (2¢,1%),

o for every 1 <i <t — k, the two cells in the i-th row are filled with 4,

e the remaining 2k + s cells are filled with the distinct numbers t —k + 1,t —k+2,....t + k + s.

Hence Remark 4.18 implies our assertion. O

In Section 5.1, we showed that every dominant maximal weight of a highest weight A of level 2 is
essentially finite of type A,_1. Thus we obtain the following corollary:

Corollary 7.2. For finite type A, _1, assume that n € max™ (A|2). Then the multiplicity of n is a gener-
alized Catalan number.
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Generalized Catalan numbers also appear for type C,, as one can see in the following theorem.

Theorem 7.3. For finite type Cp,, 1 < s <n and 0 <i < |3], we have

dim L(ws)wk% = C(nfs+2i,nfs)~

Proof. This is a consequence of the exterior power realization of the fundamental representation (see [8,

Theorem 17.5]) since
n—(s—2 n—(s—2
C(n—s+2i,n—s) = ( (2 >> - ( ’L'(f 1 >> U

In Section 5.3, we showed that every dominant maximal weight of a highest weight A, of level 1 over
type Cr(Ll) is essentially finite of type C,,. For types Agill and Agi), we determined dominant maximal
weights which are essentially finite of type C),. See Remarks 5.29 and 5.33. Thus we obtain the following

corollary:

Corollary 7.4. Assume that n is a dominant maximal weight which is essentially finite of type C,, for a
highest weight A of level 1 over type 07(11) or of level 2 over type Ag,?_l or Agl) Then the multiplicity of n
is a generalized Catalan number.

The following theorem shows that binomial coefficients appear as weight multiplicities for finite types
B,, and D,,.

Theorem 7.5. For 1 < s < n, we have

dim L(@4) e, = (?;jj) if L(©s) is over By,
2

—k—0ns .
dim L(@s) s, = (n —k > if L(©s) is over D, and s =5 k.

2

Proof. By the exterior power realization of the fundamental representation in [8, Theorem 19.2, Theorem
19.14], one can prove this assertion. O

We remark here that it seems difficult in general to prove the above results using the Kashiwara—
Nakashima realization for finite types B,, and D,,.

Though we can use Theorem 7.5 to describe the multiplicities of maximal weights in smaxg (A[2) and
smaxg (A|2), we will develop a new method in the next subsections for the reason mentioned at the
beginning of this section.

7.2. Insertion of a box.

Definition 7.6. Let A = (A\()... A(®)) be a sequence of strict partitions with i A0) = A(m —1). For

1 < u < k, we define the insertion of (m) into the u-th partition by !
Ax(m) = (N, )
where
PUCHINE) if j # u,
{X‘“) = (m)«A\® if j = u.
Then A: (m) = ()\’(1), e /\’(k)) is a new sequence of strict partitions with El)\/(j) = A(m).

The operation *(m) is to be understood as an insertion of the box into the u-th row of a skew-
u

tableaux. For example, we have

6131 1 6131
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7.3. Case smaxg (A|2). We start with a simple observation. For T = (A, ... A(R) e sBF  the number

m can only appear as the first part of the first partition or as the first part of the last partition. That is,

we have

A or AP i s =1

(7.1) m={ L T

Ay if s =0.
Example 7.7.

(1) 1%(2) consists of the following 10 rigid Young tableaux:

4321 421 3[1], 432 521 [-T4]3] -||H-|4|2H-|5|4H-|5|2{
" [Ble[1] [zl B[] Bl [l

(2) 3‘Bé ) consists of the following 5 rigid Young tableaux:
CLTTeln] [T-0-Is] [T-1-]4] [ HN 112

-] [T
[5]4]3] [a]3]2]a] [5]3]2]1] [5]4]2][1] [5]4]3]1]

Lemma 7.8. ForT = (\pu) € %m 1)
TT (m)e s B2  and T * (m) € 441182

we have

Proof. Recall that (A, ) € S%( ) fors>1 implies
(i) \i < prsyi—1 and N; > pey; for some 1 <@ < l(A)  or (i) £(p) — s = £(N).
Since ((m) * A\); = m, ((m) = X); = X\;jy1 and £((m) = A) = £(\) + 1, we can conclude that
T x (m) € 1B
Similarly, the facts that ((m) = u); = m, ((m) * p); = pir1 and €((m) = p) = €(u) + 1 implies
T>2k (m) € 44182, O

Remark 7.9. For m € Z-1, the sets mEBgn and %( ma1 are described as follows:

(7.2) 2B2 = ((0),A(m))}  and B = {((m+1),A(m))}.
Hence |m%£,2l)\ = |m%572z)+1| =1.

Let L(w) be the highest weight module with highest weight w over the finite dimensional Lie algebra of
type B,. Recall the definition of @, in (6.3).

Theorem 7.10. Let n € smaxg (A|2) of index (m,s). For every s < m,

B2 = (l . J> = dimV(A), = dim L(@,—s)s,_, -

Proof. By (7.1), for each T = (\, 1) € B2 with s > 1, we have
Al=m or pu=m
Thus
T=T1>i<(m) or T=T2>5(m)
for some T} € SH%&%) , or Tg € 571‘35,21),1 respectively. Particularly, T € B2 is of the form T’ * (m)
for some T" € %(2) LU 1%

assertion follows from

3= 1082 = () B2 = () = 1= ((mim ) = B
| ‘ ‘0 | l%J ‘ lmng [m-ﬁ-é mJ | +1|

Since the sets (5+1%m DE: : (m) and (8_1%5?_1) ; (m) are distinct, our

m—1-
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and
(=B g om) [ (51 B2y (m)) =B
corresponding to (}) = (".") + (777)- -

The following lattice diagram illustrates the above theorem and realizes the Pascal triangle:

o] ]
ol
=[]

I/ \
AVAVAVA!

o] |
=[]

[-12]

3[1][3

[2[1][-13]

2

/\

@<
m
\/
\

[eo] ]
[l
=

Here = denotes insertion % into the second row (or partition) and — denotes insertion H into the first one.

By taking the cardinality of the tableaux at each position, we obtain the Pascal triangle.

Example 7.11. In Example 7.7, we can see that

B = <l5§1J> - (Z) ~10 and |82 = <l5§3J) - (?) _

Furthermore, we get |2%é2)| =10+5= (léj) from the insertion scheme:
2

- Tal3l2[1] [ T-fal2[u] [-]-Ta[3[a] [-]-T4[3]2] [-T-[s]2[c] [-T-Ta[3] [-]-I513] [--fal2] [-]-[5]4] [-]-[5]2]
[6]5]3] [6]5]2] [6]5]1] [6]4]3] 6[5[2[1] [6]4[2]1] [6[5]3]1] [6[3[2]1] [6]4[3]1]
[T-Tel2la] [-T-Tes] [-T-T6la] [-T-T6[3] [-]-]6]2]
[5]4]3] [a]3[2]a] [5]3]2]1] [5]4]2[1] [5]4]3]1]
Corollary 7.12. Form > s >0, set
a=|(m-s)/2] and =m—a.

We have a bijective map between
B2 and  L(a,b),
where £(a,b) denotes the set of paths in the Pascal triangle (4.13) starting from (0,0) to (m,b— a) using
the vectors (1,1) and (1,-1).
Proof. For T € S‘Bfﬁ), we first assume that s =, m. Then we record the vector v, as
T=T * (m) for some T" € S_l%g)_l with s > 1, or
T=T * (m) for some T" € 587(73)71,

o (1,-1)ifT =T * (m) for some T" € 8+1%5121)71'

o (1,1)if

Now we assume that s — 1 =5 m. Then we record the vector v, as
T=T * (m) for some T" € 8_1%53)_1 with s > 1, or

e (1,—1)if
( ) T=T * (m) for some T" € B2

m—1>

e (1L,1)ifT =1 * (m) for some T" € SH‘Bgz)_l.
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Then, by induction on m, we obtain the sequence of vectors (vy,vs,...,v,) corresponding to a path in
the Pascal triangle. O

Example 7.13. For

_[-1-[6]5]3]2] )
T=R7an €28y

we have a = 3 and b = 5. Then the tableau T" corresponds to the following lattice path:

7.4. Case smax% (A]2). By Lemma 2.7, we may assume that g = BS) and
A=(6s0+ds1)A0+As (0<s<n-—1)

throughout this subsection.

As in (7.1), the same property holds for 7= (A1) ... A(K)) e O to have
AP or AP s > 1,
M=, ;
i if s=0.

Example 7.14.
(1) The set 133512) consists of the following 10 spin rigid Young tableaux:

[T4[3]2]1], F, F, F, F, , , , , .
(2) The set 329512) consists of the following 5 spin rigid Young tableaux:
CT-FTel] BT Fad EEETel ELETs) B4l
[4[32] = [als[z] ~ [af2]a] ~ [3[2]1]
Lemma 7.15. For any (A, p) € C‘Dm 1)
(A ) # (m) € D and (A, p) % () € 41D

we have

Proof. Recall Definition 6.11. In particular, since £k = 2, we have m %%, s. Then one can use a similar
argument to that of the proof of Lemma 7.8. (|

Let L(w) be the highest weight module with highest weight w over the finite dimensional Lie algebra of
type D,,. Recall the definition of &, in (5.20).

Theorem 7.16. Let n € smax} (A|2) of index (2u—1+s,s —1). For s >0 and u >0,

‘ ©2u 1+s| = (

Proof. With Corollary 6.17 and the fact that

D = 1{()AMs ~ )} =1,

one can apply a similar argument to that of the proof of Theorem 7.10. O

2u+ s —
U

Wn—s—2u "

65,0) — dim V(A), = dim L(@,_,)

Example 7.17. From Example 7.14, we see that

2 _ (441 5 2, (2+3 5
|1©§)|—< ) >—(2>—10 and |3©§)|—< ) )—(1>—5.
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Furthermore, we get |2£Dé2)\ =10+5= (4;2) from the insertion scheme:

[-[-Tal3l2[a] [-[-Tsl201] [-[-Jal2[n] [-[-Tal811] [-[-Tal8T2] [-T-T4[3] [-[-Taf2] [-]-13]2] [-T-Jafx] [-T-I3]1
[s[2[1] ~ [s[8]1] " [s[4a[1] ~ [5[8[2] " [s]4][2]
,~-51 [s]2] [ ]-
413 1

2
3] [T-]5]4l.
[a[3]2] ~ [4[3]1] = [4]2]1] " [3]2]1]

8. LEVEL 3 WEIGHT MULTIPLICITIES: MOTZKIN AND RIORDAN TRIANGLES

As a special case k = 3 in Theorems 6.8 and 6.14, the multiplicity of n € smaxg (A|3) of index (m, s) is
equal to the number of rigid Young tableaux

dim(V(A),) = [BE)] = dim (L(wy + @ns)ewn +3n_1n )

and the multiplicity of n € smax} (A[3) of index (m,s — 1) is equal to the number of spin rigid Young
tableaux
dim(V(A),) = O] = dim (L(wn +@a-s),.).
where p = wy, + Wp—m—1 if m #s sand u = wp_1 + Wp_m—1 if m =5 s.
In this section, we will prove that these multiplicities are equal to the generalized Motzkin numbers and
the generalized Riordan numbers respectively.

Theorem 8.1. For m = s > 0, we have

|sBE | = Mn,s)-
Theorem 8.2. Form = s = 0, we have

|s@£2)‘ = R(m+1,s)-

Remark 8.3.
(1) Note that |0®é3)| =0 =R,0). For m > 1, we have proved in Corollary 6.17 that

0] = D34 -
Hence
DD = Rmr1,1) = Rims2,0) = 0Dk -
Thus, for Theorem 8.2, it is enough to prove when s > 1.
(2) Note that dim L(3wn)3w, = 1 = R,0). In (5.21), we saw that &, 1 + w,—1 is not a dominant
weight of L(3wy,). Then Theorem 8.2 can be restated as

Rim,s) = dim V' (wy, + wn_s)w,wnwnfa(mﬁs) for any m > s > 0,

which explains the relationship with Riordan triangle better.

In Section 8.1, we show Theorems 8.1 and 8.2 using the Robinson—Schensted algorithm. In Section 8.2
we prove Theorem 8.1 using a generalization of the insertion scheme in Section 7.

8.1. Proof by the RS algorithm. Up until now, in this paper, we have used reverse standard Young
tableaux. However, in this subsection we will consider standard Young tableaux (or SYTs for short), which
are more suitable for the usual Robinson—Schensted algorithm.

Recall that a composition A = (A1, ..., \g) is called almost-even if the number of odd parts is exactly 1
or 2. Note that for an almost-even composition A of m, the number of odd parts is 1 if m is odd, and 2 if
m is even. An almost-even partition is a partition that is almost-even when considered as a composition.

Let A = (A1,..., Ax) be a partition. We say that X is a parity partition if \; =2 A; for all 1 <4,j <k.

Definition 8.4.
(1) Let S% be the set of SYTs of shape A - m for some partition A = (Aq,..., \x).

(2) Let «S%) be the set of SYTs of shape \/(s*~1) - m for some partition A = (A1,..., \x) of size
(m + s(k—1)).
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(3) Let S’Pr(,lf) be the set of SYTs of shape \/(s*71) - m for some parity partition A = (Aq,...,\g) of
size (m + s(k — 1)).

(4) Let (AE™ be the set of SYTs of shape A/(s*~1) - m for some partition A = (A1,...,A) of size
(m+ s(k — 1)) such that (Ay — s,..., Ag—1 — 8, A + 8) is almost-even.

Using the obvious bijection between the SYTs and the reverse standard Young tableaux, we obtain the
following lemma.

Lemma 8.5. We have

(8'1) |S$Bq(7]i)| = |ssr(rlf)| - |5718’I(TIL€)|)
(8.2) |sDE| = |, AEB)| — | o AW,

where we define t&(a,f) = t.AEgi) =g ift <O.

In order to prove Theorems 8.1 and 8.2, we will find formulas for |587(3)| and |, AED)|. We need the
following lemma which can be taken as an equivalent definition of SAS%?). Notice that this lemma is not
true for ;AEX in general.

Lemma 8.6. The set (AED) consists of the SYTs of shape \/(s, s) - m for some almost-even partition
A= (A1, a2, A\3) of size m + 2s.

Proof. 1t is sufficient to show that (A1, A2, A3) is almost-even if and only if (A1 — s, A2 — 5, A3 + ) is almost-
even. This is trivial if s is even. Suppose that s is odd. Let ¢ be the number of odd parts in (A1, A2, A3).
Then the number of odd parts in (A; — s, A\a — s, A3 + s) is 3—¢. Since t € {1,2} if and only if 3—1¢ € {1, 2},
we have that (A1, A2, A3) is almost-even if and only if (A — s, Aa — s, A3 + s) is almost-even. O

Our main tool is the Robinson—Schensted algorithm. Let us first fix some notations. A permutation of
{1,2,...,n} is a bijection 7 : {1,2,...,n} — {1,2,...,n}. We denote by &,, the set of permutations of
{1,2,...,n}. As usual, we will also write a permutation 7 € &,, as a word ™ = w7y . .. T, where m; = (7).

Definition 8.7. An involution is a permutation 7 € &,, such that 72 is the identity permutation 12...n.
We denote by Z,, the set of involutions in &,,. Let m € Z,,. Then for every 1 < i < n, we have either
m(i) =4 or w(i) = j and 7(j) = ¢ for some j # i. If w(i) = i, we call i a fized point of w. If (i) = j for
i # j, we say that ¢ and j are connected in 7. If there are no four integers a < b < ¢ < d such that a and
d are connected and b and ¢ are connected in 7, we say that 7 is non-nesting. We denote by N'Z,, the set
of non-nesting involutions in Z,.

Definition 8.8. For a permutation 7 € G,, and an integer 0 < k < n, we denote by m<; the permutation
in &y obtained from 7 by removing every integer greater than k. Similarly, for a SYT T with n cells and
an integer 0 < k < n, we denote by T the SYT with k cells obtained from T by removing every cell with
entry greater than k.

For a permutation 7 € &, let P(w) and Q(m) be the insertion tableau and the recording tableau
respectively via the Robinson—Schensted algorithm. The following properties of the Robinson—Schensted
algorithm are well known, see [33].

e The map 7 — (P(m),Q(m)) is a bijection from &,, to the set of pairs (P, Q) of SYTs of the same
shape with n cells.

e For 7 € &,,, we have P(r~1) = Q(r). Therefore, the map m — P(7) gives a bijection from Z,, to
the set of SYTs with n cells.

e For 7€ &, and 1 < k < n, we have P(rw¢i) = P(7)<k-

e For 7 = m ... 7, € &,, the number of rows of P() is equal to the length of a longest decreasing
subsequence of 7y ... m,.

These properties implies the following proposition.
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Proposition 8.9. The map 7 +— P(7) is a bijection from NI, to S,
The following lemma is the main lemma in this subsection.

Lemma 8.10. Let JNZ,, be the set of elements m € NTosym satisfying the following condition: there
exists an integer 0 < t < s such that

e 2i — 1 and 2i are connected in w for all 1 < i < t,
e 25 — 1 is connected to an integer greater than 2s and 2j is a fixed point for all t +1 < j < s.

Let sgfs) be the set of elements T € 82(3)+m satisfying the following condition: T<as is the SYT of shape

(s,s) such that the ith column consists of 2t — 1 and 2i for all 1 < i < s.
Then the map © — P(m) is a bijection from (NI, to sg,(j).

Proof. Let m € Tosym and T = P(7w) € Sosym. It is sufficient to show that m € (N7Z,, if and only if
Te sg,(i)-
Suppose that 7 € (ANZ,,. Then we have

Since m € Zog1m, we obtain that
Teos =2,1,4,3,...,2t — 1,262t + 2,2t + 4,...,25,2t + 1,2t + 3,...,2s5 — 1.
(3)

Then T<os = P(7)<2s = P(m<2s) is the desired SYT of shape (s, s) and we obtain T € S,

Now suppose that T € 3352). Let t be the largest integer such that 2¢ — 1 and 2i are connected in 7 for
all 1 < ¢ < t. If there is no such integer, we set t = 0. If ¢ > s, we are done. Assume that ¢ < s. By the
definition of ¢, we have that 2¢ + 1 is connected to some integer j > 2t + 2 in . We claim that 2t + 2 is a
fixed point. For a contradiction, suppose that 2t + 2 is connected to some integer r > 2t +2 in 7. If r < j,
then the four integers 2t + 1 < 2t + 2 < r < j violate the condition for a non-nesting involution, which is

a contradiction. If » > j, then
T<otre = 2,1,4,3,...,2¢,2t — 1,2t + 1,2t + 2.
The insertion tableau of this permutation is not equal to T'<st42, which is a contradiction to

P(m<ott2) = P(m)<ot+2 = T<ot42.

Therefore, 2t + 2 must be a fixed point of m. Moreover, 2t + 1 is connected to an integer greater than 2s.
To see this suppose that 2t + 1 is connected to an integer j < 2s. Then m<os has a decreasing sequence
74,2t + 2,2t + 1 of length 3. Then the insertion tableau of m<ss would have at least 3 rows and it cannot
be T<as. Therefore, 2t + 1 must be connected to an integer greater than 2s. By the same argument, we
can show that 2¢ — 1 is connected to an integer greater than 2s and 2¢ is a fixed point for all ¢ < i < s.
This finishes the proof. O

Now we recall a well-known bijection between the non-nesting involutions and the Motzkin paths. For
7€ NZ,, let ¢(m) be the Motzkin path L constructed as follows. If i is a fixed point of 7, the ith step of
L is a horizontal step. If ¢ and j are connected in 7 for ¢ < j, the ith step of L is an up step and the jth
step of L is a down step. It is easy to see that ¢ is a bijection from N'Z, to the set of Motzkin paths of
length n.

Proposition 8.11. We have

|«587(r:3)‘ = M(m,t)-

D

t=0

Proof. First, observe that there is a natural bijection from 387(3) to the set Sgi) in Lemma 8.10. Such a

bijection can be constructed as follows. For T € SS,(,;”’), let 77 be the SYT obtained from T by increasing
every entry in T' by 2s and filling the two empty cells in the ith column with 2 —1 and 24 for all 1 < ¢ < s.
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Thus, by Lemma 8.10, we have
|sS7(7§)| = |S§(m3)| = ‘SNIm|'

Now consider 7 € 4NZ,, and the corresponding Motzkin path ¢(7) from (0,0) to (2s + m,0). By
definition of (NZ,, in Lemma 8.10, there is an integer 0 < ¢ < s such that the first 2s steps of ¢(m) are
(UD)'(UH)*~*t. Therefore if we take L to be the path consisting of the first m steps of the reverse path
of ¢(m), then L is a Motzkin path from (0,0) to (m,t). It is easy to see that the map m+— L is a bijection
from (NZ,, to the set of all Motzkin paths from (0,0) to (m,t) for some 0 < ¢ < m. Thus we have

|€NIm| = Z M(m,t)v
t=0

which completes the proof. O
Now we have all the ingredients to prove Theorem 8.1.
Proof of Theorem 8.1. By (8.1) and Proposition 8.11, we have
B | =[S — ;218D | = My ) O
In order to prove Theorem 8.2 we need two lemmas.

Lemma 8.12. For integers m = 0 and s = 0, we have

S| = | PO + [ AED)|, [, AED| = [ ;PP and 8P| =[PP+, P2, ).

Proof. For the first identity, consider a tableau T € 587(3). Then the shape of T is A = (A1, A2, A3) with
A/(s,8) = m. Tt is easy to see that A\ is either a parity partition or an almost-even partition. Thus we
obtain the first identity.

For the second identity, consider a tableau T' € (AE 52). Then the shape of T is an almost-even partition
A = (A1, A2, Ag) with A/(s,s) = m. If m is even, then only one of A1, A2, A3 is even, and if m is odd, only
one of them is even. Thus, in any case, one of A1, A2, A3 has a different parity than the others. Suppose
that \; is the one with the different parity. Let 7" be the tableau obtained from 7' by increasing every
entry by 1 and add a new cell at the end of \;. Then T” € Pmﬂ The map T — T’ gives a bijection from
JAED to 5777(311. Thus we obtain the second identity.

The third identity follows from the first two identities. O

Lemma 8.13. For integers m > 0 and s = 1, we have
|5,P'r(r?)| - ‘8*2/Pm | = R(m s)-

Proof. We will prove this by induction on m when s > 1 is fixed. If m = 0, then both sides are zero. Now
suppose that the statement

(8.3) | PO] — 4—2PB| = Ris)
is true for m > 0. By Lemma 8.12, we have
3 3
s8] — 15=28| = |sPD] + [P 1| — |s—2PP| — |52 P4

By Proposition 8.11 and Proposition 4.11, we have
‘887(3)‘ - |S*287(7§)| = M(m,s) + M(m,s—l) = R(m,s) + R(m+1,s)-
Thus,
(8~4> (|S7D7(r§)| - |5*2P'r(r?)|) | Pm+1 |s 27Dm+1 ) = R(m,s) + R(m+1,s)-
By (8.3) and (8.4), we obtain that
3 3
‘sfpmiﬁ - ‘5*2P7(n3rl| = R(m+1,s)~

Thus, by induction, the statement is true for all m > 0. O
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Now we give a proof of Theorem 8.2.

Proof of Theorem 8.2. By (8.2), Lemmas 8.12 and 8.13, we have
3 3
:DD] = [AED| — a2 AED| = [Pl = ls=2P bl = Rimer)-

m

Thus, we have |s®§{)| = R(m+1,5). Our assertion for s = 0 follows from Corollary 6.17. d

8.2. Proof by insertion scheme. In this subsection, we will prove that all the multiplicities of 1 €
smax% (A|3) are generalized Motzkin numbers M, ,) using an insertion scheme which generalizes the one
in Section 7. Namely, we will introduce a new kind of jeu du taquin which realizes the recursive formula

(4.3):
Mem,s) = Min—1,5) * Mm—1,5—1) + M(mm—1,541)-
As its corollary, we have a bijective map between {S‘ng) | 0 < s < m} and the set of all Motzkin paths.
Note that, for T = (A, u,v) € 32852),

AM=morvy=m ifs>0,
Al=m if s =0.
Lemma 8.14. For T = (A, pu,v) € S‘st)_l, we have
TT (m) e BB and T?; (m) € 1B,
(3

Proof. In the definition of ;5 )

m_1 (Definition 6.4), the conditions are relevant only with y and v. Hence

TT (m) e B since (m) * A D p and nothing happens to 4 and v. The second assertion follows from the

second assertion of Lemma 7.8. O

Example 8.15. The set o%é‘g) consists of four tableaux

e 22 (31 o

IR v

and the set 1%53) has five elements

2] [-[3] [-[2]1] [-[3]1] [-]3]2]
1, 177 v L E .

3] [2 3 2 1

Using the operations ?;(4) and >i<(4), we get the elements in 1‘34&3) from 0‘31(;3) and 1EB§3) as follows:

3[2]1] [-[3]2] 3[1] [-]3] [-14]2] [-14]3] [-]4]2]1] [-]4]3]1] [-]4]3]2]
L ) |1 v 2 s 27 -1 ) |1 s L s L] s L .
4 4 4 4[1] |3 2 3 2 1

Remark 8.16. One can observe that an element (A, p,v) € S‘,Bg) obtained from 3%53)_1 in the above way
can be distinguished from others by the following characterization:

A =m and (Asa,u,v)E€ 3‘352),1-

Similarly, an element (A, u,v) € 5%7(;3) obtained from 5_1‘37(3)71 can be distinguished from others by the
following characterization:

vi=m and (A p,vs2)€ S,l%ffil.
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But there are elements in 5%52) which cannot be obtained from S%S’L)_l or 5_1%53)_1. For example, there

are elements in 1%513) which do not appear in Example 8.15:

(4] [ ]4]) [-]4]1]
3 [ 2 [ ]2] -
2[1] [3]1] [3

Lemma 8.17. Let T = (\, u,v) € 3‘353) with m = 1. If vy = m, then

s=1 and T=T * (m)  for some T' € 1B .
Proof. This assertion follows from the definition of s%%’i) directly. (]

Now we will construct an algorithm to get elements (A, u, ) of S%,(S) from S+1‘BS)_1. By Remark 8.16

and Lemma 8.17, such an element in 8%55;) should satisfy the following conditions:

(8.5) AM=m and (Aso,p,v) ¢ S%S’L)_l ( or equivalently Ao D ).

In tableaux notation, the construction of T' = (\, pu,v) € 5%53) from T = (N, u/,v') € Hl%ﬁ;?_l can be
understood as filling the top-rightmost empty cell with m and performing jeu de taquin to fill the empty
cell right below. For example, for given

8.6 7~ |- B12[10[8] 7] B

(8.6) : o1 = 2
6[5]4[3]2

we put 13 in the top blue cell

(8.7) [ [BI20[8] 7]
. 1191
6[5]4[3]2

Now we explain the jeu de taquin to fill the remaining blue cell.
Algorithm 8.18 (Rigid jeu de taquin). Assume that 7" is given, and fill the top-rightmost empty cell
with m as described above. Take the reference point to be the empty cell in the second row.

(1) Perform ! on the north-east cell in the first row and «<—; on the other cells in the first row. If the
resulting tableau is standard, terminate the process; otherwise (recover the original tableau and)

go to (2).

(2) Perform 1 on the south cell in the third row and <3 on the other cells in the third row. If the
3

resulting tableau is standard, terminate the process; otherwise (recover the original tableau and)
go to (3).

(3) Perform <5 on the east cell to switch the position of the empty cell and go to (1).
Denote the resulting tableau by T. We call this process the rigid jeu de taquin (of level 3).

By applying the operation (1) of Algorithm 8.18 to (8.7), we have

T elifel 1]
615432

The cell moves from the first row to second row /! and the cells [10]8] 7] located on the right hand
side of [12] are shifted by 1 to the left «<—;. Thus we shall denote the operation (1) by /! «;. Clearly, the
resulting tableau is not standard.
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We apply the operation (2) in Algorithm 8.18 to (8.7) to obtain

1210[8] 7]
4[11[9]1

65
The cell moves from the third row to second row 1 and the cells located on the right hand side of
3

are shifted by 1 to the left «<3. Thus we shall denote the operation (2) by 1 «<—3. The resulting tableau
3

is not standard either.
Now perform the operation (3) in Algorithm 8.18 to (8.7) and obtain

(8.8) [ Eeo[s] 7] . [ [ EIr210[8] 7]
- 11]9]1 JEN BE
6]5[4]3]2 6]5[4]3]2

Omne can easily see that neither of the operations (1) and (2) performed on the new tableau in (8.8)
produces a standard tableau. Thus we perform the operation (3) to obtain
(8.9) |- E120[8] 7]
<119 1
6|15(4]|3(2

Now we perform the operation (1) on the tableau (8.9) and obtain

which is standard. In this way, we have obtained a tableau T' e 2%@ from T" € 3‘3@.

Clearly, the process terminates in finite steps, and one can check that the resulting tableau 7" in Algo-
rithm 8.18 satisfies the conditions in (8.5) and is contained in 5%52). Furthermore, we can construct the
reverse of the rigid jeu de taquin easily.

Algorithm 8.19 (Reverse rigid jeu de taquin). Assume that T' = (A, p,v) € B satisfies (8.5). Remove
m from its cell. Take the reference point to be the leftmost non-empty cell, say ¢, in the second row.

(1) Perform —3 on the cells in the third row from the rightmost cell all the way to the south cell of

¢, and i on the cell ¢, and —4 on the cells, if any, which were at the left-side of ¢. If the resulting
tableau is standard, terminate the process; otherwise (recover the original tableau and) go to (2).
(2) Perform —; on the cells in the first row from the rightmost cell all the way to the northeast cell of
¢, and 5 on the cell ¢, and — on the cells, if any, which were at the left-side of ¢. If the resulting
tableau is standard, terminate the process; otherwise (recover the original tableau and) go to (3).
(3) Take the east cell to be new ¢ for the next round, and make it the reference point, and go to (1).

Denote the resulting tableau by T”. We call this process the reverse rigid jeu de taquin (of level 3).

One can check that the resulting tableau 7" in Algorithm 8.19 is contained in S+1%£3)_1. It is also easy
to see that Algorithm 8.19 is an inverse process of Algorithm 8.18.

Example 8.20. For a given

(8.10) 7 [ B2 7]5]¢ 3@
ANEIEE
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one can check that it satisfies the conditions in (8.5). Now we delete 13.

12[10] 7[5 |
: 9181
6(4(3]2
Since v, = 6 < 11 = pq, (1) in Algorithm 8.19 fails, and since p; = 11 < 12 = Ay, (2) fails. Hence we
apply (3) to change the reference point (in blue color):

- [12[10] 7] 5]
IO HE
6[4[3]2

As (1) and (2) fail again, we apply (3) to obtain

- [12[10[ 7[5 ]
SNE S
6]4]3]2

Now (2) works to produce a standard tableau:

=[O (3.
6432

To check that it is an inverse process, we add 13 again and see:

[ 2] 8 7]5].,[- [13[12[10[ 8 [ 7[5] .., [ - [13[12[10] 7[5]_ 7
<1119 1 <1119 1 - 1119 1
614]3|2 614]13|2 61432

Theorem 8.21. The rigid-type jeu de taquin gives a bijection between

3 3 3
B0l and B\ (BOL ()| BOL, 5 (m)).

Proof. Our assertion follows from Algorithm 8.18 and Algorithm 8.19 which are inverses to each other. [
Now we give another proof of Theorem 8.1.

Proof of Theorem 8.1. From Theorem 8.21, we have
a1 B+ 1B+ 1B | = B
which is the same as (4.3). Since we have |m%£3)| =1, we are done. O

Corollary 8.22. We have a bijective map between ;Bﬁ,? and My, 5y where My, 5) s the set of Motzkin
paths ending at (m, s)
Proof. Assume that we have T € 3%7(7?{). For each step of the reverse rigid jeu de taquin (removing the cell
[m)]), we record the vector vy, as

e (LO)IUT =T * (m) for some T" € S‘Bgll,

e (1L,1)ifT =1 x (m) for some T" € S,l‘Bg)_l,

e (1,—-1) if T can be obtained from 7" € 5+1%$)71.

Then, by induction on m, we obtain the sequence of vectors corresponding to a Motzkin path. O

Example 8.23. For

T=(\ = [T Tiofid[8]7] 3)
(A ) T el €385
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we see v # 12 and

Tio[8[7] 3)
|- [-Tafe 1[¢3%11
65[4[3]2

Hence v12 = (1,—1) and T can be obtained from

T = [ dsltle ;5%
11
el
6[5[4]3]2
Now we have
— [T os]7] «— [LL-I-T-1oI8[7] «— [-[-I-1-1-I8[7] «— [-[-I-1-1-17] «— [L-L-I-1-]] «—
o[ ofaf =0 [ -] ]-T-]1] o - aol - ja-n - I-[-T-T-]a1s
6[5[4]3]2 6[5[4[3]2 6|5[4]3]2 6|5[4[3]2 6]5[4[3[2]1

Thus T corresponds to the Motzkin path given below:

A

(0,0) (2,00 (4,0) (6,0) (8,0) (10,0) (12,0)’

Remark 8.24. In [4], Eu constructed a bijection between 0%52) and M, o). His bijection gives paths
different from those obtained by our bijection.

9. SOME LEVEL k£ WEIGHT MULTIPLICITIES WHEN k — 00: BESSEL TRIANGLE

In this section we will compute level k weight multiplicities |S‘B£ff)| and \s©£f)| when k is as large as m
(or m/2). Recall that we have oBE) = B8 and (@ = D) Let R, be the set of reverse SYTs with
m cells and S,,, be the set of SYT with m cells.

First, observe that if £ > m, the set EBSS) is the same as the set R,,. Since |S,,| is equal to the number
of involutions in G,,, we have

|m/2]
(©) ._ 1 (k)| — _ — m — 1)
9.1) B i tim [B0] = (R, = IS, SEO(QS)QS i,

where (2s — 1)l =1-3---(2s — 1). Similarly, if & = m, the set D) becomes the set of Young tableaux
with m cells that have exactly one or two rows of odd length depending on the parity of m. Using a well
known property of the Robinson—Schensted algorithm we can deduce that limy_, 4 |©£ff)| is the number of
involutions in Z,, with one or two fixed points.
In Section 9.1 we find formulas for |©g’2| when k£ > m — 1 and for |©gf,)l_1| when k£ > m — 2. Our
formulas (Theorems 9.2 and 9.3) imply that
ml! if m is odd,
N ={m
— X
2

m

9.2 D) = lim D
(92) kl—>H;o| m (m—1D!N if m is even.

In Section 9.2 we find a formula for |S‘B£,]f)| when k > m — s and compute the limit of \8%5,’?| ask — o0. In
Section 9.3 we find a formula for \SC‘D%” when k > m — s+ 1 and compute the limit of |s©5ﬁ)| as k — .

9.1. The limit of |®5,If)\ when k — co. The following lemma is well-known ([33, Exercise 3.12]). Here
we identify a reverse standard Young tableau with a standard Young tableau using the obvious bijection.
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Lemma 9.1. The Robinson—-Schensted algorithm gives a bijection between the set of Young tableaux of n
cells with k columns of odd length and the set of involutions of {1,2,...,n} with k fixed points.

Let I(m, k) denote the number of involutions of {1,2,...,m} with k fixed points. It is easy to see that
I(2m,0) =I(2m —1,1) = (2m — 1!, I(2m,2) =m-I1(2m,0) = m(2m — 1)!l.
Theorem 9.2. For an odd integer 2m — 1 and any k = m,
05 4| = (2m — ).
Proof. Since k = m, any Young tableau of 2m — 1 cells has at most m — 1 (nonzero) rows of even length.

Thus ngy)zq is the set of Young tableaux of 2m — 1 cells with exactly one row of odd length and there is
no restriction on the number of rows. By taking the conjugate, this number is also equal to the number of
Young tableaux of 2m — 1 cells with exactly one column of odd length. By Lemma 9.1, this is equal to the
number of involutions of {1,2,...,2m — 1} with one fixed point. Thus we get |©§2_1\ =I2m-1,1) =
(2m — . O

Theorem 9.3. For an even integer 2m and any k = m + 1,

2m)!
D[ = m(2m — 1y = 2
Proof. This can be shown by the same argument as in the proof of the previous theorem. O

Corollary 9.4. For each m,
PV = 2m — 1)1 = C,p.
Proof. Note that
Di 1 \Di ) =R

m—1
where A = (2,2,...,2,1) - 2m — 1. Since |R*| = f* = C,,, our assertion follows. O
By applying the same strategy as in Corollary 9.4, we have the following corollary:

Corollary 9.5. For each m, we have

2m/!
(1) 195 = m(2m — 1)1 — 3 m

(m —1)l(m + 2)!"
(2) |®§ﬁf§)| =2m-)-C,, — (2m —1)! (Qm 1

ml(m—31 \m+1)"
(m=1)1 _ (9 — 1)1 — 2mi — 1 (2m — 1)
() | =m@m = D =8 o w2 mlm = 21

Since %ﬂf) and 3355) can be understood as special cases of ;Bﬁ,’f) and SC‘D%) respectively, in the next two

subsections we will investigate
lim [(B®] and  lim [, ©%)].
k—o0 k—00

9.2. The limit of [,8'"| when k — .
Proposition 9.6. Let k > m — s+ 2. Then

u%ﬁw=(m)xaﬁg
S

where BSY) is the number defined in (9.1).

Proof. Let T € S%Sﬁf). Since the kth row of T has at least s cells, the first £ — 1 rows can have at most
m — s cells. Since m — s < k — 2, the (k — 1)st row must be empty. Thus the kth row of T has exactly
s cells. Such a tableau can be constructed by selecting s integers from {1,2,...,m} for the kth row and
filling the remaining m — s integers in a Young diagram so that the entries are increasing in each row and
column. The number of ways to do this is equal to (7:) x B (]

m—s
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Remark 9.7. By similar arguments, one can show the following identities:

| Blm—stD)| = " xBi,OLofs— m—1 and |,BUm9)| = " ng,olo,)s— m-1 (m—s—1).
s s—1 s s—1

Corollary 9.8. For positive integers s < m,

B .= Iim [,B®)] = (") x B
som k—o0 s=m -

S m—s*

The triangular array consisting of {sBs,ZO )} is given as follows:

1 5 30 140 700

1 20 80 350 1456

1 3 12 40 150 546 2128

1 2 6 16 50 156 532 1856
1 1 2 4 10 26 76 232 764

where the bottom row is the number of involutions in &,,.

(9.3)

9.3. The limit of [, 9| when k — o.

Theorem 9.9. Assume that we have a pair of positive integers 2 < s < m satisfying s o m. Then, for

k>=m— s+ 3, we have
1,08 = (m+ 1) x (m — s)lL.
s

Therefore, we have a closed formula for the limit as follows:

1
(9.4) D) = lim |,©F)| = <m+ ) x (m — s)!.
k—0 S

Proof. Let T € S@ﬁ,’f). By the same arguments as in the proof of Proposition 9.6, the kth row of T has
s —1 or s cells. Now we consider the two cases separately.

(1) The kth row of T has s cells. Let 7" be the tableau obtained from the first ¥ — 1 rows of T by
relabeling the integers with 1,2, ..., m — s with respect to their relative order. Then T” is an almost even
tableau of the odd number m — s. The number of such tableaux T" is DSSOJS = (m — s)!l. Since we can
select the entries in the kth row of T freely, there are (T) ways to do this. Thus, the number of tableaux
T in this case is () (m — s)!l.

(2) The kth row of T has s — 1 cells. Let T” be the tableau obtained from the first k¥ — 1 rows of T' by
relabeling the integers with 1,2,...,m — s + 1 with respect to their relative order. Then all the rows of
T’ have even length. By the same arguments as in the proof of Theorem 9.2, the number of such tableaux
T’ is equal to I(m — s+ 1,0) = (m — s)!!, the number of fixed-point free involutions. Similarly to the first
case, the number of tableaux T in this case is (™)) (m — s)!I.

By the above two cases, we have

1= (e (i

Theorem 9.10. Assume that a given pair of positive integers 2 < s

k>=m—s+ 3, we have
m m
o1 = () <02 () * 0%
(0)

where Dy, is given in (9.2). Therefore, we have a closed formula for the limit as follows:

. m m
(9.5) DY = lim D] = <s) x D)+ (s B 1) x D) ).

1) (m — s)IL. O

m satisfies s =9 m. Then for a

N w4
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Proof. The proof is almost identical to the proof of Theorem 9.9. O

The closed formula (9.4) is known to compute the triangular array consisting of coefficients of Bessel
polynomials ([34, A001497]):

1 36 990

1 28 630 13860
1 21 378 6930 135135
(9.6) 1 15 210 3150 51975 945945

1 10 105 1260 17325 270270 4729725

1 6 45 420 4725 62370 945945 16216200

1 3 15 105 945 10395 135135 2027025 34459425

1 1 3 15 105 945 10395 135135 2027025 34459425

)

where the lowest two rows are ng_l = (2m — 1)!l. We call this triangular array Bessel triangle.

10. STANDARD YOUNG TABLEAUX WITH A FIXED NUMBER OF ROWS OF ODD LENGTH

In this section we consider SYTs with a fixed number of rows of odd length. We denote by &, the set
of SYT's with m cells. Recall that S,(,]f ) is the set of SYT's with m cells and at most k rows, and that there
is an obvious bijection from Sﬁf) to ‘B,(ﬁ). The main objects in this section are the sets S,(,]f) and their
subsets S,Sf’t) defined below.

Definition 10.1. For 0 < ¢t < k, we denote by S,(,If’t) the set of SYTs with m cells, at most k rows and
exactly t rows of odd length.

Observe that by the obvious bijection between SYTs and reverse standard Young tableaux, we have

k, k, k
(101) |S( 2 | - |©27n| and |82(m1)1| = |®éﬂ)L 1|'

Thus, |S (k.t )| can be thought of as a generalization of |© | In this section, we study the cardinalities of
87(”) and Snlf 2

In Section 10.1, we express |S,(,Zf)| in terms of |Si(k’0)| and |Si(k’k)\ (Proposition 10.5). Using this relation
D for every 0 <t <k <5 (Theorem 10.2). In

Section 10.2, we express |Sr(r]f )| as an integral over the orthogonal group O(k) with respect to the normalized
Haar measure (Theorem 10.7). In Section 10.3, we evaluate this integral to find an explicit formula for

|S(k)| = |%£5)| (Theorem 10.9).

and some known results, we find an explicit formula for ST(,]f

10.1. The cardinality of S(k Y for 0 <t < k < 5. In this subsection we give an explicit formula for

Sy(n v for every 0 <t < k < 5. Note that Sy(,lf’t) = @ if m %5 t. Since it is trivial for & = 0, 1, we consider

k > 2. Recall that
1 /2] m+1\/m-—i—1
Rm = > , ‘ :
erlz,:1 7 1—1

<t <k <5 as follows:

Theorem 10.2. We have a formula for |Sy’

2m — 1
Fork =2, |80 =|s{&) |s<“|—(mm )

m—1

For k = 3, |$(30 | = |523 1) 1= |©2m 1l = Ram,
S5 = 185241 = 5] = Rams.

m—1

1,0) (1 Cn+1
For k = 4, |S( ‘*|82 )|_|®2m 1|_< 9 g
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3(2m) 12

(4 2) _ _ 2 —

Cm
S0, = Ifh) = ( : )

m m—1
5,0) 5,1 5 2m 2m
For k = 5’ |S2(m ‘ |82('rn—)1| = |®é’rr)L—1| = Z (21 )Cici+1 - Z (22 + 1) C22+17
=0

=0
M2 (2m b2/ om
Sz = P2m| = §01+3 % Saa §02+3 2 4+1) L
m—1 . m—1 .
21 2m — 1 21 2m —1
Sl = CiCiv1 — — c?
[Sam=1l = ;i+3 2 “ i:ZOi+3 2% 4+1 ) Y
m—1 m—1
(5.4)) _ 1o(5.5) | _ 2m—1\ . - 2m —1\
|82m ‘ - |S2m—1| - lgo ( 2% >C1Cz+1 - l:ZO (22 +1 Ci+1'

Before proving this theorem we first find some relations between the numbers |Sv(ff ’t)| and |S7(,]f) |

Lemma 10.3. We have

[SER = (85T and SO = [,
Proof. The map deleting the cell with m gives a bijection from S (kR) 4o S,,lf kl Y. The same map also
gives a bijection from Sr(,lf’o) to S,(,]f_ll) O

The next lemma is the key lemma in this section. The proof is based on the Robinson—Schensted
algorithm and a sign-reversing involution. Recall that an SYT is a filling of a Young diagram A - m
with integers 1,2,...,m. We need to extend this definition to a partial SYT which is a filling of a Young
diagram with distinct integers such that the entries are increasing in each row and each column.

Lemma 10.4. For integers k = 1 and m = 0, we have

(k,0)| _ 1 g(k,k)| N _ym—i ) ck—1)
SED | — SR = Y (—1) ()s ]

=0
Proof. Let X be the set of pairs (T, A) of a partial SYT T and a subset A of {1,2,..., m} such that T has
at most k — 1 rows and the set of entries of T is {1,2,...,m}\A. Then we have
S —i (T k—1
S (TS - F o,
i=0 (T,A)eX

We define Y to be the set of pairs (P, H) of an SYT P and a sequence H = (t1,ta,...,tx) such that

e P has at most k rows, and
e if A = (Aq,..., ) is the shape of P (some A; can be zero), then 0 < ¢; < \; — A4 for all
1<i<k—1andt, =\

Note that if g = (u1,...,pr) is defined by p; = A\; — t; for 1 < @ < k, then the second condition above
means that © < A and \/p is a skew partition whose Young dlagram contains at most one cell in each
column. Such a skew partition is called a horizontal strip. By identifying the sequence H and the skew
partition A/p, one can consider H as a horizontal strip of P which contains all cells in row k of P.

We claim that there is a bijection from X to Y such that if (T, A) € X corresponds to (P, H) € Y, then
|A] =t1 +ta+ -+ tg. For (T, A) € X, let P be the SYT obtained from T by inserting the elements of A
in increasing order via the Robinson—Schensted algorithm and H = (¢1,...,t;) be the sequence of integers
such that ¢; is the number of newly added cells in row ¢. In other words, if Sh(P) = XA = (A1,..., Ax) and
Sh(T) = u = (p1,--., k), then t; = A\; — p;. It is well known that if ¢ < j and ¢ is inserted to a partial
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SYT T and j is inserted to the resulting tableau via the Robinson—Schensted algorithm, then the newly
added cell after inserting j is strictly to the right of the newly added cell after inserting ¢. This property
implies that A/p is a horizontal strip and the cells in it have been added from left to right. Therefore,
we can recover (T, A) from (P, H) using the inverse map of the Robinson—Schensted algorithm and this
proves the claim.

By the above claim, we have

Z (,1)|A\: Z (— 1)ttt

(T,A)exX (P,H)eY
Now we define a map ¢ on Y as follows. Suppose that (P, H) € Y and the shape of Pis A = (A1,...,\g)
and H = (t1,...,t). Find the smallest ¢ < k — 1 such that ¢; is an odd integer or ¢; is an even integer

less than A; — A\;—1. In this case we define ¢(P,H) = (P,H’), where H' = (t{,...,t}) is obtained from
H by replacing t; by t; — 1 if ¢; is odd and by t; + 1 if ¢; is even. If there is no such integer i, then we
define ¢(P, H) = (P, H). It is easy to see that ¢ is an involution on Y such that if ¢(P, H) = (P, H') and
H # H', then (—1)t*+t — —(—1)A+ "+t Moreover, if (P, H) = (P, H), then t; = A\; — \;+1 is even
for all 1 <4 < k — 1. This can happen only if P € SEY or Pe S,gf’k). If (P,H) = (P,H) for P e S,(r]f’o),
then (—1)ti*+t = (1)t = 1. If ¢(P,H) = (P, H) for P € S¥F then (—1)ti+-+ts = (—1)tx = —1,
Therefore, ¢ is a sign-reversing involution and we have
T (D = SE0] - |5,
(P,H)eY
which finishes the proof. O

Applying the principle of inclusion and exclusion to Lemma 10.4, we obtain the following proposition.

Proposition 10.5. For integers k = 1 and m > 0, we have
_ SNAL k, ok
580 = 3 (1) (1801 1s0).
i=0

Now we prove Theorem 10.2.

Proof of Theorem 10.2. We have already proved the formulas for k = 2 in (3.3) and for k¥ = 3 in Proposi-
tion 4.12. Now we consider the cardinality of Sy(,lf’t) for k = 4.
Recall that we have a formula for |S7(;Ll)| = |%5§)| in Theorem 3.5:

|S2(i2b| =CnCpny1  and ‘82(;271 =C,,C

Since 2m is even,

(10.2) S50 418888 | 48| = 1S = CpCrnst.
By Lemma 10.3, we have
(4 (4 4 4

(10.3) [SS |+ (S50 = 1SS | + 1852 | = |85 4| = €2,
By Lemma 10.4, we have

2m

- (2m

(10.4) S0 = 188501 = -1 ()81 - €

1=0

In (10.4), we used the fact that |Si(3)| = M; and

Efc—ni(i”)mi::cm7
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which can be obtained from the following identity using inclusion-exclusion:
[m/2]
m
M,, = ;0 <2Z> C,.
10.2), (10.3) and (10.4 e obtain the formulas for [S{*?], [S$4?] and |S$Y|. By Lemma 10.3
( 2m D 2m 2m Yy ’

we obtain the formulas for |S2m 1| and |82(i’i)1 .

Now we consider the cardinality of S(k’t) for k = 5. First, we have

5,0 5,2 5,4 5 5,1 5,3 5,5
(10.5) SO 4 8P 11850 = 8P and SV 1SS+ [SE2 ] = 1S9
By Lemma 10.3, we have
5,0 5,1 5,5 54
(10.6) SO =[SV | and 8PS0 ] = S5,

By Lemma 10.4, we have

2m
if(2m
SE0 = 18571 = 15501 = Bew (3 is.

(10.7) =0
(5.0) 65 |y (2m 1) o
SE = IS5 = —ISER = 3 o (s
i=0
By solving the above equations, we obtain the desired formulas. O

10.2. Traces of orthogonal matrices. There is an interesting integral representation of the number
|82(];;O)| as follows, see Example 2 on page 423 in [30]:

(10.8) f Tr(X)™du(X) = |S9)].
O(k)

Here, the integral is taken with respect to the normalized Haar measure p on the orthogonal group O(k)

consisting of k x k orthogonal matrices. Note that if m is odd, we have |87(rlf’0)| = 0. Thus, by (10.1) and
Lemma 10.3, we have

k k, m
(10.9) D) ] = sk = Jo(k) Te(X)P"du(X).

In this subsection we show that |S7(7]lc k) | and |S,(,]f )| also have similar integral representations.
For a symmetric function f(xi,...,x;) with k variables and X € O(k), we define f(X) by f(X) =
(e, ... %), where 1 ... e are the eigenvalues of X. Note that Tr(X™) = p,(X), where

Pm (21, .., 2k) = 2" + - + z}* is the m-th power sum symmetric function.
We need the following known result, see [30, pp.420-421]:
1 if every part of A\ is even,
(10.10) Jo(k) A X)dp(X) = { 0 otherwise,

where sy is the Schur function.
Proposition 10.6. We have
|S k)| :J det (X)) Tr(X)™du(X).
O(k)

Proof. Note that
Te(X)" =p(X)" = D faaX),
Abm, LN <k

where f* is the number of standard Young tableaux of shape A. Since

Ty TeSA(T1, -, T) = Sap k) (T1, -, Tk)
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for A with at most k rows, we have det(X)sx(X) = sy, (1#)(X). Thus,

| deomomdnn = N P s (du(x).
O(k) A-m,e(\)<k  YOK)
By (10.10), this is equal to |S7(ff’k)|. O

Now we give an integral expression for the number SYTs with m cells and at most k rows.
Theorem 10.7. For integers k,m > 0, we have
B3| = [SW] = J (1 = det(X))(1 + Tr(X))™ du(X).
O(k+1)
Proof. By Proposition 10.5,

|37(71Lc)| - Z (77) <|Si(k+1,0)‘ _ |Si(k+1,k+1)|> .

i=0
By (10.8) and Proposition 10.6, we have

(k)| _ SN (X ) _ (X))
1= (7) ( Jo T A0 = [ der(01306) du(X)>

_ L(k+1)(1 — det(X)) (i ("Z)mw) dp(X).

i=0
We then obtain the desired identity using the binomial theorem. O

10.3. Evaluation of integrals. In this subsection we obtain an explicit formula for the number of SYTs
with m cells and at most k rows by evaluating the integral in Theorem 10.7. For the reader’s convenience
we recall a well-known fact on the normalized Haar measure on the orthogonal group O(k) due to Weyl
[38], see also [3, Remarks 3 on p. 57].

For any orthogonal matrix A € O(n), the eigenvalues of A lie on the unit circle. Let P, (e?1, e, ... ¢in)
be the probability that a random matrix A € O(n) has the given eigenvalues et e ... e¥~ for
01,...,0, € [0,27). Here, we assume that A is selected randomly with respect to the normalized Haar

measure. Then this probability is given as follows.

Proposition 10.8. For k=1, e€ {1,—1} and 0y,...,0; € [0, 7] we have

+i0; +if +i0 k" —2k+1
, . , )
Pop (e 1,6*12,...,6*1k)zw (cos B, — cosbs)*,
: 1<r<s<k
0 0 0 okt -1k
i i +i 2 2
Popyo(£1, e oFif2 oFifk) = 7 H(l — cos” 0y) H (cosf, —cosby)”,
C =1 I<r<s<k
. ‘ . 2k2—k—1 k
Poia (657,00, et0) = S T = ccosf) T (costr — cos6)’.

t=1 1<r<s<k

We denote by O4 (k) (resp. O_(k)) the set of matrices A € O(k) with det(A) =1 (resp. det(A4) = —1).
Now we give an explicit formula for \Sr(f ) |

Theorem 10.9. For k > 1 and m > 0, we have

ti+2k—i—3j k
‘Sgk” = Z ( " ) det (( ti+2k—i3j J)) )
ti+-+tp=m tla cee 7tk liz J ij=1

SeH = ( m > dot (g <t+2’f”>> ,
to+ti++tr=m to?t17"-;tk 2 =1
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where C(x) = wil (23) if © is an integer and C(x) = 0 otherwise.

Proof. By Theorem 10.7 and Proposition 10.8, we have

ISP =2 a0 )
O_(2k+1)

ok?—2k k
= TJ (2cos by + -+ +2cosf)™ H (COS@T—COSHS)QH(l-FCOSQi)deZ‘
k! [0,7]k 1<r<s<k i=1
2k272k+m Z ( m ) J‘ ti ki kv k
= det(z; T )F . _ det(x 7). (1 + cosb;)db;
mkk! e te=m tl,...,tk [0,7]* g J=1 g J lill

2k272k+m m
B Wkk' Z t17 .

ti+-+tg=m ot

k
Z sgn(o)sgn(7) f glit ke =) H(l + cos 0;)db;,
o,7eG, [0,7]* i=1

where x; = cos;. When o € G,, is fixed, since #;’s are symmetric, we can replace t; by t,(;. We can also
replace 7 by 7o. Then the resulting summand is independent of . Thus, we obtain

k% —2k+m m L L
s == —— 3 (t ) > sgn(r)nf gl PO (1 4 cos 0)do.
T 1,- =190

ti+-Ftp=m L TES,

By expressing the second sum as a determinant and using the fact

4 T n
cos™ 0 1+cost9d0—(n),
J cosrota-+costman = (1

2
we obtain the desired formula. The second formula can be proved similarly. O

In the literature there is an explicit formula for |Sy(,lf )| for £ < 5. As a corollary of Theorem 10.9, we
obtain a double-sum formula for |S7(7§3 )|.

Corollary 10.10. Letting v, = ([ZJ), we have
2

. m Yi+a  Vi+3  Vi+2
SO1= > ( . k;) det | vj+3 Vj+2 Y+
itjtk=m 777 Vk+2 Vk+l Yk

There is another way to compute |Sr(r]f )| using symmetric functions due to Gessel [9, Section 6]. It would
be interesting to find a connection between his result and Theorem 10.9. Eu et al. [5] found a bijection

between Sfff) and the set of certain colored Motzkin paths.

We also note that the integrals in the proof of Theorem 10.9 are Selberg-type integrals, see [6]. There is
a combinatorial interpretation for Selberg-type integrals, see [35, Exercise 1.10 (b)]. Recently, a connection
between SYTs and the Selberg integral was found in [23]. There is also a combinatorial interpretation for
a g-analog of the Selberg integral, see [24]. It would be interesting to study the combinatorial aspects of
the formulas in Theorem 10.9 and their g-analogs.
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